Event-specific Method for the
Quantification of Maize Event Bt11 Using
Real-time PCR

Validation Report and Protocol

C. Delobel, S. Larcher, M. Mazzara, G. Van den Eede
The mission of the JRC-IHCP is to protect the interests and health of the consumer in the framework of EU legislation on chemicals, food, and consumer products by providing scientific and technical support including risk-benefit assessment and analysis of traceability.

European Commission
Joint Research Centre
Institute for Health and Consumer Protection

Contact information
Address: Biotechnology and GMOs Unit
E-mail: JRC-BGMO@ec.europa.eu
Tel.: +39 0332 789378
Fax: +39 0332 786159

http://ihcp.jrc.ec.europa.eu/
http://www.jrc.ec.europa.eu/

Legal Notice
Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

Europe Direct is a service to help you find answers to your questions about the European Union

Freephone number (*):
00 800 6 7 8 9 10 11

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/

JRC48909

EUR 23649 EN
ISSN 1018-5593
DOI 10.2788/4370

Luxembourg: Office for Official Publications of the European Communities

© European Communities, 2008

Reproduction is authorised provided the source is acknowledged

Printed in Italy
Event-specific Method for the Quantification of Maize Event Bt11 Using Real-time PCR

Validation Report

20 June 2008

Joint Research Centre
Institute for Health and Consumer Protection
Biotechnology & GMOs Unit

Executive Summary

The JRC as Community Reference Laboratory for GM Food and Feed (CRL-GMFF), established by Regulation (EC) No 1829/2003, in collaboration with the European Network of GMO Laboratories (ENGL), has carried out a collaborative study to assess the performance of a quantitative event-specific method to detect and quantify the Bt11 transformation event in maize DNA (unique identifier SYN-BTØ11-1). The collaborative trial was conducted according to internationally accepted guidelines (1, 2).

In accordance with Regulation (EC) No 1829/2003 of 22 September 2003 on genetically modified food and feed and with Regulation (EC) No 641/2004 of 6 April 2004 on detailed rules for the implementation of Regulation (EC) No 1829/2003, Syngenta Seeds S.A.S. provided the detection method and the samples (genomic DNA of conventional maize and of maize event Bt11). The JRC prepared the validation samples (calibration samples and blind samples at unknown GM percentage [DNA/DNA]). The collaborative trial involved twelve laboratories from nine European countries.

The results of the international collaborative trial met the ENGL performance requirements. The method is therefore considered applicable to the control samples provided, in accordance with the requirements of Annex I-2.C.2 to Commission Regulation (EC) No 641/2004.

The results of the collaborative study are made publicly available at http://gmo-crl.jrc.it/.
Address of contact laboratory:
European Commission, Joint Research Centre
Institute for Health and Consumer Protection (IHCP)
Biotechnology and GMOs Unit – Community Reference Laboratory for GM Food and Feed
Via Fermi 2749, 21027 Ispra (VA) - Italy
Report on Steps 1-3 of the Validation Process

Syngenta Seeds S.A.S. submitted the detection method and control samples for maize event Bt11 (unique identifier SYN-BTØ11-1) in support to applications for maize Bt11xGA21, Bt11xMIR604 and Bt11xMIR604xGA21, submitted under Article 5 and 17 of Regulation (EC) No 1829/2003 of the European Parliament and of the Council "on genetically modified food and feed".

The Community Reference Laboratory for Genetically Modified Food and Feed (CRL-GMFF), following reception of the documentation and material, including control samples, (step 1 of the validation process) carried out the scientific assessment of documentation and data (step 2) in accordance to Commission Regulation (EC) No 641/2004 "on detailed rules for the implementation of Regulation (EC) No 1829/2003 of the European Parliament and of the Council as regards the application for the authorisation of new genetically modified food and feed, the notification of existing products and adventitious or technically unavoidable presence of genetically modified material which has benefited from a favourable risk evaluation” and according to its operational procedures (“Description of the CRL-GMFF Validation Process”, http://gmo-crl.jrc.it/guidancedocs.htm).

The scientific assessment focused on the method performance characteristics assessed against the method acceptance criteria set out by the European Network of GMO Laboratories and listed in the “Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing” (http://gmo-crl.jrc.it/guidancedocs.htm) (see Annex 1 for a summary of method acceptance criteria and method performance requirements). Upon reception of documentation and data, the scientific assessment of the detection method for event Bt11 was positively concluded in November 2007.

In November 2007, the CRL-GMFF verified experimentally the method characteristics (step 3, experimental testing of the samples and methods) by quantifying five blind GM levels within the range 0.09%-8.00% on genome copy number basis. The experiments were performed under repeatability conditions and demonstrated that the PCR efficiency, linearity, accuracy and precision of the quantifications were within the limits established by the ENGL. The DNA extraction module of the method was previously tested on samples of food and feed and a report published on the CRL-GMFF web site on 20th April 2007 (http://gmo-crl.jrc.it/statusofdoss.htm).

A Technical Report summarising the results of tests carried out by the CRL-GMFF (step 3) is available on request.
Content

1. INTRODUCTION .. 5
2. SELECTION OF PARTICIPATING LABORATORIES ... 6
3. MATERIALS ... 7
4. EXPERIMENTAL DESIGN .. 8
5. METHOD ... 8
 DESCRIPTION OF OPERATIONAL STEPS FOLLOWED ... 8
6. DEVIATIONS REPORTED ... 9
7. SUMMARY OF RESULTS .. 9
 PCR EFFICIENCY AND LINEARITY .. 9
 GMO QUANTIFICATION ... 10
8. METHOD PERFORMANCE REQUIREMENTS ... 12
9. CONCLUSIONS .. 13
10. QUALITY ASSURANCE .. 13
11. REFERENCES .. 13
12. ANNEX 1: METHOD ACCEPTANCE CRITERIA AND METHOD PERFORMANCE
 REQUIREMENTS AS SET BY THE EUROPEAN NETWORK OF GMO
 LABORATORIES (ENGL) .. 14
1. Introduction

Syngenta Seeds S.A.S. submitted the detection method and control samples for maize event Bt11 (unique identifier SYN-BTØ11-1) in support to applications for maize Bt11xGA21, Bt11xMIR604 and Bt11xMIR604xGA21 submitted under Article 5 and 17 of Regulation (EC) No 1829/2003 of the European Parliament and of the Council “on genetically modified food and feed”.

Upon reception of method, samples and related data (step 1), the JRC carried out the assessment of the documentation (step 2) and the in-house evaluation of the method (step 3) according to the requirements of Commission Regulation (EC) No 641/2004 and following its operational procedures.

The in-house experimental evaluation of the method was carried out in November 2007.

Following the evaluation of the data and the results of the in-house laboratory tests, the international collaborative study was organised (step 4) and took place in December 2007-January 2008.

A method for DNA extraction from maize seeds, submitted by the applicant, was evaluated by the CRL-GMFF in order to confirm its performance characteristics. The protocol for DNA extraction and a report on method testing is available at http://gmo-crl.jrc.it/.

The operational procedure of the collaborative study included the following module:

- Quantitative real-time PCR (Polymerase Chain Reaction). The methodology is an event-specific real-time quantitative TaqMan® PCR procedure for the determination of the relative content of event Bt11 DNA to total maize DNA. The procedure is a simplex system, in which a maize alcohol dehydrogenase (adh1) endogenous assay (reference gene) and the target assay (Bt11) are performed in separate wells.

The international collaborative study was carried out in accordance with the following internationally accepted guidelines:

- The IUPAC “Protocol for the design, conduct and interpretation of method-performance studies” (Horwitz, 1995).
2. Selection of participating laboratories

As part of the international collaborative study the method was tested in twelve laboratories to determine its performance.

