A general bioaccumulation DEB model for mussels

José-Manuel Zaldivar
The mission of the IHCP is to provide scientific support to the development and implementation of EU policies related to health and consumer protection.

The IHCP carries out research to improve the understanding of potential health risks posed by chemical, physical and biological agents from various sources to which consumers are exposed.

European Commission
Joint Research Centre
Institute for Health and Consumer Protection

Contact information
Address: Via E. Fermi 2749, TP 272
E-mail: jose.zaldivar-comenges@jrc.it
Tel.: +39-0332-789202
Fax: +39-0332-785807

http://ihcp.jrc.ec.europa.eu/
http://www.jrc.ec.europa.eu/

Legal Notice
Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

Europe Direct is a service to help you find answers to your questions about the European Union

Freephone number (*):
00 800 6 7 8 9 10 11

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/

JRC 48848

EUR 23626 EN
ISSN 1018-5593
DOI 10.2788/36003

Luxembourg: Office for Official Publications of the European Communities

© European Communities, 2008

Reproduction is authorised provided the source is acknowledged

Printed in Italy

Cover picture (Blue mussel, Mytillus gallo provincialis) from: Picton, B.E. & Morrow, C.C., 2007. [In] Encyclopedia of Marine Life of Britain and Ireland
http://www.habitas.org.uk/marinelife/species.asp?item=W16510
<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Prepared by:</td>
<td>José-Manuel Zaldívar</td>
<td>J.M. Zal.</td>
<td>12/11/08</td>
</tr>
<tr>
<td>Reviewed by:</td>
<td>Christian Micheletti</td>
<td></td>
<td>18/11/08</td>
</tr>
<tr>
<td>(Scientific level)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved by:</td>
<td>Ana B. Payá Pérez</td>
<td></td>
<td>21/11/08</td>
</tr>
<tr>
<td>(Head of Unit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final approval:</td>
<td>Elke Anklam</td>
<td></td>
<td>26/11/08</td>
</tr>
<tr>
<td>(IHCP Director)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTENTS</td>
<td>ii</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. METHODS AND APPROACH</td>
<td>3</td>
</tr>
<tr>
<td>2.1. STUDY AREA</td>
<td>3</td>
</tr>
<tr>
<td>2.2. BIOCONCENTRATION AND BIOACCUMULATION IN MUSSELS</td>
<td>4</td>
</tr>
<tr>
<td>2.3. MODEL DEVELOPMENT</td>
<td>7</td>
</tr>
<tr>
<td>2.3.1. The Dynamic Energy Budget (DEB) Approach</td>
<td>7</td>
</tr>
<tr>
<td>2.3.2. The bioaccumulation model</td>
<td>10</td>
</tr>
<tr>
<td>2.3.3. The estimation of the bioaccumulation model parameters</td>
<td>14</td>
</tr>
<tr>
<td>2.3.4. Forcing of the DEB-bioaccumulation model using 3D simulation runs</td>
<td>15</td>
</tr>
<tr>
<td>3. RESULTS AND DISCUSSION</td>
<td>18</td>
</tr>
<tr>
<td>3.1. DEB GROWTH MODEL</td>
<td>18</td>
</tr>
<tr>
<td>3.2. BIOACCUMULATION MODEL</td>
<td>20</td>
</tr>
<tr>
<td>3.3. COMPARISON WITH EXPERIMENTAL DATA</td>
<td>22</td>
</tr>
<tr>
<td>4. CONCLUSIONS</td>
<td>24</td>
</tr>
<tr>
<td>5. REFERENCES</td>
<td>25</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Mussels are a common species that are frequently employed in contaminants monitoring programs in transitional, coastal and marine waters. For example, the US Mussel Watch program (Kimbrough et al, 2008) began monitoring trace metals and organic contaminants in mussels at several estuaries and coastal sites in US since 1986 and now it covers approximately 140 analytes. The OSPAR (OSPAR, 1999), HELCOM and MEDPOL conventions have included mussels as the species to analyze for assessing chemical contamination in coastal ecosystems (Roose and Brinkman, 2005), and there are also several European monitoring programmes in Member States, e.g. RINBIO (Réseaux Intégrateurs Biologiques, France).

Monitoring contaminants concentrations in mussels has some advantages, when compared with the measurement of total concentrations in the water column, principally for hydrophobic compounds that bioaccumulate in the food web. Data of organic contaminants accumulated in the tissues of mussels (or other biota) may provide an assessment of pollutant occurrence and distribution in aquatic ecosystems, acting as a time integrated measure (Goldberg, 1986; Pereira et al., 1996). Specifically, in coastal ecosystems molluscs have been used as bioindicators of pollution because of their feeding behaviour and their scarce mobility, which make them particularly exposed to contamination both trough water column and sediment, directly or after resuspension. Among molluscs, mussels are farmed for human consumption and, if contaminated, might represent a potential risk for human health.

Although seafood represents a significant means of contamination of human diet, few legal thresholds have been established in order to protect human health from a number of toxic compounds and complex mixtures of chemicals. In particular the European Community introduced several laws in order to regulate the water quality parameters of bivalves farming zones (91/492/CEE) and to restrict farming, transport and purchase (79/923/CEE, 89/2886/CEE). However these rules refer only to microbiological contamination. In the last years several EC legislation already has been put in place concerning several families of organic contaminants like dioxins, dioxin-like PCBs, PAHs (Commission Regulation (EC) No 1881/2006 of 19 December 2006), and metals like lead, cadmium, mercury (Commission Regulation (EC) No 78/2005, amending Regulation 466/2001), etc. and for several aquatic species such as fish, molluscs, crustaceans and cephalopods. Furthermore, in the directive 2000/60/CEE, with reference to decision n. 2455/2001/CEE, European Countries, in the absence of agreement at European community level which is at the moment under discussion (COM (2006) 397), are requested to establish quality standard limits for priority hazardous substances in surface waters.
Along with field studies and monitoring activities, model tools are necessary to understand the fate and transport of contaminants and to assess their impacts on communities and ecosystems (Carafa et al., 2006, 2009; Jurado et al., 2007; Bacelar et al., 2009; Dueri et al., 2009a,b; Marinov et al., 2008a,b).

In the management of hazardous chemicals the prediction of bioconcentration and bioaccumulation factors from water in aquatic organisms has become a very important tool for assessing the environmental and human health effects of a certain substance. The quantitative knowledge of uptake, metabolism, excretion and depuration processes of chemicals in the organisms is needed to predict the fate and bioaccumulation of contaminants along the food web (Moriarty and Walker, 1987). However, all these processes are strictly related to specific physiological characteristics, feeding behaviour and metabolism of the aquatic organism; to the particular chemical-physical features of the compound; and to the environmental conditions of the aquatic system in which the organisms resides. For these reasons it is difficult to make comparisons between different field studies and results can seem sometimes contradictory.

Consequently, it seems desirable to have a general modelling tool able to simulate field and laboratory toxicological experiments and integrate all the results into a predictive tool for the ecotoxicological behaviour of a certain substance.

