Pilot Study in Europe
for the Global Forest Remote Sensing Survey
L. Seebach, P. Strobl, P. Vogt, J. San-Miguel-Ayanz, P. Kempeneers,
F. Sedano, A. Gerrand
The mission of the JRC-IES is to provide scientific-technical support to the European Union's policies for the protection and sustainable development of the European and global environment.

European Commission
Joint Research Centre
Institute for Environment and Sustainability

Contact information
Address: Lucia Seebach, Joint Research Centre, Via E. Fermi 2749, I-21027 Ispra (VA), Italy
E-mail: lucia.seebach@jrc.ec.europa.eu
Tel.: +39-0332-786326
Fax: +39-0332-786165

http://ies.jrc.ec.europa.eu/
http://www.jrc.ec.europa.eu/

Legal Notice
Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

Europe Direct is a service to help you find answers to your questions about the European Union

Freephone number (*):
00 800 6 7 8 9 10 11

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/

JRC 59258
EUR 24488 EN
ISSN 1018-5593
doi:10.2788/58771

Luxembourg: Publications Office of the European Union
© European Union, 2010
Reproduction is authorised provided the source is acknowledged

Printed in Italy
Table of Content

1. **Introduction** .. 4
 1.1 General overview of the RSS of FRA2010 ... 4
 1.2 The European Approach for FRA2010 ... 4

2. **Area of interest – Europe** ... 5

3. **Input data** .. 6
 3.1 Satellite imagery ... 6
 3.2 JRC Forest cover maps 1990 and 2000 ... 7

4. **Forest cover change approach** ... 9
 4.1 Scene selection and tile extraction .. 9
 4.2 Post-classification approach .. 10
 4.2.1 General challenges for post-classification change detection 10
 4.2.2 Methodology shown on synthetic samples .. 11

5. **Results and Discussion** ... 14

6. **References** .. 17

Annex A – European countries representatives in the pilot study
Annex B – Technical specifications of forest/non-forest map 2000
Annex C – Definition of ETRS-LAEA
Annex D – Metadata of Pilot samples
1 Introduction

1.1 General overview of the RSS of FRA2010

The FRA 2010 Remote Sensing Survey (RSS) is using satellite remote sensing of the Earth’s surface to improve information on worldwide tree cover and forest land use. The main goal is to obtain better information on the distribution and changes in forest cover and forest land use from 1990 to 2000 and 2005 at regional, ecozone and global levels. Satellite data enables consistent information to be collected globally and the analysis can be done in the same way for different times to get better estimates of change.

FAO has led remote sensing studies on forests in past FRA reports in 1990 and 2000, focussed on tropical forests. This new study will be more comprehensive with satellite images collected globally. JRC has also done extensive work on forest extent and change in Europe and across the tropics. FAO and JRC are working in partnership to implement the FRA Remote Sensing Survey globally building on their respective expertise and strengths in particular topics and regions. Of the global total 13,689 samples, JRC is processing samples covering European countries and across the humid tropics (approximately 40% of the total), and FAO is processing all other countries in the world (approximately 60%). This report outlines the work done in Europe by the JRC European FOREST group and a Pilot study to test the data and techniques that can be used for Europe for the FRA RSS.

1.2 The European Approach for FRA2010

In Europe, the FOREST group of the Joint Research Centre (JRC) has recently developed high-resolution (25m) pan-European forest cover maps of the year 2000 (Pekkarinen, Reithmaier et al. 2009)) and for years 1990 and 2006. The maps for 1990 and 2000 are based on Landsat imagery and Corine land cover information data (JRC 2005), which is available for most of the European area. Based on these spatial forest information data sets we are able to assess forest cover change in Europe using a post-classification approach. Post-classification change detection is a comparative analysis of classifications based on images from different years. It is reported to be less sensitive to spectral variations than direct image-to-image comparison (Mas 1999).

In order to focus on reliable forest changes and to reduce uncertainties e.g. due to input qualities or misregistration of the time series, the FOREST group has developed a new post-classification change detection approach. This approach provides robust forest cover change detection, less sensitive to input data quality, by integrating morphological spatial pattern analysis (MSPA) of the forest (Soille and Vogt 2009). The overall objective is to reliably detect forest cover loss or gain of more than about one hectare.

The pilot study in Europe was aimed to test and improve the change algorithm developed at the JRC based on years 2000 and 1990. For that reason a Task Force was created in which
remote sensing experts of seven countries participated (See ANNEX). Two meetings were held (March and June 2009) at the JRC where, with the help of the participants, the change algorithm was finalized. This change algorithm and the preceding steps are explained in this document.

