International Pilot Project for Technology Co-operation

Final Report
A multi-national technical evaluation of performance of commercial off the shelf metal detectors in the context of humanitarian demining
International Pilot Project for Technology Co-operation Final Report

A multi-national technical evaluation of performance of commercial off the shelf metal detectors in the context of humanitarian demining

Editors:
Y. Das (CA), J.T. Dean (EC), D. Lewis (UK), J.H.J. Roosenboom (NL), G. Zahaczewsky (US)

EUR 19719 EN

2001
No participating member of the International Pilot Project for Technical Co-operation (IPPTC) endorses any claim made by manufacturers for their products. The accuracy or currency of information and technical data supplied by the manufacturers is not warranted and use of this information is at the sole risk of the recipient. The evaluation reports made by the participating members for the purposes of the IPPTC are provided on an "as is" basis and are for informational purposes only. While the IPPTC participating members have attempted to make any evaluation report as accurate as possible, there are no express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose of any product evaluated as part of the IPPTC. Furthermore, no participating member of the IPPTC warrants the accuracy of the information contained in any evaluation report released by it under the requirements of the IPPTC.

Printed in Italy
Participants

Canada
European Commission
The Netherlands
United Kingdom
United States of America

Defence Research Establishment, Suffield
EC Joint Research Centre, Ispra
Royal Netherlands Army, The Hague; TNO FEL, The Hague
Defence Evaluation and Research Agency, Chertsey
U.S. Department of Defense, Washington DC

Published, on behalf of the participants, by the European Commission, Joint Research Centre, Ispra, Italy
Abstract

The results of an evaluation of the detection performance for 29 commercial off the shelf (COTS) metal detectors, against a range of low-metal-content anti-personnel mines and some simulant targets, are described in this report. This work was undertaken by organizations from four nations together with the European Commission, in the International Pilot Project for Technology Co-operation (IPPTC) in the Humanitarian Demining R&D environment.

This report gives a summary of the methodologies and results. Detectors were assessed for performance in air; in a range of soils; and in realistic demining scenarios in Cambodia and Croatia. In addition, the human factors aspect relating to the use of each detector was assessed.

The in-air tests included measurement of sensitivity, drift with time, effect of moisture on the detector head, the assessment of the possibility to set-up the detector consistently and measurement of the sensitivity volume relative to the sensor head. In-soil tests provide comparison of performance in four different soil types under carefully controlled conditions. The measurements in Cambodia and Croatia allow comparison of performance measured under laboratory conditions with that achieved by deminers in field conditions.

A two-page summary of performance is provided for each detector.

A strong correlation was observed between the values for the magnetic susceptibility of the soil and the performance achieved by operational metal detectors. This suggests that such measurements should be a part of Level Two Surveys of suspected mined areas.

References are given to the reports of the full assessments made by the participants and to relevant test protocol documents.
Contents

Glossary ... VIII

1. INTRODUCTION .. 1
 Background ... 1
 Purpose .. 1
 Project Overview .. 1
 Project Methodology ... 2
 How to use this report .. 2

2. TRAINING AND ENTRANCE TEST ... 4
 Objective ... 4
 Registration and training ... 4
 Entrance test .. 4
 Summary of the Training and Entrance Test ... 5

3. IN-AIR TESTS ... 6
 Objective ... 6
 Test Facility at DRES .. 6
 General Procedure .. 7
 Calibration Test .. 7
 Drift Test ... 7
 Moisture Test ... 7
 Sweep Speed Test .. 12
 Sensitivity Test .. 12
 Scan Profile Test .. 19
 Summary of In-Air Tests .. 19

4. IN-SOIL TESTS ... 23
 Objective ... 23
 Test facility at TNO-FEL ... 23
 Equipment and materials .. 24
 Metal detectors ... 24
 Data acquisition hardware and software .. 24
 Procedures .. 24
 Test lane layout .. 24
 Positioning of detectors ... 24
 Test procedure ... 24
 Data analysis and results ... 25
 Scoring methodology .. 25
 Detector performance per target depth ... 25
 Detector performance against selected minimum metal targets 25
 Overall detector performance ... 25
 Summary of the In-Soil Tests ... 25

VI
5. FIELD TESTS
 Objective ... 35
 Methodology ... 35
 Cambodian Field Test ... 35
 Test Site .. 36
 Test Targets and Test Lane Description 36
 Test Site Conditions 36
 Cambodian Field Test Methodology 36
 Test Data Analysis and Results 36
 Clay Lane ... 38
 IPPTC Configuration in Clay Lane 38
 CMAC Configurations in Clay Lane 38
 Summary of Clay Lane Tests 39
 Laterite Lane ... 39
 IPPTC Configuration in Laterite Lane 39
 CMAC Configurations in Laterite Lane 40
 Summary of Laterite Lane Tests 41
 Summary of the Cambodian Field Test 42
 Croatian Field Test .. 43
 Test Site .. 43
 Test Targets and Test Lane Description 43
 Test Site Conditions 45
 Croatian Field Test Methodology 45
 Test Data Analysis and Results 45
 IPPTC Configuration 45
 CroMAC Configuration 47
 Summary of the Croatian Field Test 47

6. HUMAN FACTORS ASSESSMENT 51
 Objective ... 51
 Laboratory Assessment 51
 Field Assessment ... 51
 Results .. 51
 Summary of the Human Factors Assessment 54

7. CONCLUSIONS .. 55
 General ... 55
 In-Air Test .. 55
 In-Soil Test .. 55
 Field Test (Cambodia) 55
 Field Test (Croatia) .. 56
 Human Factors Assessment 56

Annex A - Detectors Performance Summaries 57
Annex B - Soil Measurements 116
Annex C - Invitations to Participants 118

References .. 123
Participants .. 124
Acknowledgements ... 125

TARGETS, SIMULANTS AND DETECTORS 127
 Targets based on AP Landmines 127
 Simulants .. 127
 Detectors .. 128
Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Anti-personnel (landmines)</td>
</tr>
<tr>
<td>CHS</td>
<td>Centre for Human Sciences (Department within DERA)</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeters</td>
</tr>
<tr>
<td>COTS</td>
<td>Commercial off the shelf</td>
</tr>
<tr>
<td>CMAC</td>
<td>Cambodian Mine Action Center</td>
</tr>
<tr>
<td>CroMAC</td>
<td>Croatian Mine Action Center</td>
</tr>
<tr>
<td>DERA</td>
<td>Defence Evaluation and Research Agency</td>
</tr>
<tr>
<td>DRES</td>
<td>Defence Research Establishment Suffield</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>IPPTC</td>
<td>International Pilot Project for Technical Co-operation</td>
</tr>
<tr>
<td>ITEP</td>
<td>International Test and Evaluation Program</td>
</tr>
<tr>
<td>JRC</td>
<td>Joint Research Centre</td>
</tr>
<tr>
<td>Lab.</td>
<td>Laboratory</td>
</tr>
<tr>
<td>m</td>
<td>Meters</td>
</tr>
<tr>
<td>Max</td>
<td>Maximum</td>
</tr>
<tr>
<td>Min</td>
<td>Minimum</td>
</tr>
<tr>
<td>NATO</td>
<td>North Atlantic Treaty Organization</td>
</tr>
<tr>
<td>SME</td>
<td>Subject Matter Expert</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operating Procedure</td>
</tr>
<tr>
<td>TNO-FEL</td>
<td>TNO Physics and Electronics Laboratory</td>
</tr>
</tbody>
</table>
1. Introduction

Background
The concept for the International Pilot Project for Technology Cooperation (IPPTC) originated in the United States Department of Defense in an effort to help answer one of the most frequently asked questions in humanitarian demining, "Which is the best metal detector to use?"

The project, although conceived in October 1997, did not actually become reality until December 1998, when voluntary participants from Canada, the Netherlands, the United Kingdom and the European Commission’s JRC teamed with the United States to lay the groundwork. The pilot project took 21 months to complete, with actual testing being conducted in several phases. Laboratory testing took place in the Netherlands and Canada, followed by field-testing in both Cambodia and Croatia.

Purpose
The purpose of the pilot project was to conduct a coordinated, multi-national, technical evaluation of metal detectors suitable for use in humanitarian demining. The project sought to demonstrate, through a "consumer reports" type of evaluation, the mine detection capabilities of commercial-off-the-shelf (COTS) metal detectors. The report is available in the public domain. The background information is available to governments and organizations and individuals involved in the global humanitarian demining effort at the discretion of the holder of the detailed report on that aspect of the results.

It is hoped that this document will assist organizations in selecting the detector(s) most suitable for their particular environment or unique operational conditions. The pilot project also served as a test vehicle to identify and resolve problems in demining technology cooperation as the lead effort for the International Test and Evaluation Program (ITEP).

Project Overview
The detectors involved in the evaluation were purchased after soliciting the recommendations of all manufacturers known to the IPPTC team as to which detectors were suitable for humanitarian demining applications (see Annex C Invitations to participants). No model recommended by a manufacturer was excluded. Some manufacturers did not respond, while others offered prototype models still under development, which were not evaluated. Since the initiation of the project, several new detector models have entered the market and are currently being offered to the humanitarian demining community. Finally, some models currently available may be different from the equivalent models utilized in the pilot project. Readers interested in purchasing detectors are encouraged to contact manufacturers about implications of actual and potential changes prior to acquisition.

The solicitation resulted in the purchase of three copies of each of 25 different detector models from 13 manufacturers. Some detectors had more than one type of search head, resulting in a total of 29 different sensors for evaluation. The detectors finally included in the IPPTC tests were the following:

Adams AD2500 and AD2600S
Ebinger EBEX 420 GC and EBEX 535
Fisher 1235-X, 1266-XB, and Impulse
Foerster MINEX 2FT 4000.01
Giat Model F1 (DHPM-1A)
GUARD MD4, MD8, MD2000
LG Precision PRS-17K
Minelab F1A4 CMAC and F1A4 MIM
Pro-Scan Mark 2 VLF
Reutech Midas PMD
Schiebel AN-19/2, ATMID, MIMID
Vallton ML1620C and WHV2
White’s AF-108, DI-PRO 5900 and Spectron XLT
The project established the following timeline and locations for the various phases of testing:

Phase I: Acquisition of Detectors and Targets
- March - May 1999
- United States
- The Netherlands

Phase II: Training and Entrance Test
- May - June 1999
- The Netherlands

Phase III: In-Soil Tests
- June - September 1999
- The Netherlands

Phase IV: In-Air Tests/Human Factors
- October 1999 - January 2000
- Canada
- Cambodia
- Croatia

Phase V: Field Tests:
- March 2000
- June 2000
- Cambodia
- Croatia

Project engineers, as well as indigenous deminers, evaluated the detectors against the following inert anti-personnel (AP) landmines: PGMN, PGMN-2, PMA-2, PMA-3, Type 72, R2M2, PMD-6, and simulants: G6, G8, M6 (see page 126 for full description of test targets).

Project Methodology

The overall approach in designing the pilot project evaluation was progressive in that the detectors would be evaluated from the more controlled conditions (the laboratory tests in Canada and The Netherlands), to the less controlled (the field tests in Cambodia and Croatia).

The evaluation included assessments of detector sensitivity in air, in a variety of soil conditions, and environmental effects such as moisture on the sensor head. ‘Human Factors’ such as weight and ease of use were also evaluated, along with other aspects such as cost and ruggedness.

In designing the field tests, 5 and 10 cm were chosen as the two depths at which targets would be buried. It is recognized that the United Nations has established a 20-cm clearance standard for landmines and unexploded ordinance. However, in practice AP mines are mostly found at substantially less than 20 cm, and realistically not many detectors could be expected to find low-metal content mines at that depth. This performance assumption was validated during the conduct of the pilot project.

Inert target mines were utilized as realistic a manner as possible. For example, all mines were set in the firing position with their detonating mechanisms blocked. This ensured that all metallic components were in the position that would generally be encountered during field conditions. Although all mines were buried in a level manner, in the field tests no systematic records were kept on the orientation of their firing mechanisms to the direction of mine detection.

The lanes chosen for the In-Soil Test are believed to be representative of many humanitarian demining scenarios throughout the world. Specifically, lanes consisting of sand, clay, peat and ferruginous soils were chosen. In Cambodia, test mines were placed in both clay and laterite soils. In Croatia, mines were placed in the soil predominantly available, which was highly metallic. In both field locations, host nation requests to test detectors against typical mine target configurations were also honored. Although the testing covered many technical and environmental factors, some elements could not be evaluated due to time and budgetary constraints. These included: sustainability, the effects of electromagnetic interference and the use of multiple field test locations.

How to use this report

The body of this report contains summaries of the full technical reports from the In-Air Tests, In-Soil Tests, In-Country Field Tests and the Human Factors assessment. Copies of the comprehensive test results can be requested from the responsible agencies found in the References Section of this report. The respective agencies have agreed to evaluate each request on a case-by-case basis, with the desire to share the full details of the pilot project as much as possible.

This report should be of interest to a variety of readers including deminers and other operational users, donors, manufacturers of equipment and researchers. The report discusses results from basic laboratory tests through to field tests. Readers are encouraged to consider the relevance and value of each phase of testing to their particular situation.

The section describing the In Air Test results should provide the reader an understanding of the basic variables that affect the detector’s performance, as well as the capability of the detector unencumbered by human factors or environment. As such, these results should not be used as the sole indicator of the detector’s operational capability but will give an indication of the factors that may cause degradation of performance in the field.

The In-Soil Test, conducted in the Netherlands, was intended to approximate a number of representative soil types that deminers are likely to contend with. To achieve a certain degree of scientific rigor, the soil
test lanes were in a controlled environment. These results should help the reader to understand the effect of various soil types on detector performance.

In the section pertaining to field tests, the reader will find test results that may have more bearing on real-world demining applications. However, the results contained in this section may not be applicable to other regions of the world. These results were achieved in the less controlled field environment.

The Human Factors Assessment provides users with a subjective analysis of detector characteristics that do not lend themselves to scientific measurement. Many of these factors have significant bearing on the safety, usefulness and acceptability of equipment in the field. For example, an incomplete understanding on the part of the user of how the demining equipment functions, or the adjustment of the wrong control could easily lead to failure to detect an anti-personnel mine by the deminer - possibly resulting in severe or even fatal injury.

The results from both the In-Air Tests and the Human Factors Assessment can be used to improve training and operating procedures. In an effort to provide readers with specific test details pertaining to each detector evaluated, the report also contains individual detector data sheets (see Annex A). This section shows the individual detector performance from various tests relative to the performance of all other detectors evaluated. The results are depicted graphically for easy reference. Additionally, each data sheet includes information from the detector manufacturer related to cost, weight, and dimensions. Selected strengths and weaknesses of each detector are listed, based upon the Human Factors Assessment. The intent of this section is to provide readers more detailed information on a specific detector’s performance and specifications, as well as comparative performance charts to aid the reader in selecting appropriate detectors for his situation.

A rating system (similar to ones used in some consumer reports) to rank the overall performance of the detectors was considered. However, in keeping with the original commitment not to convey a bias, no such rating is provided. Instead the results are presented in an objective manner. The data allows the reader, if he so chooses, to devise his own rating system to match his particular requirement.

The results as presented will allow the reader to identify groups of detectors with above average performance capabilities for a variety of demining environments. Therefore, it should be possible for the reader to focus his investigations on a few appropriate detectors in order to answer the question, "Which detector is the best for my needs?".
2. Training and Entrance Test

Objective
The objective of the Training and Entrance Test was to unpack and register the detectors and to train the personnel involved. Within this phase was a simple entrance test to identify any shortcomings and to ensure that all detector types met a minimum detection distance of 5 cm in air using the standard test object M₀. The training and entrance test took place at the Miner Training Centre of the Dutch Royal Engineers in Reek (the Netherlands). The test team consisted mainly of the same people that were involved during the other phases of the IPPTC.

Registration and training
Three copies of each detector type were purchased. The test team unpacked each detector type, registered it, and familiarised themselves with its operation. In order to keep all parts of the same detector together and to keep track of all the tests a detector would go through during the IPPTC tests, each detector was given a unique code. This code - designated the IPPTC code - is used interchangeably with the detector name, and can be found on pages 5 and 127. It was put on all detector parts and casings. All information (including test incident reports) was noted in a logbook, which went with the detectors through all phases of the IPPTC.

In most cases, a short self-administered training session was conducted by studying the manual or instruction video and by using the detector outside the building. Some manufacturers took up the opportunity to provide a short on-site training session (Giot, Minelab, and Vallon). A questionnaire was filled-in to support the assessment of human factors in a later phase of the IPPTC.

Entrance test
To make sure that each copy of a certain detector type worked properly, a simple entrance test was defined. As part of this test a single operator determined the maximum (open-air) detection distance.

The detector was placed in a fixed position in a metal-free environment. A minimum warm-up time of three minutes was applied, unless the manual required otherwise. In general, the detectors were tested at the most sensitive settings. The M₀ test piece was moved manually across the detector head to stimulate a detector response. The distance from target to sensor head was raised in increments of one centimetre up to the distance that no signal was heard when the M₀ test piece was moved across the sensor head. This was repeated for all three copies of each detector. Table 2.1 shows the results of this test.
<table>
<thead>
<tr>
<th>Detector Type</th>
<th>IPPTC ID</th>
<th>Maximum detection distance in open air (cm)</th>
<th>Maximum Difference</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Copy 1</td>
<td>Copy 2</td>
<td>Copy 3</td>
</tr>
<tr>
<td>Adams AD2500</td>
<td>AD25</td>
<td>12</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Adams AD2600S</td>
<td>AD26</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Ebingher EBEX 420 GC</td>
<td>EB42</td>
<td>20</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>Ebingher EBEX 535</td>
<td>EB53</td>
<td>15</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Fisher 1235-X</td>
<td>FI12</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Fisher Impulse</td>
<td>FIBM</td>
<td>27</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>Fisher 1266-XB</td>
<td>FIXB</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Foerster MINEX 2FD</td>
<td>FOMI</td>
<td>22</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>Giat Model F-1 (DPHM-1A)</td>
<td>GIAT</td>
<td>11</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Guartel MD2000 (round search head)</td>
<td>GUA2a</td>
<td>23</td>
<td>24</td>
<td>23</td>
</tr>
<tr>
<td>Guartel MD2000 (long probe)</td>
<td>GUA2b</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Guartel MD2000 (short probe)</td>
<td>GUA2c</td>
<td>13</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Guartel MD4</td>
<td>GUA4</td>
<td>16</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Guartel MD8 (round search head)</td>
<td>GUA8a</td>
<td>16</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Guartel MD8 (oval search head)</td>
<td>GUA8b</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Guartel MD8 (probe)</td>
<td>GUA8c</td>
<td>x</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>LG Precision PRS-17K</td>
<td>LGFPR</td>
<td>18</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>Minelab F1A4 CMAC</td>
<td>MICM</td>
<td>23</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Minelab F1A4 MIM</td>
<td>MIMI</td>
<td>24</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>Pro-Scan Mark 2 VLF</td>
<td>PRMA</td>
<td>23</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Reutech Midos PIMD</td>
<td>REMI</td>
<td>12</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Schiessel AN-19/2</td>
<td>SCAN</td>
<td>24</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>Schiessel AMID</td>
<td>SCAI</td>
<td>27</td>
<td>27</td>
<td>x</td>
</tr>
<tr>
<td>Schiessel MIMID</td>
<td>SCM1</td>
<td>20</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Vallon ML 1620C</td>
<td>VA16</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Vallon VMH2</td>
<td>VAVMa</td>
<td>30</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>White’s DI-PRO 5900</td>
<td>WHS9</td>
<td>16</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>White’s AF-108</td>
<td>WHAF</td>
<td>20</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>White’s Spectrum XLT</td>
<td>WHSP</td>
<td>25</td>
<td>24</td>
<td>27</td>
</tr>
</tbody>
</table>

1) Later in the project it was determined that copy 3 of the Ebingher EBEX 420 GC was malfunctioning.
2) The test of copy 1 of the Guartel MD8 (probe) was not completed, due to electromagnetic interference.
3) Copy 3 of the Schiessel AMID had not been delivered in time for the test.