This work has as objective to provide an evaluation tool for calculating the contaminant concentration values on mussels (*Mytilus galloprovincialis*) from the values in the water column. Specifically some compounds from PCBs (Polychlorinated Biphenyls) and PCDD/Fs (Polychlorinated dibenzo-dioxins and Furans) POPs (Persistent Organic Pollutants) families have been used to test the approach. However, the final objective is to develop a screening tool for predicting the bioaccumulation of a new chemical in mussels based on its physico-chemical properties that can be evaluated using QSAR techniques (Pavan et al., 2008). This will help in selecting candidate substances that have a potential to bioaccumulate in aquatic ecosystems as well as predicting which concentrations one could expect when analyzing mussel tissues.

For this reason a bioaccumulation model has been developed, implemented and calibrated using experimental data from Thau lagoon (France). The model uses input data from a 3D fate and biogeochemical model that provides chemical concentrations in the water column as well as in the sediments, and biomasses in the different compartments, i.e. phytoplankton, zooplankton and bacteria (Marinov et al., 2008a, 2008c; Dueri et al., 2009). The bioaccumulation model is based on the Dynamic Energy Budget approach (DEB) (Kooijman, 2000). The model predicts correctly the measured concentrations for several PCBs and PCDD/Fs congeners for which data were available. However improved data sets will be necessary to develop a generic tool for calculating bioconcentration factors (BCF) based on physicochemical properties of the selected compound. Concerning its possible implementation as a method to infer concentrations in the water column, from concentrations in
mussel tissues for monitoring purposes, it would be necessary to carry out a more detailed validation phase as well as QA/QC assessment if it is going to be used in compliance monitoring by MS in coastal areas.

2. METHODS AND APPROACH

2.1. STUDY AREA

The Thau lagoon is 25 km long, 5 km wide and on average 4 m deep. The lagoon is located on the French Mediterranean coast (Figure 1) and is sheltered with two narrow sea mouths. The catchment area is small (280 km²) and drained by numerous small streams with intermittent flows. The climate imposes a wide range of water temperatures and salinities with minima of 5° C in February and salinity near 27‰, and maxima of 29° C in August and a salinity of 40‰. Precipitation also shows large interannual variation (from 200 to 1000 mm per year). Wind is often strong with a mean of 118.5 days per year above Beaufort force 5 (data from Météo-France), particularly when it is blowing from the Northwest (the so called “Tramontane”). Thau lagoon hydrodynamics is heavily influenced by both meteorological forcing, i.e. wind and precipitation (Lazure 1992).

Besides its ecological interest as a recruitment zone for some sea fish species, the lagoon is of notable economic importance due to shellfish cultivation (about 15 000 tons per year, amongst the highest in the Mediterranean Sea). The Thau lagoon frequently undergoes, in summer, anoxia that can lead to important economic losses.

During the last twenty years, the Thau lagoon has been extensively studied, with investigations of the exchange between the water column and sediments, the oysters farming activities, the impact of the watershed and interactions with the Mediterranean Sea (Amanieu et al. 1989; Picot et al. 1990; Plus et al. 2006 and references therein). Various numerical models have been developed, focusing on hydrodynamics (Lazure 1992), nitrogen and oxygen cycles (Chapelle 1995; Chapelle et al. 2001), plankton ecosystem (Chapelle et al. 2000), impact of shellfish farming (Bacher et al. 1997; Gangery et al. 2004a, b) and macrophytes (Plus et al. 2003a,b). However, no model was developed having in mind the study of fate and effects of contaminants.

IFREMER has been coordinating a monitoring programme (RNO, Réseau National d'Observation de la qualité du milieu marin) with the objective of evaluating the levels and trends of chemical contaminants in the marine environment (http://www.ifremer.fr/envlit/surveillance/rno.htm).

Concerning Thau lagoon, there are temporal time series for PAHs, PCBs PBDEs, OCPs and PCDD/Fs in mussels and sediments during the last decades (Tronczyński, 2006; Munchy et al., 2008). All these contaminants show a decreasing trend with the exception of PBDEs. This decreasing trend has significantly slower rates in sediments than in mussels, for example $t_{1/2}$ for ΣPCBs is 8 years in mussels and 32 years in sediments (Tronczyński, 2006).
2.2. BIOCONCENTRATION AND BIOACCUMULATION IN MUSSELS

As an example, Figure 2 show some of the observed trends at two stations (in Zone A and Zone C) for several PCBs, whereas in Fig. 3 the decreasing trend of PCDD/Fs concentrations in mussels is shown. Accumulation is a general term for the net result of absorption (uptake), distribution, metabolism and excretion (ADME) of a substance in an organism. Information on accumulation in aquatic organisms is vital for understanding the fate and effects of a substance in aquatic ecosystems. In addition, it is an important factor when considering whether long-term ecotoxicity testing might be necessary. This is because chemical accumulation may result in internal concentrations of a substance in an organism that cause toxic effects over long-term exposures even when external concentrations are very small. Highly bioaccumulative chemicals may also transfer through the food web, which in some cases may lead to biomagnification.

Bioconcentration refers to the accumulation of a substance dissolved in water by an aquatic organism. The bioconcentration factor (BCF) of a compound is defined as the ratio of concentration of the chemical in the organism and in water at equilibrium, normally C_w is the dissolved water concentration.

$$BCF = \frac{C_b}{C_w}$$

(1)
The existence of equilibrium between the concentration of the chemical in the organism and the concentration in the water is not easy to assess. For example, for rainbow trout Vigano et al. (1994) measured a time range between 15 and 256 days to reach equilibrium after exposure to different concentrations of PCBs.

Figure 2. Example of PCB congeners concentrations (µg kg⁻¹ dw) found in mussels at Thau lagoon at two sampling stations in Zone C (blue) and in Zone A (pink), see Fig.1, respectively.
Biomagnification refers to accumulation of substances via the food chain. It may be defined as an increase in the (fat-adjusted) internal concentration of a substance in organisms at succeeding trophic levels in a food chain. The biomagnification factor (BMF) can be expressed as the ratio of the concentration in the predator and the concentration in the prey:

$$BMF = \frac{C_b}{C_d}$$ \hspace{1cm} (2)

where C_b is the steady-state chemical concentration in the organism (mg kg$^{-1}$) and C_d is the steady-state chemical concentration in the diet (mg kg$^{-1}$).

The term bioaccumulation refers to uptake from all environmental sources including water, food and sediment. The bioaccumulation factor (BAF) can be expressed for simplicity as the steady-state (equilibrium) ratio of the substance concentration in an organism to the concentration in the surrounding medium (e.g. water). Normally, it is evaluated using a multiplicative approach. Therefore, the Bioaccumulation Factor (BAF) may be calculated as:

$$BAF = BCF \prod_{i=1}^{n} BMF_i$$ \hspace{1cm} (3)

where the number of biomagnifications factors depends on the trophic level or position of the organism in the food web.