The forest cover map for the year 2006 was still under development at the time of the pilot study. This map has been finalised in early 2010 based on a mixture of SPOT4/5 and IRS-P6 imagery. It will be used in the final RSS FRA2010 to detect forest cover change between the years 2000 and 2006.

2 Area of interest – Europe

Based on the RSS global sampling grid of latitude and longitude junctions, Europe has 730 sample sites. Each of these sites covers a 10 by 10 kilometer square which is used for further analysis (FAO, JRC et al. 2009). In Europe, these samples are located in 36 countries and are spread over forests exposed to a variety of climatic, geographic and ecological as well as socio-economic conditions. Ecologically, forests in Europe belong to several biogeographic zones, ranging from subarctic to Mediterranean and from alpine to lowlands.

The samples for the pilot study were chosen in order to get a representative set from these different forest zones. However, some of the selected samples were not ideal for testing the forest change approach due to cloud cover or seasonality of the available data, therefore additional samples were selected (see Section 4). In total 44 sample locations spread over fifteen countries (Figure 1) were used for the testing of change detection methodology in Europe.
Figure 1: Coverage of FRA2010 sample areas in Europe processed by JRC FOREST Action

3 Input data

3.1 Satellite imagery

For the interpretation and classification of forest cover in Europe in 1990 and 2000, freely available Landsat data sets with pan-European coverage were employed. For year 2000, two data sets were used, i.e. the NASA’s Global Orthorectified Landsat Data Set (Tucker, Grant et al. 2004) available at the Global Land Cover Facility (GLCF)\(^1\) and the IMAGE2000 data set\(^2\) (EC-JRC 2005). Both data sets comprise Landsat 7 ETM+ scenes for the target year 2000 (time range 1999 – 2002). The final input image data set for Europe consists of 415 Landsat ETM+ scenes, 285 of which were downloaded from the GLCF and 130 of which were found in the IMAGE2000 set.

For the epoch 1990, only images from the GLCF were used. For the pan-European coverage of year 1990, 491 Landsat TM scenes from the years 1985–1995 were processed. Preference was given to scenes close to 1990 but the wider range of dates was needed to find scenes with less clouds or better season for forest detection.

\(^1\) http://www.landcover.org
All the scenes were re-projected to European Terrestrial Reference System 1989 and Lambert Azimuthal Equal Area (ETRS-LAEA) projection (Annoni, Luzet et al. 2003) and resampled using a cubic convolution interpolation to 25m pixel size.

3.2 JRC Forest cover maps 1990 and 2000

The high resolution pan-European forest cover maps 2000 and 1990 were developed by the JRC in order to address the current need for high resolution information on the spatial distribution of the European forests. The JRC forest cover maps provide forest cover information which is consistent over Europe, independent of national boundaries and with a higher spatial detail than previously available.

The processing which was first developed for year 2000 was based on a scene by scene approach and consisted of a preparatory phase and the actual mapping. Within the preparatory phase a cloud mask was computed for each input scene based on a two step approach. The first step aimed to detect all potential cloud and shadow pixels over the radiometric calibrated image using an in-house algorithm developed following the approach proposed by Baraldi et al. (2006). Due to the general high amount of commission as well as omission errors the direct use of the resulting cloud/shadow masks remained problematic and needed to be post-processed with an algorithm based on morphological and topological methods suitable to clean the result. The refined cloud masks were then used in the actual mapping phase.

The actual mapping consisted of several phases including image segmentation, clustering, adaptive spectral representativity analysis (ASRA) and training data extraction. As training data, CORINE Land Cover (CLC) 2000 and 1990 were used. The CLC nomenclature includes 44 land cover and land use classes covering the agricultural as well as the urban and natural sector. The smallest unit identified in CLC is 25 ha leading to a merge of all land cover patches smaller than 25 ha with the surrounding dominant land cover patches. The supervised classification of the input imagery was conducted at the segment-level using the extracted final training data set and a nearest neighbour classifier. The individual classified images were then merged into pan-European mosaics (Pekkarinen, Reithmaier et al. 2009).

For year 2000, the final forest cover map (Figure 2) was validated with an independent point data set, the LUCAS (European Land Use/Cover Area Frame Statistical Survey) field survey points for year 2001 which was provided by the Statistical Office of the European Communities (Eurostat) for 15 European Union (EU15) countries (Eurostat 2005). The underlying forest definition of the LUCAS2001 survey follows the forest definition of the Food and Agricultural Organization (FAO) of the United Nations: “Areas of more than 0.5 ha covered by trees with a tree-crown area density of more than 10% capable of achieving more than 5m in height” (Duhamel, Eiden et al. 2003). Based on 73917 samples the overall accuracy exceeded 90% and the user accuracy for forests reached 85% (Pekkarinen et al.

