EFDM-geo: A spatially-explicit pan-European application of the European Forestry Dynamics Model

Development of a modelling tool for the forest-based bioeconomy

Sarah Mubareka, Maarten Hilferink, Andrea Camia

2016
Abstract

EFDM-geo: A spatially-explicit pan-European application of the European Forestry Dynamics Model

EFDM-geo is a spatially-explicit forest growth modelling system that was developed to support the assessment of wood availability in Europe for the forest-based sector and the bioeconomy. This document describes EFDM-geo as it was implemented for seamless pan-European modelling, allowing for continental-wide scenario runs and the integration of demand for harvest levels of timber assortments.

The model contains a forest growth component that simulates natural growth for different forest types in Europe. It also simulates management activities that affect the natural growth process. Three activities: harvesting, thinning and no management, are configured to respond according to the demand for wood for material and energy uses.

The national-level data on market demand is downscaled to NUTS 1 regional level. At this level, bio-geo-climatic variables such as the forest type (species, age and volume classes), topography and road accessibility are included in the computation of which forest stands are more likely to be subject to some management activity. As the simulation progresses in time, the forest type evolves according to the predefined rules governing growth. As a recursive model, the forest composition can be estimated at any point in time during the simulation for any individual NUTS 1 region in Europe or for the whole EU territory.

The implementation of the model and the modelling environment are available as open source software.
Table of contents

Acknowledgements .. 3

Highlights .. 4

1 Introduction ... 5

1.1 Background .. 5

1.1.1 EFDM .. 5

1.1.2 EFDM-geo ... 6

2 Technical implementation ... 6

2.1 Regional Model ... 9

2.1.1 Claims for management activities ... 10

2.2 Raster model .. 12

2.2.1 Allocation of management activities ... 12

2.2.2 Cost maps ... 13

2.3 Summary ... 15

3 Data Preparation ... 16

3.1 Initial State .. 16

3.1.1 Species distribution .. 18

3.1.1.1 Land claims for broadleaves and coniferous forests 18

3.1.1.2 Suitability maps .. 18

3.1.1.3 Base map ... 19

3.1.2 Volume distribution .. 20

3.1.3 Age distribution .. 20

3.1.4 Resulting initial state ... 21

3.2 Transition Matrices .. 22

3.2.1 Iterative Bayesian Estimation ... 23

3.2.2 Application of transition matrices .. 26

3.3 Activity matrices ... 26

4 Output .. 28

4.1 State of the forest ... 29

4.2 Activities & Drain .. 32

5 Overview of Graphical User Interface ... 36

5.1 Detailed contents ... 37

6 Conclusions and way forward ... 45

6.1 Refinement & validation of the input data and layers ... 45

6.2 Species shifts and death .. 46

6.3 Timber assortments ... 46

6.4 Non-even-aged forests ... 47

6.5 Short-rotation forestry .. 47
Acknowledgements

We recognize the excellent groundwork set by the first developers of EFDM: Ola Sallnäs, Tuula Packalen, Seija Sirkkä, Maria Eronen, Minna Räty, Ambros Berger & Renats Trubins. We also acknowledge the indispensable help of Roberto Pilli for advice; Lorenzo Bussetto, Daniel Mc Inerney and Roberto Pilli who compiled the Forestats database; Daniele De Rigo, Jose Barredo, who provided support and advice in using their satellite imagery-based maps; and Jesus San Miguel Ayanz for initiating the EFDM “project” in the first place. Thank you to the opinions of external experts who have improved the quality of the report: Mart-Jan Schelhaas and Giorgio Vacchiano.