For the case of mussels, we have calculated BCF based on measured concentrations data on the water column from Castro-Jiménez et al. (2008) and mussels measurements from Munschy et al. (2008)1. Concerning the bioconcentration and bioaccumulation factors for mussels in Thau lagoon, Tables 1 and 2 summarize the results for PCBs and PCDD/Fs, respectively. The value for BCF_{dw} was obtained by considering only dissolved concentrations, whereas the BAF_{dw} was calculated by considering total (dissolved+particulate) concentrations (Arnot and Gobas, 2006); the term dw refers to dry weight. For

Figure 3. PCDD/Fs time trends in mussels (ng kg$^{-1}$ dw) for Thau lagoon from 1980 to 2004 (data from Tronczyński, 2006).
PCDD/Fs there were no data available of dissolved concentrations –values bellow the Limit of Detection, LOD- so we have obtained only BAF_{dw} assuming that total concentration equals particulate concentration. It is important to notice that whereas water concentrations refer to 2005, mussel concentrations are from 2004.

Table 1. Experimental (mean and standard deviation) log BCF_{dw} and log BAF_{dw} (L kg$^{-1}$) for PCBs in mussels in Thau lagoon.

<table>
<thead>
<tr>
<th>Compound (PCBs)</th>
<th>log K_{ow}</th>
<th>log BCF_{dw}</th>
<th>log BAF_{dw}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB28</td>
<td>5.67</td>
<td>5.57±0.93</td>
<td>4.92±0.21</td>
</tr>
<tr>
<td>PCB52</td>
<td>5.80</td>
<td>3.52±0.11</td>
<td>3.80±0.79</td>
</tr>
<tr>
<td>PCB101</td>
<td>6.40</td>
<td>3.95±0.34</td>
<td>3.95±0.28</td>
</tr>
<tr>
<td>PCB118</td>
<td>6.70</td>
<td>5.08±0.34</td>
<td>4.97±0.28</td>
</tr>
<tr>
<td>PCB138</td>
<td>6.83</td>
<td>5.58±0.30</td>
<td>5.52±0.30</td>
</tr>
<tr>
<td>PCB153</td>
<td>6.92</td>
<td>5.72±0.17</td>
<td>5.60±0.16</td>
</tr>
<tr>
<td>PCB180</td>
<td>7.40</td>
<td>4.65±0.28</td>
<td>4.53±0.17</td>
</tr>
</tbody>
</table>

Table 2. Experimental (mean and standard deviation) log BAF_{dw} (L kg$^{-1}$) for PCDD/Fs in mussels in Thau lagoon.

<table>
<thead>
<tr>
<th>Compound (PCDD/Fs)</th>
<th>log K_{ow}</th>
<th>log BAF_{dw}</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCDD</td>
<td>6.9</td>
<td>-</td>
</tr>
<tr>
<td>PeCDD</td>
<td>7.4</td>
<td>-</td>
</tr>
<tr>
<td>HxCDD</td>
<td>7.8</td>
<td>7.72±0.25</td>
</tr>
<tr>
<td>HpCDD</td>
<td>8.0</td>
<td>7.62±0.25</td>
</tr>
<tr>
<td>OCDD</td>
<td>8.2</td>
<td>7.46±0.25</td>
</tr>
<tr>
<td>TCDF</td>
<td>7.7</td>
<td>-</td>
</tr>
<tr>
<td>PeCDF</td>
<td>7.6</td>
<td>-</td>
</tr>
<tr>
<td>HxCDF</td>
<td>7.7</td>
<td>7.50±0.14</td>
</tr>
<tr>
<td>HpCDF</td>
<td>7.5</td>
<td>7.52±0.24</td>
</tr>
<tr>
<td>OCDF</td>
<td>7.6</td>
<td>7.62±0.35</td>
</tr>
</tbody>
</table>

2.3. MODEL DEVELOPMENT

2.3.1. The Dynamic Energy Budget (DEB) Approach

The DEB theory (Kooijman, 2000) provides the basis for the description of the relations between feeding, maintenance, growth, development and reproduction in organisms. In DEB this description is carried out using mass and energy budgets normally expressed as ordinary differential equations. Following Kooijman (2000) the basic allocation pathways are shown in Figure 4. As it can be observed, structural body mass, reserves and maturity are the state variables. The assimilated food is added to the reserves compartment and then spited between the other compartments, whereas a fixed fraction is spent on somatic maintenance and growth and the rest on maturity maintenance and reproduction (or maturation). This theory has been extensively tested for different kind of organisms, e.g. mollusks, fish, birds, etc. (Kooijman, 2000).

During this report the notation and symbols follow those in Kooijman (2000), therefore:

\[\text{1 The interested reader is referred to the original papers for material and methods and QA/QC details} \]
- Lower and upper case symbols are related via scaling;
- Quantities that refer to unit of volume are expressed within brackets []; those that refer to unit of biosurface area within braces {};
- Rates have dots.

Figure 4. Representation of the energy fluxes following the DEB approach (Kooijman, 2000).

The state variables of the DEB model are: Structural Volume, \(V \) (cm\(^3\)), Energy reserves, \(E \) (J), and Energy allocated to development and reproduction, \(R \) (J). The model parameters and their values are summarized in Table 3.

The Energy reserves can be expressed as the difference between the assimilation energy rate \(\dot{p}_A \) (J d\(^{-1}\)) and the energy utilization rate \(\dot{p}_C \) (J d\(^{-1}\)):

\[
\frac{dE}{dt} = \dot{p}_A - \dot{p}_C \tag{4}
\]

where the assimilation energy rate may be expressed as:

\[
\dot{p}_A = \left\{ \dot{p}_{Am} \right\} f \cdot k(T) \cdot V^{2/3} \tag{5}
\]

where \(\left\{ \dot{p}_{Am} \right\} \) is the maximum surface area-specific assimilation rate (J cm\(^{-2}\) d\(^{-1}\)) –see Table 3- and \(f \) is the functional response of assimilation to food concentration given by (Casas and Bacher, 2006):

\[
f = \frac{[Chla]}{[Chla] + [Chla]_K} \tag{6}
\]

where \([Chla]_K\) is the half saturation coefficient in \(\mu g \) l\(^{-1}\) (see Table 3) and \(k(T) \) is a temperature dependence defined as (Kooijman, 2000):

\[
k(T) = \frac{\exp \left(\frac{T_A}{T} - \frac{T_A}{T_l} \right)}{1 + \exp \left(\frac{T_{AL}}{T} - \frac{T_{AL}}{T_l} \right) + \exp \left(\frac{T_{AH}}{T} - \frac{T_{AH}}{T_h} \right)} \tag{7}
\]

The energy utilization rate, \(\dot{p}_C \) (J d\(^{-1}\)), may be expressed as (Kooijman, 2000):
\[
\dot{V} = \frac{[E]}{[E_G] + \kappa E} \left(\frac{[E_G]}{[E_m]} \dot{V}_{2/3} + \dot{V} \right)
\]

(8)

where \([E]\) is the energy density, \([E]=E/V, [E_G]\) is the volume-specific cost for structure (J cm\(^{-3}\)), \([E_m]\) is the maximum energy density in the reserve compartment (J cm\(^{-3}\)), \(\kappa\) is the fraction of energy utilization rate spent on maintenance plus growth, and \([\dot{V}]\) is the maintenance costs (J cm\(^{-3}\) d\(^{-1}\)) which is also function of the temperature, i.e. \([\dot{V}] = k(T) \cdot [\dot{V}]_m\).

