Measurement of Elemental and Organic Carbon in Europe

Report of the preparatory workshop for a future standard measurement method

Thomas A.J. Kuhlbusch, Annette Borowiak, Andras Gelenscer, Johan Genberg, Dieter Gladtke, Willy Maenhaut, Casimiro Pio, Olga Popoviecheva, Jean P. Putaud, Paul Quincey, Jean Sciare, Harry ten Brink, Mar Viana, Karl Espen Yttri

© A. Gelenscer, University Pannonia
The mission of the JRC-IES is to provide scientific-technical support to the European Union’s policies for the protection and sustainable development of the European and global environment.

European Commission
Joint Research Centre
Institute for Environment and Sustainability

Contact information
Address: T.P. 441
E-mail: annette.borowiak@jrc.ec.europa.eu
Tel.: +39 0332 789956
Fax: +39 0332 785236

http://ies.jrc.ec.europa.eu/
http://www.jrc.ec.europa.eu/

Legal Notice
Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

Europe Direct is a service to help you find answers to your questions about the European Union

Freephone number (*):
00 800 6 7 8 9 10 11

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/

JRC 54045

EUR 23992 EN
ISSN 1018-5593
DOI 10.2788/34791

Luxembourg: Office for Official Publications of the European Communities

© European Communities, 2009

Reproduction is authorised provided the source is acknowledged

Printed in Italy
Table of contents

1 Foreword 3

2 Summaries of Presentations 4

2.1 Introduction and Background to Measurement Techniques 4

2.2 Atmospheric Soot Network: toward to development the EC/OC standard material 7

2.3 Principles of thermal methods for the detection and differentiation of EC and OC, intercomparison results 9

2.4 Artefacts in the sampling of OC 16

2.5 Towards a Standardised Method for Measuring Organic and Elemental Carbon within the EUSAAR network 18

2.6 OC/EC/TC analysis: the Spanish experience 20

2.7 Measurement of carbonaceous aerosol by thermo-optical methods: The Portuguese experience 22

2.8 Measurements of Organic and Elemental Carbon in UK AirQuality Networks 23

2.9 Swedish experience - Eusaar_2 and 14C 25

2.10 Résumé 27

Annex The presentations 28

A.1 The European Ambient Air policy Implementation of AQ Directive 28

A.2 EC/OC Workshop: Background and Introduction to Measurement Techniques 31

A.3 Atmospheric Soot Network development of reference materials 46

A.4 Principles of thermal methods for the detection and differentiation of EC and OC, intercomparison results 51
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.5</td>
<td>Artifacts during sampling</td>
<td>60</td>
</tr>
<tr>
<td>A.6</td>
<td>Towards a Standardisation of Methods for Measuring Organic and Elemental Carbon within the EUSAAR network</td>
<td>67</td>
</tr>
<tr>
<td>A.7</td>
<td>Comparison of EC/OC analytical methods within EMEP</td>
<td>74</td>
</tr>
<tr>
<td>A.8</td>
<td>EC Measurement – Current VDI Guidelines</td>
<td>79</td>
</tr>
<tr>
<td>A.9</td>
<td>The “Hungarian” experience</td>
<td>83</td>
</tr>
<tr>
<td>A.10</td>
<td>OC/EC/TC analysis: the Spanish experience</td>
<td>85</td>
</tr>
<tr>
<td>A.11</td>
<td>Measurement of Carbonaceous Aerosol by Thermo-Optical Methods: the Portuguese experience</td>
<td>88</td>
</tr>
<tr>
<td>A.12</td>
<td>The French Contribution</td>
<td>95</td>
</tr>
<tr>
<td>A.13</td>
<td>Measurements of Organic and Elemental Carbon in UK Air Quality Networks</td>
<td>101</td>
</tr>
<tr>
<td>A.14</td>
<td>Swedish experience Eusaar_2 source apportionment</td>
<td>106</td>
</tr>
</tbody>
</table>
1 Foreword

The EC/OC Workshop, a preparatory workshop for the future standard measurement method, was held in Ispra, Italy on 10th and 11th February 2008. More than 70 participants from 20 countries took part in this workshop and contributed to the discussion related to the main tasks:
- giving the general background on determination and quantification of elemental and organic carbon (EC + OC),
- collecting information on available measurement standards in Europe and worldwide,
- presenting and exchanging experiences in Europe related to the measurement of EC and OC,
- and discussing recommendation to be taken into account for the future measurement method.

The presentations on the first day covered all basic scientific and measurement technique relevant topics ranging from reference materials, discussion of optical and thermally based measurement methods, needs and design of round robin tests to assess uncertainties and reproducibility, artefacts during sampling and analysis, and their application at regional background sites within EMEP and EUSAAR.

The focus of the second day was more on national contributions and experiences which also covered a huge range of relevant information such as maintenance, reliability, temperature profiles, optical methods and the issue of brown carbon.

The organizers really thank all presenters but also all participants for their extremely valuable contributions to the success of this workshop which really helps to get a good kick-off for the standardisation work needed to be done.

Yours

Annette Borowiak and Thomas Kuhlbusch
Introduction

Elemental and organic carbon (EC & OC) are two important components of airborne particulate matter. The importance is derived from their mass share of e.g. PM 10 and PM2.5, their property to absorb (EC) or scatter (EC and OC) light and their possible interference with human health. The latter point was the reason why the requirement of EC and OC measurements of PM was implemented for regional background stations in the new Air Quality Directive of the EU in 2008. The paper in combination with the slides of the presentation is intended to give a general background needed for the implementation of a WG for the standardisation of EC and OC measurements in PM in Europe.

What is EC and OC? Where does it come from?

In his seminal book "Black Carbon in the Environment" Goldberg (1985) points out:

> There is no clear definition of black carbon. It often is defined by scientists on the basis of their techniques of isolation and measurement. Despite the highly variable nature of black carbon we may describe it as a combustion derived carbon fraction of black color.

This statement, even though stemming from 1985, is still valid. It also has to be noted that Goldberg uses the term Black Carbon (BC) implying optical properties of this carbon fraction while other terms used are Elemental Carbon (EC), implying chemical purity like in graphite, or soot, some kind of incompletely combusted organic matter.

The lack of a clear definition and terminology leads to the current discussion and partial confusion on 'elemental carbon', the term used here. This discussion on EC is directly linked to organic carbon since for simplicity OC is generally defined as the difference between total carbon and the sum of elemental and inorganic carbon (EC + IC):

\[
OC = TC - (EC + IC)
\]

Nevertheless, some general standard methods and protocols exist (e.g. VDI, US EPA, EMEP, EUSAAR). Their intercomparability is currently at least debatable and may in some cases be poor, based on the different basic principles used for the differentiation of EC and OC. Since we agree with the statement by Goldberg (1985) that EC “is defined by scientists on the basis of their techniques of isolation and measurement, definition may be based on:

- the thermal stability of EC,
- the chemical nature of EC,
- the basic structure of EC,
- the optical properties of EC.

Sources of EC are generally any incomplete combustion processes either of anthropogenic or natural origin. This includes emission from e.g. diesel engines, gas burners, coal fired
power plants, domestic heating by e.g. wood combustion, or vegetation fires. This list can be extended, especially if “blackness” is used for the definition of EC, to degradation products of organic matter and vegetation fire residues.

Airborne organic particulate matter may be derived from direct, primary emission sources as well as from gaseous precursors while EC can only originate from primary emission. Direct particulate OC (POC) emission may be from incomplete combustion, (re)suspension of biological particles like spores, fungi, plant debris or abrasion products from e.g. tires and plastics. Similarly, anthropogenic and natural emissions also lead to particulate OC by the release of precursors (volatile organic carbon, VOC) and their subsequent conversion to POC. Sources here are e.g. incomplete combustion (diesel, vegetation fires etc.), biogenic emission (isoprenes etc.) and VOC from industry (refineries, dry cleaners etc.).

Why do we want to measure EC and OC?
The main reasons for the determination of airborne elemental and organic carbon are based on the possible health and climatic implications. Elemental carbon is one of the few aerosol components with strong light absorbing properties, while OC and other aerosol constituents mainly scatter light. It has to be noted that the ratio of light scattering to extinction determines the “particle albedo”. The particle single scattering albedo linked with the atmospheric PM load and the surface albedo determines whether the aerosol leads to cooling or warming of the atmosphere.

The other important implication of EC and OC are their possible implication on human health. This also is the background of why the measurement obligation to determine EC and OC was implemented in the new Air Quality Directive and why this workshop was set up. The background to possible health effects by EC and OC is based on several toxicological and epidemiological studies. There is no doubt that EC and OC from e.g. incomplete combustion processes lead to negative health effects but the mechanisms on how EC and OC interact with humans and the quantitative link to health effects is still not clear. Does EC from diesel, gasoline, gas and vegetation fires have the same exposure – response ratio?

How can it be measured? What are the main principles?
Measurement methods for OC and EC must be based on their unique properties in comparison to the general matrix, here PM. Carbon in PM which can be determined by the measurement of e.g. CO_2 after thermal treatment and oxidation can be separated into inorganic, organic and elemental carbon. Inorganic carbon (i.e. carbonates) can be quantified by acidification which leads to the release of carbonate carbon as CO_2. The interference in the determination of EC and OC caused by IC depends on the method and has to be dealt with separately.

As already stated above, quantification of OC is mainly based on the difference of TC and EC. Total carbon can only be determined by chemical analysis and is normally done by a total combustion technique (elemental analysis). Comparability exercises of the measurements of total particulate carbon showed generally good agreements within an uncertainty range of ca. 20% while the uncertainties are much higher for the measurements of EC.

Unique properties of EC have to be used for the separation of TC from EC. These properties can be summarized to specific optical properties (light absorption) and thermal stability (low volatility and higher combustion temperature). This already summarizes the two main measurement approaches for EC:

- techniques based on the measurement of light absorption,
- techniques based on the measurement of thermal stability of carbon.
Beside techniques solely based on one of those approaches also combinations of both exist. The presentation gives examples and describes the main techniques currently in use in Europe for the quantification of airborne EC with indication of their advantages and disadvantages.

What are the measurement requirements?
The demands related to the measurement requirements are important to clarify which analysis method best fits the needs and where further tests are needed. The presentation therefore opened up the discussion on this topic. The summary of the results of the ongoing discussion is given in the Resume and recommendation section of this report. The questions raised with respect to standardisation were:
- on-line or off-line method?
- manual or automatic method?
- combined EC and OC method?
- optical or mass based method?
- comparability?
- repeatability?
- calibration / validation?
- artefacts during sampling
2.2 Atmospheric Soot Network: toward to development the EC/OC standard material
Popovicheva1 O., Baumgardner2 D., Puxbaum3 H.

1SINP, Moscow State University, Russia
2Universidad Nacional Autónoma de Mexico, Mexico
3Technical University Vienna, Austria

Combustion carbonaceous aerosols, also known as soot, are one of the most important particulate species in the atmosphere because of its impact on climate on a global scale and health on a local scale. However, our current ability to predict environmental and health effects of soot emissions is strongly limited. There is no quantitative estimations of the soot exhaust effect from industry/commercial sources, transport, and domestic heating to compare it with natural sources from biomass burning and forest plumes.

There are many instruments to measure carbonaceous aerosols with various techniques but at the moment there is no standard reference material that can be use to calibrate these instruments. Therefore the uncertainty in measured combustion aerosols is estimated to be no better than ± 30-50\% or even higher. At the moment, the users of these instruments rely upon the nominal calibrations provided by the manufacturer but that have not been commonly accepted. Lack of BC material for calibration instruments leads that many instruments in different laboratories are calibrated by different materials producing various results. Therefore, the technical challenge presently is to produce reference material of known composition and to be able to deliver it in a form that can be easily used in any of the various instruments that measure this quantity.

Combustion carbonaceous aerosols consist of a varying mixture of organic carbon and elemental carbon that depends upon the type of combustion and the age of the soot particles. The work of the EU commission on the EC/OC standardisation will soon start. Atmospheric Soot network (ASN) recommends a further task has to be considered, which is the development of standard material for the calibration of the standard EC/OC measurement method. The objective of this task proposes the manufacturing and testing reference material of precise elemental and organic carbon content for the purpose of calibrating instruments that measure soot for application air quality monitoring. There are currently no methods for producing soot particles of known characteristics, i.e. size, surface area, and composition. Hence, the development of atmospheric representative and accessible soot materials with reproducible “programmable” characteristics will ensure long-term intra and inter-laboratory data quality leading to a great progress by the entire environmental community in the measurement and monitoring soot aerosols.

ASN proposes to develop a Set of reference materials including graphitized soot as EC standard and OC tailored materials as EC/OC standards. They should be tested by many techniques for deriving soot mass concentrations, light absorption and EC/OC separation. The principle tasks to be performed are: 1) specification of characteristics for soot from various combustion sources, 2) manufacturer of test reference materials that meet the specifications, 3) development of soot delivery system, 4) round-robin testing of reference materials with instrumentation, 5) presentation of test results to the EC/OC standardisation commission.

To approach the objectives of CEN 264 activity ASN recommends the organization of the specially-oriented workshop on TC/EC/OC standards selection and preparation, which could support the commission on the EC/OC standardisation for prescribing the appropriate standards and intercomparison tests concerning the calibration technique of the standard EC/OC method and for potential equivalence testing.
The task of TC/EC/OC Reference Material preparatory workshop would be:
1. Presentation and identification of potential materials for TC/EC/OC testing and standardization (main requirements for standard materials),
2. Discussion of ways for preparing reference quartz fiber filters,
3. Arrangement of the intercomparison comparing on proposed standard materials using the EC/OC and light absorption measurement techniques,
4. Recommendations to the EC/OC standardisation commission.
2.3 Principles of thermal methods for the detection and differentiation of EC and OC, intercomparison results
Willy Maenhaut

1. Introduction

Carbonaceous aerosols consist of organic carbon (OC), elemental carbon (EC) or black carbon (BC), and inorganic carbonate carbon (CC). EC and BC are used to denote roughly the same refractory and light-absorbing fraction of the carbonaceous matter; when this fraction is determined with a thermal method it is normally termed EC and when it is measured with an optical method it is normally denoted as BC. The distinction between OC and EC or BC is, however, not sharp; from a thermochemical point of view there is a transition region of refractory organic carbon in between OC and EC and from an optical viewpoint there is coloured organic carbon (or brown carbon) in between OC and BC [Pöschl, 2003]. Depending on the method of analysis or the operational parameters, different amounts of carbon from refractory and coloured organic compounds are included in OC and EC or BC. The distinction between OC and EC or BC is generally simpler for urban aerosol samples than for rural samples and it is especially difficult for aerosol samples that are impacted by biomass burning (e.g., wood smoke). However, also for urban samples, different methods can provide substantial differences for the EC (or BC) fraction of the carbonaceous matter, as was for example demonstrated in the aerosol carbon round robin exercise that was organised by TU Vienna 10 years ago [Schmid et al., 2001].

2. Thermal analysis of atmospheric particulate matter for OC and EC

For thermal analysis of atmospheric particulate matter (PM) one normally collects the aerosol with a filter sampler using quartz fibre filters or occasionally with a cascade impactor with aluminium foils or quartz fibre filters as impaction surfaces and the thermal analysis of the samples is carried out in the laboratory. However, there are also instruments such as the Rupprecht & Patashnick Series 5400 Aerosol Carbon Particulate Monitor (now not sold anymore) or the Sunset Laboratory Carbon Aerosol Analysis Field Instrument, which perform thermal analyses of aerosols for OC and EC in situ and in real time. The principles used in these thermal in-situ instruments are the same as in the thermal laboratory instruments and no further discussion of the in-situ instruments will be given here.

The thermal methods used in the laboratory instruments can be classified in three categories, i.e., (1) simple thermal methods, (2) two-step thermal methods, and (3) thermal-optical methods. Methods of all three categories were applied in the above-mentioned aerosol carbon round robin exercise of Schmid et al. [2001] and their principles and literature references for them are given in this publication. Here, one or two examples are given for each category of methods and the principles involved are briefly described.

As indicated above, carbonaceous aerosols contain in addition to OC and EC, also CC, so that total carbon (TC) = OC+EC+CC. Unless the CC is removed prior to the thermal analysis, it is generally included in either the OC or the EC measurement. For fine aerosols (e.g., PM2.5) CC is often small or negligible, but for PM10 and especially Total Suspended Particulate (TSP), it may be substantial.

2.1. Simple thermal methods
An example of a simple thermal method is that developed at TU Vienna [Puxbaum, 1979]. The sample (or a fraction of it) is subjected to a constantly increasing temperature (20°C min⁻¹) up to a maximum temperature of 800°C in a pure O₂ stream. The evolving carbonaceous vapours are converted into CO₂ by a MnO₂ catalyst (held at 700°C) and the CO₂ is measured with a non-dispersive infrared (NDIR) detector. The last peak(s) in the thermogram (thus at high temperature) is (are) considered to represent EC, whereas the earlier peaks are considered as OC. The quantification is done by determining the area under the peaks and the instrument is calibrated with samples of known amounts of carbon (e.g., sucrose).

Besides NDIR, also other detection methods can be used for measuring the CO₂ in simple thermal methods or in the other thermal methods. The CO₂ can be measured by coulometric titration [Cachier et al., 1989] or it can be converted into CH₄ and the latter can be measured with a flame ionisation detector (FID).

A first limitation of the simple thermal methods is that some of the organic matter may be converted into pyrolytic carbon (PC) by pyrolysis or charring and like the “real” EC only be converted into vapour at higher temperature and then erroneously be counted as EC. Incidentally, this limitation applies also to the two-step thermal methods. The artifact formation of PC is smaller in an oxidising atmosphere (O₂) than in an inert gas (He, N₂, Ar). A second limitation is that the presence of inorganic cations, such as K⁺ or Na⁺ (which are important components in biomass burning samples), has a serious influence on the thermal evolution of the carbonaceous vapours. As a result, the peaks come faster in the thermogram and the distinction of EC from OC may be quite difficult to make. In order to improve the determination of EC, the sample is often subjected to an aqueous extraction (which removes the water-soluble OC and the cations) prior to the thermal analysis.