Table 2.1 - Detection performance in air for the detectors in the Entrance Test.

Summary of the Training and Entrance Test
Besides some small technical and logistic problems during the training, all detectors passed the entrance test and were deemed suitable for further testing with no significant differences found among samples of each detector.
3. In-Air Tests

This section summarizes the results of the In-Air Test conducted during the International Pilot Project for Technology Cooperation. It is derived from the full technical report [1,2].

Objective
The tests conducted in a controlled laboratory environment focus on a detector's ability to detect objects in air (also referred to as its in-air sensitivity) and assess how this sensitivity is affected by various parameters that reflect real-world conditions. In-Air tests are conducted in a controlled environment in which the only variable is the detector with its operator. While a detector's ability to detect objects in air does not directly indicate its ability to detect objects buried in the ground, such controlled tests are essential for an objective comparison of basic performance factors.

Test Facility at DRES
All In-Air testing at Defence Research Establishment Suffield (DRES) was conducted in the Foam Dome (Figure 3.1), an all-weather foam building that, due to its non-conductive, non-magnetic construction, can be used to make very low noise magnetic and low frequency electromagnetic measurements.

An apparatus consisting of a scanner and a target holder, built of non-metallic materials, was specially developed to provide accurate mechanical control over sweep speed and target location (Figures 3.2 and 3.3). This device is capable of providing a linear or area scan. The electric motor, which was selected for its low electromagnetic interference, was positioned far enough away to not adversely affect the metal detector.

General Procedure
The process inherent in all of the In-Air tests is the determination of the maximum distance that a target can be detected from the detector sensor head. This is defined as the "maximum detection distance" and taken as a measure of the sensitivity of the detector. This distance was measured by placing a target on a platform that was moved up and down (Figure 3.3) to control target distance from the detector head. The
detector head was scanned on a horizontal plane above the target. The target distance from the sensor head was increased in one-centimeter increments until the operator judged that the detection signal disappeared. Although a number of operators were used during the tests, to the extent possible the same operator carried out all the tests for a given detector sample.

Because of mechanical limitations early in the tests, maximum detection distance of some detector/target combinations could not be achieved. An arrow is placed at the top of the chart bar(s) to indicate where this occurred.

Six tests were conducted: Calibration; Drift; Sweep Speed; Moisture; Sensitivity and Scan Profile. Descriptions and results for each test follow.

Calibration Test

For consistent results users should avoid using detectors whose performance changes significantly each time the detector is adjusted or set up for use. The purpose of this test was to determine the repeatability of the initial set-up. The test measures the maximum detection distance, using the mine surrogate target M1 in vertical orientation, for five consecutive set-ups of a detector after an initial warm-up period.

The results are presented in Figure 3.4.

The sensitivity of some detectors remained essentially constant. In others it changed resulting in differences of up to 10 cm in the maximum detection distance, which represents a significant variation. Two samples of each detector were tested. In Figure 3.4, orange bars represent results from the sample with the lower maximum detection distance while the blue bars show the results for the other sample.

Drift Test

A reduction in sensitivity with time without warning to the operator could be potentially dangerous. The purpose of this test was to determine the extent of the change in the sensitivity of a detector over a 30-minute period. Practically, the results are important because if a detector's sensitivity suffers significantly from such short-term drift, the operator will have to adjust the detector frequently.

After an initial warm-up period of three minutes (in the absence of a manufacturer's requirement for longer periods), the detector was set up according to the manufacturer's recommended procedures and the maximum detection distance for the M1 target was measured. This measurement was repeated, without readjusting the detector, every three minutes over a period of about a half-hour. The temperature of the laboratory was essentially constant during the tests for all detectors. Two samples of each detector were tested. The results showing the ranges of variation of the maximum detection distance are shown in Figure 3.5. In this figure, orange bars represent results from the sample with the lower maximum detection distance while the blue bars show the results for the other sample.

There was a wide variation in the drift performance among the detectors. The sensitivity of some detectors remained essentially constant. In others it changed resulting in differences of up to 10 cm in the maximum detection distance, which represents a significant variation.

Moisture Test

A reduction in sensitivity, without warning to the operator, when the search head comes in contact with water could be potentially dangerous. The purpose of this test was to determine the extent that moisture on the sensor head affected the sensitivity of a detector.

One sample of each detector was tested. The results show how much a detector's sensitivity will change if the search head comes in contact with water—such as occurs when operating in dew-covered vegetation or in light rain.

The test consisted of measuring the maximum detection distance of the M1 target, after an initial warm-up period and calibration, as an increasing amount of water was sprayed (in the form of tiny droplets of water as a mist) on the sensor head. The amount of water was controlled such that the range of wetness (from dry to completely wet) was achieved incrementally. Figure 3.6 shows the total variation in maximum detection distance for all the detectors over the entire range of wetness. Due to the time taken to complete a Moisture test (typically 20-30 minutes) the results from this test included some effect of drift that is difficult to separate. However, if a detector is found to have a much larger variation in the Moisture test than in the Drift test, the effect of moisture can be inferred.

There was a wide range of variations in sensitivity among the detectors with increasing amounts of moisture on the sensor head. The sensitivity of some detectors remained essentially constant. In others it resulted in differences of more than 10 cm in the maximum detection distance. One detector, the Schiebel ATMD (SCAT-1), stopped operating properly after some amount of moisture had accumulated on the sensor head. The detector produced continuous detection tones despite repeated attempts at initial set-up adjustments. It functioned properly the following day.
Figure 3.4. Variation of maximum detection distance for five consecutive set-ups. Arrow explained in 2.3 General Procedures.
Figure 3.5. Variation of maximum detection distance over 30 minutes.
Figure 3.6. Variations of maximum detection distance due to sensor head wetness (dry to completely wet).
Sweep Speed Test

Figure 3.7. Variations in maximum detection distance for a range of sweep speeds (0.12 to 1 m/s).
All tests were conducted at the laboratory ambient temperature (20 - 22°C).

Sweep Speed Test

A reduction in sensitivity due to a change in sweep speed could be potentially dangerous since no current detectors give a warning to the operator if this were to happen. The purpose of this test was to determine how the sensitivity changes as a function of the speed with which the detector head is swept over a target. Results show what effect different sweep speeds had on sensitivity.

The test measured the maximum detection distance for the M_0 target, after an initial warm-up period and calibration, for sweep speeds varying from 0.12 to 1 m/s. One sample of each detector was tested. Figure 3.7 shows the total variation in maximum detection distance recorded for all the detectors over the sweep speed range. The details of this variation as a function of sweep speed for each detector are shown in Figures 3.8 to 3.13. Although we did not test for it, we noted that some detectors would not detect targets when stationary. The user should make a particular point of knowing if this is the case for a chosen detector in order to develop a proper operating procedure.

There was a wide range of variation in sensitivity as a function of sweep speed among the detectors. The sensitivity of some detectors remained essentially constant. In others it resulted in differences of more than 10 cm in the maximum detection distance. In some models, sensitivity decreased as sweep speed increased while in others sensitivity increased with speed. In still other detectors, sensitivity initially increased and then decreased as the speed increased. End users should be made aware of this behavior whenever such detectors are employed.

Sensitivity Test

The purpose of this test was to determine the maximum distance at which a detector can detect each of the IPPTC targets. The test measured the maximum detection after an initial warm-up period and calibration. The results show the maximum distances at which a given target was detected by the various detectors and are presented in Table 3.1 for the mines with significant metal content, namely, PMN, PMN-2, and PND-6. Figures 3.14 to 3.20 show the results for the low-metal content mines and the simulant targets M_0, M_0^*, C_0. Two targets (PMN-2 and M_0) were measured with two samples of the detectors while all others were measured with only one sample of the detectors.

These figures illustrate the relative ability of the detectors to detect a specific target. The potential users of the data presented in this section are warned against interpreting the detection distances of the various targets as distances at which they may be detected under operational conditions. The results obtained with targets in air in a controlled laboratory environment should be used only as guidelines to assess relative performance of the detectors.

<table>
<thead>
<tr>
<th>IPPTC Detector No.</th>
<th>PMN First Sample</th>
<th>PMN Second Sample</th>
<th>PND-6 First Sample</th>
<th>PND-6 Second Sample</th>
<th>PMN-2 First Sample</th>
<th>PMN-2 Second Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD25</td>
<td>23</td>
<td>11</td>
<td>13</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD26</td>
<td>23</td>
<td>9</td>
<td>10</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB42</td>
<td>61</td>
<td>30</td>
<td>34</td>
<td>no data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB53</td>
<td>25</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI12</td>
<td>26</td>
<td>11</td>
<td>14</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUK</td>
<td>26</td>
<td>25</td>
<td>26</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIXB</td>
<td>39</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOMI</td>
<td>58</td>
<td>29</td>
<td>35</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIAI</td>
<td>30</td>
<td>15</td>
<td>17</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUA2a</td>
<td>61</td>
<td>30</td>
<td>36</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUA2b</td>
<td>36</td>
<td>16</td>
<td>19</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUA2c</td>
<td>37</td>
<td>18</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUA4</td>
<td>32</td>
<td>22</td>
<td>28</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUA8a</td>
<td>46</td>
<td>22</td>
<td>27</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUA8b</td>
<td>22</td>
<td>8</td>
<td>11</td>
<td>no data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUA8c</td>
<td>15</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LGPR</td>
<td>43</td>
<td>18</td>
<td>20</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICM</td>
<td>46</td>
<td>23</td>
<td>26</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMB</td>
<td>40</td>
<td>23</td>
<td>29</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRMA</td>
<td>33</td>
<td>28</td>
<td>33</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REMI</td>
<td>28</td>
<td>10</td>
<td>13</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCAN</td>
<td>46.2</td>
<td>32</td>
<td>38</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCAT</td>
<td>47</td>
<td>41</td>
<td>47</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCM1</td>
<td>34</td>
<td>21</td>
<td>29</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAI16</td>
<td>39</td>
<td>39</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAVMa</td>
<td>38</td>
<td>30</td>
<td>35</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WH59</td>
<td>44</td>
<td>27</td>
<td>33</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHAF</td>
<td>45</td>
<td>28</td>
<td>37</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHSP</td>
<td>44</td>
<td>29</td>
<td>35</td>
<td>36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEGENDE

Maximum detection distance was not obtained due to mechanical limitations of early target holders. Consider these values as ‘greater than’.

Table 3.1 Maximum detection distance for PMN, PND-6 and PMN-2.

12 | IPPTC Report 2001
Figure 3.8. Maximum detection distance vs. sweep speed of selected detectors.

Figure 3.9. Maximum detection distance vs. sweep speed of selected detectors.
Figure 3.10. Maximum detection distance vs. sweep speed of selected detectors.

Figure 3.11. Maximum detection distance vs. sweep speed of selected detectors.
Figure 3.12. Maximum detection distance vs. sweep speed of selected detectors.

Figure 3.13. Maximum detection distance vs. sweep speed of selected detectors.
Figure 3.14. Maximum detection distance for PMA-2.

Figure 3.15. Maximum detection distance for PMA-3.
Figure 3.16. Maximum detection distance for Type 72.

Figure 3.17. Maximum detection distance for R2M2.
Figure 3.18. Maximum detection distance for M_0.

Figure 3.19. Maximum detection distance for I_0.
detectors and to compare results of similar tests done by others. The results also identified detectors that did not have the minimum required detection distance for targets of interest, since a target is not likely to be detected at a greater distance in soil than in air. In addition to factors such as calibration, drift, sweep speed and ambient noise that can affect the detection distance, the operators themselves could have a significant influence.

Scan Profile Test

The purpose of this test was to determine the scan profile or "footprint" of a detector. The footprint is defined as the variation of the detection area as a function of a target's location with respect to the sensor head. The test measures the area of this footprint at three distances after an initial warm-up and calibration. Results of this test give an indication to users of how closely to space consecutive sweeps to ensure desired coverage. The size and shape of this footprint may differ significantly depending not only on the detector but also on the target, its size, orientation and depth.

The electrical signal that drives the headphone of the detector was recorded digitally for the scan profile, using the same system as used for the In-Soil tests. A value proportional to the strength of the audio signal was plotted as a function of two-dimensional position of the detector head over target M₀. To provide an indication of variation in the size of the footprint with distance, data was recorded corresponding to three different target distances:

(a) 2 cm closer to the sensor head than the maximum detection distance;
(b) 2 cm from the sensor head; and
(c) at a distance halfway between (a) and (b).

An example is shown in Figure 3.21.

The color key is representative of the signal from the detector where the "0" (dark blue) is minimum signal and the "1" (red) is maximum signal. The footprint becomes smaller as the target distance increases, resulting in a cone-shaped "detection volume". For the small target used, this general trend of shrinking footprint with distance was observed for all the detectors tested. The footprints for each detector are included in Annex A. Detector Performance Summaries.

Summary of In-Air Tests

The main purpose of the In-Air Tests was to understand certain basic operational parameters of the detectors in a controlled laboratory environment.
Although it is difficult to draw statistically rigorous conclusions based on the amount of data available from the In-Air tests, the results provide practical and useful information to the reader. The In-Air Tests can be divided into three categories:
(a) Tests aimed at getting an indication of how much variation in sensitivity is to be expected due to various factors inherent in field use. The Calibration, Drift, Moisture and Sweep-Speed tests belong to this group;
(b) Sensitivity test, which measured the ability of a detector to detect a variety of targets of interest;
(c) Scan Profile test, which determined the variation of detectability of a target as a function of its location with respect to the detector head.
All tests were conducted at the laboratory ambient temperature (20 - 22°C).

The results of the tests in category (a) are summarized in Table 3.2, and presented in more detail in Figures 3.4 to 3.13. Table 3.2 shows the average of the maximum detection distances recorded during each test. The average gives an indication of the relative sensitivity of the different detectors. The column titled ‘variation’ is a representation of the variation in sensitivity found during that test. (The number in this column is an estimate of the standard deviation.)

Care must be exercised in using the results of the individual tests to derive their combined effect in the field. For example, due to the time taken to complete a Moisture test (typically 20-30 minutes) the results from this test include some effect of drift that is difficult to separate. However, if a detector is found to have a much smaller variation in the Drift Test than in the Moisture Test, the effect of moisture can be inferred.

The dependence of sensitivity on sweep speed is shown in Figure 3.8 to 3.13. For some detectors (White’s DI-PRO 5900, for example) the sensitivity rapidly increased with speed, reaching a maximum, and then decreased at higher speeds. For some others (Schiebel AN-19/2, for example) sensitivity decreased linearly with sweep speed. In still others, the sensitivity stayed essentially constant. Although we did not test for it, we noted that some detectors would not detect targets when stationary. The user should make a particular point of knowing if this is the case for a chosen detector in order to develop a proper operating procedure.

The results of the category (a) tests should be used only in conjunction with the Sensitivity Test in choosing a detector. A detector with stable performance is not very useful if it cannot detect targets of interest at required distances. For example, the performance of the Adams AD2500 was found to vary very little due to the parameters tested. However, in air, its detection ranges for low-metal targets such as the PMA-2, PMA-3, Type 72 and R2M2 were well below 10 cm (Table 3.3), which would not be satisfactory for many demining situations.
<table>
<thead>
<tr>
<th>MODEL</th>
<th>CALIBRATION</th>
<th>DRIFT</th>
<th>MOISTURE</th>
<th>SWEEP SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First Sample</td>
<td>Second Sample</td>
<td>First Sample</td>
<td>Second Sample</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>Variation %</td>
<td>Average</td>
<td>Variation %</td>
</tr>
<tr>
<td>AD25</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>AD26</td>
<td>8</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>EB42 (1)</td>
<td>24</td>
<td>1</td>
<td>No data</td>
<td>No data</td>
</tr>
<tr>
<td>EB53</td>
<td>7</td>
<td>0</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>F112</td>
<td>8</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>FIM</td>
<td>25</td>
<td>1</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>FIX8</td>
<td>15</td>
<td>2</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>FOMI</td>
<td>18</td>
<td>0</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>GIAT</td>
<td>10</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>GUA2a</td>
<td>22</td>
<td>0</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>GUA2b</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>GUA2c</td>
<td>13</td>
<td>0</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>GUA4</td>
<td>16</td>
<td>1</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>GUA8a</td>
<td>18</td>
<td>1</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>GUA8b(2)</td>
<td>7</td>
<td>0</td>
<td>No data</td>
<td>No data</td>
</tr>
<tr>
<td>GUA8c</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>LGFR</td>
<td>18</td>
<td>0</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>MCM</td>
<td>21</td>
<td>0</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>MMD</td>
<td>21</td>
<td>1</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>PRMA</td>
<td>26</td>
<td>2</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>REMI</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>SCAN</td>
<td>24</td>
<td>1</td>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td>SAC1(3)</td>
<td>30</td>
<td>2</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>SCMI</td>
<td>14</td>
<td>3</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>VA16</td>
<td>28</td>
<td>3</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>VAMa</td>
<td>21</td>
<td>2</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>WH59</td>
<td>16</td>
<td>2</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>WHAF</td>
<td>19</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>WHSP</td>
<td>23</td>
<td>0</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>MAX</td>
<td>30</td>
<td>3</td>
<td>31</td>
<td>4</td>
</tr>
<tr>
<td>MIN</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Key: Green (three shades) group average values of maximum detection distance into 0-10, 11-20 and >20 cm. Blue (three shades) group the variation into 1 or less, 2, and 3-5 cm respectively. These groupings are arbitrary, intended only to assist the reader in finding detectors in low, medium and high performance categories. The lighter shades indicate more desirable performance.