In November 2007 the CRL-GMFF invited all National Reference Laboratories nominated under Commission Regulation (EC) No 1981/2006 of 22 December 2006 and listed in Annex II ("National reference laboratories assisting the CRL for testing and validation of methods for detection") of that Regulation to express the availability to participate in the validation study of the quantitative real-time PCR method for the detection and quantification of maize GM event Bt11.

Forty-one laboratories expressed in writing their willingness to participate, three declined the invitation, while twenty-eight did not answer. The CRL-GMFF performed a random selection of twelve laboratories out of those that responded positively to the invitation, making use of a validated software application.

Clear guidance was given to the selected laboratories with regards to the standard operational procedures to follow for the execution of the protocol. The participating laboratories are listed in Table 1.

Table 1. Laboratories participating in the validation of the detection method for maize event Bt11.

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danish Plant Directorate, Laboratory for Diagnostics in Plants, Seed, and Feed</td>
<td>DK</td>
</tr>
<tr>
<td>Federal Environment Agency Austria</td>
<td>AT</td>
</tr>
<tr>
<td>Hessian State Laboratory</td>
<td>DE</td>
</tr>
<tr>
<td>Institute for Hygiene and Environment</td>
<td>DE</td>
</tr>
<tr>
<td>Laboratory Agro alimentary of the Ministry of Agriculture</td>
<td>ES</td>
</tr>
<tr>
<td>Laboratory of DNA analysis, Department of Gene Technology (GT), Tallinn</td>
<td>EE</td>
</tr>
<tr>
<td>LGC Limited</td>
<td>UK</td>
</tr>
<tr>
<td>National Food Institute, Dept. of Toxicology and Risk Assessment</td>
<td>DK</td>
</tr>
<tr>
<td>National Institute of Biology</td>
<td>SI</td>
</tr>
<tr>
<td>Saxon State Institute for Agriculture, Department for Agricultural Analysis</td>
<td>DE</td>
</tr>
<tr>
<td>The Food and Consumer Product Safety Authority</td>
<td>NL</td>
</tr>
<tr>
<td>Walloon Agricultural Research Centre (CRA-W) - Department Quality of Agricultural Products</td>
<td>BE</td>
</tr>
</tbody>
</table>
3. Materials

For the validation of the quantitative event-specific method, control samples consisting of:

i) genomic DNA extracted from maize seeds harbouring the event Bt11 (hybrid NX3707) and
ii) genomic DNA extracted from non-GM maize seeds (hybrid Pelican)

were provided by the applicant in accordance to the provisions of Commission Regulation (EC) No 1829/2003, Art 2.11 [“control sample defined as the GMO or its genetic material (positive sample) and the parental organism or its genetic material that has been used for the purpose of the genetic modification (negative sample)].

Samples containing mixtures of 100% Bt11 maize and non-GM maize genomic DNA at different GMO concentrations were prepared by the CRL-GMFF, using the control samples provided, in a constant amount of total maize DNA.

Participants received the following materials:

- Five calibration samples (200 µL of DNA solution each) for the preparation of the standard curve, labelled from S1-1007 to S5-1007.
- Twenty unknown DNA samples (100 µL of DNA solution each), labelled from U1-1007 to U20-1007.
- Amplification reagent control for use on each PCR plate.
- Reaction mix components:
 - Sigma Jumpstart Ready mix 2x, 1 vial: 8 mL
 - Sulforhodamine 1.5 mM, 1 vial: 200 µL
 - Distilled sterile water, 1 vial: 4 mL

Sulforhodamine was provided for equipment calibration purposes

- Primers and probes (1 tube each) as follows:
 - *adh1 reference system*
 - *ZmAdh1* primer forward (10 µM): 240 µL
 - *ZmAdh1* primer reverse (10 µM): 240 µL
 - *ZmAdh1* TaqMan® probe (10 µM): 160 µL
 - *Bt11 system*
 - Bt11 primer forward (10 µM): 240 µL
 - Bt11 primer reverse (10 µM): 240 µL
 - Bt11 TaqMan® probe (10 µM): 120 µL
4. Experimental design

Twenty unknown samples, representing five GM levels, were used in the validation study (Table 2). On each PCR plate, the samples were analysed for the Bt11 specific system and the Adh1 specific system. In total, two plates were run per participating laboratory and four replicates for each GM level were analysed. PCR analysis was performed in triplicate for all samples. Participating laboratories carried out the determination of the GM% according to the instructions provided in the protocol and using the electronic tool provided (Excel spreadsheet).

<table>
<thead>
<tr>
<th>Bt11 GM% (GM copy number/maize genome copy number x 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
</tr>
<tr>
<td>0.40</td>
</tr>
<tr>
<td>0.90</td>
</tr>
<tr>
<td>5.00</td>
</tr>
<tr>
<td>8.00</td>
</tr>
</tbody>
</table>

5. Method

Description of operational steps followed

For the specific detection of event Bt11 DNA, a 68-bp fragment of the integration region of the construct inserted into the plant genome (5' insert-to-plant junction) is amplified using two specific primers. PCR products are measured at each cycle (real-time) by means of a target-specific oligonucleotide probe labelled with FAM dye and TAMRA as quencher dye.

For the relative quantification of event Bt11 DNA, a maize-specific reference system amplifies a 135-bp fragment of the maize endogenous gene *adh1* (*alcohol dehydrogenase*), using two Adh1 gene-specific primers and an Adh1 gene-specific probe labelled with VIC and TAMRA.

For relative quantification of event Bt11 DNA in a test sample, the normalised ∆Ct values of calibration samples are used to calculate, by linear regression, a standard curve (plotting ∆Ct values against the logarithm of the amount of event Bt11 DNA). The normalised ∆Ct values of the unknown samples are measured and, by means of the regression formula, the relative amount of event Bt11 DNA is estimated.

Calibration samples denominated from S1-1007 to S5-1007 were prepared by mixing the appropriate amount of Bt11 DNA from the stock solution with non-GM maize DNA to obtain the following relative contents of Bt11: 10.00%, 5.00%, 1.00%, 0.50% and 0.08%. The total DNA amount per reaction was 250 ng, with 5 µL of a DNA solution at the concentration of 50 ng/µL for each reaction.
The GM contents of the calibration samples and the total DNA quantity used in PCR are provided in Table 3 (GM% calculated considering the 1C value for maize as 2.725 pg) (3).

Table 3. GM% values of the standard curve samples.

<table>
<thead>
<tr>
<th>Sample code</th>
<th>S1-1007</th>
<th>S2-1007</th>
<th>S3-1007</th>
<th>S4-1007</th>
<th>S5-1007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total amount (ng) of DNA in reaction</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>GM% (DNA/DNA)</td>
<td>10.00</td>
<td>5.00</td>
<td>1.00</td>
<td>0.50</td>
<td>0.08</td>
</tr>
</tbody>
</table>

6. Deviations reported

Nine laboratories reported no deviations from the protocol.

One laboratory performed PCR reactions in 20 µL of total volume because only a 384-well plate configuration of the ABI 7900HT instrument was available. Finals concentrations of PCR reagents remained unchanged.

One laboratory performed the analysis on an iCycler (BIO-RAD) that needed external calibration due to the fact that two reporter dyes were used in the quantification (i.e. FAM and VIC). The external calibration was not done with sulforhodamine but according to the manufacturer instructions.

One laboratory used the automatic Ct determination of the ABI 7900HT instrument instead of the manual setting.