The development of the EFDM-geo modelling environment was possible thanks to the following individuals who tested the EFDM model in their own countries:

Ambros Berger, Klemens Shadauer (Austrian Federal Research and Training Centre for Forests, Natural Hazards, and Landscape, BFW); Adrian Lanz, Ester Thürig (Swiss Federal Institute for Forest, Snow and Landscape Research WSL); Lukáš Kratěna, Jiři Závodsky, Radim Adolt (Czech Forest Management Institute, UHUL); Susann Klatt, Joachim Rock, Heino Polley (Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries, Germany); Iciar Alberdi, Maria Pasalodos, Laura Hernández, Joan Josep Ibañez, Isabel Cañellas (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA - Centro de Investigación Forestal, CIFOR); Roberto Vallejo (Ministerio de Agricultura, Alimentación y Medio Ambiente); Olli Salminen, Tuula Packalen, Kari Korhonen (Natural Resources Institute Finland, LUKE); Antoine Colin, Thierry Belouard, Marion Pilate, Pierre Merian, Nicolas Robert, Dominique Leclerc (Institut national de l’information géographique et forestière, IGN); Gintaras Kulbokas (Aleksandras Stulginskis university, ASU); Jan Oldenburger, Peter Schnitger (PROBOS); Mart Jan Schelhaas (ALTERRA); Francisco Castro Rego, Graça Louro, Leónia Nunes and Susana Dias (Centre for Applied Ecology "Prof. Baeta Neves", CEABN - Research Network in Biodiversity and Evolutionary Biology, InBIO; School of Agriculture, University of Lisbon, ISA-UL); Margarida Tomé, Susana Barreiro (Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa); Ola Sallnäs, Renats Trubins (Swedish University of Agricultural Sciences, SLU); Boštjan Mali, Mitja Skudnik (Slovenian Forestry Institute).
Highlights

- EFDM-geo is a quasi-dynamic recursive forest growth model composed of a top-down NUTS 1 regional-level sub-model, and a bottom-up raster-level sub-model
- The regional sub-model computes the shift of forest areas through an age/volume class matrix within regional and species class bounds, and according to regional and species-specific parameters
- The raster sub-model takes local landscape and anthropogenic characteristics into consideration to determine the likelihood of management treatments to take place in any location based on cost
- The amount and quality of wood harvested is governed by an exogenous forest sector model
- Management activities are scaled to meet harvest demand
- The location of the management activities is the result of an optimisation of resources available and location of those resources
- EFDM-geo is equipped with the capability to model net changes in wood-producing areas; this will facilitate the integration of short rotation forestry
- EFDM-geo is implemented in a free and open source software and has been released\(^2\) under the EUPL license\(^2\) here: https://webgate.ec.europa.eu/CITnet/stash/projects/FISE
- EFDM-geo is a working software package containing a protocol for file naming and structure and data integrity checks; and delivers meaningful error messages when data input is incomplete
- EFDM-geo is computationally efficient in that it will only load imagery and data for the region of interest, and generates intermediary datasets and matrices on the fly
- EFDM-geo only applies to even-aged forests in the configuration described in this document

\(^1\) without source input data
\(^2\) by Commission Decision DL/2016/7802
1 Introduction

The assessment of biomass availability and potentials is of growing importance in Europe and globally. Woody biomass is at the core of the bio-based economy aiming at replacing fossil-based materials with renewable sources. The GHG reduction targets and the related affected policies are pushing a stronger demand for bioenergy, which is mostly based on woody biomass. Given the strategic importance of woody biomass as a raw material for the European bioeconomy, the assessment of its current and future availability under different policy and climate scenarios is crucial for policy makers and for the sustainable use of renewable resources. What is described in this report results from the recognized need for the further development and refinement of modelling tools to model European forests and the interactions with the forest-based sector at continental scale.