Table 3.2 – Summary table of Calibration, Drift, Moisture and Sweep Speed tests. The values are in cm.
<table>
<thead>
<tr>
<th>Detector ID No.</th>
<th>First Sample</th>
<th>Second Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD25</td>
<td>23</td>
<td>13</td>
<td>9</td>
<td>11</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD26</td>
<td>23</td>
<td>10</td>
<td>15</td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB42</td>
<td>61</td>
<td>34</td>
<td>No data</td>
<td>30</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>9</td>
<td>24</td>
<td>No data</td>
<td>16</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB53</td>
<td>25</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>11</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI12</td>
<td>26</td>
<td>14</td>
<td>16</td>
<td>11</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILM</td>
<td>26</td>
<td>26</td>
<td>44</td>
<td>25</td>
<td>15</td>
<td>16</td>
<td>19</td>
<td>12</td>
<td>25</td>
<td>29</td>
<td>18</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDB</td>
<td>39</td>
<td>22</td>
<td>24</td>
<td>20</td>
<td>10</td>
<td>12</td>
<td>9</td>
<td>7</td>
<td>14</td>
<td>15</td>
<td>10</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOMI</td>
<td>58</td>
<td>35</td>
<td>25</td>
<td>29</td>
<td>17</td>
<td>19</td>
<td>18</td>
<td>13</td>
<td>24</td>
<td>17</td>
<td>18</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIAT</td>
<td>30</td>
<td>17</td>
<td>22</td>
<td>15</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUA2a</td>
<td>61</td>
<td>36</td>
<td>39</td>
<td>30</td>
<td>14</td>
<td>17</td>
<td>13</td>
<td>5</td>
<td>23</td>
<td>25</td>
<td>14</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUA2b</td>
<td>36</td>
<td>19</td>
<td>18</td>
<td>16</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>12</td>
<td>12</td>
<td>7</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUA2c</td>
<td>37</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>14</td>
<td>13</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUA3</td>
<td>32</td>
<td>28</td>
<td>23</td>
<td>22</td>
<td>10</td>
<td>13</td>
<td>11</td>
<td>8</td>
<td>17</td>
<td>16</td>
<td>12</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUA8a</td>
<td>46</td>
<td>27</td>
<td>29</td>
<td>22</td>
<td>10</td>
<td>14</td>
<td>13</td>
<td>9</td>
<td>18</td>
<td>19</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUA8b</td>
<td>46</td>
<td>27</td>
<td>29</td>
<td>22</td>
<td>10</td>
<td>14</td>
<td>13</td>
<td>9</td>
<td>18</td>
<td>19</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUA8c</td>
<td>46</td>
<td>27</td>
<td>29</td>
<td>22</td>
<td>10</td>
<td>14</td>
<td>13</td>
<td>9</td>
<td>18</td>
<td>19</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LGPR</td>
<td>43</td>
<td>20</td>
<td>21</td>
<td>18</td>
<td>9</td>
<td>12</td>
<td>7</td>
<td>3</td>
<td>13</td>
<td>14</td>
<td>9</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1CM</td>
<td>46</td>
<td>26</td>
<td>28</td>
<td>23</td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>11</td>
<td>22</td>
<td>22</td>
<td>15</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM1</td>
<td>40</td>
<td>29</td>
<td>30</td>
<td>23</td>
<td>13</td>
<td>16</td>
<td>15</td>
<td>13</td>
<td>21</td>
<td>21</td>
<td>14</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRMA</td>
<td>33</td>
<td>33</td>
<td>36</td>
<td>28</td>
<td>13</td>
<td>15</td>
<td>14</td>
<td>6</td>
<td>23</td>
<td>23</td>
<td>14</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REMI</td>
<td>28</td>
<td>13</td>
<td>13</td>
<td>10</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCAN</td>
<td>46</td>
<td>38</td>
<td>34</td>
<td>32</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>10</td>
<td>28</td>
<td>24</td>
<td>17</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCAT</td>
<td>47</td>
<td>47</td>
<td>46</td>
<td>41</td>
<td>25</td>
<td>25</td>
<td>23</td>
<td>8</td>
<td>35</td>
<td>30</td>
<td>23</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCNM</td>
<td>34</td>
<td>29</td>
<td>18</td>
<td>21</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>5</td>
<td>22</td>
<td>14</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA16</td>
<td>39</td>
<td>40</td>
<td>40</td>
<td>39</td>
<td>22</td>
<td>24</td>
<td>23</td>
<td>15</td>
<td>34</td>
<td>26</td>
<td>23</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAVMA</td>
<td>38</td>
<td>35</td>
<td>31</td>
<td>30</td>
<td>26</td>
<td>18</td>
<td>17</td>
<td>10</td>
<td>24</td>
<td>22</td>
<td>18</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WH59</td>
<td>44</td>
<td>33</td>
<td>23</td>
<td>27</td>
<td>16</td>
<td>18</td>
<td>23</td>
<td>7</td>
<td>23</td>
<td>16</td>
<td>17</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHAF</td>
<td>45</td>
<td>37</td>
<td>34</td>
<td>28</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>4</td>
<td>21</td>
<td>22</td>
<td>11</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHSF</td>
<td>44</td>
<td>35</td>
<td>36</td>
<td>29</td>
<td>15</td>
<td>20</td>
<td>17</td>
<td>14</td>
<td>23</td>
<td>23</td>
<td>17</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX</td>
<td>61</td>
<td>47</td>
<td>46</td>
<td>41</td>
<td>26</td>
<td>25</td>
<td>23</td>
<td>15</td>
<td>35</td>
<td>30</td>
<td>23</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN</td>
<td>15</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Detectors EB42 and GUA8b exhibited reliability problems on the second samples.
- Maximum detection distance was not obtained due to mechanical limitations of early target holders. Consider these values as 'greater than'.

Table 3.3 – Summary of maximum detection distances (cm) of targets vs. detectors.
4. In-Soil Tests

This section summarizes the results of the In-Soils Test conducted during the International Pilot project for Technology Cooperation. It is derived from the full technical report. [3,4]

Objective

The objective of In-Soil Tests was to determine the detection performance of the metal detectors when used for the detection of AP mines, buried in four different types of soil. To this end the detectors were tested against the defined IPPTC targets at the outdoor test lanes of TNO Physics and Electronics Laboratory (TNO-FEL) in the Netherlands.

Test facility at TNO-FEL

The outdoor test facility, which was used for the In-Soil Tests of the IPPTC, is situated on the Waalsdorp proving ground near TNO-FEL. It consists of six lanes with a different soil type in each lane, equipment to control the groundwater level in the lanes, a measurement platform and peripheral equipment. Figure 4.1 shows an overview of the six lanes and the measurement platform.

The dimensions of the test lanes are 10 m x 3 m x 1.5 m for length, width and depth, with a distance of 1 m between them. The distance between the lanes is to avoid interference in the measurements on one lane by objects situated in adjacent lanes. To avoid distortion of the metal detector measurements the lanes have been constructed of wood without the use of electrically conducting materials. During construction of the 6 lanes a zone 5 m wide and 1.5 m deep around the lanes was made free of metal.

Of the available six lanes only four lanes, containing sand, clay, peat and ferruginous soil, were used. While constructing the lanes, the natural layer structure of the soils was preserved. During the tests, the groundwater level was controlled and the moisture content was monitored. The magnetic susceptibility and the electric conductivity of the soils in the four lanes are given in Annex B - Soil Measurements.

The measurement platform is made of non-conducting materials. It consists of a 17 m long glass-fiber reinforced polyester tube with a diameter of 0.9 m (Figure 4.2). A sensor platform moves automatically over the tube with a speed of approximately 0.18 m/s. The polyester tube can be moved manually along rails. The position of the sensor platform along the tube was measured continuously with a laser distance meter, and logged against time.

For the tests of the metal detectors on the test lanes a special mounting system was constructed out of

![Figure 4.1](image1.jpg)

Figure 4.1. Overview test lanes and measurement platform.

![Figure 4.2](image2.jpg)

Figure 4.2. Measurement platform.
plastic. This mounting system was fixed to the sensor platform and adjusted to mount the different metal detectors.

The weather conditions during the In-Soil Tests were measured and recorded with two meteorological stations, one at 30 cm above ground level and one at a height of three metres. The standard meteorological observations were recorded: solar radiation, air temperature, relative humidity of the air, wind speed and direction, and precipitation.

Equipment and materials

Metal detectors
Two samples of each detector model were tested. In case of a detector failure, the third sample of the concerned detector model was used.

During the project the manufacturer indicated that the oval search head of the Guardel MD8 was a preliminary product with reliability concerns. Therefore, this detector head was not included in the analysis of the In-Soil Tests.

Data acquisition hardware and software
The main functions of the data acquisition system for the In-Soil Tests were:

Recording the audio signals of the detectors;
Recording the position of the detector;
Playing back the recorded detector audio signal.

To record the audio signals of the detectors, the original headphones (all detectors were provided with headphones or a headphone connector) were adapted with a T-connector to allow simultaneous recording by the computer system and monitoring by the test operator. The computer to record the signals was situated in a "Portacabin" at the test facility.

Procedures

Test lane layout
For the In-Soil Tests two examples of each of ten different types of target, (i.e. 20 targets), were buried in each lane. One of each target type was buried at a depth of 5 cm, the other at 10 cm. The depth was defined as the distance from the surface of the ground to the top of the target. The four test lanes each had an identical layout. The 20 targets that were buried in each lane were located on two tracks. In the plan in Figure 4.3 the locations of the 20 targets are indicated. The distance between any two-test targets for the In-Soil Tests and between each target and the other objects was in all cases not less than 50 cm.

![Figure 4.3. Layout of targets in the test lanes](image)

Positioning of detectors
The detectors were tested at the minimum height possible above the test lanes (approximately 2.5 to 5 cm). The height of the detector search heads above the lane was adjusted with the help of a height indicator. This ensured that every detector was tested at the same height, although some minor differences (up to 2 cm) existed along the tracks.

All detector heads were placed parallel to the test lane surface. The detector heads were orientated as would normally be expected during field operations. The centre of the search head was positioned on the centre-line of the track concerned. When possible or desirable, the detector was mounted in such a way that the angle of the handle of the detector was 45° with the surface of the lane.

Test procedure
The main points of the test procedure are listed below:

Unless the manual required otherwise, a warm-up time of at least three minutes was used before the test was started and the working of the detector was checked.
The detectors were tested at the most sensitive setting for the specific soil type. When appropriate or necessary, the detectors were calibrated over the calibration part of each test lane before the start of the actual test on that lane.

During the test, the data was recorded in both directions (north to south and south to north).

All detectors were tested at the maximum velocity of the measurement platform (approximately 0.18 m/s).

Data analysis and results

The analysis of the In-Soil Test data gives an indication of the performance of the detectors. This analysis does not lead to a statistically rigorous statement on the detection probability of the detectors, because the number of targets in the test lanes is too small to obtain a reliable value for the detection probability. Instead the absolute number of detections is given. Due to the method of scoring, no statements can be made on the false alarm rate of the detectors.

Scoring methodology

The detector audio output recorded during the In-Soil Test was used to obtain a score of the detections of the detectors. For this purpose the audio files from each detector-run were played back. The corresponding position data was graphically displayed at the same time, with markers indicating the location of the buried targets.

Each run was assessed for the detection of each target and the ability to distinguish each target from its predecessor. For the scores, signals from both directions were taken into account. If a signal was encountered in either direction that correlated with the position of a target, it was counted as a detection. Some signals were influenced by adjacent targets, which were spaced at 50 cm. This caused apparent masked signals. Such signals appeared to be a prolonged single indication, but were actually counted as a detection for each target.

Most detector models did not show large differences between the performances of the two samples tested. For that reason, only the sample with the highest number of detections was considered in the analysis.

Three detector models did exhibit significant differences between the two samples tested. Investigation of possible causes did not give a clear explanation. Because no re-testing of these detectors was possible, the sample with the highest number of signals above targets was considered in the analysis. Affected detectors are identified in the tables.

Detector performance per target depth

A copy of each of the ten different target types was buried at two depths in the four test lanes: one at 5 cm and one at 10 cm depth from the surface of the ground. Table 4.1 presents the number of targets detected by each detector. Figures 4.4 to 4.7 compare the performance of the detectors, sorted by the number of detections of targets buried at 10 cm.

Although only burial depths of 5 cm and 10 cm were used in the In-Soil Tests, it was observed that the detection performance of nearly all tested detectors decreased for deeper buried targets.

Detector performance against selected minimum metal targets

In this section the assessment concentrates on the detectors’ performance against selected minimum metal small AP mines M1A2, R2M2, and the simulants, L5 and G5. In each lane, 8 of these minimum metal targets were present; two of each type, buried at two different depths (5 cm and 10 cm). Results are shown in Table 4.2.

The charts in Figures 4.8 to 4.11 compare the performance of the individual detectors against these low metal targets per lane.

Overall detector performance

This section presents the results showing detector performance against all targets used in the test. Table 4.3 shows the total number of targets detected. The performance of each detector is compared in Figures 4.12 to 4.15 (ordered by total number of targets detected) for each of the four different soil types.

From these charts it is clear that the ferruginous soil imposes the most problems for the detectors under test and the sand the least.

Summary of the In-Soil Tests

The main purpose of the In-Soil Tests was to determine detection performance for targets buried in controlled soil environments. Tests were conducted in four soil types, namely, sand, clay, peat and ferruginous. The ferruginous soil imposed the most problems on detection performance and the sand imposed the least.

A summary of overall performance is given in Table 4.3, while the associated charts show the relative performance of the detectors. From the charts, which show the ranking for various circumstances, the user may make a preliminary selection of preferred detectors for a particular requirement or for further user evaluation.
<table>
<thead>
<tr>
<th>Detector</th>
<th>Lane 1 Sand (10 targets per depth)</th>
<th>Lane 2 Clay (10 targets per depth)</th>
<th>Lane 3 Peat (10 targets per depth)</th>
<th>Lane 4 Ferruginous (10 targets per depth)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 cm 10 cm</td>
<td>5 cm 10 cm</td>
<td>5 cm 10 cm</td>
<td>5 cm 10 cm</td>
</tr>
<tr>
<td>AD25</td>
<td>6 3 4 1</td>
<td>4 1</td>
<td>4 1</td>
<td>2 0</td>
</tr>
<tr>
<td>AD26</td>
<td>4 2 6 4</td>
<td>4 1</td>
<td>8 4</td>
<td>8 4</td>
</tr>
<tr>
<td>EB42</td>
<td>6 8 6 4</td>
<td>8 4</td>
<td>8 4</td>
<td>8 4</td>
</tr>
<tr>
<td>EB33</td>
<td>6 7 3 2</td>
<td>6 2</td>
<td>3 1</td>
<td>2 1</td>
</tr>
<tr>
<td>FI12</td>
<td>4 3 3 2</td>
<td>3 1</td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td>FIM</td>
<td>10 8 7 7</td>
<td>8 7</td>
<td>8 7</td>
<td></td>
</tr>
<tr>
<td>FIXB</td>
<td>4 6 2 2</td>
<td>7 3</td>
<td>5 2</td>
<td></td>
</tr>
<tr>
<td>FOMI</td>
<td>9 6 6 6</td>
<td>8 7</td>
<td>9 8</td>
<td></td>
</tr>
<tr>
<td>GIAT</td>
<td>4 4 6 4</td>
<td>6 4</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>GUA2a*</td>
<td>9 8 7 8</td>
<td>9 8</td>
<td>8 6</td>
<td></td>
</tr>
<tr>
<td>GUA2b</td>
<td>8 4 4 7</td>
<td>7 6</td>
<td>5 3</td>
<td></td>
</tr>
<tr>
<td>GUA2c</td>
<td>7 4 8 4</td>
<td>7 6</td>
<td>6 3</td>
<td></td>
</tr>
<tr>
<td>GUA4</td>
<td>8 4 7 5</td>
<td>8 5</td>
<td>9 5</td>
<td></td>
</tr>
<tr>
<td>GUA8a</td>
<td>10 10 8 10</td>
<td>10 10</td>
<td>7 5</td>
<td></td>
</tr>
<tr>
<td>GUA8c</td>
<td>7 6 8 9</td>
<td>8 4</td>
<td>7 4</td>
<td></td>
</tr>
<tr>
<td>LGPR</td>
<td>9 4 9 6</td>
<td>9 6</td>
<td>5 3</td>
<td></td>
</tr>
<tr>
<td>MICM</td>
<td>10 7 6 10</td>
<td>10 6</td>
<td>10 6</td>
<td>10 6</td>
</tr>
<tr>
<td>MIMI</td>
<td>10 6 10 6</td>
<td>10 6</td>
<td>10 6</td>
<td></td>
</tr>
<tr>
<td>PRMA*</td>
<td>9 8 9 10</td>
<td>10 9</td>
<td>10 10</td>
<td></td>
</tr>
<tr>
<td>REMI</td>
<td>3 3 1 2</td>
<td>3 2</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>SCAN</td>
<td>9 8 10 8</td>
<td>8 7</td>
<td>9 8</td>
<td></td>
</tr>
<tr>
<td>SCAT</td>
<td>5 4 7 6</td>
<td>9 9</td>
<td>5 4</td>
<td></td>
</tr>
<tr>
<td>SCM*</td>
<td>10 6 8 10</td>
<td>10 9</td>
<td>10 10</td>
<td></td>
</tr>
<tr>
<td>VA16</td>
<td>9 8 8 7</td>
<td>8 8</td>
<td>7 6</td>
<td></td>
</tr>
<tr>
<td>VAVMa</td>
<td>9 8 10 9</td>
<td>9 9</td>
<td>5 2</td>
<td></td>
</tr>
<tr>
<td>WHS9</td>
<td>9 8 8 7</td>
<td>7 3</td>
<td>7 3</td>
<td></td>
</tr>
<tr>
<td>WHAF</td>
<td>8 4 7 4</td>
<td>7 4</td>
<td>7 4</td>
<td></td>
</tr>
<tr>
<td>WHSP</td>
<td>10 10 10 10</td>
<td>10 10</td>
<td>10 10</td>
<td></td>
</tr>
</tbody>
</table>

* Large differences in results between two samples tested. Only the sample with the highest score is reported.

Table 4.1 – Number of detections per depth of target burial.
Figure 4.4. Number of detections of targets buried at 5 cm and 10 cm depth in the sand lane

Figure 4.5. Number of detections of targets buried at 5 cm and 10 cm depth in the clay lane
Figure 4.6. Number of detections of targets buried at 5 cm and 10 cm depth in the peat lane

Figure 4.7. Number of detections of targets buried at 5 cm and 10 cm depth in the lane with ferruginous soil
<table>
<thead>
<tr>
<th>Detector</th>
<th>Lane 1 (8 targets)</th>
<th>Lane 2 (8 targets)</th>
<th>Lane 3 (8 targets)</th>
<th>Lane 4 (8 targets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AD26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>EB42</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>EB53</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FL12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FBM</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>FKB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FOMI</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>GIAT</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GUA2a*</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>GUA2b</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>GUA2c</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GUA4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>GUA8a</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>GUA8c</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>LGPR</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>MCM</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>MMI</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>PRMA*</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>REMI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCAN</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>SCAT</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>SCM*</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>VA16</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>VAVMo</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>WH59</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>WHAF</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>WHSP</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

* Large differences in results between two samples tested. Only the sample with the highest score is reported.

Table 4.2 – Number of detections of minimum metal targets per lane.
Figure 4.8. Number of detections of minimum metal targets in the sand lane

Figure 4.9. Number of detections of minimum metal targets in the clay lane
Figure 4.10. Number of detections of minimum metal targets in the peat lane

Figure 4.11. Number of detections of minimum metal targets in the lane with ferruginous soil
<table>
<thead>
<tr>
<th>Detector</th>
<th>Lane 1 Sand (20 targets)</th>
<th>Lane 2 Clay (20 targets)</th>
<th>Lane 3 Peat (20 targets)</th>
<th>Lane 4 Ferruginous (20 targets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD25</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>AD26</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>EB42</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>EB53</td>
<td>7</td>
<td>10</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>FI12</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>FI1M</td>
<td>18</td>
<td>17</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>FIXB</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>FOMI</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>GIAT</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>GUA2a*</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>GUA2b</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>GUA2c</td>
<td>11</td>
<td>12</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>GUA4</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>GUA8a</td>
<td>20</td>
<td>18</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>GUA8c</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>LGPR</td>
<td>13</td>
<td>13</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>MCM</td>
<td>17</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>MIMI</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>PRMA*</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>REMI</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>SCAN</td>
<td>17</td>
<td>18</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>SCAT</td>
<td>9</td>
<td>13</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>SCM1*</td>
<td>16</td>
<td>15</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>VA16</td>
<td>17</td>
<td>15</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>VAVMa</td>
<td>18</td>
<td>20</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>WH59</td>
<td>17</td>
<td>11</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>WH1AF</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>WHSP</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

* Large differences in results between two samples tested. Only the sample with the highest score is reported.

Table 4.3 – Number of detections per lane.
Figure 4.12. Detections in the sand lane

Figure 4.13. Detections in the clay lane
Figure 4.14. Detections in the peat lane

Figure 4.15. Detections in the lane with ferruginous soil
5. Field Tests

This section summarizes the results of the Cambodian and Croatian Field Tests conducted during the International Pilot Project for Technology Cooperation. It is derived from the full technical reports. [5, 6]

Objective
The objective of these field tests was to evaluate and determine the detection performance and human factors characteristics of the 29 different detectors, in test fields in Cambodia and Croatia. All detectors had been tested previously in laboratory settings (In-Soil, In-Air and preliminary Human Factors tests). The factors considered in this evaluation included: detection of targets buried at 5 cm and 10 cm depths; occurrence of false positives; detection of targets buried in typical Cambodian configurations or additional depths of interest to Croatia; and human factors. For the human factors evaluation, a questionnaire was given to each deminer to establish the perceived ergonomics, ruggedness, and level of difficulty in using each detector. The analyses of the questionnaire inputs were combined with a previously conducted Human Factors Assessment and are presented elsewhere in this report.