7. Summary of results

PCR efficiency and linearity

The values of the slopes [from which the PCR efficiency is calculated using the formula \[\left(\frac{1}{\text{slope}} - 1 \right) \times 100 \]] of the reference curve and of the R² (expressing the linearity of the regression) reported by participating laboratories are summarised in Table 4.

The mean PCR efficiency was 93%, and the linearity of the method was 0.99. Data reported in Table 4 confirm the appropriate performance characteristics of the method.
Table 4. Values of reference curve slope, PCR efficiency and linearity (R^2)

<table>
<thead>
<tr>
<th>Lab</th>
<th>Plate</th>
<th>Slope</th>
<th>PCR Efficiency (%)</th>
<th>Linearity (R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>-3.50</td>
<td>93</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-3.56</td>
<td>91</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>-3.34</td>
<td>99</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-3.45</td>
<td>95</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>-3.65</td>
<td>88</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-3.51</td>
<td>93</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>-3.44</td>
<td>95</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-3.79</td>
<td>84</td>
<td>0.98</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>-3.86</td>
<td>82</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-3.40</td>
<td>97</td>
<td>0.95</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>-3.44</td>
<td>95</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-3.42</td>
<td>96</td>
<td>0.99</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>-3.54</td>
<td>92</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-3.57</td>
<td>91</td>
<td>0.99</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>-3.38</td>
<td>98</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-3.42</td>
<td>96</td>
<td>1.00</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>-3.48</td>
<td>94</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-3.57</td>
<td>90</td>
<td>1.00</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>-3.49</td>
<td>94</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-3.42</td>
<td>96</td>
<td>1.00</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>-3.32</td>
<td>100</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-3.41</td>
<td>96</td>
<td>1.00</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td>-3.70</td>
<td>86</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-3.36</td>
<td>99</td>
<td>1.00</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>-3.50</td>
<td>93</td>
<td>0.99</td>
</tr>
</tbody>
</table>

GMO quantification

Table 5 shows the mean values of the four replicates for each GM level as provided by all laboratories. Each mean value is the average of three PCR repetitions.
Table 5. GM% mean values determined by laboratories for unknown samples.

<table>
<thead>
<tr>
<th>LAB</th>
<th>0.09</th>
<th>0.4</th>
<th>0.9</th>
<th>5.0</th>
<th>8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>REP 1</td>
<td>REP 2</td>
<td>REP 3</td>
<td>REP 4</td>
<td>REP 1</td>
</tr>
<tr>
<td>1</td>
<td>0.09</td>
<td>0.10</td>
<td>0.08</td>
<td>0.11</td>
<td>0.43</td>
</tr>
<tr>
<td>2</td>
<td>0.07</td>
<td>0.09</td>
<td>0.10</td>
<td>0.09</td>
<td>0.36</td>
</tr>
<tr>
<td>3</td>
<td>0.11</td>
<td>0.09</td>
<td>0.08</td>
<td>0.09</td>
<td>0.38</td>
</tr>
<tr>
<td>4</td>
<td>0.13</td>
<td>0.10</td>
<td>0.12</td>
<td>0.11</td>
<td>0.46</td>
</tr>
<tr>
<td>5</td>
<td>0.09</td>
<td>0.14</td>
<td>0.13</td>
<td>0.14</td>
<td>0.25</td>
</tr>
<tr>
<td>6</td>
<td>0.07</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>0.33</td>
</tr>
<tr>
<td>7</td>
<td>0.08</td>
<td>0.07</td>
<td>0.09</td>
<td>0.08</td>
<td>0.34</td>
</tr>
<tr>
<td>8</td>
<td>0.08</td>
<td>0.08</td>
<td>0.07</td>
<td>0.08</td>
<td>0.41</td>
</tr>
<tr>
<td>9</td>
<td>0.13</td>
<td>0.14</td>
<td>0.08</td>
<td>0.09</td>
<td>0.47</td>
</tr>
<tr>
<td>10</td>
<td>0.09</td>
<td>0.08</td>
<td>0.08</td>
<td>0.09</td>
<td>0.35</td>
</tr>
<tr>
<td>11</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.06</td>
<td>0.42</td>
</tr>
<tr>
<td>12</td>
<td>0.08</td>
<td>0.06</td>
<td>0.10</td>
<td>0.11</td>
<td>0.41</td>
</tr>
</tbody>
</table>

In Figure 1 the relative deviation from the true value for each GM level tested is shown for each laboratory. The coloured bars represent the relative GM quantification obtained by the participating laboratories; the purple bar represents the overall mean for each GM level (%) tested.

The relative deviations from the true values are on average very close to zero (maximum bias is - 5% at 5% GM level); only two laboratories over-estimated significantly the true value at the 0.09% GM level, while all other laboratories provided results with a limited bias for all GM levels.

Overall, the bias % was maximum - 5, well within the acceptance criterion (25%) at all GM levels tested, indicating a very satisfactory trueness of the method.

Figure 1. Relative deviation (%) from the true value of Bt11 for all laboratories
8. Method performance requirements

Among the performance criteria established by the ENGL and adopted by the CRL-GMFF (http://gmo-crl.jrc.it/guidancedocs.htm, see also Annex 1), repeatability and reproducibility are assessed through an international collaborative trial, carried out with the support of twelve European laboratories (see Table 1). Table 6 illustrates the estimation of repeatability and reproducibility at various GM levels, according to the range of GM percentages tested during the collaborative trial.

The relative reproducibility standard deviation (RSD_R), that describes the inter-laboratory variation, should be below 33% over the majority of the dynamic range, while it should be below 50% at the lower end of the dynamic range.

As it can be observed in Table 6, the method satisfies this requirement at all GM levels tested, with the highest value of RSD_R (%) equal to 24% at the 0.09% GM level.

Table 6 also reports the relative repeatability standard deviation (RSD_r), as estimated for each GM level. In order to accept methods for collaborative study evaluation, the CRL-GMFF requires that RSD_r value is below 25%, as indicated by ENGL (Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing” (http://gmo-crl.jrc.it/guidancedocs.htm).

As can be observed from the values reported in Table 6, the method provided a relative repeatability standard deviation below 25% at all GM levels, with the highest value of RSD_r (%) equal to 17% at the 0.09% GM level.

Table 6. Summary of Bt11 validation results.

<table>
<thead>
<tr>
<th>Expected value (GM%)</th>
<th>0.09</th>
<th>0.40</th>
<th>0.90</th>
<th>5.00</th>
<th>8.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown sample GM%</td>
<td>0.09</td>
<td>0.40</td>
<td>0.90</td>
<td>5.00</td>
<td>8.00</td>
</tr>
<tr>
<td>Laboratories having returned results</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Samples per laboratory</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Number of outliers</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Reason for exclusion</td>
<td>-</td>
<td>1 C. test</td>
<td>1 C. test</td>
<td>1 C. test</td>
<td>1 C. test</td>
</tr>
<tr>
<td>Mean value</td>
<td>0.09</td>
<td>0.39</td>
<td>0.92</td>
<td>4.74</td>
<td>7.90</td>
</tr>
<tr>
<td>Relative repeatability standard deviation, RSD_r (%)</td>
<td>17</td>
<td>13</td>
<td>11</td>
<td>13</td>
<td>9.0</td>
</tr>
<tr>
<td>Repeatability standard deviation</td>
<td>0.02</td>
<td>0.05</td>
<td>0.11</td>
<td>0.61</td>
<td>0.71</td>
</tr>
<tr>
<td>Relative reproducibility standard deviation, RSD_R (%)</td>
<td>24</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Reproducibility standard deviation</td>
<td>0.02</td>
<td>0.06</td>
<td>0.14</td>
<td>0.74</td>
<td>1.10</td>
</tr>
<tr>
<td>Bias (absolute value)</td>
<td>0.00</td>
<td>-0.01</td>
<td>0.02</td>
<td>-0.26</td>
<td>-0.10</td>
</tr>
<tr>
<td>Bias (%)</td>
<td>2.2</td>
<td>-1.9</td>
<td>1.8</td>
<td>-5.2</td>
<td>-1.2</td>
</tr>
</tbody>
</table>

C = Cochran's test; identification and removal of outliers through Cochran and Grubbs tests, according to ISO 5725-2. Bias is estimated according to ISO 5725 data analysis protocol.
The trueness of the method is estimated using the measures of the method bias for each GM level. According to ENGL method performance requirements, trueness should be ± 25% across the entire dynamic range. In this case the method fully satisfies this requirement across the entire dynamic range tested; in fact, the highest value of bias (%) is -5% at the 5% GM level, well within the acceptance criterion.