2.2. Two-step thermal methods

A first example of a two-step thermal method is that developed by Cachier et al. [1989]. In this method, the samples are first subjected to a pretreatment in HCl vapour to remove the inorganic carbonates. For the measurement of EC, one part of the sample then subjected to a thermal pretreatment step (precombustion at 340°C for 2 h) in order to remove the organic component. The remaining EC is determined by combustion at 1100°C and coulometric titration of the evolved CO₂ in a carbon analyzer (Ströhlein Coulomat 702C). For another part of the sample, the combustion/titration is performed without any thermal pretreatment, so that the content of TC is obtained. The difference (TC - EC) then yields OC.

Another example is the VDI-2 method, as used at the Leibniz Institute for Tropospheric Research (IfT) in Leipzig, Germany [Neusüß et al., 2002; Plewka et al., 2004]. This method is a two-step thermographic method, which uses a commercial carbon analyser C-mat 5500 (Ströhlein, Germany); the analyser consists of a free programmable combustion furnace (IR 05) followed by a resistance oven (D03 GTE) holding the CuO catalyst at 850°C (to convert carbon quantitatively to CO₂) and a NDIR detector measuring the IR absorption of the CO₂ formed. In the first step, the sample is heated at 590°C (or 650°C) in nitrogen carrier gas for OC volatilisation and in the second step, EC is combusted at 650°C in an oxygen atmosphere. In between the two steps, the IR furnace is cooled down to 50°C to avoid EC losses during flushing with oxygen.
2.3. Thermal-optical methods

Examples of thermal-optical methods are those of Desert Research Institute (DRI) [Chow et al., 1993] and of Sunset Laboratory [Birch and Cary, 1996]. Traditionally, DRI makes use of a thermal-optical reflectance (TOR) correction and Sunset Laboratory of a thermal-optical transmission (TOT) correction, but both have now instruments where simultaneous TOR and TOT corrections are possible. Here, we describe the TOT instrument of Sunset Laboratory. A punch of 1.5 or 1.0 cm² of the quartz fibre filter sample is placed in the quartz oven of the instrument. In the first phase of the analysis, which takes place in a pure He gas stream, the filter punch is heated in 4 steps up to a temperature of 870°C (or 900°C); the desorbed carbonaceous vapours are catalytically oxidised into CO₂ (by a MnO₂ catalyst held at 870°C); the CO₂ formed is reduced to CH₄ (in a Ni-firebrick methanator, held at 500°C) and the latter is subsequently measured with an FID. Laser light (of 670 nm) is continuously passed through filter punch and the light transmission is continuously measured. During this first phase of the analysis, part of the OC is pyrolysed (charred) with formation of PC, so that the light transmission through the filter punch decreases. At the end of the first phase, the filter punch is slightly cooled. In the second phase, which takes place with a 98%He/2%O₂ mixture as carrier gas, the filter punch is in four (or more) steps further heated to e.g. 900°C and otherwise everything is the same as for the first phase. When the light transmission through the filter punch equals that seen at the beginning of the first phase, the OC/EC split is set; the CO₂ measured in the first phase and during the second phase prior to the split is considered as OC (it includes the PC) and the CO₂ measured after the split is considered as the “real” EC. The total CO₂ measured during the second phase (which represents the sum of PC + “real” EC) corresponds to the EC, which is measured without optical correction [Schmid et al., 2001]. After the end of the second phase, while still in a He/O₂ mixture, a known amount of CH₄ gas is injected through a loop; this serves for internal calibration. An example of a TOT thermogram (without the internal calibration peak) as obtained with the NIOSH protocol is shown in Figure 1.

![Figure 1. TOT thermogram, obtained with an instrument from Sunset Laboratory and the NIOSH temperature protocol, for an urban PM2.5 quartz fibre filter sample collected at Ghent.](image-url)
3. Intercomparison results

3.1. Dependence on operational parameters. Intercomparison of four temperature protocols in TOT for five sample sets

At University Gent we have two TOT laboratory instruments from Sunset Laboratory. Our instrument A was acquired in December 1997 and instrument B in September 2002. It was examined to what extent the OC, EC, and TC data depend on the temperature protocol and whether the two instruments provide comparable results. This exercise was done for five sample sets and for four different temperature protocols, and each sample of each sample set was analyzed with each instrument and each of the protocols. The sample sets consisted of (1) TSP samples collected during 2003 in Beijing, (2) PM2.5 samples from a 2003 winter campaign in Ghent, (3) TSP samples from southern Austria taken in 1999, (4) PM2.5 samples from a 2003 summer campaign at K-puszta, Hungary, and (5) PM2.5 samples from a pasture site in Amazonia taken in 2002 during the dry (biomass burning) season. All samples had been collected on quartz fibre filters (pre-fired Pall filters in the case of the PM2.5 samples). The four analysis temperature programs were (1) our “standard” program (ST), which is the program that we used in the aerosol carbon round robin [Schmid et al., 2001], (2) a program called NIOSH2 (N2), which is very similar to the ACE-Asia base case program of Schauer et al. [2003] and identical to the NIOSH program used for Figure 1, (3) the EUSAAR 2 (E2) protocol, which has been developed within the EU project “European Supersites for Atmospheric Aerosol Research” (EUSAAR), and (4) a program called ACE-Asia alternate3 (A3), which is identical to the one used by Schauer et al. [2003] and is a proxy for the DRI IMPROVE program. The maximum temperatures during the first stage (in pure He) of the analysis for the four programs are 900, 870, 650, and 550°C, respectively, and the durations of the four programs, including the CH₄ internal calibration phase, are 620, 775, 1170, and 780 s, respectively. The ranges for TC (in µg/cm²) and for the EC/TC ratio, as obtained with program ST and instrument B for each sample set, are given in Table 1; also the number of samples within each set is indicated in the Table.

Table 1. Ranges for TC and for EC/TC, obtained with our program ST, and mean ratios (and assoc. std. dev.) to program ST for EC/TC for programs N2, E2, and A3 for five series of aerosol filter samples and instrument B. The ratios to ST for EC/TC were calculated per sample and then averaged over all samples of the same series.

<table>
<thead>
<tr>
<th>Sample series</th>
<th>no. of samples</th>
<th>Range TC (µg/cm²)</th>
<th>Range EC/TC</th>
<th>Mean ratios to program ST for EC/TC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N2</td>
</tr>
<tr>
<td>Beijing</td>
<td>5</td>
<td>71 – 240</td>
<td>0.15 – 0.24</td>
<td>1.15±0.05</td>
</tr>
<tr>
<td>Ghent</td>
<td>26</td>
<td>15 – 110</td>
<td>0.084– 0.35</td>
<td>1.04±0.14</td>
</tr>
<tr>
<td>Austria</td>
<td>16</td>
<td>18 – 40</td>
<td>0.076– 0.13</td>
<td>1.21±0.25</td>
</tr>
<tr>
<td>K-puszta</td>
<td>5</td>
<td>16 – 25</td>
<td>0.038– 0.056</td>
<td>1.38±0.02</td>
</tr>
<tr>
<td>Amazon</td>
<td>5</td>
<td>57 – 98</td>
<td>0.021– 0.031</td>
<td>1.35±0.07</td>
</tr>
</tbody>
</table>

It turned out that the TC data obtained with our two instruments agreed well (typically within better than 10%) and that the various protocols provided similar TC data; one major exception existed for our instrument A in combination with protocol E2, the TC data of this combination were substantially lower (by up to 40%) than those obtained with E2 and our instrument B or with both instruments and the other three programs. It was noted that, for actual aerosol filter samples, the time lag between the last peak in the thermogram and the CH₄ internal calibration peak was substantially shorter for E2 than for the other three protocols and that the valley in between that last peak and the CH₄ internal calibration peak did not come down deep enough for our instrument A. The calculation program that is provided by Sunset Laboratory calculates the area under the peaks in the thermogram by
subtracting a linear sloped background (baseline). This background is obtained from a number of channels at the start of the thermogram and a number of channels before the CH4 internal calibration peak. If the valley before the latter peak is not deep enough, as was the case for E2 with our instrument A, then the background is overestimated and TC is underestimated. We obtained a modified calculation program from Sunset Laboratory, whereby there is an option to keep the background linear and constant and to estimate it from the initial channels in the thermogram. By performing the calculations with this option and the modified program, correct TC data were obtained for E2 and our instrument A. It is clear that the last temperature step in E2 is not kept on long enough. It is suggested to extend the duration of this step by at least 50 s, and possibly by 100 s in order to avoid problems. This extension will unfortunately make that E2 will become even longer; it is now already by far the longest of the four protocols.

The EC/TC ratios obtained with the four protocols were compared with each other. This comparison was done in terms of ratios to the EC/TC ratios obtained with ST. The ratios (of EC/TC ratios) were calculated on a sample by sample basis and then averaged over all samples of same sample set (and separately for each of the two instruments). The results obtained with instrument B are included in Table 1. It is clear that the lowest EC/TC ratios were obtained with ST and that A3 provided the highest ratios. There was clearly an inverse relationship between the EC/TC ratio and the maximum temperature during the first phase of the analysis. This is illustrated in Figure 2, which shows for each of the five sample sets the average EC/TC ratio as a function of that maximum temperature. It is clear from both Table 1 and Figure 2 that the lowest difference in EC/TC ratios between the four protocols is obtained for the rural samples from Austria. The largest difference exists for the biomass burning impacted samples from Amazonia. The urban samples from Beijing and Ghent and the samples from K-puszta show a behaviour which is intermediate between that of the Austrian and Amazonian samples.

![Figure 2](image-url)
Figure 2. Average EC/TC ratio as a function of maximum temperature in the first phase (in pure He) of the analysis protocol. The average EC/TC ratios are indicated by the symbols and are also given in numeric form. The four analysis protocols from left to right are A3, E2, N2 and ST. All data were obtained with our instrument B.

It should be noted that the EC/TC ratio does not only depend on the analysis temperature protocol, but also on the type of optical correction used. For the same protocol, different EC/TC ratios are obtained with TOR and TOT; there is a tendency for larger EC/TC ratios in TOR than in TOT.
3.2. Intercomparison of EC and BC results from thermal and optical methods for a 2006 winter campaign in Vienna

Several thermal and optical methods for measuring EC and BC were compared during a 2006 winter campaign that took place from 7 February to 15 March on a rooftop of the University of Vienna. The results of this study are described in detail by Reisinger et al. [2008]. Here, only a brief presentation is given. Three optical methods for measuring BC and four thermal methods for measuring EC were used in the study; the optical methods were a light transmission method (LTM), the multi-angle absorption photometer (MAAP), and the integrating sphere (IS) method; the thermal methods were TOM-TU, the two-step method of Cachier et al. [1989], and TOT with the N2 and A3 protocols. TOM-TU is a modification of the simple thermal method described in section 2.1; it was extended with an optical transmission correction. The samples for the thermal methods were 24-hour PM10 quartz fibre filter samples, with filter change nominally at 13:00 UTC. On certain days, i.e., for the 4-day period from 23 to 27 February, very substantial differences were found between the EC data of the four thermal methods, with TOM-TU and the two-step Cachier method providing much larger data than A3 and N2. The 4-day period turned out to be a cold period in which 24-h averaged temperatures dropped to -4°C and in which wood burning for space heating was prominent in the surroundings of Vienna. By adapting the IS method so that it could differentiate between BC-brown, which is ascribed to the wood burning, and BC-black, which originates mainly from diesel fuel, it was found that the BC-brown levels were indeed enhanced in the 4-day period. The BC-black levels for these 4 days agreed well with the EC data obtained by A3.

References

2.4 Artefacts in the sampling of OC

Harry ten Brink

Energy-research Centre of the Netherlands (ECN), Petten, the Netherlands

INTRODUCTION

OC/EC is (typically) sampled with quartz fibre filters. There are two types of artefacts associated with this sampling:

1) The filters adsorb of volatile OC-components; the so-called positive artefact
2) Collected semi-volatile components evaporate; a “negative” artefact.

Adsorption and evaporation proceed at the same time because different OC-components are involved. A comprehensive review of the artefacts is provided by Turpin et al. (2000). As an introduction I recommend a presentation from which I took a number of sheets:

gonzalo.er.anl.gov/ACP/2002presentations/Novakov02.pdf

There are sophisticated ways to deal with the artefacts that we will discuss below. These show that the adsorption artefact is the most important. It is also seen that the amount of artefact OC does not follow the volume of air sampled. In other words, the relative contribution of artefact OC decreases with increasing sampling volume.

EN-12341 requires the use of quartz fibre filters for the determination of PM10-mass. Thus a large number of have been taken in the EU. The OC-artefact must have lead to an artificial increase in the amount of PM10. However, we could not find documentation on the importance of this artefact.

Field blanks

A minimum value for the adsorption artefact is found in the values in the so-called field blanks. These are filters that are put in the sample holders without being loaded. The filters take up OC via diffusion, that is, by just being passively exposed to ambient air. The networks in the US report field blanks that are large in comparison with the actual OC-data. Only some scattered data are available in Europe. We just finished a study in which sampling was performed with automated KFG-samplers. 150 field blanks were taken. The average OC-value of these field blanks corresponded to a concentration of 1.3 ug m⁻³.

Lot blanks

Filters received from the manufacturer often contain OC and they are therefore cleaned in scientific studies. This is done by pre-firing. Whatman-QMA filters are pre-fired in the factory. We analysed OC in a large number of such Whatman-QMA. These “lot”-blanks were unsealed only shortly before analysis. Filters from the top of a stack contained OC values higher than that of the average field blank. Further down the values rapidly decreased to often insignificant values.

ASSESSMENT AND AVOIDANCE OF THE ARTEFACTS

Lot-blanks should be tested before use. Filters may have to be pre-fired; cooling in a wet atmosphere pacifies the surface (advice of Puxbaum). A first indication of the magnitude of the sampling artefact is provided by the field blank.

For an assessment and quantification of the sampling artefacts there are several methods in use for which we also provide the name of the respective institute / scientist using these:

1. Filter-pack / tandem filters / 2 filters in series; the amount of OC in the 2d filter is a first measure for the sampling artefact in the first filter (EMEP, Sillanpää).
2. A gas-denuder to remove the adsorptive volatile OC (Maenhaut / Viana).
3. Impregnation of the second filter to collect the semi-volatile OC that evaporates from the first filter, to correct for the negative artefact (Putaud).

Ad 1. Teflon-quartz filter-pack; in a parallel sampling line. The Teflon filter does not adsorb OC; the OC on the quartz back-up filter is a (better) measure for the adsorption artefact (Vecchi)

SUGGESTION FOR ISSUES TO BE ADDRESSED IN THE WORK-GROUP

1. Filter type: EN-14907 allows glass fibre; OC/EC analysis is possible
2. Combination of mass-determination and OC/EC-analysis for the same (quartz) filter
3. **Brand** of quartz-filter; there are different brands with possibly different blank characteristics
4. **Amount of air drawn** through the filters. This affects the ratio of artefact OC and real OC
5. **Filter-packs** to correct for the artefacts, specifically for source apportionment
6. **Denuders** to remove volatile OC
7. **Pre-firing** and, if so, what protocol.

Addendum: automated on-line instruments

Artefact formation can be easily checked in automated instruments. This is done by periodically placing an absolute filter in the sampling line. Own experience was not encouraging in this respect. The ACPM’s (R&P 5400) tested had a large and irreproducible artefact.

Artefacts with filters can be avoided by collecting PM differently. There is an instrument for artefact-free sampling of the (semi-volatile) nitrate. The collection occurs via condensation of steam. The nitrate is analysed in the collected condense-water. In this water also OC can be measured.

References

Kuhlbusch et al. 1998. *Sources, determination, monitoring, and transport of carbonaceous aerosols in Mainz, Germany.* Atmos. Environ. 32, 1097-1110

Viana, Maenhaut et al. 2007 *Comparative analysis of Organic and Elemental Carbon concentrations in carbonaceous aerosols in three European cities.* Atmos. Environ. 41, 5972-5983

Yttri et al. 2007. *Elemental and organic carbon in PM$_{10}$: a one year measurement campaign within the European Monitoring and Evaluation Programme EMEP.* Atmos. Chem. Phys. 7, 5711-5725
Towards a Standardised Method for Measuring Organic and Elemental Carbon within the EUSAAR network

J.P. Putaud and F. Cavalli

European Commission, DG JRC, Institute for Environment and Sustainability, I-21027 Ispra (Va)

The current European Directive on ambient air quality (2008/50/EC) states that measurements shall be made at rural background locations for providing information on the chemical speciation of fine particulate matter (PM$_{2.5}$). Carbonaceous matter accounts for 45 ± 20 % of PM$_{2.5}$ (ref.?) across Europe. A reference method for monitoring this important PM constituent is however lacking. EUSAAR aims at improving the quality of the measurements of non-regulated aerosol properties of interest to air pollution and climate change issues. The analytical protocol for carbonaceous PM “EUSAAR_2” copes with a series of requirements that a reference method should meet, including:

1- A robust determination of the total carbon (TC) concentration.
TC can directly be determined using thermal methods: PM samples collected on e.g. quartz fiber filters are exposed to increasing temperature (up to 850°C) so that carbonaceous species are all volatilized and/or oxidized to CO$_2$, which is directly or indirectly detected. The analytical protocol EUSAAR_2 includes the determination of TC through a straightforward calibration using gases and solutions containing inorganic or organic carbon.