The European Forestry Dynamics Model (EFDM) incorporates different aspects of forest dynamics and forest management. The reimplementation of parts of EFDM in a spatial-explicit environment, as described in this document, is called “EFDM-geo”. EFDM-geo facilitates both linkages with other forest-based sector models accounting for supply-demand interactions in a broader bioeconomy perspective and the future integration with pan-European land use models. Furthermore, it respects the objectives outlined in Mubareka et al, 2014 by using a software that offers a form of array programming with internal integrity checks for data consistency, and is developed and available as free and open source\(^3\). The purpose of such a system is to support the assessment of potential impacts of different policy and climate scenarios on the EU’s forests and the forest-based sector. The allocation of management activities to specific forest types is guided by information at two levels: a bottom-up model based on local characteristics of each site (raster cell); and an overarching, top-down, national-level demand for wood products.

This document describes a functioning modelling framework. It demonstrates possible model output, but does not report any real results, thus reported numbers are to be taken as examples. The description of the system as given in the document may possibly encourage dialogue with national experts for the mutual advantage of developing tools that facilitate the visualisation of data and processes in a user-friendly modelling environment. Although the optimisation approach proposed here is useful as an academic exercise, real world processes are not necessarily related to optimisation, but rather a sum of complex issues that are often not possible to model. We therefore emphasise that this framework currently contains what we refer to as “placeholders” that should eventually be replaced by real data, local-level assumptions and internal rationale.

1.1 Background

1.1.1 EFDM

EFDM simulates the development of the forest and estimates volume of wood harvested, integrating management schemes as part of its input. The model was jointly developed by the Natural Resources Institute Finland and the Swedish University of Agricultural Sciences for the European Commission (Packalen et al, 2014). EFDM was conceived as a flexible system for harmonized forestry modelling for all European countries.

EFDM belongs to the forest model family of matrix models, born in the 1940’s to model future plant and animal population structures (Liang and Ricard, 2013). It is built around a basic matrix structure, defined by a set of fixed states, between which “units”

\(^3\) available as open source by Object Vision BV, see: http://www.objectvision.nl/geodms
of forest move over time. The core of the matrix structure is the dynamic state-space, which can be defined by, for example, volume and age. Matrix models rely on a series of transition matrices. When applied in the forestry sector, the transition matrices express the probability of a forested area leaving its current position within a matrix to join a different, usually higher, position within the same matrix, thus acquiring the characteristics, and therefore the probabilities for transitions, of this new category. More details on the origins of EFDM can be found in Sallnäs (1990).

1.1.2 EFDM-geo

In order to compute pan-European, spatially-explicit model runs, some components of the EFDM model (originally coded in R, with details of that implementation on the JRC Science Hub⁴), were re-coded in GeoDMS, while many new components were added. The package of recoded EFDM plus additional features is referred to as the EFDM-geo. New components include the capability of spatially disaggregating forest inventory data; creating initial state matrices on the fly from this data; reading demand files for commodities; re-scaling activities probabilities; and spatially disaggregating activities.

When modelling forestry dynamics in an area with complex land use such as Europe, it is useful to maintain a spatial disaggregation of forest resources for the model run. In EFDM-geo, areas of forest are the sum of 1-ha cell to regional or national level. It produces output on a grid-unit basis, while taking into consideration the spatial location of each cell by changing how the model behaves based on spatial criteria such as the profile of neighbouring cells; proximity to elements such as roads or processing plants; spatially explicit climate and geographical parameters; and differing management practices within, for example, protected areas. The spatially-explicit approach used in EFDM-geo can furthermore account for land-use changes, thus including changes in forest area.

It is not the objective of the spatially-explicit modelling tool to “predict” future maps of forest types in Europe. The forest growth component of the model aggregates data at regional level within the forest area matrix, just as it does for EFDM. Forest type totals within the matrix are indeed consistent with EFDM if the same data sources are used. The added value of the spatial dimension comes into play during the scaling of activities, as we will explain in the following sections.

2 Technical implementation

EFDM-geo operates at two levels: an overarching, top-down, national-level demand for wood products called the regional model; and a bottom-up model called the raster model, which takes local characteristics into consideration at pixel-level. In the following sections, we describe these two levels in detail. Here we give a brief overview to describe how they come together in EFDM-geo.