According to Kooijman (2000) a fixed fraction of energy is allocated to somatic maintenance and growth while the rest is used for maturation reproduction (see Fig. 4). However, maintenance has priority over growth and when there is not enough food growth stops. Therefore, the change in structural volume, \(V\), is given by:

\[
dV/dt = \frac{\kappa \cdot \dot{V} - [\dot{V}] \cdot V}{[E_G]}
\]

(9)

Concerning the energy allocated to development and reproduction, Kooijman (2000) showed that it can be expressed as:

\[
dR/dt = (1 - \kappa) \dot{V} - \left(\frac{1 - \kappa}{\kappa} \right) \min(V, V_p) \dot{V}
\]

(10)

where \(V_p\), is a threshold value of the structural volume for the transition juvenile/adult (the subscript P refers to puberty). To simulate the lose of around 40-70% of mollusks wet weight at spawning (Van Haren et al., 1994), Pouvreau et al. (2006) introduced the following rule for oysters: when \(V>V_p\), the ratio between gonad and total tissue mass is above 0.35 and water temperature, \(T>20\) °C the buffer \(R\) is completely emptied. Similar rule has been used by Casas and Bacher (2006) for mussels.

Table 3. Parameters of the mussel Dynamic Energy Budget (DEB) model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Description</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>{\dot{p}_{Am}}</td>
<td>J cm(^{-3})d(^{-1})</td>
<td>Maximum surface area-specific assimilation rate</td>
<td>147.6</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>([Chl\alpha]_K)</td>
<td>mg m(^{-2})</td>
<td>half saturation coefficient</td>
<td>3.88</td>
<td>Casas and Bacher (2006)</td>
</tr>
<tr>
<td>(T_A)</td>
<td>K</td>
<td>Arrhenius temperature</td>
<td>5800</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>(T_I)</td>
<td>K</td>
<td>Reference Temperature</td>
<td>293</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>(T_L)</td>
<td>K</td>
<td>Lower boundary of tolerance range</td>
<td>275</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>(T_H)</td>
<td>K</td>
<td>Upper boundary of tolerance range</td>
<td>296</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>(T_{AL})</td>
<td>K</td>
<td>Rate of decrease of lower boundary</td>
<td>45430</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>(T_{AH})</td>
<td>K</td>
<td>Rate of decrease of upper boundary</td>
<td>31376</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>([\dot{V}]_m)</td>
<td>J cm(^{-3})d(^{-1})</td>
<td>Volume specific maintenance costs</td>
<td>24</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>([E_G])</td>
<td>J cm(^{-3})</td>
<td>Volume specific costs of growth</td>
<td>1900</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>([E_m])</td>
<td>J cm(^{-3})</td>
<td>Maximum energy density</td>
<td>2190</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>-</td>
<td>Fraction of utilised energy spent on maintenance / growth</td>
<td>0.7</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>(V_p)</td>
<td>cm(^3)</td>
<td>Volume at start of reproductive stage</td>
<td>0.06</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>(\delta_m)</td>
<td>-</td>
<td>Shape coefficient</td>
<td>0.25</td>
<td>Casas and Bacher (2006)</td>
</tr>
<tr>
<td>(d)</td>
<td>g cm(^{-3})</td>
<td>Specific density</td>
<td>1</td>
<td>Kooijman (2000)</td>
</tr>
<tr>
<td>(\mu_E)</td>
<td>J g(^{-1})</td>
<td>Energy content of reserves</td>
<td>6750</td>
<td>Casas and Bacher (2006)</td>
</tr>
</tbody>
</table>
Shell length, L (cm), and fresh tissue mass, W (g), may be obtained using the following correlations:

$$L = \frac{V^{1/3}}{\delta_m}$$

(11)

$$W = d\left(V + \frac{E}{[E_G]}\right) + \frac{R}{\mu_E}$$

(12)

where δ_m is the shape coefficient, d is the specific density (g cm$^{-3}$) and μ_E is the energy content of reserves (J g$^{-1}$).

2.3.2. The bioaccumulation model

Transfer mechanisms of persistent hydrophobic contaminants in aquatic organisms are essentially two: the first one is the direct uptake of dissolved phase from water trough skin or gills, named bioconcentration, the second one is the indirect uptake of bound contaminants to suspended particular matter and through consumption of contaminated food (biomagnification).

The bioaccumulation of pollutants may be an important source of hazard for the ecosystem, due to adverse effect not quickly evident (e.g. acute or chronic toxicity) but that became manifested after years in the higher levels of the trophic food web or in a later stage of life of organisms or after several generations (Van der Oost et al., 2003).

The mass balance of a contaminant (A) in the tissue of an aquatic organism, C_b (mg kg$^{-1}$), can be defined as (adapted from Thomann, 1989 and Thomann et al., 1992):

$$\frac{dC_b}{dt} = k_a C_w + k_f C_p - k_d C_b - k_m C_b - k_g C_b$$

(13)

where the first two terms indicate the uptake (u) of contaminant from water (w) and predation (p), respectively, and the third, fourth and fifth terms indicate losses of contaminants through depuration (d) (release from gill membranes or excretion through feces), metabolism (m) and dilution effect of growth (g), respectively.

Removal of chemicals in an aquatic organism is realized essentially through two main pathways: the contaminant is either eliminated by depuration/excretion in the original chemical form (parent molecule) or bio-transformed by the organism. The latter process leads in general to the formation of more hydrophilic compounds. In this case the metabolites are rapidly excreted after a detoxification reaction. These compounds are normally less harmful than the parent compound. However, in some cases the parent compound can be “bioactivated” through metabolic reactions and lead to formation of a metabolite more toxic than the former molecule (Van der Oost, et al., 2003).

The velocity and efficiency of metabolic clearance have been demonstrated to be a function of several species-specific characteristics: presence of enzymes, feeding status, stage of life, spawning period (Van der Oost et al., 2003).
Using this model and assuming steady-state conditions, i.e. $dC/b/dt = 0$, then it is possible to calculate the bioconcentration factor (BCF) as:

$$BCF = \frac{k_u}{(k_d + k_m + k_g)}$$ \hspace{1cm} (14)

In addition, the biomagnification factor (BMF) defined as the ratio between the uptake of a contaminant from food and its removal by depuration/excretion (d), metabolism (m) and growth (Sijm et al., 1992) is given by:

$$BMF = \frac{k_f}{k_d + k_m + k_g}$$ \hspace{1cm} (15)

This simple model, Eq. (13), considers the organisms as a single compartment. Kooijman and van Haren (1990) and van Haren et al. (1994) proposed based on the Dynamic Energy Budget (DEB) approach a more complete model that takes into account changes in lipid contents and size of the animal. Their approach is represented in Fig. 5. In this approach the chemicals, once taken up by the organism partition instantaneously over four compartments (Kooijman and van Haren, 1990): one aqueous fraction and three non-aqueous fractions: the structural component of the body, the stored energy reserves and the energy reserves set apart for reproduction. In addition, they assumed that uptake and elimination are assumed to be proportional to the surface area, $V^{2/3}$, of the organism.

