Event-specific Method for the Quantification of Maize Line LY038 Using Real-time PCR

Validation Report and Protocol

C. Delobel, E. Grazioli, S. Larcher, M. Mazzara, G. Van den Eede
The mission of the JRC-IHCP is to protect the interests and health of the consumer in the framework of EU legislation on chemicals, food, and consumer products by providing scientific and technical support including risk-benefit assessment and analysis of traceability.
Event-specific Method for the Quantification of Maize Line LY038 Using Real-time PCR

Validation Report

6 October 2008

Joint Research Centre
Institute for Health and Consumer Protection
Biotechnology & GMOs Unit

Executive Summary

The JRC as Community Reference Laboratory for Genetically Modified Food and Feed (CRL-GMFF), established by Commission Regulation (EC) No 1829/2003, in collaboration with the European Network of GMO Laboratories (ENGL), has carried out a collaborative study to assess the performance of a quantitative event-specific method to detect and quantify the LY038 transformation event in maize DNA (unique identifier REN-ØØØ38-3). The collaborative trial was conducted according to internationally accepted guidelines (1, 2).

In accordance with Commission Regulation (EC) No 1829/2003 of 22 September 2003 on genetically modified food and feed and with Commission Regulation (EC) No 641/2004 of 6 April 2004 on detailed rules for the implementation of Regulation (EC) No 1829/2003, Renessen provided the detection method and the samples (maize seeds containing the transformation event and conventional maize seeds). The JRC prepared the validation samples (calibration samples and blind samples at unknown GM percentage [DNA/DNA]). The collaborative trial involved twelve laboratories from ten European countries.

The results of the international collaborative trial met the ENGL performance requirements. The method is therefore considered applicable to the control samples provided, in accordance with the requirements of Annex I-2.C.2 to Commission Regulation (EC) No 641/2004.

The results of the collaborative study are made publicly available at http://gmo-crl.jrc.it/.
Drafted by:
C. Delobel

Report Verification Team:
1) M. Ermolli

2) M. Querci

Scientific and technical approval:
M. Mazzara

Compliance with CRL Quality System:
S. Cordeil

Authorisation to publish:
G. Van den Eede

Address of contact laboratory:
European Commission, Joint Research Centre
Institute for Health and Consumer Protection (IHCP)
Biotechnology and GMOs Unit – Community Reference Laboratory for GM Food and Feed
Via Fermi 2749, 21027 Ispra (VA) - Italy
Report on Steps 1-3 of the Validation Process

Renessen submitted the detection method and control samples for maize event LY038 (unique identifier REN-00038-3) under Article 5 and 17 of Commission Regulation (EC) No 1829/2003 of the European Parliament and of the Council "on genetically modified food and feed".

The Community Reference Laboratory for GM Food and Feed (CRL-GMFF), following reception of the documentation and material, including control samples, (step 1 of the validation process) carried out the scientific assessment of documentation and data (step 2) in accordance with Commission Regulation (EC) No 641/2004 "on detailed rules for the implementation of Commission Regulation (EC) No 1829/2003 of the European Parliament and of the Council as regards the application for the authorisation of new genetically modified food and feed, the notification of existing products and adventitious or technically unavoidable presence of genetically modified material which has benefited from a favourable risk evaluation" and according to its operational procedures ("Description of the CRL-GMFF Validation Process", http://gmo-crl.jrc.it/guidancedocs.htm).

The scientific assessment focused on the method performance characteristics assessed against the method acceptance criteria set out by the European Network of GMO Laboratories and listed in the "Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing" (http://gmo-crl.jrc.it/guidancedocs.htm) (see Annex 1 for a summary of method acceptance criteria and method performance requirements). During step 2, two scientific assessments were performed and requests of complementary information addressed to the applicant. Upon reception of complementary information, the scientific assessment of the detection method for event LY038 was positively concluded in July 2006.

Between February 2007 and May 2007, the CRL-GMFF verified experimentally the method characteristics (step 3, experimental testing of samples and methods) by quantifying five blind GM-levels within the range 0.09%-8% on a copy number basis. The experiments were performed in repeatability conditions and demonstrated that the PCR efficiency, linearity, trueness and precision of the quantifications were within the limits established by the ENGL. The DNA extraction module of the method was tested on samples of food and feed.

A Technical Report summarising the results of tests carried out by the CRL-GMFF (step 3) is available on request.
Content

1. INTRODUCTION... 5

2. SELECTION OF PARTICIPATING LABORATORIES .. 6

3. MATERIALS ...7

4. EXPERIMENTAL DESIGN ... 8

5. METHOD .. 8
 DESCRIPTION OF OPERATIONAL STEPS FOLLOWED ... 8

6. DEVIATIONS REPORTED ... 9

7. SUMMARY OF RESULTS ... 9
 PCR EFFICIENCY AND LINEARITY .. 9
 GMO QUANTIFICATION ... 10

8. METHOD PERFORMANCE REQUIREMENTS .. 12

9. CONCLUSIONS .. 13

10. QUALITY ASSURANCE ... 13

11. REFERENCES ... 13

12. ANNEX 1: METHOD ACCEPTANCE CRITERIA AND METHOD PERFORMANCE
 REQUIREMENTS AS SET BY THE EUROPEAN NETWORK OF GMO LABORATORIES
 (ENGL) .. 14
1. Introduction

Upon reception of method, samples and related data (step 1), the JRC carried out the assessment of the documentation (step 2) and the in-house evaluation of the method (step 3) according to the requirements of Commission Regulation (EC) No 641/2004 and following its operational procedures.

The CRL-GMFF in-house experimental evaluation of the method was carried out between February and May 2007.

Following the evaluation of the data and the results of the in-house laboratory tests, the international collaborative study was organised (step 4) and took place in May 2007.

A method for DNA extraction from maize seeds and grains, submitted by the applicant, was evaluated by the CRL-GMFF in order to confirm its performance characteristics. The protocol for DNA extraction and a report on method testing is available at http://gmo-crl.jrc.it/.

The operational procedure of the collaborative study included the following module:

- Quantitative real-time PCR (Polymerase Chain Reaction). The method is an event-specific real-time quantitative TaqMan® PCR procedure for the determination of the relative content of event LY038 DNA to total maize DNA. The procedure is a simplex system, in which a maize *hmg (high mobility group)* endogenous assay (reference gene) and the target assay (LY038) are performed in separate wells.

The international collaborative study was carried out in accordance with the following internationally accepted guidelines:

- The IUPAC “Protocol for the design, conduct and interpretation of method-performance studies” (Horwitz, 1995).
2. Selection of participating laboratories

As part of the international collaborative study the method was tested in twelve laboratories to determine its performance. Clear guidance was given to the selected laboratories with regards to the standard operational procedures to follow for the execution of the protocol. The participating laboratories are listed in Table 1.

Table 1. Laboratories participating in the validation of the detection method for maize line LY038.

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austrian Agency for Health and Food Safety, Competence Centre Biochemistry</td>
<td>AT</td>
</tr>
<tr>
<td>Bavarian Health and Food Safety Authority</td>
<td>DE</td>
</tr>
<tr>
<td>Behoerde fuer Wissenschaft und Gesundheit</td>
<td>DE</td>
</tr>
<tr>
<td>CRA-W, Dépt Qualité des productions agricoles</td>
<td>BE</td>
</tr>
<tr>
<td>Danish Plant Directorate - Laboratory for diagnostics in Plants, Seed and Feed</td>
<td>DK</td>
</tr>
<tr>
<td>Ente Nazionale Sementi Elette (central office in Milano)/Laboratorio Analisi Sementi</td>
<td>IT</td>
</tr>
<tr>
<td>Finnish Customs Laboratory</td>
<td>FI</td>
</tr>
<tr>
<td>Laboratoire de la DGCCRF</td>
<td>FR</td>
</tr>
<tr>
<td>LSGV Saarland (Landesamt für Soziales, Gesundheit und Verbraucherschutz)</td>
<td>DE</td>
</tr>
<tr>
<td>National Food Administration</td>
<td>SE</td>
</tr>
<tr>
<td>National Institute of Food Hygiene and Nutrition GMO laboratory</td>
<td>HU</td>
</tr>
<tr>
<td>The Food and Consumer Product Safety Authority (VWA)</td>
<td>NL</td>
</tr>
</tbody>
</table>
3. Materials

For the validation of the quantitative event-specific method, genomic DNA was extracted from samples consisting of:

i) seeds of maize harbouring the LY038 event (Lot number GLP-0412-15664-S) and

ii) seeds of conventional maize (lot number GLP-0404-17057-S).

Samples were provided by the applicant in accordance to the provisions of Regulation (EC) No 1829/2003, Art 2.11 [control sample defined as the GMO or its genetic material (positive sample) and the parental organism or its genetic material that has been used for the purpose of the genetic modification (negative sample)].

Samples containing mixtures of 100% LY038 maize and non-GM maize genomic DNA at different GMO concentrations were prepared by the CRL-GMFF, using the control samples provided, in a constant amount of total maize DNA.