Methodology
In order to train local instructors and deminers adequately on given detectors, without impacting the overall schedule, training and testing was conducted in a parallel and staggered fashion. After two IPPTC military instructors had trained local instructors and deminers, a pair of deminers was selected to conduct each test run. The deminers calibrated a given detector, in accordance with the manufacturer’s instruction manual, against known targets and soil types to optimize the detector sensitivity. They practiced in calibration lanes until they felt proficient with the detectors’ operation. Operators were instructed to operate their equipment according to standard demining practice. However, they were requested to disregard any visual clues and rely only on the detector signals to ensure that the detectors were given an objective evaluation. Once the training and practice was complete, the operators began the actual testing in the test lanes.

The training area for the Croatian field test used uncovered targets placed in open holes in the calibration area. The holes were left uncovered to help the deminers train on just the signals from the targets without the distraction of the signals that were prevalent all over the training area, presumably from a combination of metal objects and effects from the metallic minerals in the soil. This was different from the training regimen in the Cambodian field test.

Each operator started at the beginning of each lane and moved forward as he swept the lane, placing a marking chip at the center of each suspected target location. At the completion of each test lane, IPPTC team members measured and recorded the x-y coordinate of each marker chip. The location of each marker was compared to ground truth. A target was considered to have been detected when a marker was placed within 20 cm from the center of the target. This “halo size” was used to allow for operator inaccuracy in placing markers precisely in the center of a suspected target. When a marking chip fell outside of the halo, it was considered a “false positive.” In the field tests, no attempt was made to determine the source of each false positive. During the testing procedure, a human factor questionnaire was completed.

Cambodian Field Test
The Cambodian field test was performed with the support of the Cambodian Mine Action Center (CMAC). The personnel who participated in the test consisted of six IPPTC members and 33 CMAC mem-

1 A “false positive” is defined for the purpose of this report as a response from a metal detector indicating presence of a metal object in a place that was believed, on the basis of previous searches to be free from metallic pollution and where no target for this test had been placed.
bers. The support from CMAC was in the areas of operating detectors, administration, logistics, facilitation of training/test, and construction of test lanes. The 16 operators who participated in the test were all experienced deminers from a single demining unit with at least one year of operational field experience.

Test Site
The training and testing were conducted at the CMAC Training Center in Kampong Chhnang, Cambodia.

Test Targets and Test Lane Description
The week before the test, CMAC personnel constructed two test lanes under the guidance of the IPPTC members. All metal objects were removed from these lanes prior to burying test targets. Each lane was 1.5 m wide x 60 m long x 0.5 m deep, and the lanes were 20 m apart. One lane contained clay, the predominant soil type in the region, and the other contained laterite soil, which was brought in from a nearby site. Both lanes were constructed such that they were clear of vegetation, and flush with the adjacent ground. The lanes were compacted after construction and each was marked every 10 m with wooden stakes to define a 1 m width as shown in Figure 5.1.

A total of 28 targets were buried in each test lane. Two copies of PMN, PMN-2, PMD-6 and Type 72 and four copies of C5A, 10, and 25 were buried using two different depths (5 cm and 10 cm) maintaining a minimum of 2 m between the targets in the first 50 m. This was termed the "IPPTC Configuration." Additionally, at the request of CMAC, targets were buried in the last 10 m of each lane in the configurations described below.

* Configuration 1 -- A PMD-6 and PMN-2 were each buried at a depth of 10 cm while maintaining a 1 m distance between the mines along the Y-axis.
* Configuration 2 -- Type 72 and PMN-2 were buried at 5 cm and 20 cm depths, respectively, 10 cm apart along the X-axis.
* Configuration 3 -- PMN and Type 72 were buried at 20 cm and 10 cm depths, respectively, 20 cm apart along the X-axis.
* Configuration 4 -- Both PMN and PMD-6 were buried at 20 cm depth while maintaining a 1 m distance between the mines along the Y-axis.

These were termed the "CMAC Configurations." Figure 5.2 shows the overview of the target layout in each test lane.

Test Site Conditions
Throughout the test period, the weather was hot and humid with no rain. The air temperature varied between 35 and 45 degrees Celsius. Due to very small changes in air temperature and humidity throughout the test, soil measurement data were taken for only one day. Soil conductivity and magnetic susceptibility data were collected to characterize local soil conditions of both the clay and laterite types. (See Annex B - Soil Measurements)

Cambodian Field Test Methodology
For each detector, an operator performed two separate test runs in each test lane. In order to avoid fatigue and memorization of target positions, each operator performed the test runs separated by at least one day. After the first runs of all detectors were completed, the same operators conducted the second test runs using the same detectors. A picture of an operator conducting a typical test run is shown in Figure 5.3.

Test Data Analysis and Results
The results of both test runs for each detector were compiled and tabulated by soil type (i.e., clay and laterite) for each test target type at each depth (i.e., 5 cm and 10 cm). The test data was analyzed separately for the targets buried in the IPPTC Configuration and the CMAC Configurations. The
results pertaining to CMAC configuration should not be interpreted as indicating the ability of a detector to resolve adjacent targets. No inference can also be made regarding possible interaction between nearby targets. In this report the targets in CMAC configuration are treated simply as additional individual targets. The results were then analyzed further to show the overall performance of each detector by combining all detections made in both configurations.

Figure 5.2. Target Layout in Clay and Laterite Test Lanes (Note: Target depths are in cm)

Figure 5.3. Test Run in Clay Lane

Field Tests 37
Clay Lane

IPPTC Configuration in Clay Lane

The results of both test runs for targets buried in the first 50 m of the clay lane by each detector were combined and tabulated for target type and depth. (See Tables 5.1 and 5.2)

As shown in Table 5.1, 12 detectors detected all four mine target types buried 5 cm deep in the clay lane. Among these, four detected all mines and simulants.

Table 5.2, shows that a decreased number of detectors were able to detect the targets as the depth was increased from 5 cm to 10 cm. Among 12 detectors capable of detecting all four mine targets at 5 cm depth, only three of them were able to do the same at 10 cm depth; and, only one detected all mines and simulants buried at 10 cm.

CMAC Configurations in Clay Lane

The results of both test runs for targets buried in the last 10 m for each detector were combined and then tabulated for each target and configuration. (See Table 5.3)

Among all detectors tested, three detectors were able to detect both targets in all four configurations at least once and only one (Yallon V/H12) detected all mines. It should be noted that the Schiebel ATMD model detected a Type 72 target buried at 10 cm depth and 20 cm apart from PMN but it did not detect when the same type target was buried at shallower depth (i.e., 5 cm) and only 10 cm apart from PMN2.

<table>
<thead>
<tr>
<th>Detector Types</th>
<th>Targets (number buried)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PMN (2)</td>
</tr>
<tr>
<td>AD25</td>
<td>2</td>
</tr>
<tr>
<td>AD26</td>
<td>2</td>
</tr>
<tr>
<td>EB42</td>
<td>2</td>
</tr>
<tr>
<td>EB53</td>
<td>2</td>
</tr>
<tr>
<td>FI12</td>
<td>2</td>
</tr>
<tr>
<td>FILM</td>
<td>2</td>
</tr>
<tr>
<td>FIXB</td>
<td>2</td>
</tr>
<tr>
<td>FORMI</td>
<td>2</td>
</tr>
<tr>
<td>GIAT</td>
<td>2</td>
</tr>
<tr>
<td>GUAA2a</td>
<td>2</td>
</tr>
<tr>
<td>GUAA2b</td>
<td>2</td>
</tr>
<tr>
<td>GUAA2c</td>
<td>2</td>
</tr>
<tr>
<td>GUAA4</td>
<td>2</td>
</tr>
<tr>
<td>GUAA8a</td>
<td>2</td>
</tr>
<tr>
<td>GUAA8b</td>
<td>2</td>
</tr>
<tr>
<td>GUAA8c</td>
<td>2</td>
</tr>
<tr>
<td>LGPR</td>
<td>2</td>
</tr>
<tr>
<td>MICM</td>
<td>2</td>
</tr>
<tr>
<td>MIMI</td>
<td>1</td>
</tr>
<tr>
<td>PRMA</td>
<td>2</td>
</tr>
<tr>
<td>REMI</td>
<td>2</td>
</tr>
<tr>
<td>SCAN</td>
<td>2</td>
</tr>
<tr>
<td>SCAT</td>
<td>2</td>
</tr>
<tr>
<td>SCMI</td>
<td>2</td>
</tr>
<tr>
<td>VA16</td>
<td>2</td>
</tr>
<tr>
<td>VAVMa</td>
<td>2</td>
</tr>
<tr>
<td>WH59</td>
<td>2</td>
</tr>
<tr>
<td>WHAF</td>
<td>2</td>
</tr>
<tr>
<td>WHSP</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 5.1 - Detections for IPPTC Configuration (5 cm depth in Clay Lane).
<table>
<thead>
<tr>
<th>Detector Types</th>
<th>PMN (2)</th>
<th>PMN-2 (2)</th>
<th>Type 72 (2)</th>
<th>PMD-6 (2)</th>
<th>G0 (4)</th>
<th>I0 (4)</th>
<th>N0 (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD25</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AD26</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EB42</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>EB53</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>F112</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>F113</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>F12</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>F12B</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>F31</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>GIAT</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GU22a</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GU22b</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GU22c</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GU4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>GU8a</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>GU8b</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GU8c</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>LGPR</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>M1C</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>M1MI</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>PMMA</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>REMI</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>SCAN</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>SCAT</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SCKI</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>VA16</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>VAMa</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>WH59</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>WHAF</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>WHASP</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 5.2 – Detections for PPTC Configuration (10 cm depth in Clay Lane).

Summary of Clay Lane Tests
The total number of detections and false positives in both the PPTC and CMAC configurations are shown in a chart, Figure 5.4.

The number of targets detected in the IPPTC Configuration ranged from 6 to 39 with the number of false positives ranging from 0 to 29. The number of targets detected in the CMAC Configurations ranged from 0 to 16 with the number of false positives ranging from 0 to 4. For the total of 40 targets (20 targets x two runs) in the IPPTC and 16 targets (8 x two runs) in the CMAC Configurations, the number of targets detected ranged from 6 to 51. On the far left of the chart is a reference bar depicting an ideal detector with a “perfect score” (56 targets, no false positives).

It should be noted that the Minelab F1A4 MIM model showed a substantial disparity between the two test runs. This disparity may have resulted from the fact that the detector electronic box overheated during the previous day.

Laterite Lane
IPPTC Configuration in Laterite Lane
The results of both test runs for targets buried in the first 50 m of laterite lane by each detector were combined and tabulated for each target and depth, except for the White’s Dr-PRO 5900 where data from one run in the laterite soil was unavailable for analysis and the number of detections shown in the tables represents twice the first test run results. (See Tables 5.4 and 5.5)
<table>
<thead>
<tr>
<th>Detector Types</th>
<th>Configuration 1</th>
<th>Configuration 2</th>
<th>Configuration 3</th>
<th>Configuration 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM6 (10 cm deep)</td>
<td>PMN2 (10 cm deep)</td>
<td>Type 72 (5 cm deep)</td>
<td>PMN2 (20 cm deep)</td>
</tr>
<tr>
<td>AD25</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>AD26</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>EB42</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>EB53</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>F112</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>F112</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>FOMI</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>GIAT</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>GUA2a</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>GUA2b</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>GUA2c</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>GUA4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>GUA8a</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>GUA8b</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>GUA8c</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LGPR</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MICM</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>MIMI</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>PRMA</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>REMI</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>SCAN</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>SCAT</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>SCM</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>VAI16</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>VAVMa</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>WH59</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>WHAF</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>WHSP</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

** Detections occurred on different runs.

Table 5.3 – CMAC Configurations in Clay Lane.

As shown in Table 5.4, only two detectors found all mines and simulants buried 5 cm deep at least once. No other models detected Type 72 targets buried at a depth of 5 cm. For the targets buried 10 cm deep, only one detector was able to detect all mines and simulants at least once. Three detected a Type 72 target buried at 10 cm depth although one of these failed to detect the same type target buried at 5 cm depth.

A significant anomaly that should be noted is that many of the detectors found PMN mines buried at 10 cm depth, but very few of them detected the same target type buried at 5 cm depth.

CMAC Configurations in Laterite Lane

The results of both test runs for targets buried in the last 10 m for each detector were combined and then tabulated for each target and configuration. (See Table 5.6)

As shown in Table 5.6, three detectors performed unexpectedly by detecting a deeper target while missing the shallower target.
Summary of Laterite Lane Tests
The total number of detections and false positives in both the IPPTC and CMAC configurations were tabulated and are shown in a chart, Figure 5.5.

The number of detections in the IPPTC configuration ranged from 2 to 28 with the number of false positives ranging from 2 to 57. The number of detections in the CMAC configuration ranged from 0 to 12.
<table>
<thead>
<tr>
<th>Detector Types</th>
<th>PMN (2)</th>
<th>PMN-2 (2)</th>
<th>Type 72 (2)</th>
<th>PMD-6 (2)</th>
<th>G_0 (4)</th>
<th>I_0 (4)</th>
<th>M_0 (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AD26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EB42</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>EB53</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FI12</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FIM</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FXB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FOMI</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>GIAT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GUA2a</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GUA2b</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>GUA2c</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GUA4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GUA8a</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GUA8b</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GUA8c</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LOPR</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MICM</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MIMI</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FRMA</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>REMI</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCAN</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCAT</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCM</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VA16</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VAVMa</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>*WH59</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>WHAF</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>WHSP</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* WH59 detector has results for one run in the laterite soil (number of detections shown in the above table represents double of the first test run results).

Table 5.4 – IPPTC Configuration (5 cm Depth in Laterite Lane).

with the number of false positives occurring from 0 to 12. For the total of 40 targets in the IPPTC and 16 targets in the CMAC configurations, the number of targets detected ranged from 3 to 40. On the far left of the chart is a reference bar depicting an ideal detector with a “perfect score” (56 targets, no false positives).

Summary of the Cambodian Field Test
The main purpose of this field test was to evaluate the performance of the detectors in the less-controlled field environment of Cambodia. Detectors were tested against targets in two soils, clay and laterite, using both IPPTC and CMAC configurations. Overall detector performance in clay and laterite are summarized in Figures 5.4 and 5.5. The results highlight the difficulty of detecting targets in laterite with some detectors failing to find any of the targets.

A number of problems were experienced during the tests. The Minelab F1A4 MIM detector performed poorly during its first test run. However, the detector performed very effectively in the second test run. A possible reason for this disparity is the reported overheating of the electronic box when the battery was low. The operators of the Reutech Midas PMD and Fisher Impulse model detectors reported difficulty wearing the headphones under sultry conditions. In both cases the headphones were too tight; the ear
Table 5.5 – Detectors for IPPTC Configuration (10 cm Depth in Laterite Lane).

The performance of each detector against four mine targets – PMD-6, PMN-2, Type 72 and PMN – in the IPPTC and CMAC configurations is shown in Annex A - Detectors Performance Summaries.

Croatian Field Test

The Croatian field test was performed with the support of the Croatian Mine Action Center (CroMAC). Five IPPTC members and 15 CroMAC members (12 operators) participated in the test. CroMAC support was in the areas of operating detectors, administration, logistics, facilitation of training/test, and construction of test lanes. The 12 operators were all experienced deminers from a single detachment of a special police force, from the local city of Zadar, broken into six teams of two deminers each.

Test Site

The site is in an area that is being developed as a regional test center by CroMAC. This test site is at Krusevo, near Obrovac in southern Croatia. (See Figure 5.6)

Test Targets and Test Lane Description

Prior to testing, CroMAC marked out and cleared
<table>
<thead>
<tr>
<th>Detector Types</th>
<th>Configuration 1</th>
<th>Configuration 2</th>
<th>Configuration 3</th>
<th>Configuration 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM6 (10 cm deep)</td>
<td>PMN2 (10 cm deep)</td>
<td>Type 72 (5 cm deep)</td>
<td>PMN2 (20 cm deep)</td>
</tr>
<tr>
<td>AD25</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AD26</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>EB42</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>EB53</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FI12</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FBM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FIXB</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FOAI</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>GIAT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GUA2a</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GUA2b</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GUA2c</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GUA4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GUA8a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GUA8b</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GUA8c</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LGFR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MCM</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>MIMI</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>PRMA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>REMI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCAN</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCAI</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SCM</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>VAI</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>VA+VMA</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>WH59</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>WHAF</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>WHSP</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

* WH59 detector has results for one run in the laterite soil (number of detections shown in the above table represents double of the first test run results).
** Detections occurred on different runs.

Table 5.6 - Detections for CMAC Configurations in Laterite Lane.

two test lanes approximately 20 m apart from each other. Unlike the Cambodian layout, no soils were brought in to construct lanes. Rather, the lanes were simply laid out over the natural soils in the area.

Both test lanes were clear of vegetation other than grass and their surface was flush with the ground. Some pieces of metal were found in the lanes during testing despite previously clearing the lanes with two different metal detectors. This may have been due to the high number of metal fragments originally in the area and the strong interference from bauxite reported to be in the soil.

Each test lane was 1 m wide, and 60 m long (Figure 5.7). A total of 64 targets were buried in each test lane (8 each of inert mines and simulants: PMN, PMN-2, PMA-2, PMA-3, PMA-6, G6, G7, G8). With some exceptions, in the first 50 m of each lane, two copies of each of the targets were buried at two depths, 5 cm or 10 cm. This was termed the IPPTC Configuration. In the last 10 m of each lane, some of
the targets were buried at additional depths of 15 and 20 cm. This was termed the CroMAC Configuration.

Test Site Conditions

The weather at the site was dry for the entire time of the test with very little rain. The temperature remained between 27 and 30 degrees Celsius. Due to very small changes in air temperature and humidity throughout the trial, soil measurement data were taken for only one day. Soil conductivity and magnetic susceptibility data were collected to characterize local soil conditions. (See Annex B - Soil Measurements)

Croatian Field Test Methodology

One sample of each detector was tested in the test lanes with the other sample being on-site for backup. Each detector was tested over both lanes in a serial fashion, with a different operator for each lane. The layout within the first 50 m of each lane was designed to be as similar as possible to the equivalent lengths of the lanes used in the Cambodian tests. Five of the eight target types were the same for both countries.

Test Data Analysis and Results

The major results from the analyses of all the detectors tabulated for all targets were sorted to show:

- The number of targets detected in the IPPTC Configuration, buried at 5 cm depths with a minimum of 1 m between targets. (See Table 5.7)
- The number of targets detected in the IPPTC Configuration, buried at 10 cm depths with a minimum of 1 m between targets. (See Table 5.8)
- The number of targets detected in the CroMAC Configuration, buried at 15 and 20 cm depths with a minimum of 1 m between targets. (See Table 5.9)

IPPTC Configuration

From data in Tables 5.7, 5.8 and 5.9, the number of detections for 5 cm depths, 10 cm depths, and 15-20 cm depths were determined. For the IPPTC Configuration, where all targets were placed at 5 cm and 10 cm depths, an initial look seems to indicate that there is greater success at the 10 cm depth as there are more detections. However, the total number of targets at this depth was higher and the proportion of successful detections to total targets is similar.
in each case. A trend that can be clearly drawn is that detection levels do not seem to significantly change between the 5 cm and 10 cm depths.

There is a trend in the 5 cm and 10 cm depth figures that indicates that most of the missed detections were due to the lower metal-content simulators (G_0 and I_0) used in this test. While not mines, these simulators represent a range of the low-metal-content actually found in mines.

The Giat Model F1, as seen in Tables 5.7 and 5.8, had a boost to its score through detections of the simulators (G_0 and I_0) that had given difficulty to all other detectors. Without these simulators included, the Giat Model F1 would not have fared so well relative to the other detectors as it did less well on the mine targets. It is not known why this single detector did so well on the simulators.