![Figure 5. Schematic representation of the chemical partitioning in the body compartments of an individual organism.](image-url)

The total number of moles of a compound in the organism can be divided as the sum of them in the different compartments:
where the V_i's refer to the compartment volumes (cm^3) and the C_i's refer to the compartments concentrations ($\text{mol} \text{l}^{-1}$). Also, the total number of moles of a chemical can be expressed as:

$$n_{tot} = \frac{W \cdot C_b \cdot 10^{-6}}{MW},$$

where W is the organism's weight (g), C_b is the contaminant concentration in aquatic organism (mg kg$^{-1}$) and MW is the molecular weight of the chemical (g mol$^{-1}$)2.

The chemical is assumed to be in equilibrium between the different compartments with fixed values partition coefficients: $K_{wa} = C_v/C_{aq}$; $K_{ea} = C_E/C_{aq}$ and $K_{ea} = C_R/C_{aq}$.

The time evolution of this amount can be calculated by a simple mass balance, assuming that uptake (via water and food) and depuration are proportional to the surface area of the organism, and only the aqueous compartment communicates directly with the environment (Kooijman, 2000), as:

$$\frac{dn_{tot}}{dt} = V^{2/3} \left(r_{da} \cdot C_w + r_{pa} \cdot f \cdot C_p \cdot 10^{-6} / MW - r_{ad} \cdot C_{aq} \right)$$

(17)

where the r_i's indicate the transport rates between the compartments (see Fig. 5), r_{da} and r_{ad} are the uptake and depuration rates ($\text{l} \text{cm}^2 \text{d}^{-1}$), r_{pa} is the intake via food consumption ($\text{g} \text{cm}^2 \text{d}^{-1}$), C_w and C_{aq} refer to the concentration in the dissolved fraction in the water column (mol l$^{-1}$) and in the aqueous compartment of the organism (mol l$^{-1}$), respectively, and f is given by Eq. (6). C_p refers to the concentration in the prey (mg kg$^{-1}$)1. However, it is more convenient to express the mass balance as a function of the organism’s concentration, C_b (mg kg$^{-1}$). Therefore, applying the chain rule of derivation we have:

$$\frac{dn_{tot}}{dt} = 10^{-6} \left(W \frac{dC_b}{dt} + C_b \frac{dW}{dt} \right)$$

(18)

and rearranging terms we obtain:

$$\frac{dC_b}{dt} = \frac{MW \cdot 10^6 \cdot V^{2/3}}{W} \left(r_{da} \cdot C_w + r_{pa} \cdot f \cdot C_p \cdot 10^{-6} / MW - r_{ad} \cdot C_{aq} \right) - \frac{C_b}{W} \frac{dW}{dt}$$

(19)

In this case, the last term represents the dilution due to growth of the organism. This is a more realistic assumption that the linear-constant function assumed by Thomman (1989), see Eq. (13). Since the concentration in the aqueous fraction, C_{aq}, is not a value that is measured, then we have to convert it in terms of C_b using the partitioning approach.

The wet weight, W, can also be expressed as a function of the volumes of the different compartments times the density (1 g cm$^{-3}$):

$$W = d(V_{aq} + V_v + V_E + V_R)$$

(20)

According to Kooijman and Van Haren (1990) the following relationships can be written:

$$V_v = \alpha_v \cdot V$$

(21)

2 10^{-6} is a conversion factor
\[V_E = \alpha_e \cdot e \cdot V \]
(22)

\[V_R = \alpha_e \cdot r \cdot V \]
(23)

\[V_{aq} = (1 - \alpha_e) \cdot V + \alpha_e (1 - e) \cdot V \]
(24)

where \(\alpha_V \) and \(\alpha_e \) are the non-aqueous fraction of the body size and the maximum volume of energy reserves as a fraction of body size, respectively; \(e \) is the energy reserves density (\(e = \frac{[E]}{[E_m]} \)) and \(r \) is the fraction of energy reserves allocated for reproduction. For mussels Van Haren et al. (1994) found \(\alpha_e = 0.95 \).

Replacing Eqs. (21)-(24) into Eq. (20), we obtain:

\[W = d [1 + \alpha_e (1 + r)] V \]
(25)

In addition, if we replace Eqs. (21)-(25) and the partition coefficients into Eq. (16) we have:

\[n_{tot} = C_{aq} \cdot V \cdot \alpha_e \left[\alpha_e^{-1} + 1 + \frac{\alpha_V}{\alpha_e} (K_{wa} - 1) + (K_{ea} - 1) \cdot e + K_{ea} \cdot r \right] \cdot 10^{-3} \]
(26)

Following Kooijman and Van Haren (1990) we will define:

\[\gamma = \alpha_e^{-1} + 1 + \frac{\alpha_V}{\alpha_e} (K_{wa} - 1) \]
(27)

which is a constant value and it was estimated for mussels by Van Haren et al. (1994) considering PAHs and PCBs compounds as \(\gamma = 10 \), and \(h \) as

\[h = \gamma + (K_{ea} - 1) \cdot e + K_{ea} \cdot r \]
(28)

Therefore, we obtain

\[n_{tot} = C_{aq} \cdot V \cdot \alpha_e \cdot h \cdot 10^{-3} \]
(29)

and hence,

\[C_{aq} = \frac{W \cdot 10^{-3}}{MW \cdot V \cdot \alpha_e \cdot h} C_b \]
(30)

replacing this term in Eq. (19) and rearranging, we obtain a similar equation to the one proposed by Thomann (1989) and Thomann et al. (1992), i.e. Eq. (13):

\[\frac{dC_b}{dt} = \left(\frac{MW \cdot V^{2/3} \cdot 10^6}{W} \cdot r_{da} \right) C_w + \left(\frac{f \cdot V^{2/3}}{W} \cdot r_{po} \right) C_p - \left(\frac{10^3}{V^{1/3} \cdot \alpha_e \cdot h \cdot r_{da}} \right) C_b - \left(\frac{1}{W} \cdot \frac{dW}{dt} \right) C_b \]
(31)

However in this case uptake and depuration rates are not constant but depend on the status of the organisms, the food availability, the evolution of its lipid content and its growth.