9. Conclusions

The overall method performance has been evaluated with respect to the method acceptance criteria and method performance requirements recommended by the ENGL (as detailed under http://gmo-crl.jrc.it/guidancedocs.htm). The method acceptance criteria were reported by the applicant and used to evaluate the method prior to the international collaborative study (see Annex 1 for a summary of method acceptance criteria and method performance requirements).

The results obtained during the collaborative study indicate that the analytical module of the method submitted by the applicant complies with ENGL performance criteria.

The method is therefore considered applicable to the control samples provided (see paragraph 3 “Materials”), in accordance with the requirements of Annex I-2.C.2 to Commission Regulation (EC) No 641/2004.

10. Quality assurance

The CRL-GMFF carries out all operations according to ISO 9001:2000 (certificate number: CH-32232) and ISO 17025:2005 (certificate number: DAC-PL-0459-06-00) [DNA extraction, qualitative and quantitative PCR in the area of Biology (DNA extraction and PCR method validation for the detection and identification of GMOs in food and feed materials)].

11. References

12. Annex 1: method acceptance criteria and method performance requirements as set by the European Network of GMO Laboratories (ENGL)

Method Acceptance Criteria should be fulfilled at the moment of submission of a method (Phase 1: acceptance for the collaborative study).

Method Performance Requirements should be fulfilled in a collaborative study in order to consider the method as fit for its purpose (Phase 2: evaluation of the collaborative study results).

Method Acceptance Criteria

Applicability
Definition: the description of analytes, matrices, and concentrations to which a method can be applied.

Acceptance Criterion: the applicability statement should provide information on the scope of the method and include data for the indices listed below for the product/s for which the application is submitted. The description should also include warnings to known interferences by other analytes, or inapplicability to certain matrices and situations.

Practicability
Definition: the ease of operations, the feasibility and efficiency of implementation, the associated unitary costs (e.g. Euro/sample) of the method.

Acceptance Criterion: the practicability statement should provide indication on the required equipment for the application of the method with regards to the analysis per se and the sample preparation. An indication of costs, timing, practical difficulties and any other factor that could be of importance for the operators should be indicated.

Specificity
Definition: property of a method to respond exclusively to the characteristic or analyte of interest.

Acceptance Criterion: the method should be event-specific and be functional only with the GMO or GM based product for which it was developed. This should be demonstrated by empirical results from testing the method with non-target transgenic events and non-transgenic material. This testing should include closely related events and cases where the limit of the detection is tested.

Dynamic Range
Definition: the range of concentrations over which the method performs in a linear manner with an acceptable level of accuracy and precision.

Acceptance Criterion: the dynamic range of the method should include the 1/10 and at least 5 times the target concentration. Target concentration is intended as the threshold relevant for legislative
requirements. The acceptable level of accuracy and precision are described below. The range of the standard curve(s) should allow testing of blind samples throughout the entire dynamic range, including the lower (10%) and upper (500%) end.

Accuracy

Definition: the closeness of agreement between a test result and the accepted reference value.

Acceptance Criterion: the accuracy should be within ± 25% of the accepted reference value over the whole dynamic range.

Amplification Efficiency

Definition: the rate of amplification that leads to a theoretical slope of – 3.32 with an efficiency of 100% in each cycle. The efficiency of the reaction can be calculated by the following equation: Efficiency = \[10^{-\frac{1}{1/slope}} - 1\]

Acceptance Criterion: the average value of the slope of the standard curve should be in the range of (-3.1 ≥ slope ≥ -3.6)

R² Coefficient

Definition: the R² coefficient is the correlation coefficient of a standard curve obtained by linear regression analysis.

Acceptance Criterion: the average value of R² should be ≥ 0.98.

Repeatability Standard Deviation (RSDᵣ)

Definition: the standard deviation of test results obtained under repeatability conditions. Repeatability conditions are conditions where test results are obtained with the same method, on identical test items, in the same laboratory, by the same operator, using the same equipment within short intervals of time.

Acceptance Criterion: the relative repeatability standard deviation should be below 25% over the whole dynamic range of the method.

Note: Estimates of repeatability submitted by the applicant should be obtained on a sufficient number of test results, at least 15, as indicated in ISO 5725-3 (1994).

Limit of Quantification (LOQ)

Definition: the limit of quantification is the lowest amount or concentration of analyte in a sample that can be reliably quantified with an acceptable level of precision and accuracy.

Acceptance Criterion: LOQ should be less than 1/10th of the value of the target concentration with an RSDᵣ ≤ 25%. Target concentration should be intended as the threshold relevant for legislative requirements. The acceptable level of accuracy and precision are described below.

Limit of Detection (LOD)

Definition: the limit of detection is the lowest amount or concentration of analyte in a sample, which can be reliably detected, but not necessarily quantified, as demonstrated by single laboratory validation.
Acceptance Criterion: LOD should be less than 1/20th of the target concentration. Experimentally, quantitative methods should detect the presence of the analyte at least 95% of the time at the LOD, ensuring ≤ 5% false negative results. Target concentration should be intended as the threshold relevant for legislative requirements.

Robustness

Definition: the robustness of a method is a measure of its capacity to remain unaffected by small, but deliberate deviations from the experimental conditions described in the procedure.

Acceptance Criterion: the response of an assay with respect to these small variations should not deviate more than ± 30%. Examples of factors that a robustness test could address are: use of different instrument type, operator, brand of reagents, concentration of reagents, and temperature of reaction.

Method Performance Requirements

Dynamic Range

Definition: in the collaborative trial the dynamic range is the range of concentrations over which the reproducibility and the trueness of the method are evaluated with respect to the requirements specified below.

Acceptance Criterion: the dynamic range of the method should include the 1/10 and at least five times the target concentration. Target concentration should be intended as the threshold relevant for legislative requirements.

Reproducibility Standard Deviation (RSD_r)

Definition: the standard deviation of test results obtained under reproducibility conditions. Reproducibility conditions are conditions where test results are obtained with the same method, on identical test items, in different laboratories, with different operators, using different equipment. Reproducibility standard deviation describes the inter-laboratory variation.

Acceptance Criterion: the relative reproducibility standard deviation should be below 35% at the target concentration and over the entire dynamic range. An RSD_r < 50 % is acceptable for concentrations below 0.2%.

Trueness

Definition: the closeness of agreement between the average value obtained from a large series of test results and an accepted reference value. The measure of trueness is usually expressed in terms of bias.

Acceptance Criterion: the trueness should be within ± 25% of the accepted reference value over the whole dynamic range.
Event-specific Method for the Quantification of Maize Line Bt11 Using Real-time PCR

Protocol

20 June 2008

Joint Research Centre
Institute for Health and Consumer Protection
Biotechnology & GMOs Unit

Method development:
Syngenta Seeds S.A.S.