2- A pragmatic speciation of TC.
Atmospheric carbonaceous PM consists of hundreds of different molecules. Labor-intensive combinations of the most advanced analytical techniques can resolve and quantify up to ca. 30% of the TC mass. These techniques are therefore not suitable for monitoring. However, it is important to go for TC speciation, particularly to distinguish between elemental carbon (EC), directly emitted in the particulate form by combustion processes, and organic carbon (OC), that arises from both natural and anthropogenic [primary and secondary] sources. However, it is difficult to make a clear distinction between highly refractory organic molecules and pure EC. Thermal analytical techniques split TC fractions according to their volatility. In an inert atmosphere (step 1), just OC volatilizes. EC is combusted to CO$_2$ during step 2 in an oxidizing atmosphere. The highest temperature reached during step 1 is critical. If it is too low (550°C like in the IMPROVE protocol), a fraction of OC (up to 40%) does not evolve during step 1 and could be detected as EC. If it is too high (850°C like in the NIOSH protocol), as much as 21.2±4.4% of EC could be combusted during step 1 and be detected as OC. The compromise (650°C) chosen in the EUSAAR_2 protocol ensures that a maximum of 2.5±2.4% of EC will be combusted during the analytical step 1, and a minimum of 80% of even high molecular mass organic molecules (humic-like substances) are volatilised or charred (see point 3) during step 1.

3- A correction for charring
Instead of volatilizing, some organic molecules polymerize and form a highly refractory black species during temperature ramps (charring). This pyrolitic carbon (PC) would be detected as EC. Not correcting for charring can lead to analytical errors in the determination of atmospheric EC larger than 400% (EUSAAR_2 intercomp’2007). Thermal-optical analytical techniques monitor charring by recording the decrease in light transmission and/or reflection through the filter during the analysis. As O$_2$ is added to the carrier gas, refractory black PC and EC are combusted and light transmission and reflection gradually increase again. When light transmission or reflection reaches the value recorded...
before the analysis starts, it is considered that all PC formed from OC during the analysis has evolved and that all carbon evolving afterwards is atmospheric EC.

4- A limitation of charring
To discriminate between artificially formed PC and native atmospheric EC, thermal–optical methods assume that one of the following two hypotheses is correct:
 (a) PC evolves from the filter before EC during the analysis.
 (b) PC has the same specific light absorption cross section (σ) as EC.
However, none of these assumptions always holds: PC and EC have been shown to co-evolve, and PC’s σ was found to be generally larger than EC’s. Temperature programs should therefore aim at reducing the amount of charring to a minimum. Longer steps at low temperature (120 s @ 200°C, and 150 s @ 300°C) as in the EUSAAR_2 protocol reduce charring by 16% on average compared to e.g. the NIOSH protocol.

5- A low sensitivity of the EC value to the split point position
The transmission or reflection threshold value which is used to split between PC and EC is known with an uncertainty of ca. ±3%. To minimize the effect of this uncertainty on EC determination, the temperature protocol should be such that the amount of carbon evolving at the split point is as little as possible.
The EUSAAR_2 protocol includes three temperature plateaus in the analytical step 2, where the split point occurs, which increases the chance of having a smooth evolution of carbon around the split point. Over 9 samples collected in Ispra (semi-rural site in Italy), an uncertainty of ±3% in the determination of the laser signal threshold translated in an acceptable uncertainty of ±10 % in EC determination.

Conclusion
While alternative methods could be more precise, accurate, and/or rigorous on specific aspects of the determination of OC and EC in atmospheric PM, a thermal-optical method implementing the newly optimized temperature protocol EUSAAR_2 fulfills a series of requirements that makes it highly suitable for the monitoring of OC and EC concentrations in PM$_{2.5}$ in Europe.
A recent intercomparison demonstrated that 5 among 6 EUSAAR partners using this protocol could determine TC and EC/TC with relative errors <17 and 29%, respectively, a fraction of this difference being possibly due to filter heterogeneity. Furthermore, using EUSAAR_2, the amount of PC determined optically (integrating the laser signal) and thermal-optically (integrating the CO$_2$ signal up to the laser-determined split point) well agree ($R^2 = 0.75$, n = 224) for filter loads <25 µg/cm2, which guarantees the accuracy of the EC (and therefore OC) determination.
2.6 OC/EC/TC analysis: the Spanish experience

M. Viana*, A. Alastuey, X. Querol

Institute for Environmental Assessment and Water Research (IDAEA-CSIC)
* mviana@ija.csic.es / mar.viana@idaea.csic.es

EC/OC Workshop, February 11th, 2009, Ispra

At present, OC and EC analyses are carried out in Spain at two research institutions:
- ISCIII (National Health Institute) in Madrid, where a TOT Sunset OCEC Analyzer was acquired and runs since May 2006 (using the quartz.par protocol)
- IJA/IDAEA-CSIC (Spanish Research Council) in Barcelona, where a TOT Sunset OCEC Analyzer was acquired and runs since July 2007 (currently using the EUSAAR2.par)

The acquisition of a third TOT Sunset OCEC Analyzer is currently in process at the Huelva University. In addition, numerous TC analysers (CHNS analyzers, etc.) are available in laboratories throughout Spain.

Prior to the use of Sunset instruments for OCEC determination, analyses were carried out at the laboratories of Prof. C. Pio at Aveiro University, Dr. JP. Putaud at JRC Ispra and Prof. W. Maenhaut at Ghent University. At these laboratories and since 2002, samples were run from various Spanish sites in order to obtain preliminary estimations of OC and EC concentrations as well as to assess the influence of sampling artefacts. The results obtained were published in a number of SCI papers (Rodríguez et al., 2007; Viana et al., 2006, 2007).

At IJA/IDAEA-CSIC, on average 1200-1500 samples are currently run per year originating from a large variety of monitoring environments: regional and urban background sites, as well as traffic and industrial hotspots. Therefore, the PM mixtures analysed significantly differ from each other with respect to PM loading and chemical composition. The samples originate from high- and low-volume samplers (with and without denuders), and they are collected on Munktell and Pallflex substrates.

Regarding the daily run of the instrument, since July 2007 the only major incidence registered at the IJA/IDAEA-CSIC lab refers to the combustion oven, given that a progressive increase in the pressure in the combustion oven was observed (PSIG increased from 1 to 3 in 9 months). As shown in Figure 1, this increase is slow at the start but grows exponentially after 3-4 months. Consequently, in our case the oven had to be completely removed and substituted by a new one, and this process was repeated 2 times in 1.5 years.

![Figure 1. Progressive increase in the pressure in the combustion oven.](image)

Potential causes of this incidence are the type of samples analysed (e.g., samples from a ceramic production area with high % of refractory material), and/or the use of HCl to eliminate carbonate carbon (which seemed to be extremely harmful to the instrument).

Another incidence observed was the increase in the variability of sucrose concentrations if the instrument is not run continuously. The standard deviation of the samples increased from
0.1 µg/µl when the instrument was run continuously, to 0.64 µg/µl after a 15-day analysis gap.

The analytical protocol used by the IJA/IDAEA-CSIC lab was the default Quartz.par from the installation of the instrument until April 2008, when preliminary tests were carried out using EUSAAR2.par. Given the good results obtained with the EUSAAR2.par protocol, evidenced by positive results obtained in 2 round robin exercises, since September 2008 all analyses are performed under the EUSAAR2.par protocol.

The abovementioned tests regarding the EUSAAR2 protocol pursued 3 aims:

1. **Comparison between Quartz / NIOSH / EUSAAR2 and repeatability**: 1 single PM sample was analysed 3 times with each of the protocols. TC levels obtained were similar for NIOSH and EUSAAR2 and differed slightly from Quartz, and the precision was highest with NIOSH. EC/TC ratios increased from Quartz to NIOSH and EUSAAR2.

2. **Comparison between Quartz / EUSAAR2 for different PM mixtures**: 5 different types of PM mixtures (episodes) were selected, and a total of 22 samples were analysed. The influence of the PM mixture seemed to be minor on OCEC results, given that EUSAAR2/Quartz ratios for OC did not vary significantly between PM episodes. EC/TC ratios were higher again for EUSAAR2 than for Quartz. The correlation between both methods for OC, EC and TC was high (>0.88).

3. **Comparison between Quartz / EUSAAR2 thermograms**: the following results were obtained: (a) a clearly better peak separation was observed with EUSAAR2; (b) combustion of light absorbing carbon (LAC) was minimal for both protocols (only detected for 2/11 samples); and (c) results were not optimal for either protocol regarding the split point, as in 7/11 samples for EUSAAR2 and 9/11 samples for Quartz the split point fell in the middle of a peak or close to it, inducing possible inaccuracy in the quantification of EC.

Further research is currently underway to test the performance of EUSAAR2 on urban aerosol mixtures, especially in comparison with the Quartz protocol and under the influence of different PM mixtures.

References

2.7 MEASUREMENT OF CARBONACEOUS AEROSOL BY THERMO-OPTICAL METHODS: The Portuguese experience
Casimiro A. Pio
University of Aveiro, Portugal

Summary

The University of Aveiro has more than 15 years of experience in the measurement of OC and EC by thermo-optical techniques. This presentation describes the evolution of equipment and thermal heating programs and the advantages and limitations of the different alternatives. Several tests were done in order to evaluate the importance of possible interferences in the correct separation between OC and EC, taking into account the pyrolysis of OC. Carbonates evolution, the interference during EC/OC measurements and the effect of pre removal with HCl vapours is discussed.

There is a delay between the volatilization of carbon in the filter and the detection of the resulting CO\textsubscript{2} in the NDIR detector. Furthermore during the transport to the detector there is the dispersion of the emitted volatile carbon in the oven, tubing and detector. This delay / dispersion needs to be taken into account to minimize errors in the correct separation between OC and EC.

The variability in the intensity of the laser signal during thermal carbon evolution can be used to assess the optical characteristics of the pyrolysed OC and EC. Measurements show that, in urban aerosol samples, the pyrolytic OC and initial EC have similar optical absorbance characteristics. However, in rural samples, a clear variability in optical absorptivity is observed during the evolution of pyrolysed OC and EC, with an initial low absorptivity coefficient value followed by a much higher coefficient during the burning of the last carbon material. This dual character of the pyrolytic OC plus EC may hinder a correct evaluation of EC in these rural samples.

The methodology used at Aveiro to measure OC and EC was tested with NIST standards and intercompared in international tests, showing EC results between those of the IMPROVE and NIOSH protocols, but more similar to the first one.

Fifteen years of aerosol measurements using the same analytical technique permitted the gathering of results that show a constant minimum OC/EC ratio value, along time and space. This is a good indication that the minimum OC/EC ratio in urban areas in winter can be safely used to determine the amount of primary OC from fossil fuel combustion, contributing to the correct source apportionment of the carbonaceous aerosol.
2.8 Measurements of Organic and Elemental Carbon in UK Air Quality Networks
Paul Quincey, Garry Hayman

Analytical Science Team, National Physical Laboratory

This brief summary describes the monitoring of elemental and organic carbon (EC/OC) within UK Networks. It does not cover monitoring made at the EMEP site at Auchencorth Moss (which currently monitors Black Carbon by aethalometry) or short term campaigns.

There are two relevant Networks:

The Particles Network is currently managed and operated by NPL and King's College London. Apart from EC/OC it measures particle number concentration (currently at 4 sites), size distribution (3 sites), sulphate, nitrate and chloride (PM$_{10}$) daily (3 sites), nitrate (PM$_{2.5}$) hourly (3 sites).

For EC/OC, from 2002 – 2007 hourly (or 3-hourly) measurements were made with 4 R & P (Thermo) 5400 analysers (4). These instruments are no longer available or supported. They had serious weaknesses in sample collection (impaction was used, and particles less than around 100 nm were not collected), in analysis (a thermal method with no charring correction was used), and in QA/QC (although the CO$_2$ monitor could be calibrated, it was not possible to do a “whole instrument” calibration).

From 2007 EC/OC has been monitored at 3 sites (Marylebone Road (London kerbside), North Kensington (London background) and Harwell (SE England rural)) by daily filter sampling using a Partisol 2025 onto Pallflex Tissuquartz 47 mm filters, followed by with lab analysis at NPL on a Sunset Laboratories instrument using the “quartz” protocol. Monthly averages for 2007 (since the start of this method in the Network) are shown below.

The Black Smoke Network has measured Black Smoke Index for many decades using daily filters analysed manually with a reflectometer. In most cases, concentrations are too low to measure accurately with this method. In 2008 the instruments at the 21 sites were changed from the old samplers to aethalometers (Magee AE-21), which will provide a more precise measure of Black Carbon with much higher time resolution.

Results and further details are available through the Defra website www.airquality.co.uk by following “research” and “reports database”.
2.9 Swedish experience - Eusaar_2 and 14C

Johan Genberg

Nuclear Physics, Department of Physics, Lund University, Box 118, Se-22100, Lund, Sweden
johan.genberg@nuclear.lu.se

In Sweden there are two groups working with carbonaceous aerosol. My experience is only valid for the experience at Lund University. Lund has in contrast to most other institutes not a Sunset carbon analyser but a DRI 2001A OC/EC Thermal Optical Carbon Analyzer. In general the two instruments work in the same manner but the sample size (the filter punch) is smaller using the DRI. This smaller punch may put us in the position where the sample load is too small and give higher uncertainties. The analyser has been running well since November 2008 and is generally demonstrating an instrumentation blank at approximately 0.1 µg C.

In Lund, Eusaar_2 EC/OC protocol was tested in May 2008 and has ever since been used to analyse ambient samples from our background station Vavihill. Before, samples were analysed using the Improve method. The major differences between the methods are Eusaar_2’s higher temperature of the last He-stage and the lower temperature at which oxygen is introduced. For samples collected in southern Sweden this new protocol has shown good results. Using the Improve method, the OC/EC split generally falls in the peak where oxygen is introduced at 550°C. Eusaar_2 has, with its lower temperature of 500°C (in Lund at 480°C and rising to 500°C), a wider peak and the split falls, in most cases, in the valley between the peak for 500°C and 550°C. The split of Eusaar_2 result in lowering the uncertainties of OC/EC separation. The temperature in the last OC stage in Eusaar_2 is set at 650°C which is 100°C higher than the Improve protocol. This temperature is enough to start combustion of charred substances (true or false EC). The length of this temperature stage has so far not been as long as required to restore the laser baseline for the transmission signal to its starting value. A temperature of 650°C is however not high enough to combust soot in pure helium gas. Collected pure soot, generated at Lund University, show practically no increase in laser transmission during the 650°C helium phase.

At Lund the split between OC and EC is of primary interest for climate research. The information is used, together with radiocarbon (14C) measurements, to quantify the sources of the carbonaceous aerosol. This is possible since the naturally occurring carbon isotope 14C is radioactive and has a half-life of 5730 years. Fossil fuel is therefore 14C-free while biomass has 14C concentration as the atmosphere of today. EC, originating from combustion, might by radiocarbon measurement be separated into fossil fuel and biomass burning. Known, or estimated, value of EC/OC from wood burning may be used to complete the source apportionment of OC into fossil fuel, biomass burning and biogenic sources.

To separate OC and EC prior to radiocarbon measurement two techniques are tested in Lund. The first and most promising is a method based upon the work of Sönke Szidat the University of Bern, Switzerland (Szidat et al. 2004, Radiocarbon, 46, 475-484). The water soluble OC is removed by water treatment and the filter is heated in 375°C in air for the time needed to remove all OC. Szidat found that 4 hours was needed to get a stable 14C concentration in the remaining carbon. The carbon left on the filter is considered pure EC and may be analysed. The radiocarbon content of the OC fraction is in Lund determined by subtraction after measured 14C in the total sample. This method is currently being verified using the Eusaar_2 protocol. Since OC/EC separation is user defined it is important that the separation of OC and EC prior radiocarbon measurement is comparable.

In the second considered method the gas flow from the carbon analyser is diverted and trapped it in a cold trap using liquid nitrogen. This would make it possible to use different gas mixtures and monitor the filter’s optical properties during the analysis. Because of the small
punch size of the DRI, several punches might be required before sufficient carbon has been collected to be able to perform the 14C measurement.

It is necessary to extract the carbon from the aerosol samples and convert it into solid carbon prior to 14C AMS measurement (Accelerator Mass Spectrometer) at Lund University. Carbon analysed with the first method is combusted to carbon dioxide. In both methods the carbon dioxide is collected and converted into solid graphite carbon. The carbon dioxide is mixed with hydrogen in a small volume with iron powder and converted into graphite by heat. The process is constantly monitored by measuring the pressure. In Lund the graphitisation system is capable of handling samples as small as 25 µg C, which makes analyses of aerosol samples possible. The use of radiocarbon content in aerosol fractions is not the only analysis needed but together with other parameters it is a valuable tool to create a total source apportionment of aerosol particles.
2.10 Résumé

The main outcomes from the presentations and discussions during the precious two days were discussed and summarised by all participants. The statements given below are meant to be recommendations for the standardisation of OC and EC measurements in Europe.

Rationale

The main focus of the new standard should go along with the intention of the new Air Quality Directive. Information related to health effects and mass closure for PM should take priority over the aim to derive information related to climate change (optical properties). Nevertheless, whenever possible combination of the different aims should be pursued.

Types of sites

It is stressed that the method should also be applicable to urban and roadside sites as well as rural sites, even though the Directive only specifies rural background sites. This is to ensure comparability in all relevant areas of use of the data such as of chemical composition, source identification and apportionment, exposure assessment.

Time resolution

The minimum time resolution of the method should allow daily values to be in accordance with those for PM. This does specifically not exclude shorter time resolution methods. Contrary, shorter time resolutions should be favoured if the data will be obtained with the same quality.

Sampling

There needs to be an explicit link to e.g. EN 14907 sampling for PM$_{2.5}$ without addressing sampling artefacts. Filter types will need to be more restricted than EN 14907. The method should not be linked to a specific size fraction. The use of blank filters, filter handling, and use of blank filter results will need to be clearly addressed, e.g. more stringent than in EN 14907.

Parameter

The high data quality in determining TC (significant lower uncertainty than for EC and OC) should be considered when setting up a standard.

Analysis

EC and OC data should allow / support mass closure of PM along with other PM constituent determined e.g. within the AQD framework.