The variation of the wet weight, \(W \), as a function of the state variables: \(E \), \(V \) and \(R \) of the DEB model can be obtained applying the chain rule of derivation to Eq. (25). In this case, we obtain:

\[\frac{dW}{dt} = d [1 + \alpha_e (1 + r)] \frac{dV}{dt} + d \cdot V \cdot \alpha_e \frac{dr}{dt} \]
(32)
Since \(r = R / ([E_m] \cdot V) \) we have:

\[
\frac{dr}{dt} = \frac{1}{[E_m] \cdot V} \frac{dR}{dt} - \frac{R}{[E_m] \cdot V^2} \frac{dV}{dt}
\]

Replacing Eq. (33) in Eq. (32) and rearranging the terms we have:

\[
\frac{dW}{dt} = d(1 + \alpha_\epsilon) \frac{dV}{dt} + d \frac{\alpha_\epsilon}{[E_m]} \frac{dR}{dt}
\]

Introducing Eq. (34) into Eq. (31), we finally obtain the evolution of the internal contaminant concentration in mussels:

\[
\frac{dC_b}{dt} = \left(MW \cdot V^{2/3} \cdot 10^6 r_{da} \right) C_w + \left(f \cdot V^{2/3} W^{-1/3} r_{pa} \right) C_p - \left(10^3 V^{1/3} \cdot \alpha_\epsilon \cdot h^{-1/3} r_{ad} \right) C_b - \frac{d}{W} \left(1 + \alpha_\epsilon \right) \frac{dV}{dt} + \frac{\alpha_\epsilon}{[E_m]} \frac{dR}{dt}
\]

(35)

This model has five parameters that need to be evaluated: the uptake rates for water and food, \(r_{da} \) and \(r_{pa} \), the elimination rate, \(r_{ad} \), and the partition coefficients, \(K_{wa} \) - in \(h \), see Eqs.(27) and (28) - and \(K_{ea} \).

2.3.3. The estimation of the bioaccumulation model parameters

To use Eq. (35) and the DEB growth model, Eqs. (4), (9)-(10), as a general tool for assessing bioaccumulation potential in mussels for new chemicals, we have to develop some general correlations that will allow us, based on the physico-chemical properties of the compound, to estimate these five parameters \((r_{da}, r_{pa}, r_{ad}, K_{wa}, K_{ea}) \). For this reason, we have used experimental data on several Persistent Organic Pollutants (POPs) and tried to assess, as a first approach, if available correlations were able to produce adequate results.

Van Haren et al. (1994) developed a linear correlation between \(\log K_{ow} \) and \(\log K_{ea} \) for several PAHs and PCBs compounds as:

\[
\log K_{ea} = 0.48 \cdot \log K_{ow} + 1.72
\]

(36)

\(K_{wa} \) is only needed in the calculation of \(\gamma \), Eq. (27), which was already estimated by Van Haren et al. (1994) for mussels and using data from PAHs and PCBs. Even though \(\gamma \) will depend on the species and the chemical compound, following Van Haren et al. (1994), we will assume that it is constant, \(\gamma =10 \).

Uptake \((m^3 kg^{-1} d^{-1}) \) and depuration \((d^{-1}) \) constants can be parameterized as function of bioconcentration factors of the chemical, permeability \((P, m h^{-1}) \) of the cell membrane and specific surface area \((S_p, m^2 kg^{-1}) \) (Del Vento and Dachs, 2002):

\[
k_d = \frac{S_p \cdot P}{BCF}
\]

\[
k_u = \frac{S_p \cdot P}{BCF}
\]

(37)

Furthermore, it has been demonstrated (Swackhamer and Skoglund, 1993; Stange and Swackhamer, 1994) that, for many organic compounds, the logarithm of the bioconcentration factor plotted against
the logarithm of the octanol/water partition coefficient gives two linear correlations (with a plateau in correspondence to \(\log K_{ow} \approx 6.5 \). The same considerations can be made for the estimation of permeability of cell membrane and similar regressions have been proposed (Del Vento and Dachs, 2002). Geyer et al (1982) obtained the following correlation between \(BCF \) and \(K_{ow} \) (between 1.5 and 7) for mussels (\textit{Mytilus edulis}):

\[
\log BCF = 0.90 \cdot \log K_{ow} - 1.06 \quad (38)
\]

A similar approach has been proposed by Booij et al (2006) where they developed two correlations for calculating the uptake constant (via water and food, \(k_{uf} \)) and the depuration plus metabolism plus growth constant (\(k_{dmg} \)) as a linear function of \(K_{ow} \) values. They found that the uptake constant for \textit{Mytilus edulis} could be modeled by a linear correlation like:

\[
\log k_{uf} = -0.149 \cdot \log K_{ow} - 0.58 \quad (39)
\]

whereas the bioaccumulation factor, \(BAF = k_{uf} k_{dmg} \), could be correlated with

\[
\log BAF = 0.840 \cdot \log K_{ow} - 0.49(\pm0.41) \quad (40)
\]

Following these considerations, we have tried to estimate the values of \(r_{da} \) and \(r_{ad} \) as a function of the octanol/water partition coefficient. With this approach we would have a more general bioaccumulation model that, once validated, could be used for other families of chemical compounds.

Several values concerning the intake via food consumption, \(r_{pa} \), has been presented by Van Haren et al. (1994) and Casas and Bacher (2006). Even though the values are for metals, this value probably does not depend on the chemical but only on the species; for this reason, we have adopted the mean value reported, \(r_{pa} = 1.28 \pm 0.3 \times 10^{-3} \text{ g cm}^{-2} \text{ d}^{-1} \).

2.3.4. Forcing of the DEB-bioaccumulation model using 3D simulation runs

To provide spatio-temporal data of the forcing parameters on the DEB and the bioaccumulation model, we have used a similar approach as in Carafa et al. (2009). A hydrodynamic 3D model of Etang de Thau has been developed and implemented (Marinov et al., 2008c) using COHERENS (Luyten et al., 1999). Coupled with COHERENS, a biogeochemical and a fate model have been introduced. All these three modules produce the forcing parameters that are being used in the DEB-bioaccumulation model as depicted in Fig. 6.

The values of [\textit{Chla}] produced by the biogeochemical module and the temperatures obtained by the simulation with COHERENS for two of the three sampling stations in Zones A and C (see, Fig. 1), where mussels samples are periodically collected by Ifremer for assessing the level of contamination in shellfish, see figs. 2-3 are represented in Fig. 7. There is a good agreement between observations and numerical results for temperature, \(R^2=0.95 \), with results inside \(\pm15\% \) error zone or into \(\pm2.5 \) °C deviation range (Marinov et al. 2008c). Furthermore, the biogeochemical model is able to simulate the average value of [\textit{Chla}] in the lagoon over the last years.
Figure 6. Integrated modelling approach using COHERENS.

Figure 7. Simulated [Chla] (mg m⁻³) and Temperature (°C) (continuous line; green: Station in Zone A blue: Station in Zone C) used as forcing function for the mussels’ model. Experimental data from REPHY (Ifremer) Central Station from 1998 to 2002 (1998 -plus sign-, 1999 -square-, 2000 -circle-, 2001 -diamond-, 2002 -pentagram-).

[Chla] and temperature are parameters necessary to force the DEB model to simulate the growth of mussels. Concerning the bioaccumulation model, Fig. 8 represents, as an example, the concentrations of PCB153 in the water column (only the dissolved, phase) and in the phytoplankton compartment in the stations in Zones A and C, whereas in Fig. 9 the values for OCDD are presented. These values
provide the concentration in the water column, C_w, and the concentration in the food, C_p, necessary to force with realistic values the bioaccumulation module. The comparison between experimental and simulated results shows (Marinov et al., 2008c) that the model is able to produce reasonably good results for PCBs and PCDD/Fs. However, it is necessary to point out the model was forced during all the year, with constant air and river concentration values obtained during one experimental campaign in November 2005 (Castro-Jiménez et al., 2008) as well as validated with the water data obtained during the same campaign; therefore, there is not enough data to assess in detail model performances.