Collaborative trial:
Community Reference Laboratory for GM Food and Feed (CRL-GMFF)
Biotechnology & GMOs Unit
Address of contact laboratory:
European Commission, Directorate-General Joint Research Centre
Institute for Health and Consumer Protection (IHCP)
Biotechnology and GMOs Unit – Community Reference Laboratory for GM Food and Feed
Via Fermi 2749, 21027 Ispra (VA) - Italy
Content

1. GENERAL INFORMATION AND SUMMARY OF THE METHODOLOGY ..4

2. VALIDATION STATUS AND PERFORMANCE CHARACTERISTICS ..4
 2.1 GENERAL .. 4
 2.2 COLLABORATIVE TRIAL .. 5
 2.3 LIMIT OF DETECTION (LOD) .. 5
 2.4 LIMIT OF QUANTIFICATION (LOQ) .. 5
 2.5 MOLECULAR SPECIFICITY ... 5

3. PROCEDURE .. 6
 3.1 GENERAL INSTRUCTIONS AND PRECAUTIONS .. 6
 3.2 REAL-TIME PCR FOR QUANTITATIVE ANALYSIS OF BT11 MAIZE ... 6
 3.2.1 General ... 6
 3.2.2 Calibration .. 7
 3.2.3 Real-time PCR set-up .. 7
 3.3 DATA ANALYSIS .. 9
 3.4 CALCULATION OF RESULTS .. 9

4. MATERIALS .. 9
 4.1 EQUIPMENT ... 9
 4.2 REAGENTS AND SOLUTIONS .. 10
 4.3 PRIMERS AND PROBES .. 10
1. General information and summary of the methodology

This protocol describes an event-specific real-time quantitative TaqMan® PCR procedure for the determination of the relative content of event Bt11 DNA to total maize DNA in a sample.

The PCR assay was optimised for use in real-time PCR instruments for plastic reaction vessels.

Template DNA extracted by means of suitable methods should be tested for quality and quantity prior to use in the PCR assay. Tests for the presence of PCR inhibitors (e.g. monitor run of diluted series, use of DNA spikes) are recommended.

For the specific detection of event Bt11 DNA, a 68-bp fragment of the integration region of the construct inserted into the plant genome (located at the 5’ flanking DNA region) is amplified using two specific primers. PCR products are measured at each cycle (real-time) by means of a target-specific oligonucleotide probe labelled with two fluorescent dyes: FAM as a reporter dye at its 5’ end and TAMRA as a quencher dye at its 3’ end.

For the relative quantification of event Bt11 DNA, a maize-specific reference system amplifies a 135-bp fragment of the maize endogenous alcohol dehydrogenase 1 gene (adh1), using two specific primers and an adh1 gene-specific probe labelled with VIC and TAMRA as described above.

The measured fluorescence signal passes a threshold value after a certain number of cycles. This threshold cycle is called the “Ct” value. For quantification of the amount of event Bt11 DNA in a test sample, the normalised ∆Ct values of the calibration samples are used to calculate by linear regression a reference curve ∆Ct-formula. The normalised ∆Ct values of the unknown samples are measured and, by means of the regression formula, the relative amount of Bt11 event DNA is estimated.

2. Validation status and performance characteristics

2.1 General

The method has been optimised for suitable DNA extracted from maize seeds containing mixtures of genetically modified and conventional maize.

The reproducibility and trueness of the method were tested through an international collaborative study using DNA samples at different GM% contents.
2.2 Collaborative trial

The method was validated in an international collaborative study by the Joint Research Centre (JRC) of the European Commission. The study was undertaken with twelve laboratories in November 2007.

Each participant received twenty unknown samples containing Bt11 maize genomic DNA at five GM% contents, ranging from 0.09% to 8.0%.

Each test sample was analysed by PCR in three repetitions. The study was designed as a blind quadruplicate collaborative trial; each laboratory received each level of GM Bt11 in four unknown samples. Two replicates of each GM level were analysed on the same PCR plate.

A detailed validation report can be found at http://gmo-crl.jrc.it/statusofdoss.htm

2.3 Limit of detection (LOD)

According to the data provided by the applicant, the relative LOD of the method is at least 0.04% in 250 ng of total maize DNA. The relative LOD was not assessed in collaborative study.

2.4 Limit of quantification (LOQ)

According to the data provided by the applicant, the relative LOQ of the method is at least 0.08% in 250 ng of total maize DNA. The lowest relative GM content of the target sequence included in the international collaborative study was 0.09%.

2.5 Molecular specificity

The method exploits a unique DNA sequence in the region of recombination between the insert and the plant genome. The sequence is specific to Bt11 event and thus imparts event-specificity to the method.

The specificity of the Bt11 assay (forward/reverse primers and probe) was experimentally tested in real-time PCR by the applicant against DNA extracted from samples containing GM maize Bt11, Bt10, NK603, MON810, MON863, MON810 x MON863, TC1507, MIR604, Bt176, GA21, MON88017, T25 and Herculex RW (59122).

According to the applicant, none of the above mentioned GM lines tested, except the positive control Bt11, produced amplification signals in replicated samples when 100 ng total DNA per reaction were used.
3. Procedure

3.1 General instructions and precautions

- The procedures require sterile conditions working experience.
- Laboratory organisation, e.g. “flow direction” during PCR-setup, should follow international guidelines, e.g. ISO 24276:2006.
- PCR-reagents should be stored and handled in a separate room where no nucleic acids (with exception of PCR primers or probes) or DNA degrading or modifying enzymes have been handled previously. All handling of PCR reagents and controls requires dedicated equipment, especially pipettes.
- Equipment used should be sterilised prior to use and any residue of DNA should be removed. All material used (e.g. vials, containers, pipette tips, etc.) should be suitable for PCR and molecular biology applications; it should be DNase-free, DNA-free, sterile and unable to adsorb protein or DNA.
- Filter pipette tips protected against aerosol should be used.
- Powder-free gloves should be used and changed frequently.
- Laboratory benches and equipment should be cleaned periodically with 10% sodium hypochlorite solution (bleach).
- Pipettes should be checked regularly for precision and calibrated, if necessary.
- All handling steps - unless specified otherwise - should be carried out at 0 - 4 °C.
- In order to avoid repeated freeze/thaw cycles aliquots should be prepared.

3.2 Real-time PCR for quantitative analysis of Bt11 maize

3.2.1 General

The PCR set-up for the taxon specific target sequence (adh1) and for the GMO (Bt11) target sequence should be carried out in separate vials. Multiplex PCR (using differential fluorescent labels for the probes) has not been tested or validated.

The use of maximum 250 ng of template DNA per reaction well is recommended.
The method is developed for a total volume of 25 µL per reaction mixture with the reagents as listed in Table 1 and Table 2.

3.2.2 Calibration

The calibration curve consists of five samples containing fixed percentages of Bt11 DNA in a total amount of 250 ng maize DNA. The GM content of the standard samples ranges from 10% to 0.08%.

A calibration curve is produced by plotting the ΔCt values of calibration samples against the logarithm of the respective GM% contents; the slope (a) and the intercept (b) of the calibration curve (y = ax + b) are then used to calculate the mean GM% content of the blind samples based on their normalised ΔCt values.

3.2.3 Real-time PCR set-up

1. Thaw, mix gently and centrifuge the required amount of components needed for the run. **Keep thawed reagents on ice.**

2. In two reaction tubes (one for Bt11 system and one for the adh1 system) on ice, add the following components (Tables 1 and 2) in the order mentioned below (except DNA) to prepare the master mixes.