Links to other standards and network protocols

The European standard should not be developed in isolation from relevant work in other communities especially EMEP, EUSAAR and the US.
Annex: The Presentations

A.1 The European Ambient Air policy Implementation of AQ Directive

The European Ambient Air policy Implementation of AQ Directive

Annette Borowiak, JRC-IES
Andrej Kobe, DG ENV

Loss in life expectancy due to fine particles (in months)

CAFE 2000

Emissions are going down...

LRTAP (EEA 2008)

But there is work to be done...

EEA ETC/ACC, Source : Q461

Community Air Policy

Concentrations

Emissions

Ambient Air Quality

Air Pollution

CAFE Directive

IPPC

LCP's

Incineration

VOC's

National emissions ceilings

Stationary sources

Mobile sources

Non-road

Fuels Quality

Road

28
New Directive 2008/50/EC (I)

Streamlined provisions, more clarity in implementation

PM2.5 objectives, monitoring requirements
- Focused, more coherent measures, better information for further policy development
- New approach: exposure standard based on urban background monitoring in cities

More time for compliance, under conditions
- Art. 22
- Assessment of measures by Commission

New Directive 2008/50/EC (II)

Expanded concept of deduction of natural contributions
- Better Assessment > better understanding of sources, more effective measures

Additional QA/QC provisions, reference methods...
- Higher quality data (monitoring & modelling)

New reporting provisions,
- Faster availability, higher quality, spatial dimension of AQ

Updated guidance
- Support to implementation and more harmonized approach

What’s in for us?

Article 6 of the CAFE Directive

(5) (...) measurements shall be made, at rural background locations away from significant sources of air pollution for the purpose of providing (...) information on (...) the chemical speciation concentrations of fine particulate matter (PM$_{2.5}$) on an annual average basis (...).
Data Quality Objectives

- Uncertainty 25%

- Further quality requirements: traceability (ISO 17025), established QA/QC system (incl. data collection and reporting), regular maintenance, participation to Community QA programmes.

Measurements at rural background locations irrespective of concentration

Objectives:
- ensure information on background levels to judge enhanced levels in more polluted areas,
- assess contribution from long range transport,
- support source apportionment analysis,
- validation data for modelling.

Substances: NO\textsubscript{3}-, Cl-, SO\textsubscript{4}2-, Na+, K+, NH\textsubscript{4}+, Mg2+, Ca2+, EC, OC
A.2 EC/OC Workshop: Background and Introduction to Measurement Techniques

Content

What is the purpose of the workshop?
How is it structured? (Program)
How will it proceed?

What is EC and OC? Where does it come from?
Why do we want to measure EC and OC?
How can it be measured? What are the main principles?
What are the measurement requirements?

What is the purpose of this workshop?

Tasks:
- derive an overview on available, practicable measurement techniques and their comparability, repetitiveness!
- What is been applied in Europe?
- Recommendations for standardisation!

Question related to standardisation:
- on-line or off-line method?
- manual or automatic method?
- combined EC and OC method?
- optically or mass based method?
- comparability?
- repeatability?
- calibration / validation?

How is it structured?

<table>
<thead>
<tr>
<th>Legislative Background</th>
<th>Annette Borowiak</th>
<th>EC/OC, EC</th>
<th>12:00 - 12:15</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is EC/OC and what are the sources</td>
<td>Thomas Kuhlbusch</td>
<td>ITPA, Germany</td>
<td>12:15 - 12:30</td>
</tr>
<tr>
<td>EC/OC Comparison Aquilla</td>
<td>Lorenza Emblico</td>
<td>JRC-IES</td>
<td>13:00 - 13:30</td>
</tr>
<tr>
<td>BRUK</td>
<td></td>
<td></td>
<td>13:30 - 14:30</td>
</tr>
<tr>
<td>The Atmosphere: Scots network</td>
<td>Olga Popovskaia</td>
<td>Moscow State University, Russia</td>
<td>14:30 - 15:00</td>
</tr>
<tr>
<td>Principles of thermal methods for the detection and differentiation of EC and OC intercomparison results</td>
<td>Wille Maaenhout</td>
<td>Ghent University, Belgium</td>
<td>14:45 - 15:15</td>
</tr>
<tr>
<td>Artifacts during sampling and on-line thermal analysis of carbonaceous matter</td>
<td>Harry ten Brink</td>
<td>ENS, The Netherlands</td>
<td>15:15 - 15:45</td>
</tr>
<tr>
<td>Analytical methods used in EUSAAR: Practicability and results</td>
<td>J. P. Rutland</td>
<td>JRC-IES, EC</td>
<td>15:45 - 16:15</td>
</tr>
<tr>
<td>BRUK</td>
<td></td>
<td></td>
<td>16:15 - 16:45</td>
</tr>
<tr>
<td>Comparability of EMEP methods</td>
<td>Karl Espen Yttri</td>
<td>NILU, Norway</td>
<td>16:30 - 17:00</td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
<td></td>
<td>17:00 - 17:30</td>
</tr>
</tbody>
</table>
How is it structured?

<table>
<thead>
<tr>
<th>Content</th>
<th>Draft agenda Day 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the purpose of the workshop?</td>
<td></td>
</tr>
<tr>
<td>How is it structured? (Program)</td>
<td></td>
</tr>
<tr>
<td>How will it proceed?</td>
<td></td>
</tr>
</tbody>
</table>

What is EC and OC? Where does it come from?

- Defined by thermal stability?

How will it proceed?

- Collection of a summary of the presentations
- Preparation of proceedings:
 - Summaries of presenters and slides
 - Summary of discussion
 - List of recommendations
- WG will meet in 28th-29th April, discuss and decide on the methods and procedures necessary for pursuing the standard.
In his seminal book "Black Carbon in the Environment" Goldberg points out:

There is no clear definition of black carbon. It often is defined by scientists on the basis of their techniques of isolation and measurement. Despite the highly variable nature of black carbon we may describe it as a combustion derived carbon fraction of black color.

\[\text{OC} = \text{TC} - \frac{\text{EC}}{\text{BC}} \]

Where does it come from?

EC:
Combustion processes (anthropogenic & natural)

BC:
Also degradation processes and fire residues

OC:
- Industry (dry cleaner...)
- Biogenic (isoprene, terpines...)
- Biological (wax, pieces of plants...)

The high uncertainty of both, the amount of absorbing carbon and the efficiency of absorption, lead to high uncertainties in climate simulations!
Relative risks (95% confidence intervals) for a 10-µg/m³ increase in BS concentrations were 1.05 (1.00–1.11) for natural cause, 1.04 (0.95–1.13) for cardiovascular, 1.22 (0.99–1.50) for respiratory, 1.03 (0.88–1.20) for lung cancer, and 1.04 (0.97–1.12) for mortality other than cardiovascular, respiratory, or lung cancer. Results were similar for NO₂ and PM2.5, but no associations were found for SO₂.
Basic techniques

EC
- Optical methods
- Photoacoustic method
- Thermal methods

OC
- Thermal methods
- GC – MS (3D MS) for speciation

Sunset analysis

- Sampling station in Augsburg daily 2002-2004
- Sampling station in Augsburg since Jan. 2005

Basic techniques

EC
- Optical methods
- Photoacoustic method
- Thermal methods

OC
- Thermal methods
- GC – MS (3D MS) for speciation
The attenuation of light along the direction of propagation through a scattering and absorbing medium is a key process responsible for visibility degradation. The light attenuation for a parallel beam of light of incident irradiance I_0 is given by the Lambert-Beer law

$$
\frac{I}{I_0} = e^{-\sigma_{\text{ext}} L}
$$

σ_{ext} = extinction coefficient in m$^{-1}$; L = length of atmospheric column in m.

Mechanisms of interaction

- When a beam of light impinges on a particle, electric charges in the particle are excited into oscillatory motion.
- The excited electric charges reradiate energy in all directions (scattering) and may convert a part of the incident radiation into thermal energy (absorption).
- Conservation of energy requires that the light removed from the incident beam (extinction) by the particle is accounted for by scattering in all directions and absorption, i.e.

$$
\sigma_{\text{ext}} = \sigma_{\text{scat}} + \sigma_{\text{abs}}
$$

- Coefficients for light extinction by particles (σ_{ext}), scattering (σ_{scat}) and absorption (σ_{abs}) are calculated for spherical particles by Mie theory.
- Efficiencies Q for extinction, scattering and absorption are defined as the ratio of the cross-section with respect to particle-radiation interaction and the geometrical particle cross-section

$$
\Lambda_p = \pi D_p^2 / 4
$$

The extinction coefficient σ_{ext} for an aerosol consisting of N particles per unit volume of cross-sectional area A (spherical particle of diameter D_p) is

$$
\sigma_{\text{ext}} = N A_p Q_{\text{ext}} = N \frac{\pi D_p^3}{4} Q_{\text{ext}}
$$

The fraction of scattering to extinction is defined by the single-scattering albedo

$$
\omega = \frac{\sigma_{\text{scat}}}{\sigma_{\text{ext}}} = \frac{\sigma_{\text{scat}}}{\sigma_{\text{scat}} + \sigma_{\text{abs}}} = 1 - \frac{\sigma_{\text{abs}}}{\sigma_{\text{scat}} + \sigma_{\text{abs}}}
$$

Key Parameters

- ratio of particle size to wavelength of light, or size parameter $m = \frac{2}{\lambda} = n + i k$
- complex index of refraction m is determined by the chemical composition of the particle

- for non-absorbing particles is $k = 0$
- and for absorbing particles is $k > 0$
Table 11.2: Refractive Indices of Atmospheric Substances at \(\lambda = 589 \) nm
(Unless Otherwise Indicated)

<table>
<thead>
<tr>
<th>Substance</th>
<th>(n)</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>1.333</td>
<td>0</td>
</tr>
<tr>
<td>NaCl</td>
<td>1.541</td>
<td>0</td>
</tr>
<tr>
<td>(\text{H}_2\text{SO}_4)</td>
<td>1.426'</td>
<td>0</td>
</tr>
<tr>
<td>(\text{NH}_4\text{H}_2\text{PO}_4)</td>
<td>1.471'</td>
<td>0</td>
</tr>
<tr>
<td>(\text{SiO}_2)</td>
<td>1.55</td>
<td>0</td>
</tr>
<tr>
<td>Carbon</td>
<td>1.91</td>
<td>0.06</td>
</tr>
<tr>
<td>Mineral dust</td>
<td>1.56</td>
<td>-0.006</td>
</tr>
</tbody>
</table>

\(^1 \) Soeben (1990), assuming a 97% pure (by mass) mixture of \(\text{H}_2\text{SO}_4 \) with \(\text{H}_2\text{O} \).

\(^2 \) West (1987).

\(^3 \) Tepp et al. (1990).

Aerosol Absorption Measurement Methods

![Sketches of the major categories of measuring light absorption by aerosol particles, the graph is taken from the Proceedings of the First International Workshop on Light Absorption by Aerosol Particles.](image)

Filter-Based Absorption Measurement - Methods

- Sampling of particles on a fibrous filter matrix.
- Measurement of the modification of filter-optical properties by the collected aerosol particles.
- Assumption of Lambert-Beer type relationship for data analysis.

Transmission method

\[
\text{ATN} = 100 \ln \left(\frac{T}{T_0} \right) - B_{\text{ATN}} \sigma_{\text{BC}}
\]

\[
\sigma_{\text{ATN}} = \frac{A}{V} \ln \left(\frac{T_0}{T} \right)
\]

\[
\sigma_{\text{REF}} = \frac{1}{2} \ln \left(\frac{R}{R_0} \right)
\]

Filter surface area \(A \), sampled volume \(V \), mass-specific absorption coefficient \(B_{\text{ATN}} \) [m² g⁻¹], filter mass loading \(S_{\text{BC}} \) [µg/cm²]

Reflectance method

Interaction of Particles, Fibres and Radiation

- Multiple scattering of light by filter fibres and light-scattering aerosol particles tends to overestimate the absorption coefficient.
- „Shadowing” of collected particles inside the fibre matrix tends to underestimate the absorption coefficient.
Methods measure light transmission through a particle-loaded filter; filter transmittance:

\[1.0 \text{ ("white")] \geq \text{Tr} > 0 \text{ ("black")} \]

aerosol absorption coefficient:

\[\sigma_{ap} = -\ln \frac{I(t + \Delta t)}{I(t)} \cdot \frac{A}{V} \]

the response of any practical method depends on filter loading and interaction between radiation, particles and filter:

\[\sigma_{ap} = \sigma_{ap}(0) \cdot f(\text{Tr}; \sigma_{sp}) \]

\(f(\text{Tr}; \sigma_{sp}) \) has to be known for each method; it requires knowledge on the aerosol scattering coefficient \(\sigma_{sp} \).

Transmittance Methods
Determine the response function \(f(\text{Tr}; \sigma_{ap}) \) in calibration experiments;
perform parallel measurements of \(\sigma_{ap}(0) \) and \(\sigma_{sp} \);
calculate \(\sigma_{ap} = \sigma_{ap}(0) \cdot f(\text{Tr}; \sigma_{sp}) \).

Multi-Angle Absorption Photometry
Measure forward and back scattered radiation simultaneously;
apply a radiative transfer scheme to the aerosol-filter system, which includes multiple scattering processes:

\[f(\text{Tr}; \sigma_{sp}) = 1.0 \? \]

Aerosol Absorption Methods in Reno Aerosol Optics Study 2002 (RAOS)

Photoacoustic Spectroscopy
#1 532 nm, 1047 nm

Particle/Soot Absorption Photometer PSAP
#1 565 nm (regular) \(f(\text{Tr}; \sigma_{sp}) \) applied
#2 471, 543, 659 nm (modified 3-\(\lambda \))

Multi-Wavelength Aethalometer
#1 370, 470, 521, 590, 660, 880, 950 nm no corrections for \(\text{Tr} \) and \(b_{sp} \) applied
#2 370, 430, 470, 521, 565, 700, 950 nm

Multi-Angle Absorption Photometer MAAP
#1 630 nm filter-based;
#2 370 nm \(f(\text{Tr}; \sigma_{sp}) = 1 \? \)

Reference method
Absorption = Extinction - Scattering
(Extinction Cell - Integrating Nephelometer)
Particle Soot Absorption Photometer PSAP

Filter transmission method; instrument consists of filter holder FH, sample filter SF, reference filter RF, sample detector SD, and reference detector RD.

Correction function \(f(Tr; \sigma_{sp}) \) determined for laboratory soot aerosols.

Multi-Angle Absorption Photometry

Angular-resolved detection of back scattered radiation contributes information on the light-scattering fraction of the deposited aerosol.

Simultaneous measurement of back scattered and transmitted radiation permits the treatment of the aerosol-filter system by radiative transfer calculation methods.

A two-stream approximation is used to calculate the filter absorbance:

\[
\tau_L,\text{abs} = \tau_L(1 - \omega_0)
\]

\[
\sigma_{ep} = \tau_L,\text{abs} \cdot \frac{A}{V}
\]

Correlation functions for the effect of aerosol light scattering, determined from kerosene soot - ammonium sulphate mixtures

Correction of Kerosene Data

MAAP: no correction \(m = 1.04 \pm 0.36 \)

Transmittance: good agreement \(m = 1.04 \pm 0.31 \)

Reflectance: good agreement \(m = 1.00 \pm 0.34 \)
Correction of Biomass Burning Data using Kerosene Functions

MAAP
- no correction required
- MAAP correction function deviates by more than 20% from reference data

RAOS 2002 Kerosene soot results

Photoacoustic method measures heat generated by absorbed radiation. The absorbed energy translates into a pressure change in a closed volume which is measured by a microphone.

\[PA \propto \sigma_{\text{ap}} \times P_{\text{LASER}} \]

artifact-free in-situ method; high time resolution;
complex instrument set-up; applicability to long-term measurements not clear;
detection limit not suitable for clean air conditions (LOD > 100 ng / m³).
Filter-based aerosol absorption measurement methods which correct for or compensate effects of filter loading and aerosol scattering

(i) show a strong correlation to in situ reference method (ext - scat) and to in situ absorption measurement method (photoacoustic);
(ii) show reduced cross-sensitivity to light-scattering components;
(iii) are not affected by filter loading;
(iv) report aerosol absorption coefficients close to σ_{ap} determined by in situ methods;
(v) are very simple in operation and can be used for long-term monitoring purposes.

Summary and Conclusions

Content

What is the purpose of the workshop?
How is it structured? (Program)
How will it proceed?

What is EC and OC? Where does it come from?
Why do we want to measure EC and OC?
How can it be measured? Brown stuff?
What are the measurement requirements?

Definition

- **Black carbon (BC)** → optical methods
 - measured parameter: absorption coefficient s_a; conversion to BC mass
- **Elemental carbon (EC)** → thermal methods
 - measured parameter: CO_2 or CH_4
 - separation of EC and organic carbon (OC)
- Graphitic carbon
- Thermally refractory carbon
- „Brown carbon“

HULIS / Brown carbon

- Weakly light absorbing
- Strong spectral dependence of absorption
 - Interference with optical methods
- Thermally refractory
- Chars easily
 - Na, K (in biomass smoke)
 - Interference with thermal methods
Optical methods (except MAAP and IS)

- Light transmission of clean and loaded filter
- Absorption coefficient $s_a(l)$
- Conversion to BC concentration via calibration constant or specific attenuation
- Aethalometer, Light transmission method: 19 m²/g
- PSAP 10 m²/g

Integrating sphere method

- Polycarbonate filter; soluble in chloroform
- Suspension of dissolved filter + sample
- Reduction of light flux at 550 nm in sphere by absorbing material
- Conversion to BC concentration using calibration curve (Elftex 124, Cabot)

Integrating Sphere Technique

Thermal /thermo-optical methods

- Cachier method: Two step combustion
 2 hr 340°C, then 1000°C; O₂
- Thermo-optical: 20°C/min, T_{max} 800°C, O₂
Calibration / Assumptions IS

- Proxy substances
 - Elftex 124 (Cabot Corp.)
 - Humic Acid Sodium Salt (Acros Organics)
- BC behaves like Elftex 124
- BrC behaves like Humic Acid Sodium salt

→ BC concentration
→ BrC concentration
Thermal methods, winter campaign

Thermal methods and brown carbon

Conclusions

- BC from IS method can be corrected for influence of BrC
- Estimation of BrC concentration
- Effect of biomass smoke on EC or BC methods!!!
- What does this imply for the standard?
- But: depends on proxy substances

Artifacts

Assessment of Carbon Sampling Artifacts in the IMPROVE, STN/CSN, and SEARCH Networks

Mino S. Weiss, Neil C. Clever, and W. Arcey Chau

With contributions from:
- Steven D. Crutzen, Robert J. Dugan, and Thomas F. James
- National Institute of Standards and Technology
- University of California, Davis
- Lawrence Livermore National Laboratory

Prepared for:
- TRACER
 U.S. Environmental Protection Agency (MD 14)
 Office of Air Quality Planning & Standards
 200 Alexander Dr., Suite 410
 Research Triangle Park, North Carolina, U.S.A.