² http://image2000.jrc.it/
For the 1990 forest map so far no thorough validation could be carried out due to the lack of appropriate reference data set. Only for Germany (old West German states) a validation was performed based on National Forest Inventory data which resulted in an overall accuracy exceeding the target of 85%.

Since the JRC forest cover maps are produced in a fully automated manner from remote sensing, the forest delineated in the maps only represents forest as a land cover and not forest as a land use. Forest cover or land cover in general refers directly to biophysical attributes of the land surface which can be detected by satellites. Forest in FAO land use terms includes land such as “temporarily unstocked” or “regeneration areas”. Very small trees will be classified as non-forest using the remote sensing data and automated processing. In order to achieve a land use map of forests, local expert knowledge and often intensive manual post-processing is necessary.

Figure 2: JRC Forest Cover Map 2000.
4 Forest cover change approach

4.1 Scene selection and tile extraction

For the forest cover change assessment, the best possible combination of forest cover map samples has to be selected according to the properties of the underlying satellite image scene. The impact of illumination and vegetation phenology differences on the change detection can be partially reduced by selecting data from the same time of the year (Mas 1999). However, the availability of imagery for this project was restricted to the database of GLCF. The presence of clouds in some of the images acquired at good time conditions forced these images to be replaced with images from less appropriate acquisition dates. The final selection of the images was therefore based on the criteria: seasonality, cloud coverage within the sample tile and the sensor type.

We developed a set of guidelines for the selection of appropriate images for different zones in Europe. The definition of these zones was based on biogeographic regions (Eurostat 2003) and on the Global Administrative Unit Layers GAUL:(FAO 2006). As a final result (Figure 3) eleven regions were identified depending on their biogeographic region and geographic location.

![Figure 3: Enhanced biographic regions for Acquisition window definitions](image)

For each zone three acquisition windows were defined representing ideal (narrow window), good (extended window) and acceptable (extreme window) acquisition dates for land cover classification (Table 1). The first two windows were adapted from national expert knowledge.
of the Image2000 campaign (JRC 2005). Images falling outside of these three windows were considered not suitable for this project and labelled ‘out of season’.

Table 1: Acquisition windows defined for enhanced biogeographic regions

<table>
<thead>
<tr>
<th>ID</th>
<th>REGION</th>
<th>NARROW Window</th>
<th>EXTENDED Window</th>
<th>EXTREME Window</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>START DAY MONTH : END DAY MONTH</td>
<td>START DAY MONTH : END DAY MONTH</td>
<td>START DAY MONTH : END</td>
</tr>
<tr>
<td>1</td>
<td>alpine_central</td>
<td>1 8 31 8</td>
<td>1 7 15 9</td>
<td>1 5 15 10</td>
</tr>
<tr>
<td>2</td>
<td>alpine_nord</td>
<td>15 7 15 8</td>
<td>15 6 1 9</td>
<td>1 6 15 9</td>
</tr>
<tr>
<td>3</td>
<td>alpine_south</td>
<td>1 7 15 8</td>
<td>1 6 30 9</td>
<td>1 5 15 10</td>
</tr>
<tr>
<td>4</td>
<td>boreal_north</td>
<td>1 7 15 8</td>
<td>15 6 31 8</td>
<td>15 5 15 9</td>
</tr>
<tr>
<td>5</td>
<td>boreal_south</td>
<td>1 6 15 8</td>
<td>1 6 15 9</td>
<td>15 4 31 9</td>
</tr>
<tr>
<td>6</td>
<td>atlantic_north</td>
<td>1 6 30 8</td>
<td>1 5 30 9</td>
<td>1 4 30 10</td>
</tr>
<tr>
<td>7</td>
<td>atlantic_south</td>
<td>1 7 15 9</td>
<td>15 6 30 9</td>
<td>1 5 30 10</td>
</tr>
<tr>
<td>8</td>
<td>mediterranean</td>
<td>15 6 15 7</td>
<td>1 6 30 9</td>
<td>1 5 15 10</td>
</tr>
<tr>
<td>9</td>
<td>continental_north</td>
<td>15 7 31 8</td>
<td>1 6 30 9</td>
<td>1 5 30 10</td>
</tr>
<tr>
<td>10</td>
<td>continental_south</td>
<td>15 6 15 8</td>
<td>1 6 30 9</td>
<td>1 5 30 10</td>
</tr>
<tr>
<td>11</td>
<td>arctic</td>
<td>1 7 15 8</td>
<td>1 7 15 8</td>
<td>15 6 1 9</td>
</tr>
</tbody>
</table>

First priority was given to cloud–free images within the narrow window and then within the extended window. When no cloud–free images were available within narrow and extended window, images within the extreme window were accepted. For 1990, Landsat 5 data was preferred over Landsat 4.