Participants received the following materials:

- Five calibration samples (150 µL of DNA solution each) for the preparation of the standard curve, labelled from S1-0106 to S5-0106.
- Twenty unknown DNA samples (80 µL of DNA solution each), labelled from U1-0106 to U20-0106.
- Reaction reagents:
 - Universal PCR Master Mix 2X, 2 vials 5 mL each
 - TaqMan buffer A (10X) 800 µL
 - MgCl₂ (25 mM) 2100 µL
 - dNTP mix (10 mM each) 160 µL
 - AmpliTaq Gold® polymerase (5 U/µl) 80 µL
 - Sterile distilled water 9 mL

- Primers and probes (1 tube each) as follows:
 - hmg reference system
 - hmg primer forward (10 µM): 240 µL
 - hmg primer reverse (10 µM): 240 µL
 - hmg TaqMan® probe (5 µM): 260 µL

 - LY038 system
 - MON88017 primer forward (10 µM): 240 µL
 - MON88017 primer reverse (10 µM): 240 µL
 - MON88017 TaqMan probe (5 µM): 160 µL
4. **Experimental design**

Twenty unknown samples (labelled from U1-0106 to U20-0106), representing five GM levels, were used in the validation study (Table 2). On each PCR plate, the samples were analysed for the LY038 specific system and the *hmg* specific system. In total, two plates were run per participating laboratory and four replicates for each GM level were analysed. PCR analysis was performed in triplicate for all samples. Participating laboratories carried out the determination of the GM% according to the instructions provided in the protocol and using the electronic tool provided (Excel spreadsheet).

<table>
<thead>
<tr>
<th>LY038 GM%</th>
<th>(GM copy number/maize genome copy number x 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td></td>
</tr>
</tbody>
</table>

5. **Method**

Description of operational steps followed

For the specific detection of event LY038 DNA, a 111-bp fragment of the integration region of the construct inserted into the plant genome (5’ insert-to-plant junction) is amplified using two specific primers. PCR products are measured at each cycle (real-time) by means of a target-specific oligonucleotide probe labelled with FAM dye and TAMRA as quencher dye.

For the relative quantification of event LY038 DNA, a maize-specific reference system amplifies a 79-bp fragment of the maize endogenous gene *hmg* (*high mobility group*), using two *hmg* gene-specific primers and an *hmg* gene-specific probe labelled with FAM dye and TAMRA quencher dye.

Standard curves are generated for both the LY038 and the *hmg* specific systems by plotting the Ct values measured for the calibration points against the logarithm of the DNA copy numbers and by fitting a regression line into these data. Thereafter, the standard curves are used to estimate the copy numbers in the unknown sample DNA by interpolation from the standard curves.

For relative quantification of event LY038 DNA in a test sample, the LY038 copy number is divided by the copy number of the maize reference gene (*hmg*) and multiplied by 100 to obtain the percentage value (GM% = LY038/*hmg* x 100).

Calibration sample S1 was prepared by mixing the appropriate amount of LY038 DNA in control non-GM maize DNA to obtain a 10% GM LY038 in a total of 200 ng maize DNA. Samples S2
and S3 were prepared by 1:4 serial dilutions from the S1 sample and samples S4 and S5 were prepared by 1:3 serial dilutions from the S3 sample.

The absolute copy numbers in the calibration curve samples are determined by dividing the sample DNA weight (nanograms) by the published average 1C value for maize genome (2.725 pg) \(^3\). The copy number values used in the quantification, the GM contents of the calibration samples and total DNA quantity used in PCR are provided in Table 3 (GM\% calculated considering the 1C value for maize genome as 2.725 pg) \(^3\).

<table>
<thead>
<tr>
<th>Sample code</th>
<th>S1 0106</th>
<th>S2 0106</th>
<th>S3 0106</th>
<th>S4 0106</th>
<th>S5 0106</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total amount of DNA in reaction (ng/4 µL)</td>
<td>200</td>
<td>50</td>
<td>12.5</td>
<td>4.2</td>
<td>1.4</td>
</tr>
<tr>
<td>Maize genome copies</td>
<td>73394</td>
<td>18349</td>
<td>4587</td>
<td>1529</td>
<td>510</td>
</tr>
<tr>
<td>LY038 maize copies</td>
<td>7339</td>
<td>1835</td>
<td>459</td>
<td>153</td>
<td>51</td>
</tr>
</tbody>
</table>

6. Deviations reported

No deviations from the protocol were reported.

7. Summary of results

PCR efficiency and linearity

The values of the slopes [from which the PCR efficiency is calculated using the formula \([(10^{(-1/slope)})-1] \times 100\) of the reference curve and of the \(R^2\) (expressing the linearity of the regression) reported by participating laboratories for the LY038 system and the *hmg* reference system are summarised in Table 4.

The mean PCR efficiency was 87% for the *hmg* reference system and 91% for the LY038 system. The linearity of the method was on average 0.99 for both systems.

Data reported confirm the appropriate performance characteristics of the method tested in terms of efficiency and linearity.
Table 4. Values of reference curve slope, PCR efficiency and linearity (R^2)

<table>
<thead>
<tr>
<th>LAB</th>
<th>Slope</th>
<th>PCR Efficiency (%)</th>
<th>Linearity (R^2)</th>
<th>Slope</th>
<th>PCR Efficiency (%)</th>
<th>Linearity (R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-3.86</td>
<td>82</td>
<td>0.99</td>
<td>-3.15</td>
<td>92</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>-3.79</td>
<td>84</td>
<td>1.00</td>
<td>-3.24</td>
<td>97</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>-3.47</td>
<td>94</td>
<td>0.98</td>
<td>-2.91</td>
<td>79</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>-3.71</td>
<td>86</td>
<td>0.99</td>
<td>-2.91</td>
<td>80</td>
<td>0.99</td>
</tr>
<tr>
<td>3</td>
<td>-3.41</td>
<td>96</td>
<td>0.99</td>
<td>-3.66</td>
<td>87</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>-3.39</td>
<td>97</td>
<td>0.99</td>
<td>-2.97</td>
<td>83</td>
<td>0.99</td>
</tr>
<tr>
<td>4</td>
<td>-3.67</td>
<td>87</td>
<td>0.99</td>
<td>-2.88</td>
<td>78</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>-3.55</td>
<td>91</td>
<td>0.99</td>
<td>-2.94</td>
<td>81</td>
<td>0.98</td>
</tr>
<tr>
<td>5</td>
<td>-3.39</td>
<td>97</td>
<td>1.00</td>
<td>-3.02</td>
<td>86</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>-3.52</td>
<td>92</td>
<td>0.99</td>
<td>-3.11</td>
<td>90</td>
<td>1.00</td>
</tr>
<tr>
<td>6</td>
<td>-3.60</td>
<td>90</td>
<td>0.99</td>
<td>-3.16</td>
<td>93</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>-3.58</td>
<td>90</td>
<td>0.98</td>
<td>-3.17</td>
<td>93</td>
<td>0.99</td>
</tr>
<tr>
<td>7</td>
<td>-4.16</td>
<td>74</td>
<td>1.00</td>
<td>-3.91</td>
<td>80</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>-4.10</td>
<td>75</td>
<td>0.99</td>
<td>-3.82</td>
<td>83</td>
<td>0.98</td>
</tr>
<tr>
<td>8</td>
<td>-3.50</td>
<td>93</td>
<td>0.99</td>
<td>-3.01</td>
<td>85</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>-3.23</td>
<td>96</td>
<td>0.98</td>
<td>-3.02</td>
<td>85</td>
<td>1.00</td>
</tr>
<tr>
<td>9</td>
<td>-3.45</td>
<td>95</td>
<td>0.99</td>
<td>-3.14</td>
<td>92</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>-3.37</td>
<td>98</td>
<td>0.98</td>
<td>-3.12</td>
<td>91</td>
<td>0.99</td>
</tr>
<tr>
<td>10</td>
<td>-3.56</td>
<td>91</td>
<td>0.98</td>
<td>-2.94</td>
<td>81</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>-3.33</td>
<td>100</td>
<td>0.99</td>
<td>-2.90</td>
<td>79</td>
<td>1.00</td>
</tr>
<tr>
<td>11</td>
<td>-3.65</td>
<td>88</td>
<td>1.00</td>
<td>-3.06</td>
<td>88</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>-3.64</td>
<td>88</td>
<td>0.99</td>
<td>-3.09</td>
<td>89</td>
<td>0.99</td>
</tr>
<tr>
<td>12</td>
<td>-3.56</td>
<td>91</td>
<td>0.99</td>
<td>-3.19</td>
<td>94</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>-3.34</td>
<td>99</td>
<td>0.99</td>
<td>-3.19</td>
<td>94</td>
<td>0.99</td>
</tr>
<tr>
<td>Mean</td>
<td>-3.58</td>
<td>91</td>
<td>0.99</td>
<td>-3.15</td>
<td>87</td>
<td>0.99</td>
</tr>
</tbody>
</table>

GMO quantification

Table 5 shows the mean values of the four replicates for each GM level as provided by all laboratories. Each mean value is the average of three PCR repetitions.
Table 5. GM% mean values determined by laboratories for unknown samples.