August 31, 2000
Content

What is the purpose of the workshop?
How is it structured? (Program)
How will it proceed?

What is EC and OC? Where does it come from?
Why do we want to measure EC and OC?
How can it be measured? Brown stuff?
What are the measurement requirements?

Measurement requirements

Tasks:
- derive an overview on available, practicable measurement techniques and their comparability, repetitiveness!
- What is been applied in Europe?
- Recommendations for standardisation!

Question related to standardisation:
- on-line or off-line method?
- manual or automatic method?
- combined EC and OC method?
- optically or mass based method?
- comparability?
- repeatability?
- calibration / validation?
A.3 Atmospheric Soot Network development of reference materials

Our current ability to predict environmental and health effects of soot emissions is strongly limited.

There is no quantitative estimations of the soot exhaust effect from industry/commercial sources, transport, and domestic heating to compare it with natural sources from biomass burning and forest plumes.

- a great variety of different sources of original soot,
- a wide range of soot physico-chemical properties.

The Need for Atmospheric Soot Network – A Historical Perspective

- Limit of in-situ observations of soot-initiated processes at microscopic level
- Expensive and time-consuming emission and collection experiments
- Laboratory studies may help but...
 - no single laboratory has all measurement techniques available for full soot characterization
 - no common laboratory soot available for atmospheric studies
 - Inter-laboratory comparisons are difficult because a variety of methodic and methodic-dependent results

Quality of Soot Measurements is low:
- a lack of commonly accepted reference BC material for calibration instruments
- many instruments in different laboratories are calibrated by different BC materials giving us...different results...

INTROP-sponsored ASEFI Meeting (Atmospheric Soot: Environmental Fate and Impact) was convened in Arcachon/France on Oct 18-20 2006
ASN web site : http://www.asn.u-bordeaux.fr/

Mission of ASN:
- promoting links between industry and researchers,
- facilitating the collaboration of research groups for soot-related project,
- developing a common approach for characterization of soot exhaust and common laboratory soot,
- coordinating the development of soot reference materials,
- organizing inter-laboratory studies of soot reference materials to compare measurement techniques,
- maintaining a database of soot-related studies linked to environmental impact.
There are currently no controlled methods for producing soot of precisely-known properties, i.e. size, surface area, composition, organic coverage.

The development of atmospheric representative and accessible BC materials with reproducible "programmable properties" will ensure long-term intra and inter-laboratory data quality leading to a great progress of the entire environmental community in the BC measurement and monitoring.

Combustion particles in atmosphere:

fossil fuel burning

OC content:
alkanes, alkenes, PAHs,
organic aromatic and aliphatic acids,
ketons, esters, alkilbenzenes, and derivaties

ASN: characteristics of reference calibration materials

- precisely-known properties, especially the content and nature of organic compounds
- reproducibility
- stability
- certification
- comparison Test campaigns

@RM Round Robin Test

ASN: Elemental Carbon Reference Material

Graphitized Thermal soot GTS

Thermal soot by gas pyrolysis

- cleaning from
 - organic coverage,
 - inorganics, ash.
- production of well-graphitized structure,
 perfect chemically uniform surface.
Elemental Carbon Reference Material: properties

HRTEM individual particle of GTS-6 soot.

SAED pattern of GTS-6 soot.

d002=3,37 Å

d100=2,05 Å

d101=1,71 Å

d110=1,22 Å

d112=1,14 Å

HRTEM individual particle of GTS-6 soot.

Size distribution of primary particles GTS-6

Elemental composition:

- examination by EDS

<table>
<thead>
<tr>
<th>Element</th>
<th>%</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Al</td>
<td>2.9</td>
<td>0.2</td>
</tr>
<tr>
<td>Ca</td>
<td>7.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Cu</td>
<td>1.4</td>
<td>0.1</td>
</tr>
<tr>
<td>Fe</td>
<td>3.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Mg</td>
<td>4.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Mn</td>
<td>3.6</td>
<td>0.1</td>
</tr>
<tr>
<td>Ni</td>
<td>12</td>
<td>1.1</td>
</tr>
<tr>
<td>V</td>
<td>1.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Li</td>
<td>1.7</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Elemental composition:

- examination by AAS

<table>
<thead>
<tr>
<th>Element</th>
<th>%</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Al</td>
<td>2.9</td>
<td>0.2</td>
</tr>
<tr>
<td>Ca</td>
<td>7.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Cu</td>
<td>1.4</td>
<td>0.1</td>
</tr>
<tr>
<td>Fe</td>
<td>3.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Mg</td>
<td>4.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Mn</td>
<td>3.6</td>
<td>0.1</td>
</tr>
<tr>
<td>Ni</td>
<td>12</td>
<td>1.1</td>
</tr>
<tr>
<td>V</td>
<td>1.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Li</td>
<td>1.7</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Elemental reference material:

High homogeneity of the surface

Adsorption isotherm CH₄ at T=77K

Homogeneous surface has almost no defects and adsorption sites.

ASN: Soot Reference Material

Surface modifiers:

1. PAN
2. Alkane
3. Organic acids
4. Polymer
Soot Reference materials, 10 samples, proposed

<table>
<thead>
<tr>
<th>№</th>
<th>EC basis</th>
<th>Modifier:</th>
<th>OM</th>
<th>EC basis</th>
<th>Modifier:</th>
<th>OM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GTS-6</td>
<td>Pyrene</td>
<td>0,32%</td>
<td>GTS-6</td>
<td>Octacosane</td>
<td>0,24%</td>
</tr>
<tr>
<td>2</td>
<td>GTS-6</td>
<td>C_{16}H_{10}</td>
<td>0,16%</td>
<td>GTS-80</td>
<td>Pyrene</td>
<td>1%</td>
</tr>
<tr>
<td>3</td>
<td>GTS-6</td>
<td>Octacosane</td>
<td>0,24%</td>
<td>GTS-80</td>
<td>Octacosane</td>
<td>0,12%</td>
</tr>
<tr>
<td>4</td>
<td>GTS-6</td>
<td>Pyrene</td>
<td>0,12%</td>
<td>GTS-80</td>
<td>Trimellitic acid</td>
<td>1%</td>
</tr>
<tr>
<td>5</td>
<td>GTS-80</td>
<td>C_{16}H_{10}</td>
<td>5%</td>
<td>GTS-80</td>
<td>PEG 600</td>
<td>1%</td>
</tr>
<tr>
<td>6</td>
<td>GTS-80</td>
<td>Pyrene</td>
<td>1%</td>
<td>GTS-80</td>
<td>PEG 600</td>
<td>4,88%</td>
</tr>
<tr>
<td>7</td>
<td>GTS-80</td>
<td>1,2,4-Benzenereticarboxylic acid (Trimellitic acid) C_{12}H_{20}O_{6}</td>
<td>1%</td>
<td>GTS-80</td>
<td>2,6 Naphtalene-dicarboxylic acid C_{12}H_{20}O_{4}</td>
<td>9,09%</td>
</tr>
<tr>
<td>8</td>
<td>GTS-80</td>
<td>Carbowa</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TESTING COMPAIGN: calibration by soot RM

DMT measurements

Fluidized Bed

Electrostatic Classifier

Single Particle Soot Photometer SP2

PASS vs EC

PASS vs SP2

σ = 10 m² g⁻¹

SunSet Lab: thermo-optic method

Light absorption measurements PSAP, PASS vs SP2
Summary and Recommendations

Since BC measurement method is planning to be standardized by CEN, we have emphasized that there is a lack of standardized reference materials for the calibration of this measurement technique.

A major contribution of Atmospheric Soot Network can be focusing the developing reference materials that will be testing and become certified standards for use in monitoring and scientific communities.
A.4 Principles of thermal methods for the detection and differentiation of EC and OC, intercomparison results

Principles of thermal methods for the detection and differentiation of EC and OC, intercomparison results

Willy Maenhaut
Ghent University (UGent),
Department of Analytical Chemistry,
Institute for Nuclear Sciences,
Proeftuinstaat 86, BE-9000 Gent

Outline
- OC/EC?
- Aerosol Carbon round robin of Puxbaum
- Thermal analysis of atmospheric particulate matter (PM) for OC and EC
 - simple thermal methods
 - two-step thermal methods
 - thermal-optical methods
- Dependence on operational parameters: Intercomparison of 4 temperature protocols in TOT for 5 sample sets
- Intercomparison of thermal methods for samples from a 2006 winter campaign in Vienna

EC/OC?

Thermochemical Classification
- Elemental Carbon (EC)
- Refractory Organic Carbon
- (Nonrefractory) Organic Carbon (OC)

Molecular Structures
- Graphene Layers (graphitic or turbostratic)
- Polycyclic Aromatics
- Humic-Like Substances
- Biopolymers, etc.
- Low-Molecular-Mass Hydrocarbons and Derivatives

Optical Classification
- Black Carbon (BC)
- Colored Organic Carbon
- (Colorless) Organic Carbon (OC)

Aerosol Carbon round robin
[Schmid et al., Atmos. Environ., 2001]

- done on quartz fibre filter samples, which had been collected in Berlin
- 17 participants, including UGent with TOT
 - UGent provided both optically corrected EC and OC data (Lab 11) and data without optical correction (Lab 11b)
EC values for a difficult sample

The red dashed line is the mean of the more reliable data. Red full lines: mean ± 2 standard deviations.

TC values for a difficult sample

The red dashed line is the mean. Red full lines: mean ± 1 standard deviation.

Outline

- OC/EC?
- Aerosol Carbon round robin of Puxbaum

Thermal analysis of atmospheric particulate matter (PM)

- Total carbon (TC) = OC + EC + (CC)
- Analysis in the lab of collected aerosol samples
 - samples normally collected on quartz fibre filters

Thermal methods

1. Simple thermal methods
 - Evolved Gas Analysis (EGA) [Puxbaum, Novakov]
2. Two-step thermal methods
 - Cachier method [Tellus B, 1989]
 - VDI-2 method
3. Thermal-optical methods
 - thermal-optical transmission (TOT) technique with instrument of Sunset Lab
 - thermal-optical reflectance (TOR) technique with instrument of Desert Research Institute (DRI)
Evolved Gas Analysis (EGA)

- Heating in oxygen
- Program with linear temperature ramp
 - From room temperature to 800°C
 - Temperature ramp of 20°C min⁻¹
- Carbonaceous vapours converted into CO₂ by MnO₂ catalyst (at 700°C)
 - CO₂ measured with NDIR detector
 - Alternative detection methods for CO₂
 - Coulometry
 - Conversion into CH₄ and measurement of the latter with a flame ionisation detector (FID)
- Thermogram obtained
 - CO₂ peaks at low temperature considered as OC
 - CO₂ peak at high temperature considered as EC
- Quantification done by determining the area under the peaks
 - Calibration with samples of known amount of carbon (e.g., sucrose)

Limitation of the pure thermal methods

- Some of the organic matter may be converted into pyrolytic EC (PEC) by pyrolysis or charring and like the "real" EC only be converted into vapour at higher temperature and then erroneously be counted as EC
- This limitation applies also to the two-step thermal methods
- The artifact formation of PEC is smaller in an oxidising atmosphere (O₂) than in an inert gas (He, N₂, Ar)
- The presence of inorganic cations, such as K⁺ or Na⁺ (which are important components in biomass burning samples), has a serious influence on the thermal evolution of the carbonaceous vapours
 - Peaks come faster
 - Distinction of EC from OC is often not easy
 - Aqueous extraction of the sample often done to improve the determination of EC

Example of thermogram obtained by EGA

Thermograms for cascade impactor stage from SMOCC

- Untreated sample
- Water extracted sample
Two-step thermal methods: Cachier

- Samples first subjected to a pretreatment (in HCl vapour) to remove the inorganic carbonates.
- Measurement of EC [Cachier et al., Tellus B, 1989]
 - one part of the sample then subjected to a thermal pretreatment step (precombustion at 340°C for 2 h) in order to remove the organic component.
 - the remaining EC is determined by combustion of the sample at 1100°C and coulometric titration of the evolved CO$_2$ in a carbon analyzer (Ströhlein Coulomat 702C).
- Measurement of OC
 - for another part of the sample, the combustion/titration performed without any thermal pretreatment, so that the content of TC is obtained.
 - the difference (TC - BC) then yields OC.

Two-step thermal methods: VDI-2

- As an example: Approach currently used at IfT, Leipzig [Neusüss et al., JGR, 2002; Plewka et al., J. Atmos. Chem., 2004]
- Two-step thermographic method using a commercial carbon analyzer C-mat 5500 (Ströhlein, Germany); consists of
 - free programmable combustion furnace (IR 05)
 - followed by a resistance oven (D03 GTE) holding the CuO catalyst (to convert carbon quantitatively to CO$_2$) at 850°C
 - and a NDIR detector measuring the IR absorption of the CO$_2$ formed.
- First step: heating of the sample at 590°C (or 650°C) in nitrogen carrier gas for OC volatilisation.
- Second step: EC combusted at 650°C in an oxygen atmosphere.
- In between the two steps, the IR furnace cooled down to 50°C to avoid EC losses during flushing with oxygen.

Thermal-optical transmission (TOT) technique

- e.g. TOT technique with instrument of Sunset Lab
 - for analysis of aerosol samples on quartz fibre filter.

1st phase [in pure He]

- filter punch, in quartz oven, in 4 steps heated to e.g. 900°C.
- desorbed carbonaceous vapours catalytically oxidised into CO$_2$ (by MnO$_2$ held at 870°C).
- CO$_2$ reduced to CH$_4$ (in Ni-firebrick methanator, at 500°C).
- CH$_4$ measured with flame ionisation detector (FID).
- laser light (670 nm) continuously passed through filter punch.
 - light transmission continuously measured.

During 1st phase pyrolysis (charing) of part of the OC occurs with formation of PEC, so that the light transmission decreases.

2nd phase [in 98% He/2% O$_2$ mixture]

- after slight cooling, filter punch in four (or more) steps further heated to e.g. 900°C.
- otherwise same as for 1st phase.
- when the light transmission through the filter punch equals that seen at the beginning of the 1st phase, the OC/EC split is set.
 - CO$_2$ measured in the 1st phase and during the 2nd phase prior to the split considered as OC (includes the PEC).
 - CO$_2$ measured after the split considered as the “real” EC.

Total CO$_2$ measured during 2nd phase (sum of PEC + “real” EC) corresponds to the EC, which is measured without optical correction.
Thermogram for quartz fibre filter sample from Ghent, obtained with UGent standard temperature program (ST)

Outline
- OC/EC?
- Aerosol Carbon round robin of Puxbaum
- Thermal analysis of atmospheric particulate matter (PM) for OC and EC
 - simple thermal methods
 - two-step thermal methods
 - thermal-optical methods
- Dependence on operational parameters:
 - Intercomparison of 4 temperature protocols in TOT for 5 sample sets
 - Intercomparison of thermal methods for samples from a 2006 winter campaign in Vienna

Dependence on operational parameters
- For a single method, such as TOT, there is a strong dependence of the EC/TC ratio on the operational parameters and especially on the temperature program during the 1st phase of the analysis
- At UGent samples from 5 different locations analysed with 4 different temperature programs, with maximum temperature in 1st phase:
 - UGent ST : 900 °C
 - NIOSH 2 (N2) : 870 °C
 - A3, proxy for temperature program used by DRI : 550 °C
 - EUSAAR 2 (E2) : 650 °C
<table>
<thead>
<tr>
<th>Program</th>
<th>Thermogram for urban aerosol sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td></td>
</tr>
</tbody>
</table>
Table

Ranges for TC and for EC/TC, as obtained with the program ST and UGent instrument B, for 5 series of aerosol filter samples

<table>
<thead>
<tr>
<th>Sample series</th>
<th>no. of samples</th>
<th>Range TC (µg/cm²)</th>
<th>Range EC/TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghent</td>
<td>26</td>
<td>15 – 110</td>
<td>0.084 – 0.35</td>
</tr>
<tr>
<td>Beijing</td>
<td>5</td>
<td>71 – 240</td>
<td>0.15 – 0.24</td>
</tr>
<tr>
<td>Austria</td>
<td>16</td>
<td>18 – 40</td>
<td>0.076 – 0.13</td>
</tr>
<tr>
<td>K-puszta</td>
<td>5</td>
<td>16 – 25</td>
<td>0.038 – 0.056</td>
</tr>
<tr>
<td>Amazonia</td>
<td>5</td>
<td>57 – 98</td>
<td>0.021 – 0.031</td>
</tr>
</tbody>
</table>

Graphs

Ratio to program ST for EC/TC (Instrument B)

- Ghent
- Beijing
- Austria
- K-puszta
- Amazon

Mean EC/TC ratio

- Beijing
- Ghent
- Austria
- Linear (Beijing)
- Linear (Ghent)
- Linear (Austria)

Maximum temperature during phase 1 (°C)

- K-puszta
- Amazon
- Linear (K-puszta)
- Linear (Amazon)
Dependence on operational parameters

- For the same temperature program:
 - different EC/TC ratio for optical correction with TOT and with TOR

Outline

- OC/EC?
- Aerosol Carbon round robin of Puxbaum
- Thermal analysis of atmospheric particulate matter (PM) for OC and EC
 - simple thermal methods
 - two-step thermal methods
 - thermal-optical methods
- Dependence on operational parameters: Intercomparison of 4 temperature protocols in TOT for 5 sample sets
- Intercomparison of thermal methods for samples from a 2006 winter campaign in Vienna

EC/BC intercomparison for aerosol samples collected in 2006 winter in Vienna [Reisinger et al., Environ. Sci. Technol., 2008]

- samples of 24 hours collected on rooftop of Univ. of Vienna
- samples analysed by 3 optical methods and 4 thermal methods
 - optical (BC): LTM, MAAP, IS
 - thermal (EC): TOM-TU, Cachier, TOT-NIOSH, TOT-A3

Vienna Winter 2006 Campaign: Thermal methods and IS
A.5 Artifacts during sampling

1. Introduction

The sampling artifacts are due to the semi-volatile character (of components) of OC.