After the selection process, several images of the pilot study (14%) still remained with high cloud cover of (more than 5%) or were labelled ‘out of season’ (ANNEX). These images were therefore excluded for the pilot study.

Forest cover maps are produced from the selected images and the samples are extracted at each of the latitude and longitude junction in Europe by 10x10 km for each year. They were then checked for gross co–registration errors to reduce erroneous forest change using pixel wise cross–correlation. If the co–registration could be improved, shifts by integer number of pixels were performed.

4.2 Post–classification approach

4.2.1 General challenges for post–classification change detection

In post–classification change detection approaches, most problems associated with atmospheric and sensor differences are reduced (Mas 1999). But, the change identified between two classified maps will not be more reliable than the product of the accuracies of each of the individual classification (Singh 1989).

A major source for uncertainty for all change detection techniques is misregistration of the image pairs, in particular in very fragmented areas. The co–registration of image pairs is seldom better than half a pixel on average, going up to two pixels in several cases. In addition, image data are usually re–sampled and/or cropped to the region of interest of specific users. These processes inevitably introduce a displacement of the original image features. As a consequence they are likely to produce false changes (especially along edges) and a significant overestimation of total change.
An approach to account for this uncertainty along boundaries was proposed by (Serra, Pons et al. 2003). In order to eliminate these uncertain areas they applied an erosion procedure. This procedure increases the reliability of the resulting changes, but risks underestimation of the change area.

For the present study, we intend to develop a robust post-classification change assessment. The major objective is to identify contiguous areas of forest cover change of 1 hectare or more. The method accounts for the uncertainty of the change estimates, while keeping the initial shape of changed objects. This is a more detailed analysis than used by the FRA RSS elsewhere in the world which is aiming for a 5 ha minimum mapping unit (FAO et al. 2009). The justification for using the smaller area in Europe is that due to the fine scale of fragmentation and small changes in many areas, the larger threshold would "hide" many of the changes in Europe and either shows no changes or significantly underestimating the change area.

4.2.2 Methodology shown on synthetic samples

The principles of post-classification change detection method we applied to the forest maps are illustrated on simplified synthetic data samples showing simulated forest cover distribution for two years (1990 and 2000). The first two plates in the first row display ‘ideal’ forest cover maps for two periods. The corresponding plates in the second row correspond to a more realistic scenario in which some small patches have been added to maps from the two periods. These small patches represent noise, classification artifacts and/or non-relevant features (Figure 4). The rightmost plates show the corresponding changes as they result from a simple overlay of these two sets are displayed as forest gain (green), loss (red) constant forest (dark gray) and constant non-forest (light gray).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IDEAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REALISTIC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4: Synthetic samples of forest cover maps for year 1990 and 2000 and their changes resulting from their simple overlay (green: gain, red: loss, dark grey: constant forest, light grey: constant non-forest)
While the number of change objects (gains or losses) in the ideal case is limited to real cover change, the presence of noise in the realistic scenario results is a clear overestimation of the cover change area. A visual interpreter would be able to differentiate between areas of ‘relevant’ change and those of changes triggered by artifacts or negligible. However this is unfeasible for large amount of data across an area as large as Europe. We propose an automatic tool to screen large number of change patterns based on spatial and contextual properties from existing classified forest cover maps. The method proposed is aimed to detect and reconstruct change areas under realistic conditions discarding all noise related change objects.

Figure 5: Flowchart of the post-classification change algorithm. First step: Core change identification, second step: Reconstruction of change areas

The methodology is based on morphological image processing and includes two consecutive steps (Figure 5). The first step accounts for the fact that changes detected close to object boundaries in classified images are more prone to be caused by misregistration or classification errors than those occurring within larger homogeneous areas. Therefore, all areas within a chosen distance to a boundary are excluded from the change analysis. This is implemented by morphological erosion which is applied to both forest and non forest areas in the map. Overlaying the remaining cores of forest and non–forest allows the identification of areas which have changed from one core type to the other. These core-to-core changes are considered to be the most reliable indication of a real change in the land cover. In the second step the core changes serve as seeds for the reconstruction of the full extent of the change areas.
Figure 6 displays the process for the reconstruction of the change map: As underlying image of the simple overlay of the original maps containing all real and irrelevant change objects (contiguous pixels) is used. All change objects of the underlying image are tagged and kept if a core change, i.e. seed intersects with objects of the simple change. The remaining ones are considered as noise and therefore discarded.