Table 1. Amplification reaction mixture in the final volume/concentration per reaction well for the maize adh1 reference system.

<table>
<thead>
<tr>
<th>Component</th>
<th>Final concentration</th>
<th>µL/reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigma Jumpstart ReadyMix (2x)</td>
<td>1x</td>
<td>12.5</td>
</tr>
<tr>
<td>Zm adh1 – F primer (10 µM)</td>
<td>300 nM</td>
<td>0.75</td>
</tr>
<tr>
<td>Zm adh1 – R primer (10 µM)</td>
<td>300 nM</td>
<td>0.75</td>
</tr>
<tr>
<td>Zm adh1 – P probe (10 µM)</td>
<td>200 nM</td>
<td>0.50</td>
</tr>
<tr>
<td>Nuclease free water</td>
<td>#</td>
<td>5.50</td>
</tr>
<tr>
<td>Template DNA (max 250 ng)</td>
<td>#</td>
<td>5</td>
</tr>
<tr>
<td>Total reaction volume:</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>
Table 2. Amplification reaction mixture in the final volume/concentration per reaction well for the Bt11 specific system.

<table>
<thead>
<tr>
<th>Component</th>
<th>Final concentration</th>
<th>µL/ reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigma Jumpstart ReadyMix (2x)</td>
<td>1x</td>
<td>12.5</td>
</tr>
<tr>
<td>Bt11-ev-f1 primer (10 µM)</td>
<td>200 nM</td>
<td>0.50</td>
</tr>
<tr>
<td>Bt11-ev-r5 primer (10 µM)</td>
<td>200 nM</td>
<td>0.50</td>
</tr>
<tr>
<td>Bt11-ev-p1 probe (10 µM)</td>
<td>150 nM</td>
<td>0.38</td>
</tr>
<tr>
<td>Nuclease free water</td>
<td>#</td>
<td>6.12</td>
</tr>
<tr>
<td>Template DNA (max 250 ng)</td>
<td>#</td>
<td>5</td>
</tr>
<tr>
<td>Total reaction volume:</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

3. Mix gently and centrifuge briefly.

4. Prepare two reaction tubes (one for the Bt11 and one for the adh1 master mixes) for each DNA sample to be tested (standard curve samples, unknown samples and control samples).

5. Add to each reaction tube the correct amount of master mix (e.g. 20 x 3 = 60 µL master mix for three PCR repetitions). Add to each tube the correct amount of DNA (e.g. 5 x 3 = 15 µL DNA for three PCR repetitions). Vortex each tubes for approx. 10 sec. This step is mandatory to reduce to a minimum the variability among the repetitions of each sample.

6. Spin down the tubes in a microcentrifuge. Aliquot 25 µL in each well. Seal the reaction plate with optical cover or optical caps. Centrifuge the plate at low speed (e.g. approximately 250 x g for 1 minute at 4 °C to room temperature) to spin down the reaction mixture.

7. Place the plate into the instrument.

8. Run the PCR with cycling conditions described in Table 3

Table 3. Cycling program for maize Bt11/adh1 systems

<table>
<thead>
<tr>
<th>Step</th>
<th>Stage</th>
<th>T°C</th>
<th>Time (sec)</th>
<th>Acquisition</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UNG</td>
<td>50 °C</td>
<td>120</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Initial denaturation</td>
<td>95 °C</td>
<td>600</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Amplification</td>
<td>Denaturation 95 °C</td>
<td>15</td>
<td>No</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annealing & Extension 60 °C</td>
<td>60</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
3.3 Data analysis

After the real-time PCR, analyse the run following the procedure below:

a) **Set the threshold**: display the amplification curves of one system (e.g. Bt11) in logarithmic mode. Locate the threshold line in the area where the amplification profiles are parallel (exponential phase of PCR) and where there is no “fork effect” between repetitions of the same sample. Press the “update (or apply)” button to ensure changes affect Ct values. Switch to the linear view mode by clicking on the Y axis of the amplification plot, and check that the threshold previously set falls within the geometric phase of the curves.

b) **Set the baseline**: determine the cycle number at which the threshold line crosses the first amplification curve and set the baseline three cycles before that value (e.g. earliest Ct = 25, set the baseline crossing at Ct = 25 – 3 = 22).

c) Save the settings.

d) Repeat the procedure described in a) and b) on the amplification plots of the other system (e.g. *adh1* system).

e) Save the settings and export all the data into an Excel file for further calculations.

3.4 Calculation of results

After having defined a threshold value within the logarithmic phase of amplification as described above, the instrument’s software calculates the Ct-values for each reaction.

The Reference ∆Ct-curve is generated by plotting the ∆Ct-values measured for the calibration points against the logarithm of the GM% content, and by fitting a linear regression line into these data.

Thereafter, the regression formula is used to estimate the relative amount (%) of Bt11 event in the unknown samples of DNA.

4. Materials

4.1 Equipment

- Real-time PCR instrument for plastic reaction vessels (glass capillaries are not recommended for the described buffer composition)
- Plastic reaction vessels suitable for real-time PCR instrument (enabling undisturbed fluorescence detection)
• Software for run analysis (mostly integrated in the software of the real-time PCR instrument)
• Microcentrifuge
• Micropipettes
• Vortex
• Rack for reaction tubes
• 1.5/2.0 mL reaction tubes

4.2 Reagents and solutions

• Sigma JumpStart Taq ReadyMix (2x), Sigma Aldrich Ltd Cat No P-2893
• Sulforhodamine 101, Sigma Cat No S-7635
• 1 M MgCl₂, Sigma Aldrich Ltd Cat No M-1028

10000x Sulforhodamine 101 stock:

Resuspend 227.5 mg of Sulforhodamine 101 in 250 mL nuclease free water to make a 1.5 mM stock solution.
Vortex well and store at -20 ºC.

Supplemented 2x Sigma JumpStart ReadyMix:

For 50 mL: to Sigma Jumpstart Taq ReadyMix (2X), add:
 o 550 µL of 1 M MgCl₂
 o 20 µL 10000x Sulforhodamine 101.
Vortex well and store at 4 ºC for up to 1 year.

4.3 Primers and Probes

<table>
<thead>
<tr>
<th>Name</th>
<th>Oligonucleotide DNA Sequence (5’ to 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bt11 target sequence</td>
<td></td>
</tr>
<tr>
<td>Bt11-ev-f1 primer</td>
<td>5’ – TGT GTG GCC ATT TAT CAT CGA -3’</td>
</tr>
<tr>
<td>Bt11-ev-r5 primer</td>
<td>5’ – CGC TCA GTG GAA CGA AAA CTC -3’</td>
</tr>
<tr>
<td>Bt11-ev-p1 probe</td>
<td>FAM 5’- TTC CAT GAC CAA AAT CCC TTA ACG TGA GT -3’ TAMRA</td>
</tr>
<tr>
<td>Reference gene adh1 target sequence</td>
<td></td>
</tr>
<tr>
<td>Zm adh1 – F primer</td>
<td>5’ – CGT CGT TTT CCA TCT CTT CCT CC-3’</td>
</tr>
<tr>
<td>Zm adh1 – R primer</td>
<td>5’ – CCA CTC CGA GAC CCT CAG TC -3’</td>
</tr>
<tr>
<td>Zm adh1 - P probe</td>
<td>VIC 5’ – AAT CAG GGC TCA TTT TCT CGC TCC TCA-3’ TAMRA</td>
</tr>
</tbody>
</table>
Maize Seeds Sampling and DNA Extraction

Report on the Validation of a DNA Extraction Method from Maize Seeds and Grains

18 April 2007

Directorate General-Joint Research Centre
Institute for Health and Consumer Protection
Biotechnology & GMOs Unit

Method development and single laboratory validation:

Syngenta Seeds S.A.S.