2 processes / phenomena
- Adsorption of volatiles: most important
- Evaporation of semi-volatiles

Contents

1. Introducing the sampling artifacts
2. Magnitude of the artifacts
3. Carbon in filter-BLANKS as artifact
4. Approaches to avoid sampling artifacts
Addendum on-line methods

Adsorption of organic vapor: Positive Artifact
(Turpin et al. 1994; Kirchstetter et al. 2001)

Evaporation of particles: Negative Artifact
(Etalough et al. 1996; Cui et al. 1998)
Literature

Turpin et al., AE, 2000.

Dedicated laboratory investigations to quantify sampling artifacts like in case of nitrate are not possible.

Carbon compounds responsible for artifact are not known.

The next best approach is an intercomparison of collection methods.

TC instead of OC

Investigation should focus on OC

However, amount of OC depends on analysis method (Schmid / Puxbaum et al., 2001 round-robin)

Had a look at OC values in that study:

factor of 2 difference between institutes

Thus: there is a combined uncertainty in sampling and analysis of OC

Better: evaluation of data of Total Carbon
Scientific approach / experience in Europe

Filters in series Filter-pack

Sillanpää

Denuder preceeding the filter-pack

Maenhaut / Viana

Denuder filter/coated-filter

PTFE-filter followed by denuder and coated-filter

Putaud

Compare with US

• Networks with hundreds of stations
• Scientific programs for 2 decades:

Turpin, Eatough, Chow, Kirchstetter/Novakov

Amount of air through filter and Carbon in 2d filter expressed as concentration

<table>
<thead>
<tr>
<th>Face Velocity (cm s⁻¹)</th>
<th>Artifact (µg C m⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>4.6</td>
</tr>
<tr>
<td>40</td>
<td>2.9</td>
</tr>
<tr>
<td>80</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Turpin et al.

How large is Positive Artifact?

<table>
<thead>
<tr>
<th>Field Experiment</th>
<th>Back Quartz TC + Front Quartz TC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALSPAN (Smog chamber)</td>
<td>90 ± 34 (n = 34)</td>
</tr>
<tr>
<td>CLAMS (UW CV-580)</td>
<td>77 ± 09 (n = 19)</td>
</tr>
<tr>
<td>TARFOX (UW CV-580)</td>
<td>66 ± 07 (n = 28)</td>
</tr>
<tr>
<td>SAFARI (UW CV-580)</td>
<td>54 ± 19 (n = 54)</td>
</tr>
<tr>
<td>PRIDE (Tropical Trade Winds)</td>
<td>45 ± 16 (n = 04)</td>
</tr>
<tr>
<td>ACE-2 (RV Vodyanitskiy)</td>
<td>30 ± 10 (n = 12)</td>
</tr>
<tr>
<td>Berkeley, CA (LBNL)</td>
<td>30 ± 06 (n = 12)</td>
</tr>
<tr>
<td>Fresno, CA (EPA Supersite, Oct 2000)</td>
<td>15 ± 06 (n = 20)</td>
</tr>
</tbody>
</table>
3. Carbon in filter-blanks: network-concern

In Europe little to no information on the amount of carbon in the filters before sampling.

Filters are pre-fired: all OC is combusted away?!
but then: handling and exposure

For instance: filters are weighed before deployment in the field

Latest: Whatman-QMA filters are pre-fired in the factory!

Examples of blanks

Just finished year-long campaign in Netherlands

Analysis of filters used for equivalence tests for mass (EN 12341)

1500 filters
150 field blanks

Tens of stock-filters measured: “lot-blanks”

Evaluation so far

Example of field-blanks: filters in standard filter-carousel

Rotterdam area, 2 sites

<table>
<thead>
<tr>
<th>Code</th>
<th>Field Blank</th>
<th>DCMR Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>448-A-BL.L 20/09</td>
<td>1.5</td>
<td>5.4</td>
</tr>
<tr>
<td>448-A-BL.R 20/09</td>
<td>1.3</td>
<td>4.0</td>
</tr>
<tr>
<td>448-B-BL.L 20/09</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>448-B-BL.R 20/09</td>
<td>1.9</td>
<td>1.3</td>
</tr>
</tbody>
</table>

“Field blanks” in ug/m3

Field blanks versus actual values

Overall average of the field blanks

1.3 ug/m3
SD 0.6

This may be just acceptable versus the average of loaded filters:
5 ug/m3

The low blank is due to the relatively high flow rate of 55 m3/day.
Field Blanks in EMEP campaign

Fig. 1. Mean concentration of OC on field blanks. The size of the standard deviation is shown as error bars.

“Lot” Blanks; starting filters
Whatman-QMA filters, pre-fired in the factory

2 batches

<table>
<thead>
<tr>
<th>Filter</th>
<th>Per filter</th>
<th>μg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter 1</td>
<td>112.6</td>
<td></td>
</tr>
<tr>
<td>Filter 2</td>
<td>19.4</td>
<td></td>
</tr>
<tr>
<td>Filter 3</td>
<td>105.8</td>
<td></td>
</tr>
<tr>
<td>Filter 4</td>
<td>36.8</td>
<td></td>
</tr>
<tr>
<td>Filter 5</td>
<td>116.2</td>
<td></td>
</tr>
<tr>
<td>Filter 6</td>
<td>36.2</td>
<td></td>
</tr>
</tbody>
</table>

Lot-blanks in more common unit

<table>
<thead>
<tr>
<th>TC in μg/cm²</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>Filter 1</td>
</tr>
<tr>
<td>1.1</td>
<td>Filter 2</td>
</tr>
<tr>
<td>6.1</td>
<td>Filter 3</td>
</tr>
<tr>
<td>2.2</td>
<td>Filter 4</td>
</tr>
<tr>
<td>6.7</td>
<td>Filter 5</td>
</tr>
<tr>
<td>2.1</td>
<td>Filter 6</td>
</tr>
</tbody>
</table>

In red: typical values for filters from the top of a pile as received from manufacturer, contaminated by lid of the cassette!!

Carbon-blanks Kuhlbusch 1995

<table>
<thead>
<tr>
<th>Filter</th>
<th>Treatment (°C, h)</th>
<th>Number of replicates</th>
<th>TC (μg/cm²)</th>
<th>TH (μg/cm²)</th>
<th>DC⁻ (μg/cm²)</th>
<th>BI (μg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From room</td>
<td>Borrinitate</td>
<td>60/0.2</td>
<td>2</td>
<td>1.34 ± 0.18</td>
<td>6.44 ± 0.18</td>
<td>0.26 ± 0.01</td>
</tr>
<tr>
<td>Quartz fiber</td>
<td>n.t.</td>
<td>6</td>
<td>2.61 ± 0.08</td>
<td>ADL</td>
<td>0.39 ± 0.03</td>
<td>ADL</td>
</tr>
<tr>
<td>Quartz fiber</td>
<td>n.t.</td>
<td>7</td>
<td>6.09 ± 0.56</td>
<td>ADL</td>
<td>0.92 ± 0.16</td>
<td>ADL</td>
</tr>
<tr>
<td>Quartz fiber</td>
<td>800/3</td>
<td>4</td>
<td>1.13 ± 0.11</td>
<td>ADL</td>
<td>0.29 ± 0.05</td>
<td>ADL</td>
</tr>
<tr>
<td>Quartz fiber</td>
<td>800/4</td>
<td>8</td>
<td>0.61 ± 0.07</td>
<td>ADL</td>
<td>0.21 ± 0.04</td>
<td>ADL</td>
</tr>
<tr>
<td>Quartz fiber</td>
<td>850/4</td>
<td>8</td>
<td>0.54 ± 0.01</td>
<td>ADL</td>
<td>0.43 ± 0.03</td>
<td>ADL</td>
</tr>
<tr>
<td>From roof</td>
<td>Quartz fiber</td>
<td>600/0</td>
<td>3</td>
<td>1.35 ± 0.52</td>
<td>> 11.00</td>
<td>1.12 ± 1.10</td>
</tr>
<tr>
<td>Quartz fiber</td>
<td>850/4</td>
<td>7</td>
<td>1.01 ± 0.27</td>
<td>ADL</td>
<td>0.25 ± 0.23</td>
<td>ADL</td>
</tr>
<tr>
<td>Sampled filters</td>
<td>Mixed</td>
<td>~50</td>
<td>39 ± 22</td>
<td>7.8 ± 4.1</td>
<td>13.5 ± 6.9</td>
<td>0.90 ± 1.10</td>
</tr>
</tbody>
</table>
4. Avoiding sampling artifacts or quantifying these

1. **Filter-pack** (tandem filters): 2 filters in series - EMEP/Yttri
 second filter is indicative of adsorption artifact

2. **Gas-denuder** before the filter-pack to remove adsorptive gases

3. Impregnated 2d filter to collect semi-volatiles from 1st filter

1b. Inert first filter (Teflon): only volatiles on 2d

Which approach for CEN?

1. Face velocity
2. Filter-pack
3. Denuder filter-pack
4. Combination of OC/EC-analysis and mass-determination (weighing)?
5. Pre-firing
6. Filter brand

EAC2009 Artifacts

Subject of coming ANNUAL meeting of
Working-Group PM
European Aerosol Conference, EAC2009 , Karlsruhe 5-9 September

Special Session on Artifacts

You can still submit contribution
on web-site EAC2009
Addendum: automated on-line instruments

Advantage:
Periodic blank-zeroing correction

Own experience in INTERCOMP2000
1) ACPM, R&P 5400
2) Steam Jet Collector

ACPM has/had too high blank for OC? Steam Collector was too hard to handle at the time; recently modified

Does not have a collection substrate
A.6 Towards a Standardisation of Methods for Measuring Organic and Elemental Carbon within the EUSAAR network

Towards a Standardisation of Methods for Measuring Organic and Elemental Carbon within the EUSAAR network

J.P. Putaud and F. Cavalli
European Commission, DG JRC, Institute for Environment and Sustainability, I-21027 Ispra (Va)
with EUSAAR NA2 Partners

EUSAAR: European Super-Sites for Atmospheric Aerosol Research

DIRECTIVE 2008/50/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 21 May 2008 on ambient air quality and cleaner air for Europe

CHAPTER II
ASSESSMENT OF AMBIENT AIR QUALITY

Article 5
Assessment regime
5. In addition to the assessments referred to in paragraphs 2, 3 and 4, measurements shall be made, at rural background locations away from significant sources of air pollution, for the purpose of providing, as a minimum, information on the total mass concentration and the chemical speciation concentrations of fine particulate matter (PM2.5) on an annual average basis …
Carbonaceous species account for 45 ± 20% of PM2.5.

There are many sites where carbonaceous species are not measured.

The lack of reference methods prevents these measurements from becoming more “popular”.

Sampling

Analyses

What requirements should a reference method for the analysis of particulate carbonaceous matter fulfill?

Requirement 1: Determination of the total carbon (TC) concentration.

The issue:
Carbonaceous atmospheric particulate matter consists of 100’s of species with very different properties.

Atmospheric particulate matter speciation
→ resolve and quantify up to 30% of TC only
Elemental analysis (CHN, thermal s) → get TC amount

Thermal methods directly determine TC with a reasonable precision

Requirement 2: Speciation of TC.

Distinguish between EC directly emitted in the particulate form by combustion processes and OC from both natural and anthropogenic primary and secondary sources.
no clear theoretical split point between highly refractory organic molecules and “infinite” graphitic structure, the model for pure EC.

<table>
<thead>
<tr>
<th>VOC</th>
<th>POC</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>H/C ratio</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Volatility</td>
<td>high</td>
<td>low</td>
</tr>
</tbody>
</table>

Evolved gas analysis: TC, OC, EC

There are no standards for atmospheric OC and EC.

But at least pure EC should be detected as 100% EC

Any organic molecule (or mixture) should be detected as 100% OC

IMPROVE (up to 550°C): all OC does not evolve during step 1

Analysis of toluene oxidation products
There are no standards for atmospheric OC and EC.

But at least pure EC should be detected as 100% EC
Any organic molecule (or mixture) should be detected as 100% OC
IMPROVE (up to 550°C): all OC does not evolve during step 1
NIOSH (up to 850°C): a fraction of EC can be combusted during the step 1
There are no standards for atmospheric OC and EC.

But at least pure EC should be detected as 100% EC.
Any organic molecule (or mixture) should be detected as 100% OC.

IMPROVE (up to 550°C): all OC does not evolve during step 1

NIOSH (up to 850°C): a fraction of EC can be combusted during the step 1

EUSAAR_2 (up to 650°C): best compromise
- max 2.5 ± 24% of EC evolves in He
- min 80% of OC evolves in He

<table>
<thead>
<tr>
<th>Carrier gas</th>
<th>Temp °C</th>
<th>Time s</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCl_He</td>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>OC2_He</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>OC3_He</td>
<td>450</td>
<td>180</td>
</tr>
<tr>
<td>OC4_He</td>
<td>650</td>
<td>180</td>
</tr>
<tr>
<td>EC1_He/O2</td>
<td>500</td>
<td>120</td>
</tr>
<tr>
<td>EC2_He/O2</td>
<td>550</td>
<td>120</td>
</tr>
<tr>
<td>EC3_He/O2</td>
<td>700</td>
<td>70</td>
</tr>
<tr>
<td>EC4_He/O2</td>
<td>850</td>
<td>80</td>
</tr>
</tbody>
</table>

Charring: Analysis of fulvic acid

Charring: Analysis of an ambient PM2.5 sample from Ispra (NIOSH protocol)

Requirement 3: Charring correction
- Pyrolytic carbon (PC) can be detected as EC.
- Not correcting for charring => errors EC determination larger than 400%.
Requirement 3: Charring correction

Standard deviation among EUSAAR Partners using EUSAAR_2: 33% - all participants: 50%

Requirement 4: Charring limitation

Charring correction assumes that:
PC evolves from the filter before EC.
PC has the same specific light absorption cross section \((\sigma) \) as EC.
which is not always true

With longer steps at low temp, EUSAAR_2 limits charring by 16% compared to NIOSH.

Requirement 5: Sensitivity of the EC value to the position of the split point

The precision of the laser signal measurement translates into uncertainties in EC determination.

The temperature protocol should be such that the slope of the carbon peak evolving at the split point is as small as possible.

EUSAAR_2

\[\pm 3\% \text{ uncertainty in laser signal} \Rightarrow \pm 10\% \text{ uncertainty in EC} \]

Protocol EUSAAR_2

- minimizing charring
- maximizing OC evolution in He
- minimizing LAC early combustion
- minimizing C evolution at split point
- developed based on samples collected in Ispra, tested against samples collected at EUSAAR sites
The determination of pyrolitic carbon is critical

The amount of PC determined optically and thermal-optically well agree for a wide range of loads => guarantee for the accuracy of EC and therefore OC

Conclusions:

The thermal-optical protocol EUSAAR_2 fulfills a series of requirements for a reference method:

1. Robust determination of TC
2. Sound speciation of TC
3. Minimized biases in OC and EC determination
4. Enhanced precision

Next steps:

1. Further work needed for carbonate rich samples
2. Method to be proposed as a reference method for the EMEP network
Comparison of EC/OC analytical methods within EMEP

Ispra 10-11 February 2009
KE Yttri
Norwegian Institute for Air Research (NILU)

CEN – meeting on EC/OC
- Spatial distribution of TC/OC/EC at EMEP sites

CEN – meeting on EC/OC
- Carbonaceous matter at EMEP sites: EC-to-PM$_{10}$

CEN – meeting on EC/OC
- Carbonaceous matter at EMEP sites: OM-to-PM$_{10}$

EC-to-PM$_{10}$

Winter: 3.9 ± 1.2 %
Summer: 2.9 ± 1.0 %

Winter: 26 ± 10%
Summer: 27 ± 9.2%

Conversion factor: 1.4 – 1.8

Yttri et al., 2007
The European Monitoring and Evaluation program addresses the transboundary air pollution in Europe through emissions, modelling and monitoring.

EMEP has an extensive monitoring program

- The current monitoring strategy is valid for the period 2004 – 2009
- A revised version of the new monitoring strategy will be presented
 - to the steering body (SB) in September 2009
 - to the executive body (EB) in December 2009
- There will only be minor changes in the new monitoring strategy, including that of carbonaceous particulate matter.

Table 2: Monitoring requirements for the various levels specified by the EMEP monitoring strategy.