<table>
<thead>
<tr>
<th></th>
<th>Simple Change</th>
<th>Seeds</th>
<th>Reconstructed</th>
</tr>
</thead>
<tbody>
<tr>
<td>REALISTIC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6: Illustration of reconstruction of change objects using simple change images and core changes as seeds.

Small holes in the tagged change objects are then filled in order to create homogeneous contiguous objects. Those reconstructed objects are then considered as the final robust change product.
5 Results and Discussion

The newly developed change algorithm was applied to all pilot sample tiles. Figure 7 illustrates on Tile e022n46 the reduced amount of change objects. The remaining change objects showed to be contiguous forest cover changes. Small and linear change objects present in the simple change were filtered out.

<table>
<thead>
<tr>
<th>Tile e022n46</th>
<th>Simple Change</th>
<th>Reconstructed change</th>
</tr>
</thead>
</table>

Figure 7: Differences in the amount of change objects between simple change overlay and the reconstructed change. Green: forest gain, red: forest loss

In Table 2 the amount of reduction due to the new change algorithm is shown. While the simple change overlay created, for all pilot sample tiles, more than 1600 change objects on average, the reconstructed change algorithm delivered only 90 objects. This represents a reduction of about 93% with major benefits for checking the results. For all sample tiles the major part (~80%) of all change objects in the simple overlay were less than 1 hectare. The new change algorithm filtered all these small change objects out. Still, the new change algorithm is preserving a high number (50%) of changed objects of less than 5 hectares. This is important, since we expect the forest cover changes in Europe to be on a small scale. However, it should be noted that this reduction of small objects is not equivalent to a simple filtering. The small objects are reduced if they do not contain a core forest of about one hectare. Therefore, change objects with linear structures (more likely to be caused by misregistration) are neglected, while contiguous forest change areas are kept as they are considered to be reliable changes.
Table 2: Resulting change objects of the simple change and reconstructed change.