Method testing and confirmation:

Community Reference Laboratory for GM Food and Feed (CRL-GMFF)
Biotechnology & GMOs Unit
Drafted by:
C. Delobel

Report Verification Team:
1) W. Moens

2) M. Querci

Scientific and technical approval:
M. Mazzara

Compliance with CRL Quality System:
S. Cordeil

Authorisation to publish:
G. Van den Eede

Address of contact laboratory:
European Commission, Directorate General-Joint Research Centre
Institute for Health and Consumer Protection (IHCP)
Biotechnology and GMOs Unit – Community Reference Laboratory for GM Food and Feed
Via Fermi 1, 21020 Ispra (VA) - Italy
Content

1. INTRODUCTION ...4
2. MATERIALS (EQUIPMENT/ CHEMICALS/ PLASTICWARE)4
3. DESCRIPTION OF THE METHODS ..6
4. EXPERIMENTAL TESTING OF THE DNA EXTRACTION METHOD BY THE COMMUNITY REFERENCE LABORATORY FOR GM FOOD AND FEED ..6
5. CONCLUSION .. 10
6. QUALITY ASSURANCE .. 10
7. REFERENCES ... 10
1. Introduction

The purpose of the DNA extraction method described is to serve as a method to provide DNA from maize seeds or grains for subsequent PCR based detection methods. The method should yield DNA of sufficient quality and quantity and is required to be suitable for routine use in terms of ease of operations, sample throughput and costs. This report describes the results of the verification experiments conducted using a DNA extraction method previously validated on maize grains/seeds.\(^1\)

These protocols are recommended to be executed by skilled laboratory personnel as the procedures comprise working with hazardous chemicals and materials. It is strongly advised to take particular notice of all product safety recommendations and guidelines.

2. Materials (Equipment/Chemicals/Plasticware)

2.1. Equipment

The following equipment is used in the DNA extraction procedure described (equivalents may be used):

1. Grindomix GM 200 (Retsch GmbH) or equivalent
2. 200 ml mortar and pestle
3. Sorval RC-3B equipped with a H-6000A rotor for 5000 rpm that is equivalent to 7277g
4. Microfiltration Centrifugal Device: Pall Nanosep MF 0.2 µm (Pall Corporation P/N ODM02C33)
5. Ultrafiltration Centrifugal Device: Pall Nanosep 30K Omega (Pall Corporation P/N OD030C33)
6. Microcentrifuge with 18,000 x g for microcentrifuge tubes
7. Water bath adjustable to 65 °C ± 1 °C
8. UV spectrophotometer for DNA quantification

2.2. Chemicals

The following reagents are used in the DNA extraction procedure described (equivalents may be used):

1. Na\(_2\)-EDTA; Titriplex III (Sigma Cat. No. E-7889)
2. Tris-HCl; Tris(hydroxymethyl)aminomethane hydrochloride (Sigma Cat. No. T-3038)
3. NaCl; sodium chloride (Sigma Cat. No. S-7653)
4. CTAB; hexadecyltrimethylammonium bromide (Sigma Cat. No. H-6269)
5. PVP 40000; polyvinylpyrrolidone (Sigma Cat. No. PVP-40)
6. RNAse A (Roche Cat. No. 0109-142)
7. Chloroform:Isomyl alcohol (24:1); (Sigma Cat. No. C-0549-1PT)
8. Ethanol p.a. (Merck Cat. No. 1.00983.1000)

The following buffers and solutions are used in the DNA extraction procedure described:

1. **Extraction buffer**
 - 1.4 M NaCl
 - 2% (w/v) CTAB
 - 0.1 M Tris-Base pH 8.0
 - 0.02 M EDTA pH 8.0
 - 1% (w/v) PVP 40000

2. **10% CTAB Solution**
 - 10% (w/v) CTAB in 0.7 M NaCl

3. **Precipitation Buffer**
 - 1% (w/v) CTAB
 - 0.05 M Tris-Base pH 8.0
 - 0.01 M EDTA pH 8.0

4. **TE Buffer**
 - 0.01 M Tris-Base pH 8.0
 - 0.001 M EDTA pH 8.0

5. **RNase A (10 mg/ml)**

6. **Ethanol 70%**

2.3. **Plasticware**

1. 50 ml conical tubes
2. 1.5 ml microcentrifuge tube
3. 2 ml microcentrifuge tube
4. filter tips

Note: All plasticware has to be sterile and free of DNases, RNases and nucleic acids.

2.4. **Abbreviations**

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>RNase A</td>
<td>ribonuclease A</td>
</tr>
<tr>
<td>TE</td>
<td>tris EDTA</td>
</tr>
<tr>
<td>Tris</td>
<td>tris(hydroxymethyl)aminomethane</td>
</tr>
</tbody>
</table>
3. Description of the methods

Sampling:
For sampling of seeds and grains of maize, the applicant refers to the technical guidance documents and protocols described in Commission Recommendation 2004/787/EC on technical guidance for sampling and detection of genetically modified organisms and material produced from genetically modified organisms as or in products in the context of Regulation (EC) No 1830/2003.

Scope and applicability:
The "CTAB-based protocol" method for DNA extraction described below is suitable for the isolation of genomic DNA from maize seed, grain and flour. Application of the method to other matrices may require adaptation and needs specific validation.

Principle:
The basic principle of DNA extraction consists of first releasing the DNA present in the matrix into aqueous solution and further purification of the DNA from PCR inhibitors. The "CTAB-based protocol" method starts with a lysis step (thermal lysis in the presence of CTAB and EDTA) followed by removal of RNA by digestion with RNase A and removal of contaminants such as lipophilic molecules and proteins by two extractions with chloroform. Afterwards a crude DNA-extract is generated using CTAB precipitation buffer (under low salt conditions DNA precipitates in the presence of CTAB) and washed in 70% ethanol. The pellet is dissolved in TE-buffer.

Maize seed DNA extraction protocol and purification steps

The protocol from Syngenta Seeds S.A.S. for DNA extraction of maize seeds was applied as described in [1].

4. Experimental testing of the DNA extraction method by the Community Reference Laboratory for GM Food and Feed

The aim of the experimental testing was to verify that the DNA extraction method provides DNA of suitable quantity and quality for the intended purpose.

The DNA extraction method should allow preparation of the analyte in quality and quantity appropriate for the analytical method used to quantify the event-specific analyte versus the reference analyte.

The CRL-GMFF tested the “CTAB/Nanosep” method proposed by the applicant [1] on samples of food and feed consisting of maize seeds provided by the applicant.
4.1 Preparation of samples

About 200 g of maize seed material were ground using a GRINDOMIX GM 200 (Retsch GmbH) mixer.

4.2 DNA extraction

DNA was extracted following the “CTAB/Nanosep” method described at http://gmo-crl.jrc.it/statusofdoss.htm [1]; the DNA extraction was carried out on 6 test portions.

4.3 DNA concentration and repeatability

Concentration of the DNA extracted was determined by fluorescence detection using the PicoGreen® dsDNA Quantitation Kit (Molecular Probes).

Each DNA extract was measured twice, and the two values were averaged. DNA concentration was determined on the basis of a four point standard curve ranging from 1 to 500 ng/µl using a Biorad VersaFluor fluorometer.

The DNA concentration for all samples is reported in Table 1.