<table>
<thead>
<tr>
<th>Programme</th>
<th>Parameters</th>
<th>Measurement period/Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 2 sites (in addition to level 1 parameters)</td>
<td>Particulate matter</td>
<td>PM mass, PM10, PM2.5, SO2, NOx, NO, NO2, NOy, O3, HNO3, NH3, NH4, K+, Na+, Ca2+, Mg2+, S(IV), S(VI), Cl-</td>
</tr>
<tr>
<td></td>
<td>Gas particle ratio</td>
<td>NH3/NH4, HNO3/NO3</td>
</tr>
<tr>
<td></td>
<td>Speciation vs size (PM2.5 and PM10)</td>
<td>SO42-, NO3-, NH4+, Na+, K+, Ca2+, Mg2+ (Cl-)</td>
</tr>
<tr>
<td></td>
<td>Mineral dust</td>
<td>EC/OC, EC, OC</td>
</tr>
</tbody>
</table>

Table 1.5: Sites reporting EC and OC to EMEP, including PM size fractions and sampling period.

<table>
<thead>
<tr>
<th>Site (Country)</th>
<th>EC</th>
<th>OC</th>
<th>PM10</th>
<th>PM2.5</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilmitz (Austria)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1999, 2000, 2002</td>
</tr>
<tr>
<td>Melpitz (Germany)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>2008, 2007</td>
</tr>
</tbody>
</table>

1. For PM2.5 only
2. EMEP/EC campaign

"Data from campaigns and periods shorter than one year are not included"
CEN – meeting on EC/OC
- Primary biogenics makes a contribution

Birkenes (Norway) 2002 - 2006

Graph showing concentration of OC in PM10-2.5 over time.

CEN – meeting on EC/OC
- Sampling equipment and analytical approach

<table>
<thead>
<tr>
<th>Site (Country)</th>
<th>Sampling time/ Frequency</th>
<th>Filter face velocity</th>
<th>Sampling Equipment</th>
<th>Analytical approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birkenes (Norway)</td>
<td>Weekly/Weekly</td>
<td>53 cm s⁻¹</td>
<td>Single filter</td>
<td>Sunset TOT (quartz.par)</td>
</tr>
<tr>
<td>Illmitz (Austria)</td>
<td>Every 6th day</td>
<td>54 cm s⁻¹</td>
<td>Single filter</td>
<td>VDI 2465 part 1</td>
</tr>
<tr>
<td>Ispra (Italy)</td>
<td>24 hr, daily</td>
<td>20 cm s⁻¹</td>
<td>Denuder (positive corr.)</td>
<td>Multi-step flash heating (2)</td>
</tr>
<tr>
<td>Melpitz (Germany)</td>
<td>24 hr, daily</td>
<td>54 cm s⁻¹</td>
<td>Single filter</td>
<td>VDI 2465 part 2</td>
</tr>
</tbody>
</table>

Table 1.6: Sampling equipment and analytical approach used at the various sites reporting EC and OC to EMEP

1. Two aliquots were analyzed: one from the plain filter, the other after baking for 2 hours in He/O₂ carrier gas at 340°C.
2. Sunset dual optical analyzer from 2006.

CEN – meeting on EC/OC
- EUSAAR protocol for EC/OC measurements

Why is there not yet a reference method for EC/OC measurements in EMEP?

- Substantial difficulties associated with sampling and subsequent analysis of EC/OC e.g.
 - Positive and negative sampling artefacts
 - Analytical challenges in separating EC and OC
- EC/OC measurements was introduced to the monitoring strategy in 2004
- Only a few thermal-optical instruments were available in Europe at the time (2004)
- Awaiting the EUSAAR unified protocol

When will the EUSAAR unified protocol be implemented in EMEP?

- The EUSAAR _2_ temperature program is not yet officially included as the new protocol for EC/OC in EMEP but it is already being used, e.g. in the EMEP intensive measurements periods.
- 8–10 sites is expected to report EC/OC data to EMEP using EUSAAR _2_ within next 1–2 years.

CEN – meeting on EC/OC
- Quartz.par vs EUSAAR_1

Graph showing regression line Y = 1.23x - 0.051 with R² = 0.8772.

Graph showing regression line Y = 0.92x + 0.0095 with R² = 0.9365.

When removing outlier:

Y = 1.23x - 0.051
R² = 0.8772

Y = 0.92x + 0.0095
R² = 0.9365

76
In general: Good agreement for OC and TC; more pronounced difference for EC (higher RSD).

Remark: Change from NIOSH derived temperature programs to EUSAAR should not be too great a problem for OC and TC, but perhaps somewhat more challenging for EC.

EC - meeting on EC/OC
- Comparison of EMEP sites EUSAAR 2

Quartz.par/EUSAAR_1 ratio

<table>
<thead>
<tr>
<th></th>
<th>OC</th>
<th>EC</th>
<th>TC</th>
<th>EC/TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>1.1 ± 0.19</td>
<td>0.92 ± 0.40</td>
<td>1.1 ± 0.17</td>
<td>0.86 ± 0.38</td>
</tr>
</tbody>
</table>

EC - meeting on EC/OC
- Guidelines for EC/OC measurements in EMEP

 - Introduction to the topic
 - Sampling time/frequency
 - Sampling equipment
 - Sampling substrate
 - Correction for positive artefacts
 - Calibration of TC with external standards
 - EC/OC split quality assurance using standards
 - Every year intercomparison of EC/OC
 - Field blanks

EC - meeting on EC/OC
- Some questionmarks: EC/OC - monitors

EC/OC monitors are likely to be taken into service on a broader scale than today.

2-3 hour time resolution of EC and OC will improve our knowledge on e.g.:

- Ambient levels
- Variability of sources
- Human exposure

Monitors can be less costly to operate, due to reduced sampling site visits and eliminated need of laboratory facilities and analyses costs.

CEN – meeting on EC/OC

- Some question marks: EC/OC - monitors

![Graph](image1)

Correlation less good for EC than for OC

![Graph](image2)

Attempts made to run the EUSAR_2 temperature program on the Sunset laboratories monitor have not been all successful, which is an drawback in order to obtain comparable data.

- Could other programs than the EUSAR protocol be preferred?

- The EC/OC monitors also provide EC\textsubscript{optical} from which “OC\textsubscript{optical}” can be derived

- Are the optical EC/OC comparable to the thermal-optical EC and OC?

- Could EC\textsubscript{optical} and “OC\textsubscript{optical}” be preferred due to their better detection limit (e.g. Saarikoski et al., 2008)

- Could BC derived from in situ measurements of the absorption coefficient (PSAP, MAAP) be preferred to thermal optical EC for BC

CEN – meeting on EC/OC

- Summary

1. Carbonaceous particulate matter account for a substantial fraction of PM in the European rural background environment
2. EC/OC data reported to EMEP are based on a range of different methods which hampers the comparability
3. EMEP provides guidelines for how to perform sampling and analysis with respect to EC/OC while awaiting the finalization of the unified EUSAR protocol
4. Results obtained using the EUSAR_2 temperature program looks promising. The transition from currently applied NIOSH derived thermal optical approaches to EUSAR_2 ought to proceed rather smoothly
5. Some concern is caused by the difficulties of using the full length EUSAR_2 temperature program in EC/OC monitors, an instrument which appears to grow in popularity

CEN – meeting on EC/OC

- What does EMEP require?

- Comparability
- Cost Effective
- Availability
- Easy-to-operate
A.8 EC Measurement – Current VDI Guidelines

1. Extract the sample with 2-propanol/toluene (1/1) at room temperature in a weighing bottle for 24h.
2. Pipette off the solvent from the bottle, dry the filter for 4 h under a nitrogen current in an opened exsiccator.
3. Evaporate residues of the solvent and organic carbon by thermic desorption with nitrogen (carbon can be oxidised to CO₂ and then be analysed by coulometric titration).
4. Oxidise EC to CO₂ and analyse it by coulometric titration.

Reactions during coulometric titration
The reaction gas is bubbled through a reaction cell containing an aqueous solution of bariumhydroxide which reacts with CO₂:
\[2 \text{OH}^- + \text{Ba}^{2+} + \text{CO}_2 \rightarrow \text{BaCO}_3 + 2 \text{H}_2\text{O} \]
The consumed OH⁻ ions are regenerated electrochemically:
\[2 \text{H}_2\text{O} + 2 \text{e}^- \rightarrow \text{H}_2 + 2 \text{OH}^- \]
An electric charge of 2 Coulomb corresponds to 1 Mol of CO₂.

Standard (for TC only): aqueous solution of citric acid.

VDI 2465 part 1 (coulometric method)
Temperature programme
Dotted lines indicate:
Temperature gradient is not controlled.

VDI 2465 part 1

Temperature programme
Oven 1
Oven 2
Oven 3
Combustion tube

Fig. 1. Diagram of the Coulomat 702 set-up

nitrogen
for thermic
desorption

oxygen for
EC analysis
Results after different techniques to remove organic carbon

Sampling site: road with high traffic volume in Munich
Sampling time: November 1992 to April 1993

<table>
<thead>
<tr>
<th>Removal method</th>
<th>Average fraction of total carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal desorption at 500 °C for 8 min with He</td>
<td>0.55 +/- 0.07</td>
</tr>
<tr>
<td>Solvent extraction with toluene/2-propanol</td>
<td>0.76 +/- 0.15</td>
</tr>
<tr>
<td>Solvent extraction followed by thermal desorption</td>
<td>0.40 +/- 0.08</td>
</tr>
</tbody>
</table>

Disadvantages of the method

- Apparatus is not computer-interfaced
- Indicated oven temperatures are wrong (construct a temperature sensor by yourself)
- Extraction is difficult to handle (pipetting off the solvent), by far not complete (room temperature) and time consuming
- EC and OC cannot be analysed in one step
- No automatic analysis possible

If analysis of EC and OC is recommended for every sample:

No more than 8 to 10 samples can be analysed per day with one Coulomat-apparatus

Advantage of the method: Extraction with an organic solvent reduces charring; for traffic influenced sites the results are realistic

VDI 2465 part 2 (thermographic method)

Organic carbon is thermally desorbed with helium (oxidation of organic compounds to CO₂ with a CuO/CeO₂ catalyst is possible) at temperatures up to 600 °C (heating is performed in two steps)

Elemental carbon is oxidised with 20% oxygen in helium at high temperatures (700 °C)
CO₂, formed by combustion of organic compounds and elemental carbon is analysed by its infrared absorption

Method is fast, handling of samples is easy

Charring is not controlled results may be too high (see Niessner and Petzold)

Methane and polystyrene are used as standards for carbon and OC
Comparison of VDI 2465 part 1 and 2
PM10 Samples from a traffic influenced site and a remote site, parameters of regression

<table>
<thead>
<tr>
<th></th>
<th>EC</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis intercept $a \pm s_a$ ($\mu g/filter$)</td>
<td>$- / \pm 10$</td>
<td>$- 19 / \pm 22$</td>
</tr>
<tr>
<td>Slope $b \pm s_b$</td>
<td>0.00 ± 0.02</td>
<td>1.00 ± 0.07</td>
</tr>
<tr>
<td>Correlation coefficient r</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Mean of coulometry ($\mu g/filter$)</td>
<td>400</td>
<td>009</td>
</tr>
<tr>
<td>Mean of thermography ($\mu g/filter$)</td>
<td>391</td>
<td>89</td>
</tr>
</tbody>
</table>

Correlation is astonishing!!
Results of different laboratories (results for TC were almost identical)

Careful interpretation

Even with identical methods some results differed by far (e.g. for the laboratories using the VDI 2465 part 1 method)

Highest results were obtained with thermic desorption without optical control

Are the differences even higher at remote sites?
A.9 The “Hungarian” experience

Contribution to the EC/OC preparatory workshop
The “Hungarian” experience

András Gelencsér
Veszprém, HUNGARY

Outline

- Source apportionment studies of EC/OC based on 2-year aerosol observations at six European sites – CARBOSOL
- Studies on biomass burning brown carbon properties with MPI – SMOCC
- Studies on properties of tar balls in biomass smoke – SAFARI

The CARBOSOL project

Scheme of the 14C-based source apportionment

\[
\text{Levoglucosan} + 7.25\text{EC}_{\text{BB}} + 0.166\text{OC}_{\text{BB}} + 0.55\text{OC}_{\text{BB}} = \text{EC}_{\text{T}} + \text{EC}_{\text{BB}}
\]

\[
\text{Cellulose} + 5.6\text{OC}_{\text{BB}} = \text{SOA}_{\text{amb}} \leq (\text{EC} + \text{OC}) \cdot \text{pmC} - (\text{OC}_{\text{BB}}) \cdot 107 - (\text{EC}_{\text{T}} + \text{OC}_{\text{BB}}) \cdot 115 - (\text{EC}_{\text{T}} + \text{OC}_{\text{BB}} + \text{SOA}_{\text{BB}}) \cdot 0
\]

\[
\text{SOA}_{\text{T}} = \text{OC} - (\text{OC}_{\text{BB}} + \text{OC}_{\text{BB}} + \text{OC}_{\text{BB}}) - \text{SOA}_{\text{vol/fossil}}
\]

Estimated contributions of EC/OC subtypes to TC
K-Puszta, winter

Estimated contributions of EC/OC subtypes to TC
Aveiro, winter

Uncertainty analysis: latin-hypercube sampling (LHS)

Open fires in the period 20-27 March 2003

Large differences in EC sources between summer and winter

<table>
<thead>
<tr>
<th>Site</th>
<th>Season</th>
<th>OC_{bb}</th>
<th>EC_{bb}</th>
<th>OC_{FF}</th>
<th>EC_{FF}</th>
<th>OC_{bio}</th>
<th>SOA_{non-fossil}</th>
<th>SOA_{FF}</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVE</td>
<td>winter</td>
<td>64</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Aveiro</td>
<td>Summer</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>63</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>KPZ</td>
<td>winter</td>
<td>40</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>21</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Aveiro</td>
<td>Summer</td>
<td>6</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>69</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
A.10 OC/EC/TC analysis: the Spanish experience

OC/EC/TC analysis: the Spanish experience

M. Viana, A. Alastuey, X. Querol
Institute for Environmental Assessment and Water Research (IDAEA-CSIC)
mviana@ija.csic.es / mar.viana@idaea.csic.es

Teams in Spain

Centre: IJA-CSIC (Spanish Research Council)
City: Barcelona
Technique: TOT
Instrument: Sunset OCEC Analyzer
Acquired: July 2007
Analytical protocol: EUSAAR2.par

Centre: ISCIII (National Health Institute)
City: Madrid
Technique: TOT
Instrument: Sunset OCEC Analyzer
Acquired: May 2006
Analytical protocol: quartz.par

Centre: Huelva University
Instrument: Sunset OCEC Analyzer
Acquisition in process

Prior OCEC analyses

- Aveiro University, Prof. C. Pio:
 - Custom-made TOT instrument
 - Samples from various Spanish sites: preliminary determination of OCEC levels
- JRC-Ispra, Dr. JP Putaud:
 - TOT Sunset OCEC Analyzer
 - Samples from Barcelona, London and Milan: determination of OCEC levels
- Ghent University, Prof. W. Maenhaut:
 - TOT Sunset OCEC Analyzer
 - Samples from Barcelona, Ghent and Amsterdam: determination of OCEC levels and sampling artefacts

Current situation (IJA-CSIC)

- 1200-1500 samples/year
- Large variety of monitoring environments: regional background, urban background, industrial hotspots
- High- and low-volume samplers (with and without denuders, within EUSAAR)
- Munktell and Pallflex filter substrates
Problems / Incidences (IJA-CSIC)

1. Incidences refer mainly to the combustion oven:
 - Progressive increase in oven pressure (PSIG=1 to 3 / 9 months)
 - Resulting in need to change the oven (2 times in 1.5 years)

 Potential causes (we believe):
 - Type of samples (ceramic area with high % of refractory material)
 - Use of HCl to eliminate CC

![Graph showing PSIG over date]

Problems / Incidences (IJA-CSIC)

2. Increase in the variability of sucrose concentrations if instrument not run continuously:

<table>
<thead>
<tr>
<th>Sample (3 runs)</th>
<th>OC (µg/cm²)</th>
<th>EC (µg/cm²)</th>
<th>TC (µg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>3.4</td>
<td>4.1</td>
<td>2.7</td>
</tr>
<tr>
<td>Std. dev</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Blanks (2)</td>
<td>0.3</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Average</td>
<td>0.4</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Std. dev</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

 EUSAAR2

 Comparison Quartz / NIOSH / EUSAAR2: 1 sample + 2 blks

 Analytical protocol tests (1/3)
(2) Comparison Quartz / EUSAAR2: PM episodes

• 22 samples
5 different PM episodes:
- Atlantic air mass transport
- Regional re-circulation
- African dust + stagnant atmospheric conditions
- Stagnant atmospheric conditions
- African dust

<table>
<thead>
<tr>
<th>EUSAAR2/Quartz</th>
<th>EC/TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>OC</td>
</tr>
<tr>
<td>1.10</td>
<td>0.05</td>
</tr>
<tr>
<td>1.45</td>
<td>0.93</td>
</tr>
<tr>
<td>1.51</td>
<td>0.94</td>
</tr>
<tr>
<td>1.27</td>
<td>0.99</td>
</tr>
<tr>
<td>1.20</td>
<td>0.96</td>
</tr>
</tbody>
</table>

(3) Comparison Quartz / EUSAAR2 thermograms: 11 samples

EUSAAR2 results:
- Peak separation: very good. Certain overlap between peaks 1 and 2 from the He phase only for a small number of samples. For the rest of the peaks separation was excellent.

(3) Comparison Quartz / EUSAAR2 thermograms: 11 samples

EUSAAR2 results:
- Combustion of LAC: it seems to be minimal. Slight increase of transmittance during the He phase for 2/11 samples.
A.11 Measurement of Carbonaceous Aerosol by Thermo-Optical Methods: the Portuguese experience

Outline of presentation

- Historical
- Equipment Description and evolution
- Temperature Programs
- Discrimination PC/EC
- Calibration and Intercomparisons
- Carbonate interference and measurement
- Measurement of Optical Properties
- Application to Carbon Source Apportionment
- Conclusions

Historical

- First OC/EC measurements in 1988, with pure thermal method, on glass fiber filters
- Thermo-Optical (T-Opt) OC/EC measurements started in 1992 with the building of an analyzer inspired in the work done at Ford Laboratories in the eighties.