<table>
<thead>
<tr>
<th>LAB</th>
<th>0.09</th>
<th>0.5</th>
<th>0.9</th>
<th>5.0</th>
<th>8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10</td>
<td>0.07</td>
<td>0.13</td>
<td>0.10</td>
<td>0.56</td>
</tr>
<tr>
<td>2</td>
<td>0.07</td>
<td>0.05</td>
<td>0.10</td>
<td>0.08</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.06</td>
<td>0.08</td>
<td>0.09</td>
<td>0.10</td>
<td>0.39</td>
</tr>
<tr>
<td>4</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.08</td>
<td>0.43</td>
</tr>
<tr>
<td>5</td>
<td>0.06</td>
<td>0.06</td>
<td>0.37</td>
<td>0.41</td>
<td>0.37</td>
</tr>
<tr>
<td>6</td>
<td>0.08</td>
<td>0.08</td>
<td>0.14</td>
<td>0.12</td>
<td>0.65</td>
</tr>
<tr>
<td>7</td>
<td>0.13</td>
<td>0.11</td>
<td>0.18</td>
<td>0.18</td>
<td>0.66</td>
</tr>
<tr>
<td>8</td>
<td>0.08</td>
<td>0.08</td>
<td>0.10</td>
<td>0.07</td>
<td>0.54</td>
</tr>
<tr>
<td>9</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.07</td>
<td>0.43</td>
</tr>
<tr>
<td>10</td>
<td>0.06</td>
<td>0.07</td>
<td>0.12</td>
<td>0.14</td>
<td>0.64</td>
</tr>
<tr>
<td>11</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.05</td>
<td>0.43</td>
</tr>
<tr>
<td>12</td>
<td>0.06</td>
<td>0.07</td>
<td>0.09</td>
<td>0.07</td>
<td>0.49</td>
</tr>
</tbody>
</table>

In Figure 1 the relative deviation from the true value for each GM level tested is shown for each laboratory. The coloured bars represent the relative GM quantification obtained by the participating laboratories; the violet bar represents the overall mean for each GM level.

As observed in Figure 1, the relative deviations from the true values are very small, with the maximum bias of 7% observed for the GM level 5%.

Only one laboratory showed a large deviation (above 40%) from the true value, at GM levels 0.09% and 8%.

Overall, the average relative deviation is within the acceptance criterion (25%) at all GM levels tested, indicating a very satisfactory trueness of the method.

Figure 1. Relative deviation (%) from the true value of LY038 for all laboratories
8. Method performance requirements

Among the performance criteria established by the ENGL and adopted by the CRL-GMFF (http://gmo-crl.jrc.it/guidancedocs.htm, see also Annex 1), repeatability and reproducibility are assessed through an international collaborative trial, carried out with the support of twelve ENGL laboratories (see Table 1).

Table 6 illustrates the estimation of repeatability and reproducibility at various GM levels, according to the range of GM percentages tested during the collaborative trial.

The relative reproducibility standard deviation (RSD_r), that describes the inter-laboratory variation, should be below 33% over the majority of the dynamic range, while it should be below 50% at the lower end of the dynamic range.

As it can be observed in Table 6, the method satisfies this requirement at all GM levels tested, with the highest value of RSD_r (%) equal to 35% at the 0.09% GM level.

Table 6. Summary of LY038 validation results.

<table>
<thead>
<tr>
<th>Unknown sample GM%</th>
<th>Expected value</th>
<th>Laboratories having returned results</th>
<th>Samples per laboratory</th>
<th>Number of outliers</th>
<th>Reason for exclusion</th>
<th>Mean value</th>
<th>Relative repeatability standard deviation, RSD_r (%)</th>
<th>Repeatability standard deviation</th>
<th>Relative reproducibility standard deviation, RSD_R (%)</th>
<th>Reproducibility standard deviation</th>
<th>Bias (absolute value)</th>
<th>Bias (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>0.00</td>
<td>12</td>
<td>4</td>
<td>1</td>
<td>1 C. test</td>
<td>0.09</td>
<td>25</td>
<td>0.02</td>
<td>35</td>
<td>0.03</td>
<td>0.00</td>
<td>-2.7</td>
</tr>
<tr>
<td>0.50</td>
<td>0.00</td>
<td>12</td>
<td>4</td>
<td>1</td>
<td>1 C. test</td>
<td>0.50</td>
<td>16</td>
<td>0.08</td>
<td>21</td>
<td>0.10</td>
<td>0.00</td>
<td>-0.4</td>
</tr>
<tr>
<td>0.90</td>
<td>0.00</td>
<td>12</td>
<td>4</td>
<td>1</td>
<td>1 C. test</td>
<td>0.88</td>
<td>9.3</td>
<td>0.08</td>
<td>20</td>
<td>0.18</td>
<td>-0.02</td>
<td>-2.0</td>
</tr>
<tr>
<td>5.00</td>
<td>0.00</td>
<td>12</td>
<td>4</td>
<td>1</td>
<td>1 DG. Test</td>
<td>4.66</td>
<td>18</td>
<td>0.83</td>
<td>23</td>
<td>1.05</td>
<td>-0.34</td>
<td>-6.7</td>
</tr>
<tr>
<td>8.00</td>
<td>0.00</td>
<td>12</td>
<td>4</td>
<td>1</td>
<td>1 C. test</td>
<td>7.94</td>
<td>12</td>
<td>0.98</td>
<td>26</td>
<td>2.08</td>
<td>-0.06</td>
<td>-0.7</td>
</tr>
</tbody>
</table>

C = Cochran’s test; DG = Double Grubbs’ test; Identification and removal of outliers through Cochran and Grubbs tests, according to ISO 5725-2. Bias is estimated according to ISO 5725 data analysis protocol.

Table 6 further documents the relative repeatability standard deviation (RSD_r), as estimated for each GM level. In order to accept methods for collaborative study evaluation, the CRL-GMFF requires that RSD_r value is below 25%, as indicated by ENGL (Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing” (http://gmo-crl.jrc.it/guidancedocs.htm).

As can be observed from the values reported in Table 6, the maximum RDSr value is 25% at the 0.09% GM level and lower in the range of GM 0.5% to GM 8%.
The trueness of the method is estimated using the measures of the method bias for each GM level. According to ENGL method performance requirements, trueness should be ± 25% across the entire dynamic range. In this case the method fully satisfies this requirement across the entire dynamic range tested; in fact, the highest value of bias (%) is -6.7% at the 5% level, well within the acceptance criterion.

9. Conclusions

The overall method performance has been evaluated with respect to the method acceptance criteria and method performance requirements recommended by the ENGL (as detailed at http://gmo-crl.jrc.it/guidancedocs.htm). The method acceptance criteria were reported by the applicant and used to evaluate the method prior to the international collaborative study (see Annex 1 for a summary of method acceptance criteria and method performance requirements).

The results obtained during the collaborative study indicate that the analytical module of the method submitted by the applicant complies with ENGL performance criteria.

The method is therefore applicable to the control samples provided (see paragraph 3 “Materials”), in accordance with the requirements of Annex I-2.C.2 to Commission Regulation (EC) No 641/2004.

10. Quality assurance

The CRL-GMFF carries out all operations according to ISO 9001:2000 (certificate number: CH-32232) and ISO 17025:2005 (certificate number: DAC-PL-0459-06-00) [DNA extraction, qualitative and quantitative PCR in the area of Biology (DNA extraction and PCR method validation for the detection and identification of GMOs in food and feed materials)].

11. References

12. Annex 1: method acceptance criteria and method performance requirements as set by the European Network of GMO Laboratories (ENGL)

Method Acceptance Criteria should be fulfilled at the moment of submission of a method (Phase 1: acceptance for the collaborative study).

Method Performance Requirements should be fulfilled in a collaborative study in order to consider the method as fit for its purpose (Phase 2: evaluation of the collaborative study results).

Method Acceptance Criteria

Applicability

Definition: the description of analytes, matrices, and concentrations to which a method can be applied.

Acceptance Criterion: the applicability statement should provide information on the scope of the method and include data for the indices listed below for the product/s for which the application is submitted. The description should also include warnings to known interferences by other analytes, or inapplicability to certain matrices and situations.

Practicability

Definition: the ease of operations, the feasibility and efficiency of implementation, the associated unitary costs (e.g. Euro/sample) of the method.

Acceptance Criterion: the practicability statement should provide indication on the required equipment for the application of the method with regards to the analysis per se and the sample preparation. An indication of costs, timing, practical difficulties and any other factor that could be of importance for the operators should be indicated.

Specificity

Definition: property of a method to respond exclusively to the characteristic or analyte of interest.

Acceptance Criterion: the method should be event-specific and be functional only with the GMO or GM based product for which it was developed. This should be demonstrated by empirical results from testing the method with non-target transgenic events and non-transgenic material. This testing should include closely related events and cases where the limit of the detection is tested.

Dynamic Range

Definition: the range of concentrations over which the method performs in a linear manner with an acceptable level of accuracy and precision.

Acceptance Criterion: the dynamic range of the method should include the 1/10 and at least 5 times the target concentration. Target concentration is intended as the threshold relevant for legislative
requirements. The acceptable level of accuracy and precision are described below. The range of the standard curve(s) should allow testing of blind samples throughout the entire dynamic range, including the lower (10%) and upper (500%) end.

Accuracy

Definition: the closeness of agreement between a test result and the accepted reference value.

Acceptance Criterion: the accuracy should be within ± 25% of the accepted reference value over the whole dynamic range.

Amplification Efficiency

Definition: the rate of amplification that leads to a theoretical slope of –3.32 with an efficiency of 100% in each cycle. The efficiency of the reaction can be calculated by the following equation: Efficiency = \[10^{(-1/slope)} - 1\]

Acceptance Criterion: the average value of the slope of the standard curve should be in the range of (-3.1 ≥ slope ≥ -3.6)

R² Coefficient

Definition: the R² coefficient is the correlation coefficient of a standard curve obtained by linear regression analysis.