The regional model refers to the model runs at NUTS 1 level. In the regional model, the demand for wood products governs the amount of wood that is to be removed from the forest in a given country. This demand is given at a national level by an exogenous source. The requested wood harvested in the forests is computed at every time step, given the potential for management activities to produce the right kind of wood to suit the demand. At the start of the simulation, each forest type is assigned a probability for a given management activity. What happens in the regional model, is that this probability is rescaled to match the demand. Thus, the management activities that could potentially take place given the species class, age class and volume class, are rescaled so that only the requested amount of wood, in the optimal configuration of assortments,

is actually harvested. If the scaling factors for the activities is equal to 1, the result at the regional level is equivalent to EFDM.

In the regional model, resources are sought in the forests in order to immediately satisfy the demand at every time step. The choices made by the model as to which management activities are applied and where, are made in the “Raster Model”. At every simulation step, the distribution of the forest area within the volume-age class matrix, changes. The new distribution of the forest area depends on whether or not any silvicultural treatments took place. If none took place, the shift in forest area is governed by transition probabilities (described in further detail in Section 3.2). Transitions may furthermore take place based on the type of treatment that was applied. In order to assess whether the forest area will undergo treatment, and if so, which treatment will take place, a probability of treatment (called “activity”) is assigned. The spatial context within which the resources are located is associated with the lowest possible associated “cost” for treatment in EFDM-geo. This is accounted for by introducing spatial layers relative to forest management. Elements such as roads and topography; as well as neighbourhood influences, history of management and, of course, current forest type, play a role in the likelihood of any given management treatment. This likelihood, or the inverse of the cost, is re-evaluated at every time step.

Table 1 summarizes the indices used to describe both the raster and the regional models.

Table 1. Indices used to describe the raster and regional models

<table>
<thead>
<tr>
<th>Index</th>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Raster cell</td>
<td>1 cell = 1 hectare (or 1km in section 3.1.1)</td>
</tr>
<tr>
<td>f</td>
<td>Forest type</td>
<td>Collectively: age, volume, species</td>
</tr>
<tr>
<td>v</td>
<td>Volume classes</td>
<td>Class widths and number of classes can vary between NUTS 1 regions</td>
</tr>
<tr>
<td>g</td>
<td>Age classes</td>
<td>Class widths and number of classes can vary between NUTS 1 regions</td>
</tr>
<tr>
<td>s</td>
<td>Species</td>
<td>In EFDM-geo: broadleaves and conifers</td>
</tr>
<tr>
<td>r</td>
<td>Region</td>
<td>NUTS 1 in EFDM-geo</td>
</tr>
<tr>
<td>a</td>
<td>Activity</td>
<td>No Management, thinning, harvesting, recruitment at volume and age classes = 0.</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
<td>Each time step corresponds to the width of the age class</td>
</tr>
<tr>
<td>c</td>
<td>Commodity</td>
<td>Coniferous (Cf) sawlogs, non-coniferous (nCf) sawlogs, Cf pulpwood, nCf pulpwood</td>
</tr>
</tbody>
</table>

5 in this context, "cost" refers to the probability that an activity will take place, not actual monetary cost at this stage.
Table 2 summarises the input data for the model. This data includes cost maps, the administrative regions map (NUTS 0 and NUTS 1 shapefiles), maps required for generating the initial state on the fly (age, volume and tree species class); transition probabilities matrices; initial estimate of activities probabilities; yield matrices; and demand for commodities.

The notation conforms to the following rules: the lower left indicates the main simulation loop; data for different times are found at different sequenced instantiations. If different run-chains were made for different scenarios, a scenario index would also be in the lower left corner. An index for country (for which demands are given, containing multiple regions) is hidden for simplicity but should be in the lower left as well if it were to be notated explicitly. Upper left indicates different attributes (arrays) close to each other, often generated by functions within a metascript, for example to be applied to all regions (r), or to all species (s). Lower right indicates the indices that extend across the domain of the arrays that are used to represent the input data of state variable. Upper right indicates the value range of data (as in incidence maps) or the column range (in probability matrices where each row represents a “from” state and each column represents a “to” state).