Table 1. DNA concentration (ng/µl) of six samples extracted from maize seeds

<table>
<thead>
<tr>
<th>Sample</th>
<th>Concentration (ng/µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>687</td>
</tr>
<tr>
<td>2</td>
<td>270</td>
</tr>
<tr>
<td>3</td>
<td>262</td>
</tr>
<tr>
<td>4</td>
<td>300</td>
</tr>
<tr>
<td>5</td>
<td>248</td>
</tr>
<tr>
<td>6</td>
<td>348</td>
</tr>
</tbody>
</table>

DNA concentration (ng/µl):

Overall average of all samples: 353 ng/µl
Standard deviation of all samples: 168 ng/µl
Coefficient of variation: 48 %

The high value of the coefficient of variation is due to the deviating high concentration of sample 1. Excluding this concentration, the overall average and standard deviation are 286 and 40 ng/µl respectively, and the coefficient of variation 14%.

With an average final volume per sample of 50 µl, the average yield is 9 µg of extracted DNA per gram of starting material.
4.4 Fragmentation state of DNA

The size of the extracted DNA was evaluated by agarose gel electrophoresis; 0.8 µl of the DNA solution were analysed on a 1.0% agarose gel (Figure 1).

Figure 1. Agarose gel electrophoresis of six genomic DNA samples extracted from maize seeds (Lanes 1-6). M: Lambda DNA/EcoRI+HindIII Marker.

The 6 genomic DNA samples extracted as described above appeared as distinct fluorescent banding patterns migrating through the gel corresponding to high molecular weight DNA. None of the DNA samples showed significant indication of degradation (‘smearing’).

4.5 Purity / Absence of PCR inhibitors

In order to assess their purity and to confirm the absence of PCR inhibitors, the extracted DNA solutions were adjusted to a concentration of 33 ng/µl (hereafter referred as “undiluted” samples). Subsequently fourfold serial dilutions of each extract were prepared with pure water (1:4, 1:16, 1:64, 1:256) and analysed using a real-time PCR system detecting the target sequence of the endogenous control gene Alcohol dehydrogenase, Adh1.

The Ct values obtained for “undiluted” and diluted DNA samples are reported in the Table 2, while table 3 below reports the comparison of extrapolated Ct values versus measured Ct values for all samples and the values of linearity (R²) and slope of all measurements.
Table 2. Ct values of undiluted and fourfold serially diluted DNA extracts after amplification of maize Alcohol dehydrogenase gene (AdhI)

<table>
<thead>
<tr>
<th>DNA extract</th>
<th>Undiluted (33 ng/µl)</th>
<th>Diluted 1:1</th>
<th>Diluted 1:4</th>
<th>Diluted 1:16</th>
<th>Diluted 1:64</th>
<th>Diluted 1:256</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.07</td>
<td>23.71</td>
<td>25.70</td>
<td>27.93</td>
<td>29.91</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>22.14</td>
<td>23.88</td>
<td>26.06</td>
<td>28.12</td>
<td>30.25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>22.30</td>
<td>24.12</td>
<td>26.16</td>
<td>28.28</td>
<td>30.26</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>22.37</td>
<td>24.41</td>
<td>26.45</td>
<td>28.29</td>
<td>30.92</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>22.39</td>
<td>24.05</td>
<td>25.87</td>
<td>27.78</td>
<td>29.98</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>22.27</td>
<td>24.18</td>
<td>25.94</td>
<td>28.06</td>
<td>30.19</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Comparison of extrapolated Ct values versus measured Ct values (amplification of Alcohol dehydrogenase gene, AdhI)

<table>
<thead>
<tr>
<th>DNA extraction</th>
<th>R²</th>
<th>Slope*</th>
<th>Ct extrapolated</th>
<th>mean Ct measured</th>
<th>ΔCt**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.999</td>
<td>-3.459</td>
<td>21.61</td>
<td>22.07</td>
<td>0.47</td>
</tr>
<tr>
<td>2</td>
<td>0.999</td>
<td>-3.517</td>
<td>21.79</td>
<td>22.14</td>
<td>0.36</td>
</tr>
<tr>
<td>3</td>
<td>0.998</td>
<td>-3.414</td>
<td>22.07</td>
<td>22.30</td>
<td>0.23</td>
</tr>
<tr>
<td>4</td>
<td>0.993</td>
<td>-3.553</td>
<td>22.17</td>
<td>22.37</td>
<td>0.20</td>
</tr>
<tr>
<td>5</td>
<td>0.996</td>
<td>-3.270</td>
<td>22.00</td>
<td>22.39</td>
<td>0.39</td>
</tr>
<tr>
<td>6</td>
<td>0.997</td>
<td>-3.349</td>
<td>22.05</td>
<td>22.27</td>
<td>0.22</td>
</tr>
</tbody>
</table>

*The expected slope for a PCR with 100% efficiency is -3.32

**ΔCt = abs (Ct extrapolated - Ct measured)

To measure inhibition, the Ct values of the four diluted samples were plotted against the logarithm of the dilution and the Ct value for the “undiluted” sample (33 ng/µl) was extrapolated from the equation calculated by linear regression.

Subsequently the extrapolated Ct for the “undiluted” sample was compared with the measured Ct. The evaluation is carried out considering that PCR inhibitors are present if the measured Ct value for the “undiluted” sample is suppressed by more than 0.5 cycles from the calculated Ct value. In addition, the slope of the curve should be between -3.6 and -3.1.

All delta Ct values of extrapolated versus measured Ct are < 0.5; all values of the slopes are between -3.6 and -3.1, and R² of linear regression is > 0.99 for all samples.

Considering the results presented in Table 3, the six extracted samples did not indicate the presence of PCR inhibitors.
5. Conclusion

The data reported confirm that the extraction method, applied to maize seeds provided by the applicant, produces DNA of suitable quantity and quality for subsequent PCR based detection applications. The method is consequently applicable to samples of maize seeds provided as samples of food and feed in accordance with the requirements of Annex I-2.C.2 to Commission Regulation (EC) No 641/2004.

6. Quality assurance

The CRL-GMFF carries out all its operations according to ISO 9001:2000 (certificate number: CH-32232) and ISO 17025:2005 (certificate number: DAC-PL-0459-06-00) [DNA extraction, qualitative and quantitative PCR in the area of Biology (DNA extraction and PCR method validation for the detection and identification of GMOs in food and feed materials)]

7. References

Abstract
The JRC as Community Reference Laboratory for GM Food and Feed (CRL-GMFF), established by Regulation (EC) No 1829/2003, in collaboration with the European Network of GMO Laboratories (ENGL), has carried out a collaborative study to assess the performance of a quantitative event-specific method to detect and quantify the Bt11 transformation event in maize DNA (unique identifier SYN-BTØ11-1). The collaborative trial was conducted according to internationally accepted guidelines.

In accordance with Regulation (EC) No 1829/2003 of 22 September 2003 on genetically modified food and feed and with Regulation (EC) No 641/2004 of 6 April 2004 on detailed rules for the implementation of Regulation (EC) No 1829/2003, Syngenta Seeds S.A.S. provided the detection method and the samples (genomic DNA of conventional maize and of maize event Bt11). The JRC prepared the validation samples (calibration samples and blind samples at unknown GM percentage [DNA/DNA]). The collaborative trial involved twelve laboratories from nine European countries.

The results of the international collaborative trial met the ENGL performance requirements. The method is therefore considered applicable to the control samples provided, in accordance with the requirements of Annex I-2.C.2 to Commission Regulation (EC) No 641/2004.
The mission of the JRC is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of EU policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, whether private or national.