Figure 8. Simulated dissolved phase concentrations for PCB153 in the water column (top) and in phytoplankton (bottom) during one year (green line: Station in Zone A, blue line: Station in Zone C) used as forcing function for the bioaccumulation model.

Figure 9. Simulated dissolved phase concentrations for OCDD in the water column (top) and in phytoplankton (bottom) during one year (green line: Station in Zone A, blue line: Station in Zone C) used as forcing function for the bioaccumulation model.
3. RESULTS AND DISCUSSION

3.1. DEB GROWTH MODEL

A long term simulation, ten years, with constant food, 5 µg l⁻¹ [Chla], and sinusoidal temperature dependence: \(T(°C) = 12.3 + 9.76 \cdot \sin \left(2 \cdot \pi \frac{t(d) - 114.74}{365} \right) \), is depicted in Fig. 10. For this example, reproduction has been fixed once every year at the beginning of November according with data from Casas and Bacher (2006) for Thau lagoon. The reproduction period is observed by a sharp drop in the \(R \) (Energy for development and reproduction) and by a decrease in the fresh tissue biomass \((W) \). The model stabilizes around a shell length of 10 cm which is in agreement with the maximum observed values (between 10-15 cm) for \textit{Mytilus} (Tebble, 1976). This value depends on several environmental parameters, i.e. temperature, and on the food availability, for example, by doubling the amount of [Chla], \(L \) moves to 12.4 cm.

![Graphs showing temporal evolution of state variables](image)

Figure 10. Temporal evolution of the three state variables (E, V and R), the shell length (L) and the fresh tissue biomass (W) during a ten years period.

A more realistic ten year simulation with temperature and [Chla] provided by the 3D model of Thau lagoon (Marinov et al., 2008c), see Fig.7, is depicted in Figs. 11-12 for two of the three sampling stations in Zones A and C (see, Fig. 1), where mussels samples are periodically collected by Ifremer for assessing the level of contamination in shellfish, see figs. 2-3. As it can be observed in Figs. 10 and 11, there are several differences on the evolution of mussels in both stations, which are due to the
slightly different forcing that both places experience. Considering only long time trends, energy reserves \(E\), structural volume \(V\) and energy for development and reproduction \(R\) are higher in the station in Zone A and, consequently, shell length and fresh tissue biomass are also higher in this station. This is mainly due to the differences in \([Chla]\) concentrations but also small temperature differences may have influence over long term simulation times. However, one has to take into account that we have maintained the same forcing every year and, therefore, we have increased these differences.

Figure 11. Ten years temporal evolution in Zone A using every year the same forcing from Fig. 7.

Figure 12. Ten years temporal evolution in Zone C using every year the same forcing from Fig. 7.
3.2. BIOACCUMULATION MODEL

A similar approach as the one followed for the DEB model has been also applied for the bioaccumulation model. As a first step, we have assumed, as before, constant food concentration and a sinusoidal temperature forcing. In addition, we have also considered constant concentration of contaminant in the dissolved phase, \(C_w = 1.47 \times 10^{-14} \text{ mol l}^{-1} \) (or 5.3 ng m\(^{-3}\)) and in the phytoplankton, \(C_p = 0.942 \times 10^{-2} \text{ mg kg}^{-1} \), see Fig. 8. In addition, we have used for \(r_{da} \) and \(r_{ad} \) the values provided in Van Haren et al. (1994) for PCBs: 13395.0 (cm d\(^{-1}\)) and 2713.0 (cm d\(^{-1}\)), respectively. The results of the simulation are depicted in Fig. 13. As it can be seen, there is a sharp decrease in the concentration after each reproduction period where the reserves are set to zero and there is also a transient period during the first year, before the contaminant concentration in the mussels follows a periodic behaviour.

![Figure 13. Temporal evolution of the concentration of PCB153 in mussels (mg kg\(^{-1}\)dw) during a ten years period.](image)

A more realistic ten year simulation with temperature, \([Chla]\), PCB153 water dissolved concentration and PCB153 phytoplankton concentrations provided by the 3D model of Thau lagoon (Marinov et al., 2008c), see Fig.7-8, is depicted in Fig. 14 for two sampling stations in Zones A and C (see, Fig. 1), respectively. As it can be observed in this figure, there are several differences on the evolution of the concentration of PCB153 on mussels in both stations, with Zone A (average ± sd; 0.00385±0.00216 mg kg\(^{-1}\)ww) showing higher concentrations than in Zone C (0.00304±0.00156 mg kg\(^{-1}\)ww). This is mainly due to the differences in PCB153 concentrations in the water column and in phytoplankton, which, according to the 3D model, are higher in this Zone.
A similar ten year simulation with temperature, [Chla], OCDD water dissolved concentration and OCDD phytoplankton concentrations provided by the 3D model of Thau lagoon (Marinov et al., 2008c), see Fig. 7-9, is depicted in Fig. 15 for two sampling stations in Zones A and C, respectively. In this case we have used the same values of r_{da} and r_{ad} than for PCB153. From Fig. 15, it can be observed that OCDD mussel concentrations in Zone C ($9.693 \times 10^{-7} \pm 6.935 \times 10^{-7}$ mg kg$^{-1}$ ww) are slightly higher than in Zone A ($6.930 \times 10^{-7} \pm 4.6533 \times 10^{-7}$ mg kg$^{-1}$ ww).
3.3. COMPARISON WITH EXPERIMENTAL DATA

Experimental data, concerning mussel concentrations on PCDD/Fs and PCBs have recently been summarized for Thau lagoon in Castro-Jiménez et al. (2008) and in Munschy et al. (2008). In this work, we have tried to simulate the experimental conditions to reproduce their results. Even though the 3D model provides with the forcing values, there are some uncertainties on the initial conditions of the state variables of the model, i.e. E, V, R and C_b. According to Munschy et al. (2008) all mussels spent at least six months on site before collection and each composite sample contained at least 50 mussels of homogeneous size: 45-55 shell length. To avoid transients due to errors in the initial conditions, since the data from Castro-Jiménez et al. (2008) for mussels, summarized in Table 4, refer to the month of May; we have run the model for one year and then until May of the second year. By doing that, the simulated shell lengths also correspond to the defined values in Munschy et al. (2008), i.e. 50.5 mm at Zone A and 54 mm at Zone C.

Since our objective was to develop a general approach, we have tried to adjust r_{ad} and r_{da} for each compound we have data on Table 4 for the two Zones simultaneously. We have used an unconstrained optimization algorithm from Matlab®. The objective function was to minimize the distance between experimental and simulated results for both Zones for each compound. Table 5 summarizes the results concerning r_{ad} and r_{da} as well as the experimental and simulated results on the accumulation in mussels. To convert from wet weight to dry weight we have used the conversion factor 0.096 (shell free)sfdw:ww from Palmerini and Bianchi (1994). Missing columns are due to the absence of forcing data to run the 3D fate model.

Table 4. Measured and simulated mussels concentrations (pg g\(^{-1}\) dw). Experimental data from Castro-Jiménez et al. (2008) and Munschy et al. (2008).