Acceptance Criterion: the average value of R² should be ≥ 0.98.

Repeatability Standard Deviation (RSD_r)

Definition: the standard deviation of test results obtained under repeatability conditions. Repeatability conditions are conditions where test results are obtained with the same method, on identical test items, in the same laboratory, by the same operator, using the same equipment within short intervals of time.

Acceptance Criterion: the relative repeatability standard deviation should be below 25% over the whole dynamic range of the method.

Note: estimates of repeatability submitted by the applicant should be obtained on a sufficient number of test results, at least 15, as indicated in ISO 5725-3 (1994).

Limit of Quantitation (LOQ)

Definition: the limit of quantitation is the lowest amount or concentration of analyte in a sample that can be reliably quantified with an acceptable level of precision and accuracy.

Acceptance Criterion: LOQ should be less than 1/10⁰ of the value of the target concentration with an RSD_r ≤ 25%. Target concentration should be intended as the threshold relevant for legislative requirements. The acceptable level of accuracy and precision are described below.

Limit of Detection (LOD)

Definition: the limit of detection is the lowest amount or concentration of analyte in a sample, which can be reliably detected, but not necessarily quantified, as demonstrated by single laboratory validation.
Acceptance Criterion: LOD should be less than $1/20^{th}$ of the target concentration. Experimentally, quantitative methods should detect the presence of the analyte at least 95% of the time at the LOD, ensuring $\leq 5\%$ false negative results. Target concentration should be intended as the threshold relevant for legislative requirements.

Robustness

Definition: the robustness of a method is a measure of its capacity to remain unaffected by small, but deliberate deviations from the experimental conditions described in the procedure.

Acceptance Criterion: the response of an assay with respect to these small variations should not deviate more than $\pm 30\%$. Examples of factors that a robustness test could address are: use of different instrument type, operator, brand of reagents, concentration of reagents, and temperature of reaction.

Method Performance Requirements

Dynamic Range

Definition: in the collaborative trial the dynamic range is the range of concentrations over which the reproducibility and the trueness of the method are evaluated with respect to the requirements specified below.

Acceptance Criterion: the dynamic range of the method should include the 1/10 and at least five times the target concentration. Target concentration should be intended as the threshold relevant for legislative requirements.

Reproducibility Standard Deviation (RSD$_R$)

Definition: the standard deviation of test results obtained under reproducibility conditions. Reproducibility conditions are conditions where test results are obtained with the same method, on identical test items, in different laboratories, with different operators, using different equipment. Reproducibility standard deviation describes the inter-laboratory variation.

Acceptance Criterion: the relative reproducibility standard deviation should be below 35% at the target concentration and over the entire dynamic range. An RSD$_R < 50\%$ is acceptable for concentrations below 0.2%.

Trueness

Definition: the closeness of agreement between the average value obtained from a large series of test results and an accepted reference value. The measure of trueness is usually expressed in terms of bias.

Acceptance Criterion: the trueness should be within $\pm 25\%$ of the accepted reference value over the whole dynamic range.
Event-specific Method for the Quantification of Maize Line LY038 Using Real-time PCR

Protocol

6 October 2008

Joint Research Centre
Institute for Health and Consumer Protection
Biotechnology & GMOs Unit

Method development:
Monsanto Company

Method validated by:
Community Reference Laboratory for GM Food and Feed (CRL-GMFF)
Biotechnology & GMOs Unit
Drafted by
E. Graziolli

Report Verification Team
1) M. Querci

2) M. Ermolli

Scientific and technical approval
M. Mazzara

Compliance to CRL Quality System
S. Cordis

Authorisation to publish
G. Van den Eede

Address of contact laboratory:
European Commission, Joint Research Centre
Institute for Health and Consumer Protection (IHCP)
Biotechnology and GMOs Unit – Community Reference Laboratory for GM Food and Feed
Via Fermi 2749, 21027 Ispra (VA) - Italy
Content

1. GENERAL INFORMATION AND SUMMARY OF THE METHODOLOGY 4

2. VALIDATION STATUS AND PERFORMANCE CHARACTERISTICS 4
 2.1 GENERAL ... 4
 2.2 COLLABORATIVE TRIAL .. 5
 2.3 LIMIT OF DETECTION (LOD) ... 5
 2.4 LIMIT OF QUANTIFICATION (LOQ) .. 5
 2.5 MOLECULAR SPECIFICITY ... 5

3. PROCEDURE ... 6
 3.1 GENERAL INSTRUCTIONS AND PRECAUTIONS .. 6
 3.2 REAL-TIME PCR FOR QUANTITATIVE ANALYSIS OF MAIZE EVENT LY038 7
 3.2.1 General ... 7
 3.2.2 Calibration .. 7
 3.2.3 Real-time PCR set-up ... 7
 3.3 DATA ANALYSIS ... 9
 3.4 CALCULATION OF RESULTS .. 9

4. MATERIALS ... 10
 4.1 EQUIPMENT ... 10
 4.2 REAGENTS .. 10
 4.3 PRIMERS AND PROBES .. 10
1. General information and summary of the methodology

This protocol describes an event-specific real-time quantitative TaqMan® PCR procedure for the determination of the relative content of maize event LY038 DNA to total maize DNA in a sample.

The PCR assay was optimised for use in real-time PCR instruments for plastic reaction vessels.

Template DNA extracted by means of suitable methods should be tested for quality and quantity prior to use in PCR assay. Tests for the presence of PCR inhibitors (e.g. monitor run of diluted series, use of DNA spikes) are recommended.

For the specific detection of maize event LY038 DNA, a 111-bp fragment of the integration region of the construct inserted into the plant genome (located at the 5’ insert-to-plant junction) is amplified using two specific primers. PCR products are measured during each cycle (real-time) by means of a target-specific oligonucleotide probe labelled with the fluorescent dye 6-FAM as a reporter at its 5’ end and with TAMRA as a quencher dye at its 3’ end. The 5’ nuclease activity of the Taq DNA polymerase results in the specific cleavage of the probe, leading to increased fluorescence, which is then monitored.

For the relative quantification of maize event LY038 DNA, a maize-specific reference system amplifies a 79-bp fragment of the maize endogenous hmg gene, using two specific primers and a hmg gene-specific probe labelled with 6-FAM and TAMRA as described above.

The measured fluorescence signal passes a threshold value after a certain number of cycles. This threshold cycle is called the “Ct” value. For quantification of the amount of event LY038 DNA in a test sample, LY038 and hmg Ct values are determined for the sample. Standard curves are then used to estimate the relative amount of maize event LY038 DNA to total maize DNA.

2. Validation status and performance characteristics

2.1 General

The method was optimised for suitable DNA extracted from maize seeds and grains containing mixtures of genetically modified and conventional maize.

The reproducibility and trueness of the method were tested through an international collaborative ring trial using DNA samples at different GMO contents.
2.2 Collaborative trial

The method was validated in an international collaborative study by the Joint Research Centre (JRC) of the European Commission. The study was undertaken with twelve participating laboratories in April/May 2007.

Each participant received twenty blind samples containing LY038 genomic DNA at five GM contents, ranging from 0.09% to 8.0%.

Each test sample was analysed by PCR in three repetitions. The study was designed as a blind quadruplicate collaborative trial; each laboratory received each level of GM LY038 in four unknown samples. Two replicates of each GM level were analysed on the same PCR plate.

A detailed validation report can be found at http://gmo-crl.jrc.it/statusofdoss.htm

2.3 Limit of detection (LOD)

According to the method developer, the relative LOD of the method is at least 0.045% in 200 ng of total Maize DNA. The relative LOD was not assessed in the collaborative study.

2.4 Limit of quantification (LOQ)

According to the method developer, the relative LOQ of the method is at least 0.09% in 200 ng of total Maize DNA. The lowest relative GM content of the target sequence included in collaborative trial was 0.09%.

2.5 Molecular specificity

According to the method developer, the method exploits a unique DNA sequence in the region of recombination between the insert and the plant genome. The sequence is specific to maize event LY038 and thus imparts event-specificity to the method.

The specificity of event-specific assay was experimentally tested by the applicant in real-time PCR against DNA extracted from plant materials containing the specific targets of Roundup Ready® corn MON88017, Roundup Ready® canola (RT200), Roundup Ready® canola (RT73), conventional canola, Roundup Ready® corn (GA21), Roundup Ready® maize (NK603), YieldGard® corn borer corn (MON810), YieldGard® rootworm corn (MON863), lysine maize (LY038), conventional corn, Roundup Ready® cotton (MON1445), Bollgard® cotton (MON531), Bollgard® cotton (MON757), BollgardII® cotton (MON15985), Roundup Ready® Flex cotton (MON 88913), conventional cotton, Roundup Ready® soybean (40-3-2), conventional soybean, Roundup Ready® wheat (MON71800), conventional wheat, lentil, sunflower, buckwheat, rye berries and peanut.