Home-made Thermo-optical OC/EC Analysers

- Three T-Opt OC/EC analyzers
- Two quartz ovens each
- Hardware or Software PID temp. control
- Red laser / chopper / lock-in amplifier
- Pulsed laser / software filtration
- Mass flow meters
- National Instr. acquisition interfaces
- Labview acquisi. and control software
- NDIR Analyzer
Scheme of a T-Opt OC/EC Analyser

- A: quartz tube oven; A1: heating zone 1; A2: heating zone 2; B: laser; B1: detector; B2: chopper; B3: lock-in amplifier; C: non-dispersive infrared spectrophotometer; D: temperature controller; D1, D2: thermocouples; E: mass flowmeter; F: computer; G: three way electrolytic valve

Detail of sample filter h inside the oven

Temperature Programs

OBJECTIVES:
- To discriminate semi-volatiles
- To have consistent separations
- To increase sensitivity and output (length of analysis/cooling)
- To separate OC from EC as completely as possible
- To determine with precision the separation point between PC and EC

Our present temperature program

The Specific problem of PC/EC discrimination

- Limiting conditions for EC measurement precision
- To choose a separation point at a low CO2 concentration region
- The time delay problem

Detector response to an impulse injection in the oven at time zero – transference function [E(t) = I(t)]
Tests of Pyrolysis interference

Main principle of the thermo-optical method:
- The amount of carbon intervening in the blackening of the filter during pyrolysis is the same that the amount of carbon evaporated during the whitening of the filter

Aerosol sample heated under a Program (2) developed to minimize pyrolysis (full line) and under a Program (1) developed to maximize pyrolysis (dotted line)

Calibration and Intercomparisons

- Daily calibration with standard atmospheres and phthalate/sacarose standards
- Calibration with NIST 8785 aerosol standards

Tests with NIST quartz filter standards

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Heating Program</th>
<th>TC (µg/cm²)</th>
<th>EC/TC (%</th>
<th>EC/TC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1</td>
<td>59.2</td>
<td>29.2</td>
<td>31.9</td>
<td></td>
</tr>
<tr>
<td>A 2</td>
<td>59.2</td>
<td>16.8</td>
<td>33.9</td>
<td></td>
</tr>
<tr>
<td>B 1</td>
<td>19.9</td>
<td>26.6</td>
<td>25.5</td>
<td></td>
</tr>
<tr>
<td>B 2</td>
<td>20.0</td>
<td>17.0</td>
<td>26.9</td>
<td></td>
</tr>
<tr>
<td>C 1</td>
<td>13.4</td>
<td>19.0</td>
<td>40.2</td>
<td></td>
</tr>
<tr>
<td>C 2</td>
<td>12.8</td>
<td>5.3</td>
<td>39.2</td>
<td></td>
</tr>
<tr>
<td>D 1</td>
<td>44.3</td>
<td>36.8</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td>D 2</td>
<td>44.0</td>
<td>17.3</td>
<td>30.9</td>
<td></td>
</tr>
</tbody>
</table>

Carbonate Interference and measurement

Thermal volatilization of carbonates happen within a wide range of temperatures, depending on the crystalline structure.

<table>
<thead>
<tr>
<th>Material</th>
<th>Initial Volat. Temperature (ºC)</th>
<th>Temperature of volatilization (ºC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonate</td>
<td>450</td>
<td>700</td>
</tr>
<tr>
<td>Dicalcicarbonate</td>
<td>800</td>
<td>1000</td>
</tr>
<tr>
<td>orthochlorite</td>
<td>500</td>
<td>800</td>
</tr>
<tr>
<td>Sodium carbonate</td>
<td>600</td>
<td>800</td>
</tr>
<tr>
<td>Litho-sodium</td>
<td>700</td>
<td>1000</td>
</tr>
</tbody>
</table>

Removal efficiency of sodium carbonate from filters, with HCl vapors:

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>HCl (Molar)</th>
<th>Carbon Removal (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>21.5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>35.9</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>75.9</td>
</tr>
</tbody>
</table>

Analysis of carbonates in filters by immersion in concentrated phosphoric acid and CO₂ evolution.

Measurement of Optical Properties

Comparison of EC with filter attenuation of LASER light L, using Beer Law:

\[\ln(I) - \ln(I_0) = -k_a - \sigma_a m \]

Average Mass absorptivity (extinction) of 20 m².g⁻¹

The slope of LASER intensity during PC+EC evolution relates with the specific absorptivity (extinction) of carbon being volatilized, in accordance with Beer Law:

\[\frac{d \ln(L)}{dm} = -\sigma_a A \]
Measurement of Optical Properties

Carbon absorptivity values during PC+EC volatilization, in Oporto urban aerosol samples

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Sigma (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB01B1</td>
<td>4.69</td>
</tr>
<tr>
<td>PB01B2</td>
<td>6.05</td>
</tr>
<tr>
<td>PB01B3</td>
<td>7.08</td>
</tr>
<tr>
<td>PB02B1</td>
<td>4.53</td>
</tr>
<tr>
<td>PB02B2</td>
<td>4.78</td>
</tr>
<tr>
<td>PB03B1</td>
<td>9.29</td>
</tr>
<tr>
<td>PB03B2</td>
<td>9.83</td>
</tr>
<tr>
<td>PB04B1</td>
<td>3.61</td>
</tr>
<tr>
<td>PB04B2</td>
<td>3.80</td>
</tr>
<tr>
<td>PT01T1</td>
<td>5.55</td>
</tr>
<tr>
<td>PT01T2</td>
<td>5.80</td>
</tr>
<tr>
<td>PT02T1</td>
<td>9.87</td>
</tr>
<tr>
<td>PT02T2</td>
<td>10.32</td>
</tr>
<tr>
<td>PT03T1</td>
<td>5.56</td>
</tr>
<tr>
<td>PT03T2</td>
<td>5.43</td>
</tr>
</tbody>
</table>

Average: 6.41

Measurement of Optical Properties

Absorptivity values during PC+EC volatilization, in rural aerosol samples

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Sigma 1 (m²/g)</th>
<th>Sigma 2 (m²/g)</th>
<th>AVE (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVE 54-1</td>
<td>1.18</td>
<td>17.60</td>
<td></td>
</tr>
<tr>
<td>AVE 54-2</td>
<td>1.22</td>
<td>15.60</td>
<td></td>
</tr>
<tr>
<td>AVE 59</td>
<td>1.05</td>
<td>18.19</td>
<td></td>
</tr>
<tr>
<td>AVE 075B1</td>
<td>0.66</td>
<td>10.48</td>
<td></td>
</tr>
</tbody>
</table>

Average: 1.03, 15.47

Measurement of Optical Properties

Analysis of filters impregnated with n-hexane aerosol extracts

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Mass Analysed (µg)</th>
<th>Mass Filter (µg)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC1</td>
<td>3.2</td>
<td>0</td>
<td>11.6</td>
</tr>
<tr>
<td>OC2</td>
<td>10.6</td>
<td>0</td>
<td>38.6</td>
</tr>
<tr>
<td>OC3</td>
<td>7.4</td>
<td>0</td>
<td>26.9</td>
</tr>
<tr>
<td>OC4</td>
<td>6.4</td>
<td>0</td>
<td>22.9</td>
</tr>
</tbody>
</table>

Analysis of filters impregnated with methanol aerosol extracts

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Mass Analysed (µg)</th>
<th>Mass Filter (µg)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>1.9</td>
<td>0</td>
<td>2.1</td>
</tr>
<tr>
<td>BC</td>
<td>22.9</td>
<td>0</td>
<td>24.4</td>
</tr>
<tr>
<td>TC</td>
<td>17.7</td>
<td>0</td>
<td>18.9</td>
</tr>
<tr>
<td>PC</td>
<td>12.9</td>
<td>0</td>
<td>13.8</td>
</tr>
<tr>
<td>BC</td>
<td>37.8</td>
<td>0</td>
<td>40.3</td>
</tr>
</tbody>
</table>

Average: 1.05, 15.47
Application to Carbon Source Apportionment

PM10 urban carbon measurements

OC=OC_{pri}+OC_{sec}=OC_{BB}+OC_{FF}+OC_{Bio}

OC/EC minimum ratios are consistent (and different) in PM2.5 and PM10 urban aerosols along the last years.

Examples of sampling locals in Europe

Source apportionment of rural aerosol during CARBOSOL using (OC/EC)_{min}, levoglucosan, cellulose and ^14C, as source tracer indicators.

Conclusions

• Proper precautions in analytical methodology improve the quality of results;

• Brown carbon is always accounted, in a fraction, as EC, in T-Opt methods;

• The optical behaviour of Polar OC may pose problems in the measurement of EC;

• The EUSAAR protocol is using correct approaches to diminish interferences in OC/EC separation;

• OC/EC_{min} ratios are a useful property in the source apportionment of the Carbonaceous aerosol.
A.12 The French Contribution

II. Thermal / Optical / Thermo-optical EC-OC methods: Evidence of source sensitivity

III. EC-OC methods in marine environments

PRINCIPLE of the 2-step Thermal Analysis

Step 1: « Precombustion »
Thermal treatment at 340°C under O2 to remove OC
What is remaining is supposed to be EC

Step 2: Conventional Carbon analysis
The remaining fraction of C on the filter (assumed to be EC) is analysed for C
Better sensitivity with the Sunset instrument

Typical intercomparison exercises performed from filter samples during field experiments
Optical BC measurements delivered by the Sunset Field instrument are consistent with Aethalometer data.

* Aethalometer data not corrected
II. Thermal / Optical / Thermo-optical EC-OC methods: Evidence of a source sensitivity

CASE 1 = URBAN AEROSOLS
Region of Strasbourg (Eastern France), Spring 2003

CASE 2 = RURAL AEROSOLS
INTERREG II Campaign

CASE 3 = MARINE AEROSOLS
(Marine impacted by anthropogenic emissions)

MINOS Experiment, Creta Island, Aug. 2001
Saraiva et al., JAC, 2006

Method sensitive to FF

Correlation
BC (Thermal) ↔ SO4

NO Correlation
BC (Optical) ↔ SO4

Method sensitive to various BC sources

Absorbance measurements

7-wavelength features

Time series of the Angstrom absorption exponent (6370-550nm) during the winter and summer field campaigns (upper and lower panels respectively).

Fonse, C., S. Saraiva, et al., 2009, to be submitted.
III. EC-OC methods in marine environments

MARINE AEROSOLS
(WITH significant anthropogenic sources)

Crete Island, Mediterranean Sea
Sases et al., ACP, 2004

Thermo-optical method with last step at 870°C
- Release of O2 (metal oxides)
- Change in optical properties (Absorbance)

MARINE AEROSOLS
(Crete Island)
(WITH significant anthropogenic sources)

Finokalia station

Best agreement between Optical and Thermo-optical (550°C)
MARINE AEROSOLS
(WITH significant anthropogenic sources)

Crete Island, Mediterranean Sea
Scaife et al., AGF, 2008

Finokalia station
Crete Island

Long-range transport
(Ukraine) of agriculture waste burning

EC (THERMAL)
BC (OPTICAL)
EC (850°C)
EC (870°C)

EC & BC, μg/m³

0 1 2 3 4 5 6 7 8 9 10 11 12

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Whale

MARINE AEROSOLS
(WITHOUT significant anthropogenic source)

Amsterdam Island, Austral Ocean
Scaife et al., AGF, 2008

Filter sampling = 8 days at 2m³/h

EBC

OC* = TC - EBC

BC/TC ratio = 0.05
Monthly Average of EBC between 4 & 10 ngC/m³

Thermo-optical method is not enough sensitive!!!
(only 10% of samples with EC< 0 ngC/m³)

MARINE AEROSOLS
IN EUROPE

% OC in PM, Sea salt concentration

May 2002
January 2003
June 2003

[Map of Europe with color-coded concentration levels]

% Organic Carbon

10 20 30 40 50 60 70 80

Marine Organics
not observed by AMS techniques

Require TC measurements + Optical BC

O’Dowd et al., GRL, 2008

CONCLUSIONS 1/2
Regular intercomparison exercises for TC between 2 instruments (Coulometer & Sunset lab instrument) showing good results

EC-OC measurements at LSCF from filter samples are performed using systematically 3 different techniques: THERMAL, OPTICAL, THERMO-OPTICAL

On-line EC-OC measurements show satisfactory comparison with other on-line instruments (Aethalometer) and filter-based EC-OC measurements, although need to be corrected from blank values.
CONCLUSIONS 2/2

EC-OC from (2-STEP) THERMAL method
- SENSITIVE to fossil fuel (traced by sulfate) in rural sites in France & E. Mediterranean

EC-OC from THERMO-OPTICAL method
- Influenced by absorbance properties
- Influenced by the last He Plateau (SO70°C probably to high / 550°C maybe too low) / EUSAAR_2 may be a good compromise
- NOT ACCURATE for samples with little amount of EC (high BC/TC ratios). Should be used only for TC and combined with absorbance measurements to derive EC, OC.

BC from OPTICAL method
- VERY SENSITIVE (remote regions)
- 7-x feature VERY USEFUL FOR AIR QUALITY PURPOSE
A.13 Measurements of Organic and Elemental Carbon in UK Air Quality Networks

Measurements of Organic and Elemental Carbon in UK Air Quality Networks

Paul Quincey
Garry Hayman
Analytical Science Team
National Physical Laboratory

Outline

- UK Particles Network
- Manual (daily) measurements of OC/EC
- Historical automatic measurements of OC/EC
- UK data
- Related points

UK Particles Network

- Currently managed and operated by NPL and King’s College London
- Particle number concentration (currently 4 sites), size distribution (3), sulphate, nitrate and chloride (PM$_{10}$) daily (3), nitrate (PM$_{2.5}$) hourly (3)
- OC/EC:
 - 2002 – 2007 hourly R & P (Thermo) 5400 analysers (4)
 - 2007 – Partisol daily filter sampling with lab analysis at NPL (3)

UK Particles Network

OC/EC measured x2 (kerbside and background)
Measurement of OC/EC

- Harwell (rural site)
- North Kensington (urban background site)
- Marylebone Road (kerbside site)

Daily PM$_{10}$ samples (24 m3) are collected using Partisol 2025 samplers onto quartz (Paliflex Tissuquartz) filters, and are then analysed at NPL using a Sunset Laboratory carbon analyser.

Protocol: "Quartz"

<table>
<thead>
<tr>
<th>Carrier gas</th>
<th>Temperature plateau duration (s)</th>
<th>Temperature set point (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helium</td>
<td>70</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>615</td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>870</td>
</tr>
<tr>
<td>1% O$_2$ in He</td>
<td>60</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>775</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>890</td>
</tr>
</tbody>
</table>

Charring correction | Transmittance

Principal calibration with sucrose solution

OC/EC data
OC/EC data

R & P Ambient Carbon 5400 (2002-7)

PM$_{10}$ inlet at 1 m3/hr
Collects by impaction > 100nm
OC material released ~350°C in air
TC material released ~750°C in air
no charring correction
CO$_2$ analyser can be calibrated
no “whole system” calibration
reliability problems

Harwell 2007

Marylebone Road 2007

automatic manual

automatically manual
Thanks to David Green, KCL

Black Smoke basics
Daily filter darkness is converted to Black Smoke Index (μg/m³) using ISO 9835

(Thanks to Neil Cape, CEH)
Comparison of Automatic instruments at Marylebone Road 2006 [KCL]

Measurements of OC/EC in UK Air Quality Networks

Paul Quincey
Analytical Science Team
National Physical Laboratory

Thank you
A.14 Swedish experience Eusaar_2 source apportionment

Swedish experience
Eusaar_2
source apportionment

Johan Genberg, Lund University

DRI carbon analyser

- Similar design to Sunset
- Small punches (OD 5/16")
- Instrumentation blank ~0.1 µg C (OC only)
Eusaar_2 vs. Improve

- F8 = FID signal
- LT = laser transmission signal
- T = temperature

The "perfect" split

^{14}C in carbonaceous aerosol

- Reveals the source as fossil or contemporary
- EC originate from burning:
 - fossil fuel
 - biomass
- Known/estimated EC/TC values may split carbon into:
 - fossil fuel
 - biomass burning
 - biogenic carbon

Separate OC from EC

- Remove water soluble components
 - Remove OC in air, 375 C, four hours
 - The remaining is EC
- Use the carbon analyser
 - May use pure oxygen
 - Trap CO_2 with LN_2
Grafitisation

CO$_2$ mixed with H$_2$ over iron catalyst.

Eusaar_2 and EC

650°C removes EC even in pure helium but pure soot is left unharmed.

Co-workers

- Erik Swietlicki (supervisor)
- Kristina Stenström (supervisor)
- Erik Nilsson (PhD-student)

Thanks
Abstract
The new Air Quality Directive 2008/50/EC is asking in Annex IX that elemental (EC) and organic (OC) carbon as well as soluble ions should be measured at selected background sites in each Member State. Several methods (thermal, optical or photo-acoustic methods) to determine elemental and organic carbon exist which do not always deliver comparable results. European experts in EC/OC measurements met at the JRC in Ispra on 10th and 11th February 2009 to discuss during a workshop the best suitable European method.

The main tasks of this workshop were
- to discuss the advantages and disadvantages of different methods for the determination of OC and EC,
- to get information from the Member States on existing methods or even standards being applied,
- to initiate discussions on a preferred basic method to be standardised by CEN within the scope of Directive 2008/50/EC.

The conclusions of this workshop will directly feed into CEN and the corresponding Working Group to clearly define their task for European wide standardisation and hence harmonisation.

How to obtain EU publications

Our priced publications are available from EU Bookshop (http://bookshop.europa.eu), where you can place an order with the sales agent of your choice.

The Publications Office has a worldwide network of sales agents. You can obtain their contact details by sending a fax to (352) 29 29-42758.
The mission of the JRC is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of EU policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, whether private or national.