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Measured concentrations (pg g(^{-1}) dw)</th>
<th>Simulated concentrations (pg g(^{-1}) dw)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zone A</td>
<td>Zone C</td>
</tr>
<tr>
<td>PCB28</td>
<td>173</td>
<td>118</td>
</tr>
<tr>
<td>PCB52</td>
<td>254</td>
<td>92</td>
</tr>
<tr>
<td>PCB101</td>
<td>3543</td>
<td>955</td>
</tr>
<tr>
<td>PCB118</td>
<td>3327</td>
<td>802</td>
</tr>
<tr>
<td>PCB153</td>
<td>18670</td>
<td>5242</td>
</tr>
<tr>
<td>PCB138</td>
<td>12229</td>
<td>2305</td>
</tr>
<tr>
<td>PCB180</td>
<td>503</td>
<td>322</td>
</tr>
<tr>
<td>TCDD</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PeCDD</td>
<td>-</td>
<td>0.24</td>
</tr>
<tr>
<td>HxCDD</td>
<td>0.4</td>
<td>1.16</td>
</tr>
<tr>
<td>HpCDD</td>
<td>1.6</td>
<td>2.91</td>
</tr>
<tr>
<td>OCDD</td>
<td>6.4</td>
<td>10.44</td>
</tr>
<tr>
<td>TCDF</td>
<td>4.0</td>
<td>2.7</td>
</tr>
<tr>
<td>PeCDF</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>HxCDF</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>HpCDF</td>
<td>0.4</td>
<td>1.3</td>
</tr>
<tr>
<td>OCDF</td>
<td>0.4</td>
<td>1.2</td>
</tr>
</tbody>
</table>
The correlation coefficient between experimental concentrations and simulated values, see Table 4, is $r^2=0.75$ with $p<0.05$.

Table 5. Estimated r_{da} and r_{ad} (cm d$^{-1}$) mussels concentrations (pg g$^{-1}$ dw). Experimental data from Castro-Jiménez et al. (2008) and Munschy et al. (2008).

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Estimated values concentrations (cm d$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r_{da}</td>
</tr>
<tr>
<td>PCB28</td>
<td>3969</td>
</tr>
<tr>
<td>PCB52</td>
<td>496.2</td>
</tr>
<tr>
<td>PCB101</td>
<td>1376</td>
</tr>
<tr>
<td>PCB118</td>
<td>6430</td>
</tr>
<tr>
<td>PCB153</td>
<td>16381</td>
</tr>
<tr>
<td>PCB138</td>
<td>13392</td>
</tr>
<tr>
<td>PCB180</td>
<td>2611</td>
</tr>
<tr>
<td>TCDD</td>
<td>-</td>
</tr>
<tr>
<td>PeCDD</td>
<td>2932</td>
</tr>
<tr>
<td>HxCDD</td>
<td>-</td>
</tr>
<tr>
<td>HpCDD</td>
<td>-</td>
</tr>
<tr>
<td>OCDD</td>
<td>10465</td>
</tr>
<tr>
<td>TCDF</td>
<td>13722</td>
</tr>
<tr>
<td>PeCDF</td>
<td>4567</td>
</tr>
<tr>
<td>HxCDF</td>
<td>1603</td>
</tr>
<tr>
<td>HpCDF</td>
<td>-</td>
</tr>
<tr>
<td>OCDF</td>
<td>-</td>
</tr>
</tbody>
</table>

To provide a general tool to evaluate bioaccumulation potential for a chemical compound, we need to find a general correlation between uptake and depuration rates that depend on the physico-chemical properties of the compound. For this reason, we have estimated those values minimizing the error between experimental and simulated values. The relationships between r_{da} and r_{ad} and the log K_{ow} are depicted in Fig. 16. Unfortunately, there is no significant linear correlation between r_{da} and r_{ad} and the log K_{ow}. There are several possible explanations to the absence of correlation between them: the 3D simulations refer to 2005 whereas mussel concentrations refer to 2004 (Marinov et al., 2008c). There was only one experimental measurement carried in November 2005 to assess the model results. Clearly, this value is not enough to validate the PCBs and PCDD/Fs fate model and therefore the forcing of the mussels model. However, the fact that it is possible to predict concentrations in the mussels from those of the water, clearly indicates that this is a promising route for developing bioaccumulation assessment tools.
Figure 16. log r_{du} and log r_{ad} (cm d$^{-1}$) as a function of log K_{ow} for the PCBs and PCDD/Fs considered congeners.

4. CONCLUSIONS

A bioaccumulation model to predict, based on the concentration of contaminants in the water column, the concentration in mussels (*Mytilus galloprovinciales*) has been implemented, and calibrated using experimental data from Thau lagoon (France). The model uses input data from a 3D biogeochemical model that provides biomasses in the different compartments, i.e. phytoplankton, zooplankton and bacteria (Marinov et al., 2009; Dueri et al., 2009); and from a 3D fate model that provides the concentrations in the water column as well as in the sediments (Carafa et al., 2006; Jurado et al., 2007; Marinov et al., 2009). The bioaccumulation model is based on the Dynamic Energy Budget approach (DEB). The model predicts correctly the concentrations of several POPs families: PCBs and PCDD/Fs. However, it is not able to provide a clear correlation between physico-chemical properties and uptake and depuration rates. This is probably due to the experimental data used which are not sufficient for this approach.

This is the first step for developing a general screening tool able to predict the bioaccumulation of new chemicals in mussels based on its physico-chemical properties that will contribute to B (bioaccumulative) and vB assessments. In addition, the model could be use by MS to convert measured concentrations in mussels to water concentrations for the WFD (Water Framework Directive) compliance checking.
5. REFERENCES

Dueri, S., Marinov, D., Fiandrino, A. Tronczyński, J. and Zaldivar, J.M. 2009b. Implementation of a 3D coupled hydrodynamic and contaminant fate model for the PCDD/Fs in Thau lagoon (France): the importance of air as a source of contamination. (in preparation)

Abstract
A bioaccumulation model to predict, based on the concentration of contaminants in the water column, the concentration in mussels (*Mytilus galloprovinciales*) has been implemented and calibrated using experimental data from Thau lagoon (France). The model uses input data from a 3D biogeochemical model that provides biomasses in the different compartments, i.e. phytoplankton, zooplankton and bacteria; and from a 3D fate model that provides the concentrations in the water column as well as in the sediments. The bioaccumulation model is based on the Dynamic Energy Budget approach (DEB). The model predicts correctly the concentrations of several POPs families: PCDD/Fs and PCBs. This is the first step for developing a general screening tool able to predict the bioaccumulation of new chemicals in mussels based on its physico-chemical properties that will contribute to the B(bioaccumulative) and vB assessment. In addition, the model could be use by MS to convert measured concentrations in mussels to water concentrations for WFD (Water Framework Directive) compliance checking.
How to obtain EU publications

Our priced publications are available from EU Bookshop (http://bookshop.europa.eu), where you can place an order with the sales agent of your choice.

The Publications Office has a worldwide network of sales agents. You can obtain their contact details by sending a fax to (352) 29 29-42758.
The mission of the JRC is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of EU policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, whether private or national.