One detector showed an inconsistency in performance. The White's Spectrum scored a total of 23 targets out of 32 total in Lane 1, while only scoring 6 targets out of 31 total in Lane 2. This discrepancy is the largest difference in detections between the two lanes of the entire test.
<table>
<thead>
<tr>
<th>Detector Types</th>
<th>PMN-2 (3)</th>
<th>PMN-3 (3)</th>
<th>PMN-6 (2)</th>
<th>PMN-2 (3)</th>
<th>PMN-2 (2)</th>
<th>G₀ (4)</th>
<th>k₀ (4)</th>
<th>M₀ (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD25</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AD26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>EB42</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>EB53</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>FI12</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>FI1M</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>FIXB</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>FOMI</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>GIAT</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>GUA20a</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>GUA20b</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GUA20c</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GUA4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>GUA8a</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GUA8b</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>GUA8c</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LGPIR</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>M1CM</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>M1MMI</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>PMRA</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>REMI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SCAN</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SCAT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCMI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>YAV6</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>YAVMa</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>WH59</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>WHAF</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>WHSP</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 5.7 - The results of all detectors tabulated against the number of targets that they detected in the IPPTC Configuration, buried at 5 cm depths with a minimum of 1 m between targets.

CroMAC Configuration

For this field test, the CroMAC Configuration was a very simple modification of the IPPTC Configuration: objects were buried, to the extent the rocky terrain would allow, down to 20 cm in depth. It was expected that there would be fewer detections at this depth and this was borne out by the results (shown in Table 9). It was also expected that the detection results for the 5 cm and 10 cm depths would have shown many more successful detections, however the soil conditions making it difficult for detection seemed to have significantly affected the detection levels even at shallower depths.

Summary of the Croatian Field Test

The main purpose of this field test was to evaluate the performance of the detectors in the less-controlled field environment of Croatia. The relatively low number of targets detected highlights the difficulty of the soil. With a total of 63 targets in the IPPTC and CroMAC Configurations, the number of targets detected ranged from 8 to 41 targets. The total number of targets detected at all depths is summarized in a chart, Figure 5.8. On the far left of the chart is a reference bar depicting an ideal detector with a perfect score (63 targets, no false positives). The results for the detection of minimum metal mines,
<table>
<thead>
<tr>
<th>Detector Types</th>
<th>PM-2 (5)</th>
<th>PM-3 (2)</th>
<th>PMD-6 (4)</th>
<th>PMN (2)</th>
<th>PNM-2 (3)</th>
<th>G_0 (4)</th>
<th>l_0 (4)</th>
<th>M_0 (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD25</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AD26</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EB42</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>EB53</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FI12</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FLM</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FIXB</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FOMI</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GIAT</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>GUA2a</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>GUA2b</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GUA2c</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>GUA4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>GUA8a</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GUA8b</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GUA8c</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>LGPR</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MCM</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>MIMI</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PMMA</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>REMI</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>SCAN</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SCAT</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCM</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VA16</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>VAVMa</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>WH59</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>WHAF</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>WHSP</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5.8 - The results of all detectors tabulated against the number of targets that they detected in the IPPTC configuration, buried at 10 cm depths with a minimum of 1 m between targets.
<table>
<thead>
<tr>
<th>Detector Types</th>
<th>TARGETS (Number Buried)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PMA-2 (0)</td>
</tr>
<tr>
<td>AD29</td>
<td>0</td>
</tr>
<tr>
<td>AD26</td>
<td>0</td>
</tr>
<tr>
<td>EBS42</td>
<td>1</td>
</tr>
<tr>
<td>EBS33</td>
<td>1</td>
</tr>
<tr>
<td>FI12</td>
<td>0</td>
</tr>
<tr>
<td>FIM</td>
<td>0</td>
</tr>
<tr>
<td>FX8</td>
<td>0</td>
</tr>
<tr>
<td>FOMI</td>
<td>1</td>
</tr>
<tr>
<td>GIAT</td>
<td>0</td>
</tr>
<tr>
<td>GUA2a</td>
<td>0</td>
</tr>
<tr>
<td>GUA2b</td>
<td>1</td>
</tr>
<tr>
<td>GUA2c</td>
<td>0</td>
</tr>
<tr>
<td>GUA4</td>
<td>1</td>
</tr>
<tr>
<td>GUA8a</td>
<td>1</td>
</tr>
<tr>
<td>GUA8b</td>
<td>1</td>
</tr>
<tr>
<td>GUA8c</td>
<td>1</td>
</tr>
<tr>
<td>LGPR</td>
<td>0</td>
</tr>
<tr>
<td>MICM</td>
<td>0</td>
</tr>
<tr>
<td>MIMI</td>
<td>0</td>
</tr>
<tr>
<td>PRMA</td>
<td>1</td>
</tr>
<tr>
<td>REMI</td>
<td>0</td>
</tr>
<tr>
<td>SCAN</td>
<td>0</td>
</tr>
<tr>
<td>SCAT</td>
<td>0</td>
</tr>
<tr>
<td>SCM</td>
<td>1</td>
</tr>
<tr>
<td>VA16</td>
<td>0</td>
</tr>
<tr>
<td>VAV/Ma</td>
<td>0</td>
</tr>
<tr>
<td>WH59</td>
<td>0</td>
</tr>
<tr>
<td>WHAF</td>
<td>0</td>
</tr>
<tr>
<td>WHSP</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5.9 – The results of all detectors tabulated against the number of targets that they detected in the CroMAC Configuration, buried at 15 and 20 cm depths with a minimum of 1 m between targets.
in Tables 5.7 and 5.8, show a consistent trend for all depths. In general, the PMA-2 and PMA-3 were more difficult to detect than the other mine targets and this was confirmed by the proportionally higher detections of other targets at 5 cm depth.

Further, the 3 simulant used in this test show a similar correlation. The G_2 and I_2, representing minimum metal mines, showed lower detection levels than the higher metal content of the M_5 at 5 cm and 10 cm depths. (These simulants were not used in the CroMAC Configuration at 20 cm depths.)

The results show that, while some detectors performed better than others, no single detector was capable of finding all the targets at any depth. This was interpreted as an indication of the difficulty of the soil conditions for detection. The deminers repeatedly reported that they received many signals over the test site. The IPPTC teams confirmed subsequently that these were uncorrelated to the buried targets. The results of each detector performance against four mine targets for the IPPTC and CroMAC Configurations are shown in Annex A - Detector Performance Summaries.
6. Human Factors Assessment

This section summarizes the results of the Human Factors Assessment conducted during the International Pilot Project for Technology Cooperation. It is derived from the full technical report [7].

The Human Factors laboratory assessment was carried out at the Defence Research Establishment Suffield (DRES), Alberta, Canada. Field assessments were conducted within the tests in Cambodia and Croatia.

Objective
The objective of the Human Factors Assessment was to evaluate the ergonomic aspects of the detectors, and determine their level of suitability for humanitarian demining operations.

In contrast to many consumer products intended for everyday use by the general public, the consequences of poor ergonomics in the context of humanitarian demining are rather more severe. For example, an incomplete understanding on the part of the user of how the demining equipment functions, or the adjustment of the wrong control could easily lead to failure to detect an anti-personnel mine by the deminer – possibly resulting in severe or even fatal injury.

Laboratory Assessment
A human factors assessment of the metal detectors was conducted by DERA Centre for Human Sciences (CHS), and Subject Matter Experts (SMEs) on the topic of humanitarian demining. The Quarel MD8 and 2000 were both assessed as single detectors, even though they contained multiple detector heads. The necessary steps to be followed, in order to use a detector were analyzed to provide a baseline description of the demining task (Figure 6.1). This task description formed the basis of a systematic assessment of each detector. The subtasks and associated questions were drawn together in the form of the Usability Assessment Questionnaire, which was followed by the SMEs over the course of each evaluation. The purpose of the Usability Assessment Questionnaire was to evaluate, systematically and comprehensively, each detector in a consistent manner. Whilst the primary task was to capture the full detail of the assessment for each detector, a secondary requirement was to support a top-level comparison between detectors.

The following topics were considered in the laboratory assessment:
- Suitability for prolonged use
- Simplicity of functions
- Robustness and weatherproofing of equipment
- Suitability of transit and field casings
- Type and amount of feedback to user (audio and visual)
- Adequacy of basic controls
- Batteries/power supply

Field Assessment
Subjective data was collected at both field trials (Cambodia and Croatia) using a questionnaire prepared by the CHS and SMEs. The field trials consisted of a small number of users testing between two and four detectors each. The small sample size of responses to the questionnaire for each detector means that statistical analysis cannot be applied to the findings. Comparisons between responses must be treated cautiously due to the individual preferences, tendencies and biases that were inevitably present within the sample of users. This comparison did allow support for the laboratory findings to be identified from the field trials data where there was agreement between them. Also, this process allowed differences or contradictions between the laboratory and field trials to be highlighted (see Table 6.1 under “Notes- Lab. Assessments and Notes- Field Trials”).

Results
Table 6.1 summarizes the laboratory and field assessments.
Table 6.2 summarizes the laboratory assessments for practicality, simplicity and usability. For each
1. Mine Detection

1.1 Equipment Transit
 1.1.1 Loading for transit
 1.1.2 Transit to field location

1.2 Unpacking and assembly
 1.2.1 Unpack
 1.2.2 Assemble

1.3 Set-up and calibration
 1.3.1 Set-up
 1.3.2 Calibrate
 1.3.3 Move to search area
 1.3.4 Status check

1.4 Search
 1.4.1 Sweep
 1.4.2 Detect
 1.4.3 Pinpoint

1.5 Disassembly and packing
 1.5.1 Shutdown
 1.5.2 Disassemble
 1.5.3 Pack

1.6 Maintenance
 1.6.1 Routine maintenance
 1.6.2 Unscheduled maintenance

Figure 6.1. Breakdown of mine detection tasks
<table>
<thead>
<tr>
<th>Detector</th>
<th>Practicallity</th>
<th>Simplicity</th>
<th>Usability</th>
<th>Total Score (within tested group)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ebinger BBX 420 GC</td>
<td>✪✪✪✪</td>
<td>✪✪✪✪</td>
<td>✪✪✪✪</td>
<td>15 / 15</td>
</tr>
<tr>
<td>Guartel MDB</td>
<td>✪✪✪✪</td>
<td>✪✪✪✪</td>
<td>✪✪✪✪</td>
<td>15 / 15</td>
</tr>
<tr>
<td>Schiessel AN-19/2</td>
<td>✪✪✪✪</td>
<td>✪✪✪✪</td>
<td>✪✪✪✪</td>
<td>15 / 15</td>
</tr>
<tr>
<td>Ebinger E8X 535</td>
<td>✪✪✪✪</td>
<td>✪✪✪✪</td>
<td>✪✪✪✪</td>
<td>14 / 15</td>
</tr>
<tr>
<td>Schiessel ATMID</td>
<td>✪✪✪✪</td>
<td>✪✪✪✪</td>
<td>✪✪✪✪</td>
<td>14 / 15</td>
</tr>
<tr>
<td>Schiessel MIMID</td>
<td>✪✪✪</td>
<td>✪✪✪✪</td>
<td>✪✪✪</td>
<td>14 / 15</td>
</tr>
<tr>
<td>Fisher Impulse</td>
<td>✪✪</td>
<td>✪✪✪✪</td>
<td>✪✪</td>
<td>13 / 15</td>
</tr>
<tr>
<td>Forester MINEX 2FD</td>
<td>✪✪</td>
<td>✪✪</td>
<td>✪✪</td>
<td>13 / 15</td>
</tr>
<tr>
<td>LG Precision PRS-177K</td>
<td>✪✪</td>
<td>✪✪</td>
<td>✪✪</td>
<td>13 / 15</td>
</tr>
<tr>
<td>Minelab F1A1 CMAC</td>
<td>✪✪</td>
<td>✪✪</td>
<td>✪✪</td>
<td>13 / 15</td>
</tr>
<tr>
<td>Vallon VMH2</td>
<td>✪✪</td>
<td>✪✪</td>
<td>✪✪</td>
<td>13 / 15</td>
</tr>
<tr>
<td>Fisher 1266-XB</td>
<td>✪✪</td>
<td>✪✪</td>
<td>✪✪</td>
<td>12 / 15</td>
</tr>
<tr>
<td>Guartel MD2000</td>
<td>✪✪</td>
<td>✪✪</td>
<td>✪✪</td>
<td>12 / 15</td>
</tr>
<tr>
<td>Guartel MD4</td>
<td>✪</td>
<td>✪✪</td>
<td>✪</td>
<td>12 / 15</td>
</tr>
<tr>
<td>Minelab F1A1 MIM</td>
<td>✪</td>
<td>✪</td>
<td>✪</td>
<td>12 / 15</td>
</tr>
<tr>
<td>Reutech Midas P1MD</td>
<td>✪</td>
<td>✪</td>
<td>✪</td>
<td>12 / 15</td>
</tr>
<tr>
<td>Vallon ML 1620 C</td>
<td>✪</td>
<td>✪</td>
<td>✪</td>
<td>12 / 15</td>
</tr>
<tr>
<td>Fisher 1235-X</td>
<td>✪</td>
<td>✪</td>
<td>✪</td>
<td>11 / 15</td>
</tr>
<tr>
<td>Giat Model F-1</td>
<td>✪</td>
<td>✪</td>
<td>✪</td>
<td>10 / 15</td>
</tr>
<tr>
<td>Pro-Scan Mark 2 VLF</td>
<td>✪</td>
<td>✪</td>
<td>✪</td>
<td>10 / 15</td>
</tr>
<tr>
<td>Whites NATO MD AF-108</td>
<td>✪</td>
<td>✪</td>
<td>✪</td>
<td>10 / 15</td>
</tr>
<tr>
<td>Adams AD2500</td>
<td>✪</td>
<td>✪</td>
<td>✪</td>
<td>7 / 15</td>
</tr>
<tr>
<td>Adams AD2600S</td>
<td>✪</td>
<td>✪</td>
<td>✪</td>
<td>7 / 15</td>
</tr>
<tr>
<td>Whites DI-PRO 5900 Cb</td>
<td>✪</td>
<td>✪</td>
<td>✪</td>
<td>7 / 15</td>
</tr>
<tr>
<td>Whites Spectrum-XLT</td>
<td>✪</td>
<td>✪</td>
<td>✪</td>
<td>7 / 15</td>
</tr>
</tbody>
</table>

Table 6.2 – Scores from the laboratory assessment for practicality, simplicity and usability.

criterion the merits of all detectors in that respect were compared and then assigned a relative score out of 5 for each of the criteria. Maximum scores do not indicate perfection, only the better detectors within the tested batch.

For each criteria listed in Table 6.2 the following aspects were considered:
1. Practicality: Adequacy of transit and field casing, ruggedness and maintainability.
2. Simplicity: The number of set-up options, number of parts to assemble/disassemble, number of steps for calibration.
3. Usability: Avoidance of ambiguity, design features to prevent user error, user comfort for prolonged operation, clarity of guidance documentation – i.e. given the level of complexity how effectively is this presented to the user.

Summary of the Human Factors Assessment

Decisions regarding the selection of a detector suitable for humanitarian demining require a detailed consideration of their features in relation to the characteristics of the users and their environment. Candidate detectors can be identified using the features revealed. Filtering these into a short list should take into account the issues identified by the field trials. Final selection should be based on prolonged evaluation of the short-listed detectors by the demining organization in the intended operational scenario.
7. Conclusions

General
- Across the field tests, utilizing simulated real-world scenarios, none of the detectors evaluated detected all of the mine targets down to 10 cm. If the identification of the presence of individual mines were determined only through the use of metal detectors, then the potential implication of this would be that demining organizations today are missing mines.
- While some detectors performed better than others in some of the laboratory testing, no single detector demonstrated its clear superiority in all categories evaluated.

In-Air Tests
- Although a detector’s ability to detect targets in air does not always correspond to its ability to detect targets buried in the soil, the results of the In-Air Sensitivity tests serve many useful purposes.
 - Provide useful information on the repeatability and stability of performance.
 - Provide information on the relative distance of detection of the various targets;
 - Identify detectors which do not have the minimum required detection distance for targets of interest since a detector is not likely to detect a target at a greater depth in soil than in air;
 - Allow comparison of the sensitivity of detectors against the same targets in soil;
 - Test against a number of real targets to reveal weaknesses in detectors that are optimized against a single target.
 - Indicate the unit-to-unit variation where more than one sample of a detector is tested.
- The results from the Scan Profile test show that the footprint for a small target (such as an AP mine) generally becomes smaller as the target distance increases. This finding is contrary to claims by some manufacturers. The footprint data may help the user improve his training and Standard Operating Procedures (SOPs). However, to make quantitative use of the footprint data, further measurements should be made for a range of targets.
- For future in-air tests, techniques should be devised for eliminating the effect of an operator on test results. This may be through the development of computerized algorithms to make “detection” decisions or through the use of a random sample of operators on the same data. This should allow more rigorous analysis of data collected.

In-Soil Tests
- Only one detector, the White’s Spectrum XLT, found all targets at both 5 cm and 10 cm depth in all four soils.
- Apart from the White’s Spectrum XLT mentioned above, the top performing detectors for the detection of minimum metal targets in sand were the Guartel MD8 with the round search head, in clay the Vallen VMH2; in peat the Guartel MD8 with the round search head, Pro Scan Mark 2 VLF and Schiebel MMID; and in Ferruginous soil Pro Scan Mark 2 VLF and Schiebel MMID.
- The Minelab F1.44 CMAC and Minelab F1.44 MM, that found all targets at 5 cm depth, performed rather less well for the targets at 10 cm depth.
- Ferruginous soils imposed the greatest difficulty for the detectors and sand caused the least problem. The Guartel MD8 with the round search head and the Vallen VMH2 experienced difficulties in the ferruginous soil, but performed well for targets in sand, clay and peat. In this respect the Forster Minex 2FD 4.400.01, the Pro Scan Mark 2 VLF and the Schiebel MMID were exceptions; they performed better in the ferruginous soil than in the three other soils.
- These tests (together with the field tests) confirmed correlation of soil electrical properties (magnetic susceptibility, in particular) with detector performance. In future minefield surveys simple conductivity and susceptibility measurements should be considered as a possible aid in the selection and prediction of performance of detectors.
- Broadly speaking, the results of the In-Soil Tests are confirmed by the results of the Field Tests, but for some detectors deviant results were obtained.

It should be kept in mind that in the In-Soil Tests the detectors were used at one sweep speed of 18 cm/s.
This sweep speed may not be optimal for some detectors. Since the number of targets in In-Soil Tests was limited, small differences between the numbers of detected targets of detectors can not be regarded as significant.

Field Test (Cambodia)

• No detector found all the targets in both the clay and laterite soils.
• The number of targets detected in the clay lane was three times higher than in the laterite lane while having four times fewer false positives. This is not unexpected as laterite is considered a very difficult soil type for metal detectors.
• The leading detectors finding targets buried in clay in the IPPFC configuration were: Ebingier EBE 420GC, Fisher Impulse, Fisher 1266 XB, Foerster MINEX 2FD, Minelab F1A4 CMAC, and Vallon VMH2.
• The leading detectors finding targets buried in clay for the CMAC configuration were: Fisher Impulse, Fisher 1266 XB, Foerster MINEX 2FD, Vallon VMH2, ProScan Mark 2 VLF and Schiebel AN-19/2.
• No detector found more than 75% of targets buried in laterite for either the IPPFC or the CMAC configurations. Only two detectors, Foerster MINEX 2FD and Minelab F1A4 CMAC, found more than 50% of the targets for both configurations.
• The relative proportion of targets detected in the CMAC configurations is generally the same for the targets buried in the IPPFC configuration in the same soil condition.
• For detection of a Type 72 (minimum metal AP mine), up to 10 cm deep in clay in the IPPFC configuration, the following performed best: Fisher 1266 XB, Foerster MINEX 2FD A 400.01 and Minelab F1A4 CMAC. In laterite soil for the same target, only the Foerster MINEX 2FD and Minelab F1A4 CMAC achieved some detections.
• For detection of Type 72 up to 10 cm in clay in the CMAC configuration, two detectors (Foerster MINEX 2FD and Vallon VMH2) performed best. In laterite soil for the same target, three detectors (Foerster MINEX 2FD, Minelab F1A4 CMAC and Vallon VMH2) scored better than others.