None of the GM materials tested, except the positive control maize line LY038, yielded detectable amplicons.
The specificity of the maize reference assay *hmg* was experimentally tested by the applicant against DNA extracted from plant materials containing Roundup Ready® corn MON88017, Roundup Ready® canola (RT200), Roundup Ready® canola (RT73), conventional canola, Roundup Ready® corn (GA21), Roundup Ready® corn (NK603), YieldGard® corn borer corn (MON810), YieldGard® rootworm corn (MON863), lysine maize (LY038), conventional corn, Roundup Ready® cotton (MON1445), Bollgard® cotton (MON531), Bollgard® cotton (MON757), BollgardII® cotton (MON15985), Roundup Ready® Flex cotton (MON 88913), conventional cotton, Roundup Ready® soybean (40-3-2), conventional soybean, Roundup Ready® wheat (MON71800), conventional wheat, lentil, sunflower, buckwheat, rye berries and peanut.

According to the applicant, only the positive control maize line LY038, Roundup Ready® corn (GA21), Roundup Ready® corn (NK603), YieldGard® corn borer corn (MON810), YieldGard® rootworm corn (MON863), Roundup Ready® corn MON88017 and conventional corn yielded detectable amplicons.

3. Procedure

3.1 General instructions and precautions

- The procedures require experience of working in sterile conditions.

- Laboratory organization, e.g. “forward flow direction” during PCR-setup, should follow international guidelines, e.g. ISO 24276:2006.

- PCR-reagents should be stored and handled in a separate room where no nucleic acids (with exception of PCR primers or probes) or DNA degrading or modifying enzymes have been handled previously. All handling of PCR reagents and controls requires dedicated equipment, especially pipettes.

- The equipment used should be sterilised prior to use and any residue of DNA has to be removed. All material used (e.g. vials, containers, pipette tips, etc.) must be suitable for PCR and molecular biology applications. They must be DNase-free, DNA-free, sterile and unable to adsorb protein or DNA.

- Filter pipette tips protected against aerosol should be used.

- Powder-free gloves should be used and changed frequently.

- Laboratory benches and equipment should be cleaned periodically with e.g. 10% sodium hypochloride solution (bleach).

- Pipettes should be checked regularly for precision and calibrated, if necessary.

- All handling steps - unless specified otherwise - should be carried out at 0 - 4°C.

- In order to avoid repeated freeze/thaw cycles aliquots should be prepared.
3.2 Real-time PCR for quantitative analysis of Maize event LY038

3.2.1 General
The PCR set-up for the taxon specific target sequence (hmg) and for the GMO (event LY038) target sequence should be carried out in separate vials. Multiplex PCR (using differential fluorescent labels for the probes) has not been tested or validated.

The use of maximum 200 ng of template DNA per reaction well is recommended.

The method is developed, for LY038, in a total volume of 50 µl per reaction mixture with the reagents as listed in Table 1 and, for hmg, in a total volume of 25 µl per reaction mixture with the reagents as listed in and Table 2.

3.2.2 Calibration
The calibration curves consist of five samples. The first point of the calibration curves is a 10% LY038 in non-GM maize DNA for a total of 200 ng of DNA (corresponding to approximately 73394 maize genome copies with one genome assumed to correspond to 2.725 pg of haploid maize genomic DNA) (1).

A calibration curve is produced by plotting the Ct-values against the logarithm of the target copy number for the calibration points. This can be done e.g. by means of spreadsheet software, e.g. Microsoft Excel, or directly by options available with the sequence detection system software.

The copy number measured for the unknown sample DNA is obtained by interpolation from the standard curves.

3.2.3 Real-time PCR set-up
1. Thaw, mix gently and centrifuge the required amount of components needed for the run. Keep thawed reagents on ice.
2. In two reaction tubes (one for the LY038 system and one for the hmg system) on ice, add the following components (Tables 1 and 2) in the order mentioned below (except DNA) to prepare the master mixes.
Table 1. Amplification reaction mixture in the final volume/concentration per reaction well for the LY038 specific system.

<table>
<thead>
<tr>
<th>Component</th>
<th>Final concentration</th>
<th>µL/ reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan® Universal PCR Master Mix (2x)</td>
<td>1x</td>
<td>25</td>
</tr>
<tr>
<td>LY038 AF (10 µM)</td>
<td>150 nM</td>
<td>0.75</td>
</tr>
<tr>
<td>LY038 AR (10 µM)</td>
<td>150 nM</td>
<td>0.75</td>
</tr>
<tr>
<td>LY038 AP (5 µM)</td>
<td>50 nM</td>
<td>0.50</td>
</tr>
<tr>
<td>Nuclease free water</td>
<td>#</td>
<td>19</td>
</tr>
<tr>
<td>Template DNA (max 200 ng)</td>
<td>#</td>
<td>4.0</td>
</tr>
<tr>
<td>Total reaction volume:</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

Table 2. Amplification reaction mixture in the final volume/concentration per reaction well for the maize *hmg* reference system.

<table>
<thead>
<tr>
<th>Component</th>
<th>Final concentration</th>
<th>µL/ reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer A (10x)</td>
<td>1x</td>
<td>2.5</td>
</tr>
<tr>
<td>hmg F (10 µM)</td>
<td>300 nM</td>
<td>0.75</td>
</tr>
<tr>
<td>hmg R (10 µM)</td>
<td>300 nM</td>
<td>0.75</td>
</tr>
<tr>
<td>hmg P (5 µM)</td>
<td>160 nM</td>
<td>0.80</td>
</tr>
<tr>
<td>MgCl₂ (25 mM)</td>
<td>6.5 mM</td>
<td>6.5</td>
</tr>
<tr>
<td>dNTPs mix (10 mM)</td>
<td>200 µM</td>
<td>0.5</td>
</tr>
<tr>
<td>Nuclease free water</td>
<td>#</td>
<td>8.95</td>
</tr>
<tr>
<td>Template DNA (max 200 ng)</td>
<td>#</td>
<td>4.0</td>
</tr>
<tr>
<td>Total reaction volume:</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

3. Mix gently and centrifuge briefly.

4. Prepare two reaction tubes (one for the LY038 and one for the *hmg* master mixes) for each DNA sample to be tested (standard curve samples, unknown samples and control samples).

5. Add to each reaction tube the correct amount of master mix (e.g. 46 x 3 = 138 µL master mix for three PCR repetitions for LY038 and 21 x 3 = 63 µL master mix for three PCR repetitions for *hmg*). Add to each tube the correct amount of DNA (e.g. 4 x 3 = 12 µL DNA for three PCR repetitions). Vortex each tubes for approx. 10 sec. This step is mandatory to reduce the variability among the repetitions of each sample to a minimum.

6. Spin down the tubes in a microcentrifuge. Aliquot 50 µL in each well for LY038 and 25 µL for *hmg*. Seal the reaction plate with optical cover or optical caps. Centrifuge the plate at low speed (e.g. approximately 250 x g for 1 minute at 4°C to room temperature) to spin down the reaction mixture.

7. Place the plate into the instrument.

8. Run the PCR with cycling conditions described in Table 3:
Table 3. Cycling program for LY038 system and maize hmg system

<table>
<thead>
<tr>
<th>Step</th>
<th>Stage</th>
<th>T°C</th>
<th>Time (sec)</th>
<th>Acquisition</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UNG</td>
<td>50°C</td>
<td>120</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Initial denaturation</td>
<td>95°C</td>
<td>600</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Amplification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Denaturation</td>
<td>95°C</td>
<td>15</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annealing & Extension</td>
<td>60°C</td>
<td>60</td>
<td>Yes</td>
<td>45</td>
</tr>
</tbody>
</table>

3.3 Data analysis

After the real-time PCR, analyse the run following the procedure below:

a) **Set the threshold**: display the amplification curves of one system (e.g. LY038) in logarithmic mode. Locate the threshold line in the area where the amplification profiles are parallel (exponential phase of PCR) and where there is no “fork effect” between repetitions of the same sample. Press the “update” button to ensure changes affect Ct values. Switch to the linear view mode by clicking on the Y axis of the amplification plot, and check that the threshold previously set falls within the geometric phase of the curves.

b) **Set the baseline**: determine the cycle number at which the threshold line crosses the first amplification curve and set the baseline three cycles before that value (e.g. earliest Ct = 25, set the baseline crossing at Ct = 25 – 3 = 22).

c) Save the settings.

d) Repeat the procedure described in a) and b) on the amplification plots of the other system (e.g. hmg system).

e) Save the settings and export all the data to a text file for further calculations.

3.4 Calculation of results

After having defined a threshold value within the logarithmic phase of amplification as described above, the instrument’s software calculates the Ct-values for each reaction.

The standard curves are generated both for the hmg and the LY038 specific systems by plotting the Ct values measured for the calibration points against the logarithm of the DNA copy numbers and by fitting a linear regression line into these data.

Thereafter, the standard curves are used to estimate the copy numbers in the unknown sample DNA.
For the determination of the amount of event LY038 DNA in the unknown sample, the LY038 copy number is divided by the copy number of the Maize reference gene (hmg) and multiplied by 100 to obtain the percentage value (GM% = LY038/hmg x 100).