<table>
<thead>
<tr>
<th>TILE</th>
<th>Simple Change - Objects</th>
<th>Reconstructed Change - Objects</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>< 1ha [%]</td>
<td>< 5ha [%]</td>
</tr>
<tr>
<td>e001n45</td>
<td>3035</td>
<td>85.2</td>
<td>97.0</td>
</tr>
<tr>
<td>e002n42</td>
<td>1591</td>
<td>84.5</td>
<td>97.0</td>
</tr>
<tr>
<td>e002n46</td>
<td>3252</td>
<td>87.0</td>
<td>98.5</td>
</tr>
<tr>
<td>e002n48</td>
<td>1701</td>
<td>83.8</td>
<td>95.5</td>
</tr>
<tr>
<td>e005n47</td>
<td>1469</td>
<td>84.3</td>
<td>95.8</td>
</tr>
<tr>
<td>e006n47</td>
<td>1301</td>
<td>78.9</td>
<td>93.2</td>
</tr>
<tr>
<td>e008n47</td>
<td>3409</td>
<td>90.6</td>
<td>99.2</td>
</tr>
<tr>
<td>e009n41</td>
<td>1810</td>
<td>84.0</td>
<td>95.6</td>
</tr>
<tr>
<td>e009n47</td>
<td>1702</td>
<td>85.5</td>
<td>98.0</td>
</tr>
<tr>
<td>e009n56</td>
<td>1723</td>
<td>84.9</td>
<td>96.7</td>
</tr>
<tr>
<td>e010n47</td>
<td>2386</td>
<td>85.8</td>
<td>97.3</td>
</tr>
<tr>
<td>e011n43</td>
<td>1343</td>
<td>77.1</td>
<td>93.5</td>
</tr>
<tr>
<td>e012n56</td>
<td>1128</td>
<td>80.8</td>
<td>94.2</td>
</tr>
<tr>
<td>e014n47</td>
<td>1129</td>
<td>77.5</td>
<td>94.9</td>
</tr>
<tr>
<td>e014n58</td>
<td>909</td>
<td>89.4</td>
<td>97.2</td>
</tr>
<tr>
<td>e015n47</td>
<td>2634</td>
<td>87.4</td>
<td>98.4</td>
</tr>
<tr>
<td>e015n48</td>
<td>2572</td>
<td>81.8</td>
<td>96.3</td>
</tr>
<tr>
<td>e016n38</td>
<td>1189</td>
<td>82.8</td>
<td>94.5</td>
</tr>
<tr>
<td>e016n41</td>
<td>1167</td>
<td>81.7</td>
<td>95.6</td>
</tr>
<tr>
<td>e016n47</td>
<td>2541</td>
<td>88.7</td>
<td>99.4</td>
</tr>
<tr>
<td>e016n48</td>
<td>2244</td>
<td>86.9</td>
<td>96.8</td>
</tr>
<tr>
<td>e018n64</td>
<td>1874</td>
<td>83.3</td>
<td>96.4</td>
</tr>
<tr>
<td>e021n40</td>
<td>744</td>
<td>86.7</td>
<td>98.0</td>
</tr>
<tr>
<td>e022n46</td>
<td>3128</td>
<td>90.2</td>
<td>97.5</td>
</tr>
<tr>
<td>e024n54</td>
<td>244</td>
<td>77.5</td>
<td>93.9</td>
</tr>
<tr>
<td>e024n62</td>
<td>1801</td>
<td>88.5</td>
<td>96.8</td>
</tr>
<tr>
<td>e024n67</td>
<td>1248</td>
<td>82.1</td>
<td>93.5</td>
</tr>
<tr>
<td>e026n63</td>
<td>2209</td>
<td>83.1</td>
<td>95.3</td>
</tr>
<tr>
<td>e028n64</td>
<td>2027</td>
<td>85.8</td>
<td>95.7</td>
</tr>
<tr>
<td>e028n65</td>
<td>1471</td>
<td>83.7</td>
<td>96.0</td>
</tr>
<tr>
<td>e033n35</td>
<td>2322</td>
<td>83.5</td>
<td>96.1</td>
</tr>
<tr>
<td>w001n39</td>
<td>1251</td>
<td>81.0</td>
<td>93.8</td>
</tr>
<tr>
<td>w001n43</td>
<td>507</td>
<td>76.9</td>
<td>95.5</td>
</tr>
<tr>
<td>w002n38</td>
<td>1510</td>
<td>88.5</td>
<td>97.7</td>
</tr>
<tr>
<td>w002n53</td>
<td>1181</td>
<td>81.3</td>
<td>95.2</td>
</tr>
<tr>
<td>w003n42</td>
<td>418</td>
<td>80.1</td>
<td>94.5</td>
</tr>
<tr>
<td>w003n57</td>
<td>1577</td>
<td>80.9</td>
<td>95.2</td>
</tr>
<tr>
<td>w005n43</td>
<td>231</td>
<td>81.4</td>
<td>99.1</td>
</tr>
<tr>
<td>w006n37</td>
<td>558</td>
<td>66.5</td>
<td>93.5</td>
</tr>
<tr>
<td>w006n40</td>
<td>1112</td>
<td>83.4</td>
<td>95.6</td>
</tr>
<tr>
<td>w007n38</td>
<td>1454</td>
<td>83.8</td>
<td>93.6</td>
</tr>
<tr>
<td>w008n40</td>
<td>1606</td>
<td>79.1</td>
<td>93.8</td>
</tr>
</tbody>
</table>

Figure 7 illustrates an expected output for a sample tile. Change ‘to’ and ‘from’ forest cover are delineated. For tile e022n46 the resulting forest cover changes were visually checked and proved to be created due to forest management activities such as clear-cuts. However, in some areas of very open forest covers and mountainous areas the detected forest changes were overestimated due to spectral confusion with agricultural areas and illumination effects respectively. In addition, within the pilot study the major source of false changes was related to the forest cover maps for 1990.

The input data for the production of the forest map for 1990 had severe limitations. The quality of the imagery was far from ideal. Furthermore the spatial coverage of the training
data was limited (Corine 1990 does not cover the Scandinavian countries and the UK). For areas in which Corine 1990 was not available, Corine 2000 was used as training data. However, in particular in Scandinavian countries, land cover changes between the two Corine datasets are larger and negatively influenced the training data extraction.

Tile e022n46: Romania forest cover change 1990 -

Figure 8: Forest cover change objects shown in one false colour image tile (left), right: Zoom of one change area (top) image 1990 and (bottom) image 2000 with overlay of change objects.