Field Test (Croatia)

• No detector found all the mines or simulants at 5 cm, 10 cm, or 15-20 cm depths.
• Among the 29 detectors, there is a simple distribution of performance. Given the somewhat uncontrolled nature of any field test, fine distinctions between detectors on the order of a single detection are unwarranted. However, sorting the detectors, based on a difference of +/- 3 detections, identified a leading group of five detectors, followed by the next 20 detectors in a slowly descending but continuous distribution, with a final drop off of four trailing detectors at the end.
• The five leading detectors in the Croatian Field Test were the Minelab F1A4 CMAC, the Pro-Scan Mark 2 VLF, the Minelab F1A4 MIM, the Vallon ML 1620C, and the Giat Model F1 (DHPM-1A).
• The results show that, while some detectors performed better than others, no single detector was capable of finding all the targets at any depth. This was interpreted as an indication of the difficulty of the soil conditions for detection. A large number of detections were reported by the deminers during the tests. Later it was clear that very many of these did not correlate to the positions of the buried targets.

Human Factors Assessment

• The laboratory assessments resulted in two distinct groups: a group of four lower scoring and the rest forming a higher scoring group. The lower scoring group is considered less suitable for humanitarian demining from a human factors perspective. However, this does not take into account the detection capability.
• Within the higher scoring group several detectors scored only slightly higher than the rest. Therefore, singling out detectors from this group as better suited for humanitarian demining is unjustified. The spread of scores shows that the difference between any adjacent detectors is small. For this reason it is considered that any differences highlighted by the laboratory assessments are small compared to the different conditions, environment, task and personnel, connected to the different demining organizations.
• Human factors need to be considered in conjunction with other factors such as technical performance and cost in an overall cost benefit analysis in which human factors issues may conflict with other issues. It is for the demining organizations to determine their own priorities in this situation.

In closing, the IPPFC successfully addressed a number of problems during the tests and in particular tried to ensure that a standard test procedure was followed to ensure consistency and repeatability of the tests. The test methodology created for this project is offered to the demining and development, communities for consideration, further development and use in future assessments of metal detectors to meet demining requirements.

The results as presented will allow the reader to identify groups of detectors with above average performance capabilities for a variety of demining environments. Therefore, it is possible for the reader to eventually answer the question, “Which detector is the best for my needs?”
ANNEX A - Detector Performance Summaries

This annex presents, in a concise form, the results for each detector type that was measured in the International Pilot Project for Technology Co-operation.

At the top of the first page of each detector summary, information is given about the main characteristics of the detector. This is based on manufacturer provided data. Following this, the test results are summarised, starting with extracts from the Human Factors assessment intended to highlight the major findings from this part of the project.

Performance tests are then presented starting with the field tests for Cambodia and Croatia. For each field test two charts are presented showing:
- the number of detection declarations classified by soil type made for each detector compared with the spread of results from all the detectors tested; and
- the number of detections declared, classified by mine type, again overlaid on a bar indicating the full range of detections declared from all the detectors.

On the second page the results of the In-soil test (conducted at the TNO test site in the Netherlands on four example soils) are presented as:
- Number of detections classified by soil type, and
- Number of detections by mine type viewed over all the test soils.

As on page 1 the results of the detector under discussion are shown against a background that depicts the range of detections achieved by the whole range of detector types tested.

The In-air test results are presented finally as:
- Maximum detection distance, classified by mine target,
- Detection distance in air determined under the conditions specified for the Calibration, and the effects of:
 - drift,
 - moisture,
 - sweep speed.

Where, during the tests it had been possible to record results from two samples of the detector type, both values are shown.

A fuller description of each measurement process is given in the appropriate section of this report. Also in those sections the reference to the full report of that aspect of the project is identified.

1 Telephone numbers are given in the form +NNN-. The + signifies the number to be dialled to make an international call, which varies according to the country where the call originates. In EU, Canada and USA + signifies 00 - however there are exceptions.
ADAMS AD2500

Manufacturer Information:
Adams Electronics
Unit 10, Forest Row Business Park
Forest Row
East Sussex RH18 3DW
United Kingdom
Telephone: +44 1342 823856
Fax: +44 1342 826100
http://www.adamsinc.com

IPPTC Cost: US $465

Weight/Dimensions:
- Length: 360 mm
- Width: 105 mm (probe); 55 mm (body)
- Height: 35 mm
- Weight: 295 g

Power Supply: 1 x 9V battery

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:
- Lightweight
- Simple operation
- Strong casing
- Must hold down button during operation
- Too small for standing operation
- Screwdriver required to install battery

Field Tests – Cambodia

Field Tests – Croatia
ADAMS AD2600S

Manufacturer Information:
Adams Electronics
Unit 10, Forest Row Business Park
Forest Row
East Sussex RH18 5DW
United Kingdom
Telephone: +44 1342 823856
Fax: +44 1342 826100
http://www.adamsinc.com

IPPTC Cost: US $487

Weight/Dimensions:
Length: 360 mm
Width: 105 mm (probe); 55 mm (body)
Height: 35 mm
Weight: 300 g

Power Supply: 1 x 9V battery

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:
- Lightweight
- Simple operation
- Strong casing
- Must hold down button during operation
- Too small for standing operation
- Screwdriver required to install battery

Field Tests – Cambodia

Number of Declarations in Cambodian Soils Relative to Other Detectors – IPPTC Target Configurations AD2600S

Field Tests – Croatia

Number of Declarations in Croatian Soil Relative to Other Detectors – IPPTC Target Configurations AD2600S

The AD2600S is a small, hand-held metal detector designed to support security such as in airports and prisons. Its size limits its use to kneeling and prone positions and in very localized detection areas. It can be used with either standard or rechargeable batteries. The AD2600S is identical to the AD2500 model, with the addition of a speaker on/off switch and a carrying case.
In-Soils Tests

Number of Detections vs. Soil Type
Relative to Other Detectors
AD2600S
(All Targets)

| Soil Type | No. of Detections | Spread
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Peat</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Permeable</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Number of Detections per Mine Type, All Soils
Relative to Other Detectors
AD2600S
(Mine Targets Only)

| Mine Type | No. of Detections | Spread
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PMH-1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PMH-2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PMH-3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PMH-4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PMH-5</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

In-Air Tests

Maximum Detection Distance in Sensitivity Test
Relative to Other Detectors - Mine Targets Only
AD2600S

<table>
<thead>
<tr>
<th>Targets</th>
<th>Detection Distance (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMH-1</td>
<td>29</td>
</tr>
<tr>
<td>PMH-2</td>
<td>10</td>
</tr>
<tr>
<td>PMH-3</td>
<td>2</td>
</tr>
<tr>
<td>PMH-4</td>
<td>4</td>
</tr>
<tr>
<td>PMH-5</td>
<td>1</td>
</tr>
<tr>
<td>PMH-6</td>
<td>2</td>
</tr>
<tr>
<td>I73A</td>
<td>1</td>
</tr>
<tr>
<td>I3132</td>
<td>2</td>
</tr>
</tbody>
</table>

Detection Distance in Air (Target X) - Average and Variation
Relative to Other Detectors
AD2600S

- **Average**
- **Variation**

Scan profile for detector: AD2600
Max detection distance: 10 cm

- **Reference scale**
- **Depth (cm)**
- **y position (cm)**
- **x position (cm)**
Manufacturer Information:
EBinger GmbH
Hansestrasse 13
D-51149 Cologne
Germany
Telephone: +49 2203 36063/64
Fax: +49 2203 36062
http://www.ebinger-gmbh.com
IPPTC Cost: US $3,968

Weight/Dimensions:
Total Weight: 3.3kg
Electronics box: 1.6kg, 280 x 110 x 50mm
Search head: 1.0 kg; 300 x 170mm
Boom/Shaft: 0.8kg; 495 – 1550mm max.

Power Supply: 8 x 1.5V "C"-size batteries

The EBEX 535 operates on pulse induction technology. It is robust and simple to use. It incorporates a separate tone for each coil of its dual-coil design, intending to aid in pinpointing and discriminating objects in close proximity. The search head is waterproof for detection in shallow water.

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:
* Dual detection tone
* Rugged and water-resistant head
* Length adjustment
* No volume control on earphone
* Confidence tone in earpiece only/no fault indicator
* Unable to mount control box on shaft

Field Tests – Cambodia

Field Tests – Croatia
EBINGER EBEX 535

In-Soils Tests

Number of Detections Vs. Soil Type
Relative to Other Detectors
EBEX 535
(All Targets)

In-Air Tests

Maximum Detection Distance in Sensitivity Test
Relative to Other Detectors - Mine Targets Only
EBEX 535

Scan profile for detector: EBEX 535
Max detection distance: 8 cm

Reference scale

Annex A | 63
EBINGER EBEX 420 GC

Manufacturer Information:
Ebinger GmbH
Hansestrasse 13
D-51149 Cologne
Germany
Telephone: +49 2203 36063/64
Fax: +49 2203 36062
http://www.ebingergmbh.com

IPPTC Cost: US $3,003

Weight/Dimensions:
Weight: 2.2kg (short) or 2.4kg (long)
Search head: 260 x 156mm
Boom/Shaft: 1170mm (short) or 1730mm (long)

Power Supply: 8 x 1.5V "C"-size batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:
- Good auditory output devices – volume control on headset and external speaker (optional)
- Easy set up and operation
- Rugged and waterproof
- Poor range of length adjustment
- Front-heavy in long configuration
- Soil compensation adjustment screw is unlabelled and difficult to use

Field Tests – Cambodia

Field Tests – Croatia

The EBEX 420 GC uses bipolar pulse induction and is designed to operate in high metallic soils by including a soil compensation feature. It has a modular design that allows for each component to be interchangeable with other detectors of the same kind and each component can be ordered individually.
EBINGER EBEX 420 GC

In-Soils Tests

Number of detections vs. soil type relative to other detectors EBEX 420 GC (All targets)

Number of detections per mine type, all soils relative to other detectors EBEX 420 GC (Mine targets only)

In-Air Tests

Maximum detection distance in sensitivity test relative to other detectors - Mine targets only EBEX 420 GC

Detection distance in air (target 100) - average and variation relative to other detectors EBEX 420 GC

Scan profile for detector: EBEX 420 GC
Max detection distance: 24 cm

Reference scale

Distance from target (cm)

y position (cm) x position (cm) scan direction

y position (cm) x position (cm)

Annex A 65
Manufacturer Information:
Fisher Research Laboratory
260 West Willmott Road
Los Banos, CA 93635
USA
Telephone: +1 209 826 3292
Fax: +1 209 826 0416
http://www.fisherlab.com/

IPPTC Cost: US $460

Weight/Dimensions:
Total Weight: 1.41 kg
Search head: 203 mm diameter
Boom/Shaft: 1168 – 1397 mm max

Power Supply: 2 x 9V batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:
- Light and well balanced (good control box position)
- Easy to use
- Good pinpointing features
- Lack of robustness
- Not weather resistant
- No confidence or fault tones

Field Tests – Cambodia

Field Tests – Croatia
FISHER 1235 X

In-Soils Tests

Number of Detections vs. Soil Type Relative to Other Detectors

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Sand</th>
<th>Clay</th>
<th>Peat</th>
<th>Fill/Grass</th>
</tr>
</thead>
<tbody>
<tr>
<td>1235 X</td>
<td>23</td>
<td>14</td>
<td>11</td>
<td>4</td>
</tr>
</tbody>
</table>

Number of Detections per Mine Type, All Soils Relative to Other Detectors

<table>
<thead>
<tr>
<th>Mine Type</th>
<th>1235 X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1235 X</td>
<td>4</td>
</tr>
</tbody>
</table>

In-Air Tests

Maximum Detection Distance in Sensitivity Test Relative to Other Detectors - Mine Targets Only 1235 X

<table>
<thead>
<tr>
<th>Targets</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1235 X</td>
<td>23</td>
</tr>
</tbody>
</table>

Detection Distance in Air (Target B-1) - Average and Variation Relative to Other Detectors

<table>
<thead>
<tr>
<th>Detection Distance (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1235 X</td>
</tr>
</tbody>
</table>

Scan profile for detector: 1235 X
Max detection distance: 8 cm
FISHER 1266 XB

Manufacturer Information:
Fisher Research Laboratory
200 West Willmott Road
Los Banos, CA 93635
USA
Telephone: +1 209 826 3292
Fax: +1 209 826 0416
http://www.fisherlab.com

IPPTC Cost: US $830

Weight/Dimensions:
Total Weight: 1.77 kg
Search head: 203 mm diameter
Boom/Shaft: 1092 - 1371 mm max.

Power Supply: 8 x 1.5V "AA" batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:
- Light and well balanced (good control box position)
- Easy to use
- Good pinpointing features
- Lack of robustness
- Not weather resistant
- No confidence or fault tones

Field Tests – Cambodia

Field Tests – Croatia
FISHER 1266 XB

In-Soils Tests

Number of Detections vs. Soil Type Relative to Other Detectors 1266 XB (All Targets)

Number of Detections per Mine Type, All Soils Relative to Other Detectors 1266 XB (Mine Targets Only)

In-Air Tests

Maximum Detection Distance in Sensitivity Test Relative to Other Detectors - Nine Targets Only 1266 XB

Detection Distance in Air (Target R2) - Average and Variation Relative to Other Detectors 1266 XB

Scan profile for detector: 1266 XB
Max detection distance: 14 cm
FISHER IMPULSE

Manufacturer Information:
Fisher Research Laboratory
200 West Willmott Road
Los Banos, CA 93635
USA
Telephone: +1 209 826 3292
Fax: +1 209 826 0416
http://www.fisheralab.com

IPPTC Cost: US $820

Weight/Dimensions:
Total Weight: 2.49 kg
Search head: 266 mm diameter
Boom/Shaft: 787 - 1270 mm max.

Power Supply: 8 x 1.5V "AA" batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:
- Waterproof
- Versatility of control box position
- Light and easy to easy
- No external speaker
- No field case
- No ground balance control

Field Tests - Cambodia

Field Tests - Croatia
FISHER IMPULSE

In-Soils Tests

Number of Detections Vs. Soil Type Relative to Other Detectors Impulse (All Targets)

Number of Detections per Mine Type, All Soils Relative to Other Detectors Impulse (Mine Targets Only)

In-Air Tests

Maximum Detection Distance In Sensitivity Test Relative to Other Detectors - Mine Targets Only Impulse

Detection Distance In Air (Target M.) - Average and Variation Relative to Other Detectors Impulse

Scan profile for detector: IMPULSE
Max detection distance: 26 cm

Reference scale

Annex A | 71
FOERSTER MINEX 2FD 4.400.01

The MINEX 2FD was designed specifically for military use and deployment within harsh field environments. The search head emits electromagnetic energy at two simultaneous frequencies and operates in both the static detection mode and the dynamic detection mode. It utilizes a microprocessor for ground adaptation, sensitivity setting and fault detection. It incorporates a separate search tone for the two sides of the detector search head that is intended to support the pinpointing of targets.

Manufacturers Information:
Institut Dr. Foerster
In Loisen 70
Postfach 1654
D-72766 Reutlingen
Germany
Telephone: + 49 7121 140 354
Fax: +49 7121 140 335
http://www.foerstergroup.com/
IPPTC Cost: US $5,821

Weight/Dimensions:
Search head + telescopic wand: 1.85 kg
Electronics box: 0.71 kg; 220 x 106 x 75 mm
Carrying harness + battery pack: 0.75 kg
Search head: 257 mm diameter
Telescopic wand: 800 - 1850 mm max.

Power Supply: 3 x 1.5V "D"-cell batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:

- Dual tone assists target pinpointing
- Good harness
- Good transit and field case

- Tuning sequence must be memorized
- Poorly labeled, membrane on/off switch
- No external speaker

Field Tests - Cambodia

Field Tests - Croatia

72 | IPPTC Report 2001
In-Soils Tests

Number of Detections Vs. Soil Type Relative to Other Detectors
MINEX 2FD (FD Targets)

In-Air Tests

Maximum Detection Distance in Sensitivity Test Relative to Other Detectors - MINEX 2FD

Detection Distance in Air (Target N₁) - Average and Variation Relative to Other Detectors
MINEX 2FD

Scan profile for detector; MINEX 2FD
Max detection distance: 25 cm
GIAT MODEL F1 (DHPM-1A)

Manufacturer Information:
GIAT Industries
13, route de la Minière
F-78034 Versailles Cedex
France
Telephone: +33 1 30 97 37 37
Fax: +33 1 30 97 39 00

IPPTC Cost: US $3,250

Weight/Dimensions:
Total weight: 3.6 kg
Telescopic wand: 850 - 1520 mm max.

Power Supply: 6 x 1.5V "AA" batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:

- Rugged, waterproof transit case
- Shoulder strap
- Capable of use in shallow water
- Lack of ruggedness in head/shaft and cable/head connections
- Poor documentation/manual

Field Tests – Cambodia

Field Tests – Croatia
GIAT MODEL F1 (DHPM-1A)

In-Soils Tests

Number of Detections vs. Soil Type
Relative to Other Detectors
Model F1 (DHPM-1A)
(All Targets)

Number of Detections per Mine Type, All Soils
Relative to Other Detectors
Model F1 (DHPM-1A)
(Single Targets Only)

In-Air Tests

Maximum Detection Distance in Sensitivity Test
Relative to Other Detectors - Mine Targets Only
Model F1 (DHPM-1A)

Detection Distance in Air (Target P1) - Average and Variation
Relative to Other Detectors
Model F1 (DHPM-1A)

Scan profile for detector: Model F1 (DHPM-1A)
Max detection distance: 9 cm

Annex A | 75
GUARTEL MD2000 (Long Probe)

Manufacturer Information:
GuarTel Ltd
16 Alliance Court
Alliance Road
London W3 0RR
England
Telephone: +44 208 896 0222
Fax: +44 208 896 0333
http://www.guartel.com

IPPTC Cost: US $2,457 (All three MD2000 sensors)

Weight/Dimensions:
Electronics Box: 1.9 kg; 250 x 172 x 42 mm
Probe Length: 1000 mm
Probe weight: 880 g

Power Supply: 20 x 1.5 V "AA" batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:
- 3 Different heads included
- Detailed trouble-shooting guide
- Robust militarised equipment
- Bottom-heavy and awkward wrist angle during standing operation
- Insecure mounting of the control box on the shoulder strap
- Absence of a volume control for the speaker and/or earpiece

Field Tests – Cambodia

Field Tests – Croatia

76 | IPPTC Report 2001
GUARTEL MD2000 (Long Probe)

In-Soils Tests

Number of Detections Vs. Soil Type
Relative to Other Detectors
MD2000 (Long Probe)
(All Targets)

In-Air Tests

Maximum Detection Distance in Sensitivity Test
Relative to Other Detectors - Mine Targets Only
MD2000 (Long Probe)

Scan profile for detector: MD2000 (Long Probe)
Max detection distance: 13 cm

Reference scale

Distance from target (cm)

y position (cm)

x position (cm)

scan direction

Appendix A | 77
GUADEL MD2000 (Round Head)

Manufacturer Information:
Guatel Ltd
16 Alliance Court
Alliance Road
London W3 0RB
England
Telephone: +44 208 896 0222
Fax: +44 208 896 0333
http://www.guatel.com

IPPTC Cost: US $2,457 (All three MD2000 sensors)

Weight/Dimensions:
Electronics Box: 1.9 kg; 250 x 172 x 42 mm
Search Head: 980 g; 300 mm diameter
Boom length: 860 mm – 1,600 mm max.