4. Materials

4.1 Equipment

- Real-time PCR instrument for plastic reaction vessels (glass capillaries are not recommended for the described buffer composition)
- Plastic reaction vessels suitable for real-time PCR instrument (enabling undisturbed fluorescence detection)
- Software for run analysis
- Microcentrifuge
- Micropipettes
- Vortex
- Rack for reaction tubes
- 1.5/2.0 mL reaction tubes

4.2 Reagents

- TaqMan® Universal PCR Master Mix (2X). Applied Biosystems Cat. No. 4304437
- 0.5 M EDTA. Sigma Cat. No. E-7647-01-0
- PCR Nucleotide Mix (10 mM dNTPs). Promega Cat. No. C114G
- TaqMan® 1000X Rxn Gold/Buffer A Pack. Applied Biosystems Cat. No. 4304441
- Nuclease-free water. Sigma Cat. No. W-4502
- 1 M Tris-HCl, pH 8.0. Sigma Cat. No. T-3038

4.3 Primers and Probes

<table>
<thead>
<tr>
<th>Name</th>
<th>Oligonucleotide DNA Sequence (5’ to 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LY038 target sequence</td>
<td>5’- TGG GTT CAG TCT GCG AAT GTT - 3’</td>
</tr>
<tr>
<td>LY038 primer AF</td>
<td>5’- AGG AAT TCG ATA TCA AGC TTA TCG A - 3’</td>
</tr>
<tr>
<td>LY038 primer AR</td>
<td>6 - FAM - CGA GCG GAG TTT ATG GGT CGA CGG - TAMRA</td>
</tr>
<tr>
<td>hmg target sequence</td>
<td>5’- TTG GAC TAG AAA TCT CGT GCT GA - 3’</td>
</tr>
<tr>
<td>hmg primer F</td>
<td>5’- GCT ACA TAG GGA GCC TTG TCC T - 3’</td>
</tr>
<tr>
<td>hmg primer R</td>
<td>6 - FAM - CAA TCC ACA CAA ACG CAC GCG TA - TAMRA</td>
</tr>
</tbody>
</table>
Report on the Validation of a DNA Extraction Method for Maize Seeds and Grains

13 October 2008

Joint Research Centre
Institute for Health and Consumer Protection
Biotechnology & GMOs Unit

Method development:
Monsanto Company

Method testing and single laboratory validation:
Community Reference Laboratory for GM Food and Feed (CRL-GMFF)
Biotechnology & GMOs Unit
Drafted by:
C. Savini

Report Verification Team:
1) M. Ermolli

2) M. Querci

Scientific and technical approval:
M. Mazzara

Compliance with CRL Quality System:
S. Cordeil

Authorisation to publish:
G. Van den Eede

Address of contact laboratory:
European Commission, Joint Research Centre
Institute for Health and Consumer Protection (IHCP)
Biotechnology and GMOs Unit – Community Reference Laboratory for GM Food and Feed
Via Fermi 2749, 21027 Ispra (VA) - Italy
Content

1. INTRODUCTION .. 4

2. MATERIALS (EQUIPMENT/ CHEMICALS/ PLASTIC WARE) ... 4

 2.1. EQUIPMENT ... 4

 2.2. CHEMICALS ... 4

 2.3. SOLUTIONS .. 5

 2.4. PLASTICWARE ... 5

 2.5. PRECAUTIONS ... 5

 2.6 ABBREVIATIONS: ... 6

3. DESCRIPTION OF THE METHODS ... 6

 3.1 SAMPLING .. 6

 3.2 SCOPE AND APPLICABILITY .. 6

 3.3 PRINCIPLE .. 6

 3.4 TISSUES CRUSHING PROCEDURE ... 6

 3.5 EXTRACTION OF GENOMIC DNA FROM MAIZE SEEDS/GRAINS 7

4. TESTING OF THE DNA EXTRACTION METHOD BY THE COMMUNITY REFERENCE
 LABORATORY FOR GM FOOD AND FEED .. 8

 4.1 PREPARATION OF SAMPLES .. 8

 4.2 DNA EXTRACTION .. 8

 4.3 DNA CONCENTRATION, YIELD AND REPEATABILITY ... 9

 4.4 FRAGMENTATION STATE OF DNA ... 10

 4.5 PURITY / ABSENCE OF PCR INHIBITORS ... 10

5. CONCLUSION .. 12

6. QUALITY ASSURANCE ... 13

7. REFERENCES .. 13
1. Introduction

This report describes the validation of a DNA extraction protocol to extract high quality genomic DNA from processed plant tissue (e.g., leaf, grain, or seed) and its applicability on the samples of food and feed provided by the applicant. This protocol can be used for the extraction of DNA from maize seeds and grains. It is a modified extraction method from Rogers and Bendich (1985).

The purpose of the DNA extraction method described is to provide DNA with purity suitable for real-time PCR based detection methods.

This protocol is recommended to be executed by skilled laboratory personnel since hazardous chemicals and materials are exploited at some steps. It is strongly advised to take particular notice of all product safety recommendations and guidelines.

2. Materials (Equipment/Chemicals/Plastic ware)

2.1. Equipment

The following equipment is used in the DNA extraction procedure described (equivalents may be used):

1. Centrifuge (Beckman Coulter Avanti J-251)
2. Shaker (LabLine Enviro 3527)
3. Thermometer (VWR Cat. No. 61222-504)
4. Vacufuge (Eppendorf 5301 22 82 010-9)
5. Water bath (Precision Cat. No. 51220046)
6. Microcentrifuge (Any appropriate model)

2.2. Chemicals

The following chemicals are used in the DNA extraction procedure described (equivalents may be used):

1. 24:1 chloroform:isoamyl alcohol (Sigma Cat. No. C-0549)
2. 25:24:1 phenol:chloroform:isoamyl alcohol (Sigma Cat. No. P-3803)
3. Ammonium acetate 7.5 M (Sigma Cat. No. A-2706)
4. CTAB (Sigma Cat. No. H-6269)
5. 0.5 M EDTA, pH 8.0 (GibcoBRL Cat. no. 15575-038)
6. 100% ethanol (AAPER)
7. NaCl (Sigma Cat. No. S-5150)
8. 2-mercaptoethanol (Bio-Rad Cat. no. 161-0710)
9. RNase A (Roche Cat. No. 10 109 196 001)
10. Isopropanol (EM Science Cat. No. PX1835-9)
11. 1 M Tris HCl pH 8.0 (Sigma Cat. No. T-3038)
12. Proteinase K (Roche Cat. No. 03 115 836 001)
13. Polyethylene Glycol (MW 8000) (Sigma Cat. No. P2139)

2.3. Solutions

The following buffers and solutions are used in the DNA extraction procedure described:

1. **CTAB Extraction Buffer (2%) (store at room temperature)**
 - 2% w/v CTAB
 - 100 mM Tris HCl pH 8.0
 - 20 mM EDTA pH 8.0
 - 1.4 M NaCl

2. **Tris-EDTA buffer (TE 1X) (store at room temperature)**
 - 10 mM Tris HCl pH 8.0
 - 1 mM EDTA pH 8.0

3. **Proteinase K (10 mg/mL) (store at -20 °C)**

4. **RNase A (10 mg/mL) (store at -20 °C)**

5. **PEG Precipitation Buffer (20% w/v) (store at room temperature)**

6. **Ethanol (70% v/v) (store at room temperature)**

7. **Ethanol (80% v/v) (store at room temperature)**

2.4. Plasticware

1. 50 mL conical tubes (Corning Cat. No. 430290)
2. 13 mL Sarstedt tubes (Sarstedt Cat. No. 60.540)
3. 1.5 mL microcentrifuge tubes
4. filter tips

Note: All plasticware has to be sterile and free of DNases, RNases and nucleic acids.

2.5. Precautions

- Phenol, chloroform, isoamyl alcohol, and isopropanol are hazardous chemicals;
therefore, all manipulations have to be performed according to safety guidelines, under fume hood.

- It is recommended to use clean containers for Waring blenders for grinding the seed bulk samples.
- All tubes and pipette tips have to be discarded as biological hazardous material.

2.6. Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>RNase A</td>
<td>ribonuclease A</td>
</tr>
<tr>
<td>TE</td>
<td>Tris EDTA</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)aminomethane</td>
</tr>
</tbody>
</table>

3. Description of the methods

3.1. Sampling

For sampling methods, it is referred to the technical guidance documents and protocols described in Commission Recommendation 2004/787/EC on technical guidance for sampling and detection of genetically modified organisms and material produced from genetically modified organisms as or in products in the context of Regulation (EC) N. 1830/2003.

3.2. Scope and applicability

The method for DNA extraction described below is suitable for the isolation of genomic DNA from a wide variety of maize tissues and derived matrices. However, validation data presented here are restricted to ground maize seeds and grains. Application of the method to other matrices may require adaptation and possible further specific validation.

3.3. Principle

The basic principle of the DNA extraction consists of first releasing the DNA present in the matrix into aqueous solution and further purifying the DNA from PCR inhibitors. The present method starts with a lysis step (thermal lysis in the presence of Tris HCl, EDTA, CTAB and β-mercaptoethanol) followed by removal of contaminants such as lipophilic molecules and proteins by extraction with phenol and chloroform. A DNA precipitate is then generated by using isopropanol. The pellet is dissolved in TE buffer. Remaining inhibitors are removed by PEG precipitation and re-suspension in TE buffer.