Table 2. The input data or the model.

<table>
<thead>
<tr>
<th></th>
<th>Cost in cell (i) per management activity (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_i</td>
<td>Cost map</td>
</tr>
<tr>
<td>R_i^r</td>
<td>Region incidence map</td>
</tr>
<tr>
<td>$Y_i^{s,v,g}_o$</td>
<td>Initial state incidence map, $t=0$</td>
</tr>
<tr>
<td>$P_{v',g',v,g,r,a,s}^{r,a,s}$</td>
<td>Transition probability matrices</td>
</tr>
<tr>
<td>$A_{v,g,r,a,s}^{r,s}$</td>
<td>Activity fraction prior matrix</td>
</tr>
<tr>
<td>$H_{v,g,c}^{r,s,a}$</td>
<td>Harvest matrices</td>
</tr>
<tr>
<td>D_{c}^{t}</td>
<td>Demand for assortment</td>
</tr>
</tbody>
</table>

6 http://ec.europa.eu/eurostat/web/nuts/overview
7 Using http://objectvision.nl/geodms/operators-a-functions/metascript/for_each
8 Incidence maps are implemented as index vectors
Table 3 summarises the variables associated to the endogenous calculations or steps within the model.

Table 3. State variables.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r,v,g_0</td>
<td>Initial state vector, $t=0$ Sum of hectares associated to each volume (v) and age (g) class combination at time = 0. The class ranges will vary for each species (s) in each region (r)</td>
</tr>
<tr>
<td>r,v,g_t</td>
<td>Initial state vector, $t>0$ Same as above, but for time steps during the simulation</td>
</tr>
<tr>
<td>$Y^{s,v,g}_{t,i}$</td>
<td>Initial state incidence map, $t>0$ Initial state of cell at successive time steps for each cell within the range of species (s), age (g) and volume (v) classes</td>
</tr>
<tr>
<td>$M^{a}_{t,i}$</td>
<td>Activity incidence map, $t>0$ Activities incidence map, within a range of given activities (a), for a period during the simulation</td>
</tr>
<tr>
<td>$B^{a,v,g}_{t,i}$</td>
<td>Activity fraction posterior matrices Rescaled activities in a region and per species, given the exogenous demand for wood</td>
</tr>
<tr>
<td>$\sigma^{a,b}$</td>
<td>Balancing factors Result of iterative proportional fitting to optimize allocation of activities to meet demand</td>
</tr>
</tbody>
</table>

2.1 Regional Model

In EFDM-geo’s regional model, the main driver for the model is the harvest requested to satisfy the demand. The demand is here determined exogenously from the Global Forest Trade Model (GFTM, Jonsson et al 20159) requesting the following assortments: non-coniferous pulpwood, non-coniferous sawlogs, coniferous pulpwood, and coniferous sawlogs. This demand is given at a national level, as an exogenous piece of information, and is downscaled to NUTS 1 regional level endogenously. Each activity, depending on what forest type it is applied to, harvests a specific quantity of wood to satisfy the demand. The sum of this harvest estimate is region-specific, meaning it is constrained within the region without any spill-over between regions.

Each forest type, given the region in which it is found (f_i), has a probability of succumbing to a management activity. For each region, there is an activity fraction prior per forest type. This means that the activity probabilities will vary from forest type to forest type within a region, and this variance is also inter-regional. We can therefore express different probabilities for final felling for a given forest type for different regions. This allows us to implicitly take the growing conditions into account, as well as the regional management practices. This initial probability for activities is fixed over time; what changes in time is the actual activity that takes place.