Power Supply: 20 x 1.5 V “AA” batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:

- 3 Different heads included
- Detailed trouble-shooting guide
- Robust militarized equipment
- Bottom-heavy and awkward wrist angle during standing operation
- Insecure mounting of the control box on the shoulder strap
- Absence of a volume control for the speaker and/or earpiece

Field Tests – Cambodia

Field Tests – Croatia
GUARTEL MD2000 (Round Head)

In-Soils Tests

Number of Detections vs. Soil Type Relative to Other Detectors MD2000 (Round Head)

Number of Detections per Mine Type, All Soils Relative to Other Detectors MD2000 (Round Head) (Mine Targets Only)

In-Air Tests

Maximum Detection Distance vs. Sensitivity Test Relative to Other Detectors - Mine Targets Only MD2000 (Round Head)

Detection Distance in Air (Target W1) - Average and Variation Relative to Other Detectors MD2000 (Round Head)

Scan profile for detector: MD2000 (Round Head)
Max detection distance: 22 cm

Reference scale

Annex A | 79
GUARTEL MD2000 (Short Probe)

Manufacturer Information:
Guarle Ltd
16 Alliance Court
Alliance Road
London W3 0RB
England
Telephone: +44 208 896 0222
Fax: +44 208 896 0333
http://www.guarle.com

IPPTC Cost: US $2,457 (All three MD2000 sensors)

Weight/Dimensions:
Electronics Box: 1.9 kg; 250 x 172 x 42 mm
Probe Length: 500 mm
Probe weight: 600 g

Power Supply: 20 x 1.5 V "AA" batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:
- 3 Different heads included
- Detailed trouble-shooting guide
- Robust militarized equipment
- Bottom-heavy and awkward wrist angle during standing operation
- Insecure mounting of the control box on the shoulder strap
- Absence of a volume control for the speaker and/or earpiece

Field Tests - Cambodia

Field Tests - Croatia
GUARTEL MD4

Manufacturer Information:
GuarTel Ltd
16 Alliance Court
Alliance Road
London W3 0RB
England
Telephone: +44 208 896 0222
Fax: +44 208 896 0333
http://www.guaretel.com

IPPTC Cost: US $3,861

Weight/Dimensions:
Total weight: 2170 g
Total length: 1221 mm
Diameter: 34 mm

Power Supply: 4 x 1.5 V "C" size batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:

- Easy to operate
- Lightweight
- Rugged and waterproof
- No volume control or ground balance
- Small scan width requiring shallow sweep pattern
- Plastic battery pack

Field Tests – Cambodia

Field Tests – Croatia

The MD4 is a probe-shaped detector. The operating principle is multi-sampling pulse induction. Detection indication is by built in speaker or earphone. The electronics, controls, detection head and batteries are all contained within the hand-held probe. It is designed specifically for EOD operations but the design allows it to be used in a wide range of conditions and postures.
GUARTEL MD4

In-Soils Tests

Number of Detecctions Vs. Soil Type
Relative to Other Detectors
MD4 (All Targets)

Number of Detecctions per Mino Type, All Bins
Relative to Other Detectors
MD4 (Mine Targets Only)

In-Air Tests

Maximum Detection Distance in Sensitivity Test
Relative to Other Detectors - Mine Targets Only
MD4

Detection Distance in Air (Target W1) - Average and Variations
Relative to Other Detectors
MD4

Scan profile for detector: MD4
Max detection distance: 18 cm
GUARTEL MD8 (Oval Head)

Manufacturer Information:
GuarTEL Ltd
16 Alliance Court
Alliance Road
London W3 0RB
England
Telephone: +44 208 896 0222
Fax: +44 208 896 0333
http://www.guartel.com

IPPTC Cost: US $2,386 (All three MD8 sensors)

Weight/Dimensions:
Total weight: 1790 g
Control Unit: 1100 g; 470 mm
Search Head: 194 x 267 mm
Length: 635 mm

Power Supply: 2 x 1.5 V "D" size batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:

- Simple design
- Rugged and waterproof
- Three alternative sensor heads offers versatility
- Volume could not be reduced sufficiently for headphone use
- Switches are not labeled
- No low battery warning when using rechargeable batteries

Field Tests – Cambodia

Field Tests – Croatia
GUARTEL MD8 (Oval Head)

In-Soils Tests

(Note: No in-soil test results are presented for this detector. This is due to concerns over the reliability of the MD-8 detectors fitted with the oval search coil which prevented a full set of results being taken for this model).

In-Air Tests

Scan profile for detector: MD8 (Oval Head)
Max detection distance: 7 cm

Reference scale
GUARTEL MD8 (Probe)

Manufacturer Information:
GuarTel Ltd
16 Alliance Court
Alliance Road
London W3 0RB
England
Telephone: +44 208 896 0222
Fax: +44 208 896 0333
http://www.guar tel.com

IPPTC Cost: US $2,386 (All three MD8 sensors)

Weight/Dimensions:
Total weight: 1790 g
Control Unit: 1100 g; 470 mm
Probe: 690 g; 660 mm

Power Supply: 2 x 1.5 V “D” size batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:

- Simple design
- Rugged and waterproof
- Three alternative sensor heads offers versatility

- Volume could not be reduced sufficiently for headphone use
- Switches are not labeled
- No low battery warning when using rechargeable batteries

Field Tests – Cambodia

Field Tests – Croatia
GUARTEL MD8 (Probe)

In-Soils Tests

Number of Detections Vs. Soil Type Relative to Other Detectors MD8 (Probe)

In-Air Tests

Maximum Detection Distance in Sensitivity Test Relative to Other Detectors - Mine Targets Only MD8 (Probe)

Scan profile for detector: MD8 (Probe)
Max detection distance: 2 cm
GUARTEL MD8 (Round Head)

Manufacturer Information:
GuarTEL Ltd
16 Alliance Court
Alliance Road
London W3 0RB
England
Telephone: +44 208 896 0222
Fax: +44 208 896 0333
http://www.guarTEL.com

IPPTC Cost: US $2,386 (All three MD8 sensors)

Weight/Dimensions:
Total weight: 2.4 kg
Control Unit: 1100 g; 470 mm
Search Head: 1100 g; 300 mm diameter
Length: 1120-1560 mm max.

Power Supply: 2 x 1.5 V “D” size batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:

- Simple design
- Rugged and waterproof
- Three alternative sensor heads offers versatility
- Volume could not be reduced sufficiently for headphone use
- Switches are not labeled
- No low battery warning when using rechargeable batteries

Field Tests – Cambodia

Field Tests – Croatia

The MD8 is based on high-speed pulse induction technology. The search head is divided by a ‘sighting bar’ that produces a null in the audio signal, thus aiding in the pinning of a target. The electronics, controls, search head, and batteries are contained within one single unit. All three sensor heads provided were evaluated in this test and results for each sensor are presented separately.
GUARTEL MD8 (Round Head)

In-Soils Tests

Number of Detections Vs. Soil Type Relative to Other Detectors
MD8 (Round Head) (All Targets)

Number of Detections per Site Type, All Soils Relative to Other Detectors
MD8 (Round Head) (Mine Targets Only)

In-Air Tests

Maximum Detection Distance in Sensitivity Test Relative to Other Detectors - Mine Targets Only
MD8 (Round Head)

Detection Distance in Air (Target R_k) - Average and Variations Relative to Other Detectors
MD8 (Round Head)

Scan profile for detector: MD8 (Round Head)
Max detection distance: 17 cm
LG PRECISION PRS-17K

Manufacturer Information:
LG Precision Co Ltd
LG Youngdong Building
891 Dachi-dong Kangnam-gu
Seoul 135-738
South Korea
Telephone: +82 2 3459 5254
Fax: +82 2 3459 5265
http://www.lgp.co.kr/e_main/defense/List_of_defen_12.htm

IPPTC Cost: US $2,700

Weight/Dimensions:
Weight: 4.0 kg
Search Head: 220 mm diameter
Length: 860-1850 mm

Power Supply: 8 x 1.5 V “AA” size batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:
- Versatility of control box location
- Robustness
- Simplicity of controls
- No external speaker
- No field case
- No confidence tone

Field Tests – Cambodia

Field Tests – Croatia
MANUFACTURER INFORMATION:
Minelab Electronics Pty Ltd.
118 Hayward Avenue
Torrensville, SA 5031
Australia
Telephone: +61 8 8238 0888
Fax: +61 8 8238 0890
http://www.minelab.com

IPPTC Cost: US $2,250

Weight/Dimensions:
Boom/Shaft: 1200 – 1450 mm max.
Control Box: 875 g
Coil and Shaft Assembly: 1326 g
Total Operating Weight: 2900 g

Power Supply: 4 x 1.5V "D" Cell batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:

- Choice of earpiece (allows use of speaker at the same time)
- Ease of setup and operating procedure
- Versatility of control box location

- Poor for pinpointing multiple targets
- Weak screws securing the control box and head
- No labeling of alternative earphones

Field Tests – Cambodia

Field Tests – Croatia

The F1A4 CMAC uses monopolar pulse induction with the added feature of soil compensation. The equipment automatically adjusts Ground Balance, Threshold (audio) and Fine Frequency. The F1A4 CMAC is the standard F1A4 with a different earpiece and carry bag.
MINELAB F1A4 MIM

Manufacturer Information:
Minelab Electronics Pty Ltd.
118 Hayward Avenue
Torrensview, SA 5031
Australia
Telephone: +61 8 8238 0888
Fax: +61 8 8238 0890
http://www.minelab.com

IPPTC Cost: US $2,250

Weight/Dimensions:
Boom/Shaft: 1200 – 1450 mm max.
Control Box: 875 g
Coil and Shaft Assembly: 1326 g
Total Operating Weight: 2900 g
Power Supply: 4 x 1.5V “D” Cell batteries

The F1A4 MIM uses bipolar pulse induction with the added feature of soil compensation. It was specifically designed with the intention of not triggering magnetically influenced mines. The equipment automatically adjusts Ground Balance, Threshold (audio) and Fine Frequency.

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:

- Lockable, weather-proof, hard case
- Appropriate range of features including low battery indicator
- Light-weight, particularly when control box is detached
- Solid search head obscures direct view of target area
- Risk of damaging central cable when storing the equipment
- Insecure locking on the handle of the detector shaft

Field Tests – Cambodia

Number of Detectors in Cambodian Soils Relative to Other Detectors - IPPTC Target Configurations
F1A4 MIM

Number of Detectors per Mine Type, All Cambodian Soils Relative to Other Detectors - IPPTC Target Configurations
F1A4 MIM

Field Tests – Croatia

Number of Detectors in Croatian Soil Relative to Other Detectors - IPPTC Target Configurations
F1A4 MIM

Number of Detectors per Mine Type in Croatian Soil Relative to Other Detectors - IPPTC Target Configurations
F1A4 MIM

94 | IPPTC Report 2001
MINELAB F1A4 MIM

In-Soils Tests

Number of Detections Vs. Soil Type
Relative to Other Detectors
F1A4 MIM (4x Targets)

Number of Detections per Soil Type, All Soils
Relative to Other Detectors
F1A4 MIM (4x Targets Only)

In-Air Tests

Maximum Detection Distance in Sensitivity Test
Relative to Other Detectors - Mine Targets Only
F1A4 MIM

Detection Distance in Air (Target MW) - Average and Variation
Relative to Other Detectors
F1A4 MIM

Scan profile for detector: F1A4 MIM
Max detection distance: 20 cm

Reference scale
PRO-SCAN MARK 2 VLF

Manufacturer Information:
Pro Scan Ltd
262 266 Pirie Street
Adelaide, SA 5000
Australia
Telephone: +618 8232 5727
Fax: +618 8238 5290

IPPTC Cost: US $1,000

Weight/Dimensions:
Boom/Shaft: unavailable
Search head: 305 mm diameter

Power Supply: 9.6V NiCad rechargeable pack

The Mark2 metal detector is designed for the hobbyist. It is simple to use. It features a squelch control for tuning the sensitivity and a ground balance control. It uses a versatile rechargeable battery pack.

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:
- Extra volume control on head phones
- Versatility of recharge system
- Light and well balanced
- No transit or field case
- Not rugged or weatherized
- Large, closed search head

Field Tests – Cambodia

Field Tests – Croatia
PRO-SCAN MARK 2 VLF

In-Soils Tests

Number of Detections vs. Soil Type Relative to Other Detectors Mark 2 VLF (All Targets)

Number of Detections per Mine Type, All Soils Relative to Other Detectors Mark 2 VLF (Mine Targets Only)

In-Air Tests

Maximum Detection Distance in Sensitivity Test Relative to Other Detectors - Mine Targets Only Mark 2 VLF

Detection Distances to Air (Target B1), Average and Variation Relative to Other Detectors Mark 2 VLF

Scan profile for detector: Mark 2 VLF
Max detection distance: 23 cm

Annex A 97
Manufacturer Information:
Reutech Defence Industries
PO Box 118
New Germany, Natal 3620
South Africa
Telephone: +27 31 719 5711
Fax: +27 31 719 5707
http://www.esd.co.za/rchome.htm

IPPTC Cost: US $2,025

Weight/Dimensions:
Weight: 4.3 kg
Search head: 305 mm diameter
Boom/Shaft: 1640 – 2110 mm max.

Power Supply: 11 x 1.5V “AA” batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:
- Simple design
- Robust construction
- Versatile field and transit case
- Absence of volume control or external speaker
- Long length
- Awkward position of controls

Field Tests – Cambodia

Field Tests – Croatia

The Midas PIMD operates on the pulse induction method. It has two operational modes: Locate, which gives an alarm only when the detection head moves past a metallic object; and Pinpoint, which provides a continuously varying tone output intended to be proportional to the size and position of the metallic object.
REUTECH MIDAS PIMD

In-Soils Tests

Number of Detections Vs. Soil Type Relative to Other Detectors Midas PIMD (All Targets)

Number of Detections per Mine Type, All Soils Relative to Other Detectors Midas PIMD (Mine Target Only)

In-Air Tests

Number of Detections per Mine Type, All Soils Relative to Other Detectors Midas PIMD (Mine Target Only)

Detection Distance to Air (Target M.J.) - Average and Variation Relative to Other Detectors Midas PIMD

Scan profile for detector: Midas PIMD
Max detection distance: 7 cm

Reference scale

Annex A | 99
SCHIEBEL AN-19/2

Manufacturer Information:
Schiebel GmbH
Margaretenstrasse 112
A-1050 Vienna
Austria
Telephone: +43 1 546 26-0
Fax: +43 1 545 23 39
http://www.schiebel.com

IPPTC Cost: US $2,300

Weight/Dimensions:
Electronics unit: 1100 g; 185 x 80 x 150 mm;
Boom/Shaft: 700 g; 3 fixed positions – 1400 mm,
1500 mm, 1600 mm
Search head: 600 g, 270 mm diameter

Power Supply: 4 x 1.5V “D” cell batteries

The AN-19/2 is designed for military use. The AN-19/2 operates on the pulse induction principle and is made up of concentric transmitting and receiving coils. Sensitivity can be controlled manually during operation. It features a ticking confidence tone every 1-2 seconds.

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:
- Light-weight
- Rugged and weather-proof
- Easy to use
- No external speaker
- Exposed cable
- Lack of ability to mount electronics box on detector shaft

Field Tests – Cambodia

Field Tests – Croatia
SCHIEBEL AN-19/2

In-Soils Tests

- [Graph showing number of detections vs. soil type relative to other detectors AN-19/2 (all targets)]
- [Graph showing number of detections per mine type, all soils relative to other detectors AN-19/2 (mine targets only)]

In-Air Tests

- [Graph showing maximum detection distance in sensitivity test relative to other detectors - mine targets only AN-19/2]
- [Graph showing detection distance in air (target MJ) - average and variation relative to other detectors AN-19/2]

Scan profile for detector: AN-19/2

- Max detection distance: 24 cm

Annex A | 101
SCHIEBEL ATMID

Manufacturer Information:
Schiebel GmbH
Margaretenstrasse 112
A-1050 Vienna
Austria
Telephone: +43 1 546 260
Fax: +43 1 545 2339
http://www.schiebel.com

IPPTC Cost: US $2,300

Weight/Dimensions:
Electronics unit: 1100 g; 185 x 80 x 150 mm
Boom/Shaft: 700 g; 770-1620 mm
Search head: 270 mm diameter

Power Supply: 4 x 1.5V “D” cell batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:
- Light-weight and easy to use
- Rugged and weather-proof
- Versatile
- No external speaker
- Exposed cable
- Lack of documentation for search head use

Field Tests – Cambodia

Field Tests – Croatia

The ATMID (All Terrain Mine Detector) is based on the AN-19/2, but is specifically intended for use in all soil types and terrain. Digital spectral detection algorithms have been added to the AN-19/2 design with the intention to compensate for ground and soil effects.
SCHIEBEL MIMID

Manufacturer Information:
Schiebel GmbH
Margaretenstrasse 112
A-1050 Vienna
Austria
Telephone: +43 1 546 260
Fax: +43 1 545 2339
http://www.schiebel.com

IPPTC Cost: US $3,590

Weight/Dimensions:
Total Weight: 1.37 kg
Folded: 325 x 55 x 95 mm
Fully extended: 1250 mm

Power Supply: 4 x 1.5V "D" cell batteries

The MIMID (Miniature Mine Detector) is based on AN-19/2 technology. Its compact, collapsible, one-piece design makes it easy to transport and set up. It can be quickly transformed for use in the standing, kneeling, or prone positions by adjusting the length of the telescopic pole. The MIMID has a built-in speaker and can be used with or without headphones.