3.4. Samples grinding procedure

Samples should be processed prior to extraction procedure. Possible methods of processing include a mortar and pestle with liquid nitrogen (leaf) or commercial blender (grain or seed).
3.5 Extraction of genomic DNA from maize seeds/grains

1. Weight out 6 g of processed tissue into a 50 mL conical tube appropriate for centrifugation. Note: For unprocessed tissue, weighing may occur prior to processing as long as entire processed sample is transferred to the conical tube.
2. For each 6 g sample add 25 mL of a solution consisting of 24.25 mL, pre-warmed CTAB extraction buffer, 0.5 mL 2-β-mercaptoethanol (2-ME), and 0.25 mL of 10 mg/mL proteinase K for a final concentration of 2% (2-ME) and 100 µg/mL (proteinase K).
3. Mix the tube vigorously by inversion for 45-60 seconds.
4. Incubate for 60 minutes at 55 °C and mix the tube vigorously for 40-60 seconds every 20 minutes. Cool the tube on bench for 10 minutes.
5. Add 20 mL of phenol:chloroform:isoamyl alcohol (PCI 25:24:1, pH 6.7). Cap the tube and mix vigorously by inversion at least for 1 minute.
6. Centrifuge for 10 minutes at 13000 x g at room temperature to separate the aqueous and organic phases. Transfer upper aqueous phase to a clean 50 mL conical tube.
7. Repeat extraction twice for a total of three extractions (step 5-6).
8. Transfer upper aqueous phase to a new tube, add 2/3 volume of -20 °C isopropanol and gently mix the tube by inversion.
9. To precipitate the DNA place the tube at -20 °C for 30 minutes. (DNA may be stored as isopropanol precipitate at -20 °C for up to 1 year).
10. To pellet the DNA, centrifuge the tubes at approximately 13000 x g for 20 minutes at 4 °C. Pour off isopropanol by pipette, and then perform a quick spin in the centrifuge to bring down the isopropanol from the side of the tube. Remove remaining isopropanol by pipette and ensure all residual isopropanol is removed before proceeding to the next step without over drying the pellet.
11. Re-dissolve the pellet in 4 mL of TE pH 8.0. Note: it may be necessary to incubate the tube at 60°C to resuspend the pellet.
12. Transfer the resuspended pellet to a 13-mL tube, add 40 µL of 10 mg/mL RNase and then incubate at 37°C for 30 minutes.
13. To extract the DNA, add 4 mL of chloroform:isoamyl alcohol (CIA 24:1), mix vigorously by inversion for 40-60 seconds and centrifuge for 10 minutes at 13000 x g at room temperature. Transfer the upper aqueous phase to a clean tube.
14. Repeat step 13 an additional time, then add half volume of 7.5 M ammonium acetate, gently mix by inversion and add 2 volumes of 100% ethanol. Mix by inversion and place at -20°C for 30 minutes. DNA may be stored as ethanol precipitate at -20 °C for up to 1 year.
15. Centrifuge at 13000 x g for 20 minutes at 4°C to pellet the DNA.
16. Rinse the DNA pellet twice with 10 mL of 70 % ethanol loosening the pellet from the side of the tube and remove residual ethanol by vacuum.
17. Re-suspend DNA in 1 mL TE, pH 8.0 and incubate at 65°C for at least 1 hour with periodic gentle mixing.
18. Centrifuge the DNA solution at 16000 x g for 10 minutes at 4°C. Transfer the aqueous portion to a clean tube without disturbing the pellet and store at 4°C.
19. Add equal volume of 20% PEG precipitation buffer (~1 mL) to the extracted DNA solution. Mix well by inversion.
20. Incubate the PEG/DNA mixture for 15 minutes at 37 °C.
21. Centrifuge the PEG/DNA mixture for 15 minutes at 15000 x g at room temperature.
22. Pour off supernatant. Wash the walls of the tube and DNA pellet with 1 mL of 80% ethanol loosening the pellet from the tube. Carefully pour off ethanol, centrifuge briefly and remove by pipetting any residual ethanol.
23. Repeat wash (step 22) for a total of two washes.
24. Completely dry any residual ethanol by vacufuge at low heat.
25. Re-suspend the pellet in 1 mL TE or H₂O. If necessary, incubate the sample at 60°C to dissolve the pellet.
26. Centrifuge the re-suspended DNA solution at 15000 x g for 15 minutes.
27. Transfer DNA solution to a clean tube without disturbing the pellet and store DNA at 4°C.

4. Testing of the DNA extraction method by the Community Reference Laboratory for GM Food and Feed

The aim of the experimental testing was to verify that the DNA extraction method provides DNA of suitable quantity and quality for the intended purpose. The DNA extraction method should allow preparation of the analyte in quality and quantity appropriate for the analytical method used to quantify the event-specific analyte versus the reference analyte.

The CRL-GMFF tested the method proposed by the applicant on samples of food and feed consisting of ground maize seeds provided by the applicant.

To assess the suitability of the DNA extraction method for real-time PCR analysis, the extracted DNA was tested using a qualitative PCR run on the real-time PCR equipment.

4.1. Preparation of samples

About 200 g of maize seed material were ground using a GRINDOMIX GM 200 (Retsch GmbH) mixer.

4.2. DNA extraction

DNA was extracted following the method described above (see paragraph 3. “Description of the methods”); the DNA extraction was carried out on 6 test portions (replicates) and repeated over three different days, giving a total of 18 DNA extractions.
4.3. DNA concentration, yield and repeatability

Concentration of the DNA extracted was determined by fluorescence detection using the PicoGreen dsDNA Quantitation Kit (Molecular Probes).

Each DNA extract was measured twice, and the two values were averaged. DNA concentration was determined on the basis of a five point standard curve ranging from 1 to 500 ng/µL using a Biorad VersaFluor fluorometer.

The DNA concentration for all samples is reported in the Table 1 below.

Table 1. DNA concentration (ng/µL) of eighteen samples extracted in three days: yellow boxes for samples extracted on day 1, green boxes for samples extracted on day 2 and blue boxes for samples extracted on day 3.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Concentration (ng/µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>147.2</td>
</tr>
<tr>
<td>2</td>
<td>229.0</td>
</tr>
<tr>
<td>3</td>
<td>579.8</td>
</tr>
<tr>
<td>4</td>
<td>352.1</td>
</tr>
<tr>
<td>5</td>
<td>551.1</td>
</tr>
<tr>
<td>6</td>
<td>504.9</td>
</tr>
<tr>
<td>1</td>
<td>277.5</td>
</tr>
<tr>
<td>2</td>
<td>468.7</td>
</tr>
<tr>
<td>3</td>
<td>473.4</td>
</tr>
<tr>
<td>4</td>
<td>424.6</td>
</tr>
<tr>
<td>5</td>
<td>258.0</td>
</tr>
<tr>
<td>6</td>
<td>517.5</td>
</tr>
<tr>
<td>1</td>
<td>526.7</td>
</tr>
<tr>
<td>2</td>
<td>463.1</td>
</tr>
<tr>
<td>3</td>
<td>531.5</td>
</tr>
<tr>
<td>4</td>
<td>594.8</td>
</tr>
<tr>
<td>5</td>
<td>537.8</td>
</tr>
<tr>
<td>6</td>
<td>545.4</td>
</tr>
</tbody>
</table>

- DNA concentration (ng/µL)
 - Overall average: 443.5 ng/µL
 - Standard deviation: 133 ng/µL
 - Coefficient of variation: 30%

- Yield (total volume of DNA solution: 1 mL)
 - Overall average: 443.5 µg
 - Standard deviation: 133 µg
 - Coefficient of variation: 30%
4.4. Fragmentation of DNA

The size of the extracted DNA was evaluated by agarose gel electrophoresis; 1 µL of the DNA solution were analysed on a 1.0% agarose gel (Figure 1).

The eighteen genomic DNA samples extracted as described above appeared as distinct fluorescent banding patterns migrating through the gel corresponding to high molecular weight DNA. None of the DNA samples showed indications of significant degradation ('smearing').

Figure 1. Agarose gel electrophoresis of eighteen genomic DNA samples extracted from maize seeds. Lanes 1-6: samples extracted on day 1; lanes 7-12 samples extracted on day 2; lanes 13-18 samples extracted on day 3; lane 19: 1 kb DNA molecular weight marker (MWM).

4.5. Purity/Absence of PCR inhibitors

In order to assess the purity and to confirm the absence of PCR inhibitors, the extracted DNA solutions were adjusted to a concentration of 50 ng/µL (hereafter referred as “undiluted” samples).

Subsequently fourfold serial dilutions of each extract were prepared with 0.2x TE buffer (1:4, 1:16, 1:64, 1:256) and analysed using a real-time PCR system detecting the target sequence of the maize endogenous control gene, *hmg (high mobility group)*. The Ct values obtained for “undiluted” and diluted DNA samples are reported in the Table 2.
Table 2. Ct values of undiluted and fourfold serially diluted DNA extracts after amplification of the maize endogenous gene, hmgl. Yellow boxes for samples extracted on day 1, green boxes for samples extracted on day 2 and blue boxes for samples extracted on day 3.