Because of these limitations, and in the follow-up of the pilot study, the forest cover map of 1990 was reprocessed with a new more robust algorithm.
6 References

Acknowledgements

Thanks to all participants of the workshops of the pilot study. We want to thank in particular all colleagues of the FOREST and TREES–3 group of the Joint Research Centre involved in preparing the data and algorithms.
ANNEX A – European countries representatives in the Pilot Study Task Force

<table>
<thead>
<tr>
<th>Name</th>
<th>Institute</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christian Ginzler</td>
<td>Swiss Federal Research Institute WSL</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Annemarie Bastrup-Birk</td>
<td>Danish Centre for Forest, Landscape and Planning</td>
<td>Danemark</td>
</tr>
<tr>
<td>Guillermo Fernandes Centeno</td>
<td>Subdirección General de Inventario del Patrimonio Natural y de la Biodiversidad</td>
<td>Spain</td>
</tr>
<tr>
<td>Anssi Pekkarinen</td>
<td>Finnish Forest Research Institute</td>
<td>Finland</td>
</tr>
<tr>
<td>Christoph Bauerhansl</td>
<td>Federal Research and Training Centre for Forests</td>
<td>Austria</td>
</tr>
<tr>
<td>Nicolas Stach</td>
<td>Direction de l'espace rural et de la forêt</td>
<td>France</td>
</tr>
<tr>
<td>Claude Vidal</td>
<td>Direction de l'espace rural et de la forêt</td>
<td>France</td>
</tr>
<tr>
<td>Nico Bonora</td>
<td>Instituto Superiore per la Protezione e la Ricerca Ambientale</td>
<td>Italy</td>
</tr>
<tr>
<td>Valter Sambucini</td>
<td>Instituto Superiore per la Protezione e la Ricerca Ambientale</td>
<td>Italy</td>
</tr>
</tbody>
</table>

ANNEX B – Technical Specifications of Forest/Non–Forest Map 2000

<table>
<thead>
<tr>
<th>Forest/Non-Forest Map Specification</th>
<th>Minimum Mapping Unit</th>
<th>Full pixel resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map Classes</td>
<td>1 - forest</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 - non-forest</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 - clouds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 - no data</td>
<td></td>
</tr>
<tr>
<td>Thematic Accuracy</td>
<td>> 85%</td>
<td>(against FAO definition, reference data LUCAS 2001)</td>
</tr>
<tr>
<td>Format</td>
<td>GeoTIFF 8-bit LZW compressed.</td>
<td></td>
</tr>
<tr>
<td>Data Basis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satellite Imagery</td>
<td>Landsat ETM+</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Global Land Cover Facility (GLCF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://glcfapp.umlacs.umd.edu:8080/esdl/index.jsp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Image2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://image2000.jrc.it/</td>
<td></td>
</tr>
<tr>
<td>Spatial Resolution</td>
<td>original 30m resolution resampled to 25m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(proposed INSPIRE standards)</td>
<td></td>
</tr>
<tr>
<td>Geometric Accuracy</td>
<td>RMS error less than 25m</td>
<td></td>
</tr>
<tr>
<td>Map Projection</td>
<td>ETRS89 Lambert Azimuthal Equal Area (ETRS-LAEA)</td>
<td></td>
</tr>
<tr>
<td>Acquisition date</td>
<td>1999 - 2002</td>
<td></td>
</tr>
<tr>
<td>Ancillary data</td>
<td>CORINE Land Cover 2000 (seamless Vector layer rasterized to 25m)</td>
<td></td>
</tr>
<tr>
<td>Coverage</td>
<td>EU27 plus BA, CH, CS, HR, MK, LI</td>
<td></td>
</tr>
<tr>
<td>Validation data</td>
<td>independent dataset (ortho-photos, googleEarth)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LUCAS data 2001 (EU15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>national forest inventories (NFI) (where available)</td>
<td></td>
</tr>
</tbody>
</table>
ANNEX C – Definition of ETRS-LAEA Coordinate Reference System

<table>
<thead>
<tr>
<th>Coordinate Reference System</th>
<th>Projection_name</th>
<th>ETRS-LAEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOGCS</td>
<td>Projection</td>
<td>Lambert Azimuthal Equal Area</td>
</tr>
</tbody>
</table>