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:
- Light-weight and compact
- Weather-proof
- Pre-assembled
- No transit case
- Handle does not lock down
- Elbow restraints and shaft latches are weak

Field Tests – Cambodia

Number of Declarations in Cambodian Soil Relative to Other Detectors - IPPTC Target Configurations

- Clay Deetector (Spread 4-5 m)
- Linatie Detector (Spread 4-5 m)
- Clay False Positive (Spaced 4x10 m)
- Linatie False Positive (Spaced 4x10 m)

Number of Declarations per Mine Type, All Cambodian Soil Relative to Other Detectors - IPPTC Target Configurations

- MIID
- MIID

Field Tests – Croatia

Number of Declarations in Croatian Soil Relative to Other Detectors - IPPTC Target Configurations

- Ceramic Deetector (Spread 4-5 m)
- Linatie Detector (Spread 4-5 m)
- Ceramic False Positive (Spaced 4x10 m)
- Linatie False Positive (Spaced 4x10 m)

Number of Declarations per Mine Type in Croatian Soil Relative to Other Detectors - IPPTC Target Configurations

- MIID
- MIID

IMPTC Report 2001
SCHIEBEL MIMID

In-Soils Tests

Number of Detectors vs. Soil Type
Relative to Other Detectors
MIMID

(Soil Targets)

In-Air Tests

Maximum Detection Distance In Sensitivity Test
Relative to Other Detectors - Mine Targets Only
MIMID

Scan profile for detector: MIMID
Max detection distance: 18 cm

Reference scale
VALLON ML 1620 C

Manufacturer Information:
Vallon GmbH
Postfach 12 52
D-72795 Enningen
Germany
Telephone: +49 7121 98550
Fax: +49 7121 83643
http://www.vallon.de

IPPTC Cost: US $4,160

Weight/Dimensions:
Search head: 1300 g (incl. Shaft); 170 x 305 mm
Electronics box: 1550 g; 95 x 75 x 205 mm;
Boom/Shaft: 960-1900 mm

Power Supply: 4 x 1.5V "D" cell batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:
- Range of functions offers a wide capability
- Choice of electronics box position
- Range of length adjustment

- Complex
- Lack of confidence indicator
- Incomplete guidance for setting of functions

Field Tests – Cambodia

Field Tests – Croatia

The ML 1620 C uses the pulse induction principle for metal detection. It features 4 different soil programs to compensate for varying soil types, as well as programs to reduce interference from nearby power lines. The detector adapts itself automatically to the ambient ground conditions.
VALLON ML 1620 C

In-Soils Tests

Number of Detections per Soil Type, Relative to Other Detectors
ML 1620 C

Number of Detections per Mine Type, All Soils
Relative to Other Detectors
ML 1620 C

In-Air Tests

Number of Detections per Mine Type, All Soils
Relative to Other Detectors
ML 1620 C

Detection Distance In Air (Target ILJ) - Average and Variation
Relative to Other Detectors
ML 1620 C

Scan profile for detector: ML 1620 C
Max detection distance: 28 cm
VALLON VMH2

Manufacturer Information:
Vallon GmbH
Postfach 12 52
D-72795 Enningen
Germany
Telephone: +49 7121 98550
Fax: +49 7121 83643
http://www.vallon.de

IPPTC Cost: US $2,750

Weight/Dimensions:
Search head: 1500 g (incl. Shaft); 170 x 305 mm
Electronics box: 1600 g; 95 x 80 x 2195 mm
Boom/shaft: 810-1360 mm

Power Supply: 4 x 1.5V "D" cell batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:

- Rugged
- Good field case
- Pre-assembled
- Complex ground balancing
- Lack of extras (transit case and earphones)
- No confidence tone

Field Tests – Cambodia

Field Tests – Croatia
WHITE'S DI-PRO 5900

Manufacturer Information:
White's Electronics Inc.
1011 Pleasant Valley Road
Sweat Home, OR 97386
USA
Telephone: +1 800 547 6911 (Distribution)
+1 541 367 6121 (Factory)
Fax: +1 541 367 2968
Email: white@halcyon.com

IPPTC Cost: US $500

Weight/Dimensions:
Not available

Power Supply: 4 x 1.5V "C" cell batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:
- Lightweight
- Socket for headphones
- Visual digital display (back-up to audible alarm)
- Many complex settings and options
- Lack of ruggedness
- Manual explanations are confusing

Field Tests – Cambodia

Field Tests – Croatia
WHITE'S DI-PRO 5900

In-Soils Tests

Number of Detections Vs. Soil Type Relative to Other Detectors
DI-PRO 5900 (All Targets)

Number of Detections per Mine Type, All Soils Relative to Other Detectors
DI-PRO 5900 (Mine Targets Only)

In-Air Tests

Maximum Detection Distance in Sensitivity Test Relative to Other Detectors - Mine Targets Only
DI-PRO 5900

Detection Distance in Air (Target 12) - Average and Variation Relative to Other Detectors
DI-PRO 5900

Scan profile for detector: DI-PRO 5900
Max detection distance: 22 cm

Reference scale

Distance from target (cm)

y position (cm)

x position (cm)

scan direction

Annex A | 111
WHITE'S AF-108

Manufacturer Information:
White's Electronics Ltd
351 Harbour Road
Inverness IV1 1UA
Scotland
Telephone: +44 (0)1463 223 456
Fax: +44 (0)1463 224 048
http://www.whites.co.uk

IPPTC Cost: US $2,025

Weight/Dimensions:
Search head: 280 mm diameter
Boom/shaft: 596 - 1600 mm max.

Power Supply: 4 x 1.5V "D" size batteries

The AF-108 is White's military detector, and it operates on the pulse induction principle. It features both audio and visual indication (on the control box and search head) of targets. The rod, search head, headphones, control box and battery box of all AF-108s are interchangeable with each other should there be failure in one of the components.

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:

- Rugged
- Simple operation
- Good fault warnings
- Front-heavy leading to potential discomfort
- No separate external speaker
- Many cable connections

Field Tests -- Cambodia

Field Tests -- Croatia
WHITE'S AF-108

In-Soils Tests

Number of Detections Vs. Soil Type Relative to Other Detectors AF-108 (All Targets)

Number of Detections per soil type, all soils Relative to Other Detectors AF-108 (Mike Targets Only)

In-Air Tests

Maximum Detection Distance in Sensitivity Test Relative to Other Detectors - Mike Targets Only AF-108

Detection Distance In Air (Target 60) - Average and Variation Relative to Other Detectors AF-108

Scan profile for detector: AF-108
Max detection distance: 22 cm

Reference scale

Annex A | 113
WHITE'S SPECTRUM XLT

Manufacturer Information:
White's Electronics Inc.
1011 Pleasant Valley Road
Sweet Home, OR 97386
USA
Telephone: +1 800 547 6911 (Distribution)
 +1 541 367 6121 (Factory)
Fax: +1 541 367 2968
Email: whites@halcyon.com

IPPTC Cost: US $680

Weight/Dimensions:
Total Weight: 1.8 kg
Dimensions not available

Power Supply: 8 x 1.5V "AA" cell batteries

Strengths and Weaknesses Identified by IPPTC Human Factors Assessment:
- Light and well balanced
- Choice of standard or rechargeable batteries
- Easy set up
- Many complex settings and options in a menu-driven display
- No weatherproofing
- Difficult menu leads to potential errors

Field Tests – Cambodia

Field Tests – Croatia

The Spectrum XLT is designed for the hobbyist and its many complex features are geared toward the treasure hunter. It features ground balance, variable audio tone, and a menu-driven LSD display. It can be used with standard or rechargeable batteries.
WHITE'S SPECTRUM XLT

In-Soils Tests

Number of Detections vs. Soil Type Relative to Other Detectors
Spectrum XLT (All Targets)

Number of Detections per Mine Type, All Soils Relative to Other Detectors
Spectrum XLT (Mine Targets Only)

In-Air Tests

Maximum Detection Distance in Sensitivity Test Relative to Other Detectors - Mine Targets Only
Spectrum XLT

Detection Distance in Air (Target ML) - Average and Variation Relative to Other Detectors
Spectrum XLT

Scan profile for detector: Spectrum XLT
Max detection distance: 23 cm
Two environmental parameters have been identified having particular relevance to metal detector performance: electrical conductivity and magnetic susceptibility of soil. It is also known that magnetic susceptibility of a soil affects metal detector performance more than its electrical conductivity. Ideally, one would want to measure these soil properties over the frequency range of operation of metal detectors. However, such instruments are not readily available for field use at this time. For this project an approximate but achievable ready approach was adopted, and the relevant parameters were measured using the readily available survey instruments listed in the table.

Ground conductivity: Geonics EM38, a well-known instrument in geophysical applications.

Magnetic susceptibility: Bartington MS2 - a susceptibility meter routinely used to measure magnetic susceptibility in fields such as environmental magnetism, soil science and geophysics. An MS2 with a D-coil sensor, designed for in-situ measurements, was used to measure volume susceptibility of the test lanes.

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>Conductivity EM38 (horizontal) mS/m</th>
<th>Conductivity EM38 (vertical) mS/m</th>
<th>Susceptibility MS2 (×10^-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>TNO-FEL Test lanes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane 1 – Sand</td>
<td>5.6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>-10.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane 2 – Clay</td>
<td>25.6</td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td>14.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane 3 – Peat</td>
<td>28.4</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>17.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane 4 – Ferruginous</td>
<td>3.3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>-2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CROATIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane 1</td>
<td>18.9</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane 2</td>
<td>25.3</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>-6.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAMBODIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay Lane</td>
<td>8.4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laterite Lane</td>
<td>15.6</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Soil conductivity and susceptibility measured on the IPPTC test locations.
For details of the measurement steps using these instruments, the approximations and errors involved, the reader should consult the relevant operational manuals [8, 9, 10].

At the Cambodia Field Test site, conductivity (mS/m) and susceptibility (MKS units) were measured every 1 meter along a straight line over the center of each of the two test lanes. Similar measurements were carried out over the soil lanes at TNO-FEL and over the Croatian test lanes. The mean values and their standard deviations are summarized in the table.

As seen from the table, the EM38 electrical conductivity is measured in two modes (vertical and horizontal). The horizontal mode is most sensitive at the surface and decreases with depth. The vertical mode is less sensitive to surface material (zero at the surface) and more sensitive at depth. The results for all the lanes are quite small (less than 24 mS/m) and are thought to have had no influence on detector performance.

Magnetic susceptibility varied significantly among the lanes – from a small value of 3 for the TNO-FEL sand lane to a value of 140 in the Croatian Lane 1. A value of the order of 140 will have an effect on metal detectors. The soils, listed in order of difficulty of detection of the targets for metal detectors, with most difficult soil first, are:

1. Croatia Lane 1
2. Croatia Lane 2
3. Cambodia Laterite Lane
4. TNO-FEL Lane 4 – Ferruginous
5. TNO-FEL Lane 3 – Peat
6. Cambodia Clay Lane
7. TNO-FEL Lane 2 – Clay
8. TNO-FEL Lane 1 – Sand
ANNEX C - Invitations to Participants

Examples of IPPTC Communications to Product Manufacturers and Test Facility Providers

This annex contains copies of three letters, sent by the US Department of Defense, relating to the initiation and in-country test phases of the IPPTC project.

1) Letter, dated 25 March 1999, requesting information from a manufacturer (White's of Mid-Atlantic) on Commercial Off the Shelf metal detector that could be suitable for the IPPTC action. An individual version of this letter was sent to each of the manufacturers of metal detectors that could be identified by the project team. The purchase of 29 examples of metal detector, used in the Pilot Project, resulted from these solicitation letters.

2) Letter, dated 19 January 2000, to Mr Khem Sopheap of the Cambodian Mine Action Center requesting support to the Pilot Project from CMAC.

3) Letter, dated 19 January 2000, to the Scientific Council of the Croatian Mine Action Center requesting support to the Pilot Project from CroMAC.
Mr. Khem Sprehon
Cambodian Mine Action Center
Building 10+12, Road 528, Quarter Boeng kok 1
1 District Tuol Kok, P.O. Box 116
Phnom Penh
Cambodia

Dear Mr. Sprehon:

I am writing to inform you of an international initiative to foster cooperation in the development and testing of technology for humanitarian demining applications. The purpose of this project is to evaluate all existing, commercial-off-the-shelf metal detectors that are used for mine detection and may be potentially suitable for humanitarian demining. The intent of this evaluation is to identify which detectors are best suited for a particular geographical set of conditions or operational environment. This will enable demining organizations, or their donors, to narrow down the number of detectors that must be procured for further evaluation within their own unique operational requirements or parameters.

Representatives from government agencies in Canada, the Netherlands, the United Kingdom and the United States, as well as the Joint Research Centre of the European Commission, are conducting this project. Thus far, equipment evaluation has been conducted in the Netherlands and Canada. The purpose of this letter is to follow up on a previous visit by Mrs. Christine Lee who had discussions with Major Walker, and formally request that the Cambodian Mine Action Center (CMAC) play an active role in this project by offering to host the next phase of the project. The next step in the project will consist of field testing in several countries with mine problems, hopefully including Cambodia, to validate the previous laboratory testing.

Your cooperation in this project would be greatly appreciated. If you have any questions pertaining to this project, please contact me directly at (1) 703-693-5222, or by facsimile at (1) 703-693-3039.

Respectfully,

[Signature]

Colonel, United States Army

CC:
Mr. Bou Puthy, CMAC
Mr. A.K. Zorger
White's of Mid-Atlantic
4307 Dairy Street
Harrisburg, PA 17111

Dear Mr. Zorger:

I am writing to inform you of a recent international initiative to foster cooperation in the development and testing of technology for humanitarian demining applications. I am sure you are aware of the daily threat posed by the past irresponsible use of antipersonnel landmines, and therefore recognize the value of a concerted international effort to ensure that the best tools available are placed in the hands of personnel engaged in the extremely hazardous task of detecting these “hidden killers.”

The purpose of this international cooperative effort is to evaluate all existing, commercial-off-the-shelf metal detectors that are used for mine detection and may be potentially suitable for humanitarian demining. The intent of this evaluation is to identify which detectors are best suited for a particular geographical set of conditions or operational environment. This will enable demining organizations, or their donors, to narrow down the number of detectors that must be procured for further evaluation within their own unique operational requirements or parameters. For example, factors that will be considered in the evaluation include: detection ability in highly mineralized soil and in areas of high humidity; ergonomic factors such as weight and ease of use; reliability, maintainability and sustainability; and other factors including cost and ruggedness.

Representatives from government agencies in Canada, the Netherlands, the United Kingdom and the United States, as well as the Joint Research Center of the European Commission, are conducting this project. Actual equipment evaluation will be conducted in the Netherlands and Canada, with field validation testing of laboratory results planned for Bosnia-Herzegovina, Cambodia and Mozambique. A final evaluation report will be released to all interested parties in September 2000.

It is the intention of the project team that suitable metal detectors will be purchased from manufacturers to undergo the evaluation. Manufacturers will also be invited to provide their standard new equipment training packages for their detectors. The final report will not attempt to provide an overall ranking or, in any way, certify the detectors tested. The evaluation will tabulate each detector’s performance against a specific list of criteria under a range of defined conditions, thereby highlighting those that should be considered for use under those specified conditions. The report will be
presented in a manner to assist the consumers, or users, of humanitarian demining mine
detectors – governments, mine action centers, non-governmental organizations and
donors – in identifying the detectors that best suit their needs.

Your cooperation in this effort would be greatly appreciated. Initially, the project
organizers request you provide the following information: (1) identify the detectors that
you currently manufacture that are available now for retail sale and are suitable for use in
humanitarian demining operations – please, no research and development prototypes; (2)
highlight any technical concerns relating to the equipment that may impact on recording
detector headphone output with an analog or digital interface; and (3) identify the
appropriate sales representative that should be contacted to purchase three copies of each
unit for subsequent evaluation.

Please respond no later than two weeks after receipt of this letter. Also, please be
aware that our desire is to receive this equipment at the first test site in The Netherlands
no later than May 24, 1999. Any equipment received after that date will not be included
in the evaluation. Your sales representative will be contacted at a later date to arrange for
appropriate equipment training after the detectors have been received.

Please provide the requested information to Mrs. Beverly Briggs at (1) 703-704-
1073, or e-mail bbriggs@wvi.army.mil. The alternate POC is Mr. Sean Burke at (1) 703-
704-1047, or e-mail sburke@wvi.army.mil. If you have any questions pertaining to this
project, please contact me directly or the project coordinator, Colonel George
Zahaczeszky, at (1) 703-693-5222, or by facsimile at (1) 703-693-3039.

Sincerely,

Robert C. Dobney
Director
Requirements, Technology and Acquisition

Annex C | 121
OFFICE OF THE ASSISTANT SECRETARY OF DEFENSE
WASHINGTON, D.C. 20301-2500

Croatian Mine Action Center
ATTN: Scientific Council
Ulica J. Meotrovica 30
44000 Zagreb
Croatia

Dear Sirs:

I am writing to inform you of an international initiative to foster cooperation in the development and testing of technology for humanitarian demining applications. The purpose of this project is to evaluate all existing, commercial-off-the-shelf metal detectors that are used for mine detection and may be potentially suitable for humanitarian demining. The intent of this evaluation is to identify which detectors are best suited for a particular geographical set of conditions or operational environment. This will enable demining organizations, or their donors, to narrow down the number of detectors that must be procured for further evaluation within their own unique operational requirements or parameters.

Representatives from government agencies in Canada, the Netherlands, the United Kingdom and the United States, as well as the Joint Research Centre of the European Commission, are conducting this project. Thus far, equipment evaluation has been conducted in the Netherlands and Canada. The purpose of this letter is to follow up on a previous visit by Dr. Denis Reidy, who had discussions with Dr. Milan Bajic, and formally request that the Croatian Mine Action Center play an active role in this project by offering to host and participate in the next phase of the project. The next step in the project will consist of field testing in several countries with mine problems, hopefully including Croatia, to validate the previous laboratory testing.

Your cooperation in this project would be greatly appreciated. If you have any questions pertaining to this project, please contact me directly at (1) 703-693-5222, or by facsimile at (1) 703-693-3059.

Respectfully,

[Signature]

George [Name]
Colonel, United States Army
References

Participants

Canada

Dr. Yogodish Das
Defence Research Establishment Suffield
Military Engineering Section
Box 4000
Medicine Hat, Alberta T1A 8K6
Canada

Mr. Jack D. Toews
Defence Research Establishment Suffield
Threat Detection Group

The Netherlands

Mr. Jacques Roosenboom
MOD Netherlands
Landmacht, Directie Materieel
Systeemgroep WTS
Frederikkazerne, v. d. Burchlaan 31
2597 PC Den Haag
The Netherlands

Dr. Arnold Schoolderman
TNO Physics and Electronics Laboratory
Oude Wooldoskerweg 63
P.O. Box 96864
2509 JG The Hague
The Netherlands

Major Pieter Jan de Veer
Legerplaats bij Oldebroek
MPC 58A
8084 HE 't Harde
The Netherlands

United Kingdom

Mr. Richard Beecch
DERA Chertsey
Chobham Lane
Chertsey
Surrey KT16 OEE
United Kingdom

Mr. David Lewis
DERA Chertsey

United States

Mr. Harold E. Bertrand
Institute for Defense Analysis (IDA)
Science and Technology Division
1801 N. Beauregard Street
Alexandria, VA 22311-1772
USA

Ms. Karin Breiter
U.S. Army CECOM NVESD
ATTN: AMSEL-RD-NV-CM-HD
10221 Burchfield Road, Suite 430
Fort Belvoir, VA 22060-5806
USA

Mrs. Christine Lee
U.S. Army CECOM NVESD

Dr. Denis Reidy
U.S. Army CECOM NVESD

Colonel George Zawadzewska
(Project Coordinator)
U.S. Department of Defense
OASD/IS/IC/SP66(PR&A)
2500 Defense Pentagon, Room 1A674B
Washington, DC 20301-2500
USA

European Commission

Mr. John Dean
EC Joint Research Centre
Institute for Systems, Informatics and Safety, TDP
Unit, TP 272
Via E. Fermi
I-21020 ISPRA (Va), Italy

Mr. Steve Lewis
EC Joint Research Centre

(Please note that where addresses are similar, the full mail address is given only for the first participant from each center.)
Acknowledgements

Canada

Canadian Centre for Mine Action Technologies

Major (retd) Al Carruthers
Dr. Robert Suart

Defence Research Establishment Suffield:

Mr. Doug Benson
Mr. Kevin Russell
Mr. Lyle Sidor
Mr. Wayne Sirowyak

The Netherlands

Ministry of Defence

Warrant Officer Adrian Hol
Warrant Officer Dirk Keij

Royal Netherlands Embassy, Washington, DC

Lieutenant Colonel Peter van der Tol

TNO Physics and Electronics Laboratory

Mr. Bert Blak
Mr. Peter Fritz
Ms. Yvonne Janssen
Mr. Marco Roos
Mr. Robin de Rooy
Mr. Frank de Wolf

United Kingdom

DERA Chertsey

Mr. Phil Best
Ms. Peter Gardiner
Mr. Neville Goulton
Mr. Andy Hooper

DERA Farnborough

Mr. Nick Beagley

United States

Joint UXO Coordination Office (JUXOCO)

Ms. Mary Sherlock
Mr. Richard Weaver

U.S. Army AMC RDEC

Sergeant Craig Smith
Staff Sergeant Alton Stewart

U.S. Army CECOM NVESD

Mrs. Beverly Briggs
Mr. Sean Burke
Dr. Zenon Darzko

U.S. Department of Defense

Mr. Robert Doheny

European Commission

EC Joint Research Centre

Mr. Bjoern A. Dietrich
Dr. Adam Lewis
Dr. Alois Seiber

Demining Consultants

Cambodian Mine Action Center
Mr. Ian Bullpit

C King Associates, Ltd.
Mr. Colin King

Thailand Mine Action Center
Mr. David McCracken