<table>
<thead>
<tr>
<th>DNA extract</th>
<th>Undiluted (50 ng/µL)</th>
<th>Diluted 1:4</th>
<th>1:16</th>
<th>1:64</th>
<th>1:256</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.88</td>
<td>25.64</td>
<td>27.65</td>
<td>29.44</td>
<td>31.43</td>
</tr>
<tr>
<td>2</td>
<td>23.56</td>
<td>25.70</td>
<td>27.59</td>
<td>29.26</td>
<td>31.38</td>
</tr>
<tr>
<td>3</td>
<td>23.53</td>
<td>25.46</td>
<td>27.71</td>
<td>29.68</td>
<td>31.52</td>
</tr>
<tr>
<td>4</td>
<td>23.89</td>
<td>25.56</td>
<td>27.43</td>
<td>29.75</td>
<td>31.49</td>
</tr>
<tr>
<td>5</td>
<td>24.10</td>
<td>25.78</td>
<td>27.59</td>
<td>29.06</td>
<td>31.43</td>
</tr>
<tr>
<td>6</td>
<td>23.89</td>
<td>25.74</td>
<td>27.52</td>
<td>29.18</td>
<td>31.70</td>
</tr>
<tr>
<td>1</td>
<td>23.72</td>
<td>25.30</td>
<td>27.35</td>
<td>28.97</td>
<td>31.08</td>
</tr>
<tr>
<td>2</td>
<td>23.51</td>
<td>25.82</td>
<td>27.73</td>
<td>29.48</td>
<td>31.51</td>
</tr>
<tr>
<td>3</td>
<td>23.61</td>
<td>25.37</td>
<td>27.99</td>
<td>29.87</td>
<td>31.78</td>
</tr>
<tr>
<td>4</td>
<td>23.55</td>
<td>25.26</td>
<td>27.20</td>
<td>29.52</td>
<td>31.55</td>
</tr>
<tr>
<td>5</td>
<td>23.77</td>
<td>25.67</td>
<td>27.51</td>
<td>29.37</td>
<td>31.93</td>
</tr>
<tr>
<td>6</td>
<td>23.41</td>
<td>25.86</td>
<td>27.31</td>
<td>29.24</td>
<td>31.23</td>
</tr>
<tr>
<td>1</td>
<td>23.49</td>
<td>25.09</td>
<td>27.62</td>
<td>29.71</td>
<td>31.72</td>
</tr>
<tr>
<td>2</td>
<td>23.79</td>
<td>25.95</td>
<td>27.90</td>
<td>29.76</td>
<td>31.77</td>
</tr>
<tr>
<td>3</td>
<td>23.71</td>
<td>25.47</td>
<td>27.73</td>
<td>29.50</td>
<td>31.47</td>
</tr>
<tr>
<td>4</td>
<td>23.73</td>
<td>25.44</td>
<td>27.45</td>
<td>29.92</td>
<td>31.81</td>
</tr>
<tr>
<td>5</td>
<td>23.88</td>
<td>25.64</td>
<td>27.42</td>
<td>29.23</td>
<td>31.75</td>
</tr>
<tr>
<td>6</td>
<td>23.58</td>
<td>25.89</td>
<td>27.96</td>
<td>30.12</td>
<td>32.03</td>
</tr>
</tbody>
</table>

Table 3 below reports the comparison of extrapolated Ct values versus measured Ct values for all samples and the values of linearity (R^2) and slope of all measurements.

To measure inhibition, the Ct values of the four diluted samples were plotted against the logarithm of the dilution and the Ct value for the “undiluted” sample (50 ng/µL) was extrapolated from the equation calculated by linear regression.

Subsequently the extrapolated Ct for the “undiluted” sample was compared with the measured Ct. The evaluation is carried out considering that PCR inhibitors are present if the measured Ct value for the “undiluted” sample is > 0.5 cycles compared the calculated Ct value (ΔCt > 0.5). In addition, the slope of the curve should be between -3.6 and -3.1.
Table 3. Comparison of extrapolated Ct values versus measured Ct values (amplification of maize *hmg* gene).

<table>
<thead>
<tr>
<th>DNA extraction</th>
<th>R²</th>
<th>Slope*</th>
<th>Ct extrapolated</th>
<th>mean Ct measured</th>
<th>∆Ct**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.998</td>
<td>-3.18</td>
<td>23.75</td>
<td>23.88</td>
<td>0.13</td>
</tr>
<tr>
<td>2</td>
<td>0.995</td>
<td>-3.11</td>
<td>23.79</td>
<td>23.56</td>
<td>0.23</td>
</tr>
<tr>
<td>3</td>
<td>0.997</td>
<td>-3.35</td>
<td>23.55</td>
<td>23.53</td>
<td>0.03</td>
</tr>
<tr>
<td>4</td>
<td>0.996</td>
<td>-3.34</td>
<td>23.53</td>
<td>23.89</td>
<td>0.36</td>
</tr>
<tr>
<td>5</td>
<td>0.987</td>
<td>-3.10</td>
<td>23.76</td>
<td>24.10</td>
<td>0.33</td>
</tr>
<tr>
<td>6</td>
<td>0.989</td>
<td>-3.25</td>
<td>23.64</td>
<td>23.89</td>
<td>0.24</td>
</tr>
<tr>
<td>1</td>
<td>0.997</td>
<td>-3.149</td>
<td>23.43</td>
<td>23.72</td>
<td>0.28</td>
</tr>
<tr>
<td>2</td>
<td>0.999</td>
<td>-3.127</td>
<td>23.93</td>
<td>23.51</td>
<td>0.42</td>
</tr>
<tr>
<td>3</td>
<td>0.992</td>
<td>-3.507</td>
<td>23.47</td>
<td>23.61</td>
<td>0.13</td>
</tr>
<tr>
<td>4</td>
<td>0.997</td>
<td>-3.516</td>
<td>23.09</td>
<td>23.55</td>
<td>0.46</td>
</tr>
<tr>
<td>5</td>
<td>0.991</td>
<td>-3.427</td>
<td>23.46</td>
<td>23.77</td>
<td>0.31</td>
</tr>
<tr>
<td>6</td>
<td>0.995</td>
<td>-2.995</td>
<td>23.90</td>
<td>23.41</td>
<td>0.49</td>
</tr>
<tr>
<td>1</td>
<td>0.995</td>
<td>-3.598</td>
<td>23.15</td>
<td>23.49</td>
<td>0.35</td>
</tr>
<tr>
<td>2</td>
<td>0.999</td>
<td>-3.212</td>
<td>24.01</td>
<td>23.79</td>
<td>0.22</td>
</tr>
<tr>
<td>3</td>
<td>0.996</td>
<td>-3.278</td>
<td>23.61</td>
<td>23.71</td>
<td>0.10</td>
</tr>
<tr>
<td>4</td>
<td>0.996</td>
<td>-3.582</td>
<td>23.26</td>
<td>23.73</td>
<td>0.46</td>
</tr>
<tr>
<td>5</td>
<td>0.991</td>
<td>-3.345</td>
<td>23.47</td>
<td>23.88</td>
<td>0.41</td>
</tr>
<tr>
<td>6</td>
<td>0.998</td>
<td>-3.412</td>
<td>23.87</td>
<td>23.58</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Note: In yellow boxes samples from 1 to 6 extracted on day 1; in green boxes samples from 1-6 extracted on day 2; in blue boxes samples from 1-6 extracted on day 3.

*The expected slope for a PCR with 100% efficiency is -3.32

**delta Ct = abs (Ct extrapolated - Ct measured)

All ∆Ct values of extrapolated versus measured Ct are < 0.5.

R² of linear regression is > 0.99 for all DNA samples except two samples extracted on day 1: the sample 5 (0.987) and the sample number 6 (0.989). The slopes of the curve are all between -3.1 and -3.6, with one exception: the sample number 6 extracted on day 2, with a value of -2.995.

5. Conclusion

The data reported confirm that the extraction method, applied to samples of food and feed provided by the applicant, produces DNA of suitable quantity and quality for subsequent PCR based detection applications.

The method is consequently applicable to samples of maize seeds provided as samples of food and feed in accordance with the requirements of Annex I-2.C.2 to Commission Regulation (EC) No 641/2004.
6. Quality assurance

The CRL-GMFF carries out all operations according to ISO 9001:2000 (certificate number: CH-32232) and ISO 17025:2005 (certificate number: DAC-PL-0459-06-00) [DNA extraction, qualitative and quantitative PCR in the area of Biology (DNA extraction and PCR method validation for the detection and identification of GMOs in food and feed materials)].

7. References

Abstract
The JRC as Community Reference Laboratory for Genetically Modified Food and Feed (CRL-GMFF), established by Commission Regulation (EC) No 1829/2003, in collaboration with the European Network of GMO Laboratories (ENGL), has carried out a collaborative study to assess the performance of a quantitative event-specific method to detect and quantify the LY038 transformation event in maize DNA (unique identifier REN-ØØØ38-3). The collaborative trial was conducted according to internationally accepted guidelines.

In accordance with Commission Regulation (EC) No 1829/2003 of 22 September 2003 on genetically modified food and feed and with Commission Regulation (EC) No 641/2004 of 6 April 2004 on detailed rules for the implementation of Regulation (EC) No 1829/2003, Renessen provided the detection method and the samples (maize seeds containing the transformation event and conventional maize seeds). The JRC prepared the validation samples (calibration samples and blind samples at unknown GM percentage [DNA/DNA]). The collaborative trial involved twelve laboratories from ten European countries.

The results of the international collaborative trial met the ENGL performance requirements. The method is therefore considered applicable to the control samples provided, in accordance with the requirements of Annex I-2.C.2 to Commission Regulation (EC) No 641/2004.
The mission of the JRC is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of EU policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, whether private or national.