Datum

- **ETRS89**

Spheroid

- **GRS80**
 - semi-major axis: 6378137
 - inverse flattening: 298.2572221

Parameters

- **False easting**: 4321000.0
- **False northing**: 3210000
- **Central Meridian**: 0.0
- **Latitude of origin**: 52N
- **Longitude of origin**: 10E
- **Unit**: "Meter", 1.0

epsg code: 3035

Reference

<table>
<thead>
<tr>
<th>TILE_ID</th>
<th>CNTR</th>
<th>LONG</th>
<th>LAT</th>
<th>YEAR 1990</th>
<th>YEAR 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>e001n45</td>
<td>FR</td>
<td>1</td>
<td>45</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>e002n42</td>
<td>ES</td>
<td>2</td>
<td>42</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e002n46</td>
<td>FR</td>
<td>2</td>
<td>46</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e002n48</td>
<td>FR</td>
<td>2</td>
<td>48</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e005n47</td>
<td>FR</td>
<td>5</td>
<td>47</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e006n47</td>
<td>FR</td>
<td>6</td>
<td>47</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e008n47</td>
<td>CH</td>
<td>8</td>
<td>47</td>
<td>1.4</td>
<td>0.0</td>
</tr>
<tr>
<td>e009n41</td>
<td>IT</td>
<td>9</td>
<td>41</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e009n47</td>
<td>CH</td>
<td>9</td>
<td>47</td>
<td>0.7</td>
<td>16.2</td>
</tr>
<tr>
<td>e009n47</td>
<td>IT</td>
<td>9</td>
<td>47</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e010n47</td>
<td>AT</td>
<td>10</td>
<td>47</td>
<td>1.7</td>
<td>0.6</td>
</tr>
<tr>
<td>e011n43</td>
<td>IT</td>
<td>11</td>
<td>43</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e012n56</td>
<td>DK</td>
<td>12</td>
<td>56</td>
<td>1.7</td>
<td>6.7</td>
</tr>
<tr>
<td>e014n47</td>
<td>AT</td>
<td>14</td>
<td>47</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e014n58</td>
<td>IT</td>
<td>16</td>
<td>38</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e016n47</td>
<td>AT</td>
<td>16</td>
<td>47</td>
<td>1.7</td>
<td>0.0</td>
</tr>
<tr>
<td>e016n47</td>
<td>AT</td>
<td>15</td>
<td>47</td>
<td>1.7</td>
<td>0.0</td>
</tr>
<tr>
<td>e016n47</td>
<td>AT</td>
<td>16</td>
<td>48</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e018n64</td>
<td>SE</td>
<td>18</td>
<td>64</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e021n40</td>
<td>GR</td>
<td>21</td>
<td>40</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e022n46</td>
<td>RO</td>
<td>22</td>
<td>46</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e024n54</td>
<td>LT</td>
<td>24</td>
<td>54</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e024n62</td>
<td>FI</td>
<td>24</td>
<td>62</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e024n67</td>
<td>FI</td>
<td>24</td>
<td>67</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e026n63</td>
<td>FI</td>
<td>26</td>
<td>63</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e028n64</td>
<td>FI</td>
<td>28</td>
<td>64</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e028n65</td>
<td>FI</td>
<td>28</td>
<td>65</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>e033n35</td>
<td>CY</td>
<td>33</td>
<td>35</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>w001n39</td>
<td>ES</td>
<td>-1</td>
<td>39</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>w011n43</td>
<td>FR</td>
<td>-1</td>
<td>43</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>w002n38</td>
<td>ES</td>
<td>-2</td>
<td>38</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>w002n53</td>
<td>UK</td>
<td>-2</td>
<td>53</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>w003n42</td>
<td>ES</td>
<td>-3</td>
<td>42</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>w003n57</td>
<td>UK</td>
<td>-3</td>
<td>57</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>w005n43</td>
<td>ES</td>
<td>-5</td>
<td>43</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>w006n37</td>
<td>ES</td>
<td>-6</td>
<td>37</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>w006n40</td>
<td>ES</td>
<td>-6</td>
<td>40</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>w007n38</td>
<td>ES</td>
<td>-7</td>
<td>38</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>w008n40</td>
<td>PT</td>
<td>-8</td>
<td>40</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>w008n43</td>
<td>ES</td>
<td>-8</td>
<td>43</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Abstract
In Europe, the FOREST group of the Joint Research Centre (JRC) has recently developed high-resolution (25m) pan-European forest cover maps of the year 2000 and for years 1990 and 2006. The maps for 1990 and 2000 are based on Landsat imagery and Corine land cover information data, which is available for most of the European area. Based on these spatial forest information data sets we are able to assess forest cover change in Europe using a new developed post-classification approach. This algorithm was tested in a pilot study for the Remote Sensing Survey of the Global Forest Resource Assessment (FRA2010) within Europe.
How to obtain EU publications

Our priced publications are available from EU Bookshop (http://bookshop.europa.eu), where you can place an order with the sales agent of your choice.

The Publications Office has a worldwide network of sales agents. You can obtain their contact details by sending a fax to (352) 29 29-42758.
The mission of the JRC is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of EU policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, whether private or national.