Dissemination activities

Final Workshop, 16 September 2016
The final dissemination workshop of STREST will take place in Ljubljana on the 16th of September 2016. It aims at communicating the products developed during the project and it will present the results of applications from a large selection of CIs: petrochemical plants, hydropower dams, oil pipelines, gas networks, port infrastructures and industrial districts.

Invited researchers from partner European projects will also present their main findings.

The workshop is addressed to a wide range of stakeholders, including regulators, owners and operators of non-nuclear CIs, civil protection services, and the scientific and technical community.

The workshop is open to all interested stakeholders and participation is free of charge. The programme and more information are available at the project website.

Euronews documentary on STREST
Within its Futuris program on European research projects, Euronews produced a documentary on STREST.

The four minute long documentary presents an overview of the project, the stress-test methodology developed within STREST and indicative results of the exploratory application on dams of the Valais region in Switzerland.

Interviews with project partners and filming took place in early April at the Hydraulic Constructions Laboratory of EPFL and at the Rossens dam near Fribourg.

The documentary will be broadcast in 13 languages and 155 countries all over the world. Watch out for it on television and at euronews.com/programs/futuris.

STREST website
For information about the project and all published deliverables visit www.strest-eu.org.

Upcoming events
- Final STREST Workshop, 16 September 2016, Ljubljana
- STREST 3rd Year Meeting, 14-15 September 2016, Ljubljana

Main past events
- STREST 2nd Year Meeting, 12-13 October 2015, Thessaloniki
- 1st Year STREST Workshop, 29-31 October 2014, Joint Research Centre (JRC), Ispra, Italy
- STREST kick-off meeting, 21-22 October 2013, Zurich
Scientific publications

The results of the project are communicated to the scientific/technical communities through the participation of STREST partners in key international conferences. To-date, four articles were published in conference proceedings and nine papers in peer-reviewed journals. STREST will produce a set of six reference reports with technical guidelines and recommendations, derived from the main deliverables of its work packages and written specifically for end-users, regulators and plant operators.

Exploratory applications

Thessaloniki port

The Thessaloniki port is part of the Orient-East Med Core Network Corridor. Natural hazards are expected to have low individual impact on the port but large collective one.

A full probabilistic hazard and risk assessment for tsunamis was developed, based on multiple simulations of tsunami inundations from all the potential seismic sources of the Mediterranean sea and on the evaluation of the potential damages to the harbour’s components and of the consequent system performance.

A simulated tsunami, generated by an eventual strong earthquake on the Anthemountas fault, would cause withdrawal of the sea during the first minutes after the earthquake and then the first positive tsunami wave would impact the coast in about 40 minutes, causing the highest inundation in the western part of the harbour.

Furthermore, the infrastructure’s resilience was studied for various damage scenarios and recovery sequences for the cranes and electricity substations, considering the availability of repair crews and back-up systems.

Large dams in the Valais region

A generic multi-risk framework was developed for the performance assessment of dams. It conducts multiple simulations, generating random events, evaluating the system response and computing damages and losses. The studied natural hazards include earthquakes, floods, mass slides, internal erosion and seepage, and icing.

For a set of 21 routed dam-break hydrographs, a coupled 1D/2D numerical model of a conceptual dam was used to simulate the downstream wave propagation and estimate inundation depths, flow velocities, and flood arrival times and consequent damage to buildings and roads.