The model is able to optimize the assignment of assortments to forest types through iterative proportional fitting if region-specific coefficients that map forest types to assortments are available. In such an approach, balancing factors need to be computed so that the demand is met by the potential harvest from the activities given the state of the forest at any given time step. These balancing factors are used to solve the problem of which activities will actually need to take place in order to meet the demand for each assortment (eqs. 1,2):

$$\forall c: \sum_{r,a,f} r_s H_{v,g}^c a . r_s B_{v,g}^a . r_s X_{v,g} = D^c$$ \hspace{1cm} \text{eq. 1}$$

where the activity fraction posterior matrix is computed with the balancing factors (eq. 2)

$$r_s B_{v,g}^a : r_s B_{v,g} = \frac{\sum_{a,a'} a A_{v,g}}{\sum_{b,b'} b A_{v,g}}$$ \hspace{1cm} \text{eq. 2}$$

Each assortment is linked to a set of combinations of activities and forest types that could contribute most to it. Although the split between species is clear, the relative contribution of different age and volume class combinations to pulpwood and sawlogs respectively, is not. Hence, for cases where no information on splitting between pulpwood and sawlogs is available, a simplified approach is implemented whereby the total demand for coniferous and non-coniferous products respectively, is split evenly over all forest types. This results in a linear effect, requiring only one iteration to solve the problem.

The posterior activities fractions and the relative associated transitions are then applied to the state to compute the state for the next time step (eq. 3):

$$X_{v,g}^{t+1,r_s} = \sum_{a,v,g} r_s a . r_s d_{v,g} . r_s B_{v,g}^a . r_s X_{v,g}$$ \hspace{1cm} \text{eq. 3}$$

This newly computed level of activity is referred to as the “activity fraction posterior matrix”. The demand is therefore met after considering the initial state, the activities that will take place and the harvest given by the activities. This is repeated at every time step.

In terms of scenario configurations, it is possible to influence the activity in a cell according to the region in which the cell is found. A forest type might be more or less likely to be thinned given the region in which it is found due to subsidies, taxes or other political reasons. We call this inter-regional differentiation “shadow price". It is analogous to the difference in the cost of an apartment in a major city, and the cost of an apartment of similar characteristics in the countryside. The shadow price for each activity therefore influences all cells in the region, accounting for inter-regional differences despite raster cell similarities. Despite the shadow prices, a situation whereby several cells may have the same associated management costs, the discrete allocation will make an arbitrary choice, as described in section 2.2.2.

2.1.1 Claims for management activities

The calculation of the claims to certain management activities is the bridge from the demand for forest assortments, to the actual forest resources. The claims refer to the area of forest that should undergo a treatment for each age/volume class in order to
satisfy the demand for forest commodities as derived from GFTM. The claims are recalculated at each time step given the demand, which in this prototype are the same for every time step to facilitate analysis, and the resources available to suit the demand. The resources, as we have said before, are divided by conifers (CF) and broadleaves (BL), thus this first division leaves little doubt. What needs to be implicitly calculated is the division between pulpwood and sawlogs. Figure 1 shows an example of the claims on forest areas for the first three time steps for conifers, for the first age/volume classes in a region in Europe:

<table>
<thead>
<tr>
<th>Year</th>
<th>CF</th>
<th>BL</th>
<th>Pulpwood</th>
<th>Sawlogs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>1000</td>
<td>500</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>2020</td>
<td>1500</td>
<td>750</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>2030</td>
<td>2000</td>
<td>1000</td>
<td>600</td>
<td>1400</td>
</tr>
</tbody>
</table>

Figure 1. Claims for management activities to occur in different age/volume groups for three time steps: 2020, 2015, 2020. Units are in forest area affected (ha).

In summary, the demand for wood, which is in m³, per time-step, per assortment, is confronted with the production potential of the forests at regional level for the same time
step. The activities are then rescaled to make them meet. At the start of any given
time step, the initial factor at which the rescaling starts is taken into account. This
number is inherited from the last iteration from the previous period, which means that
for the first time step of the simulation, a rescaling factor of 1.0 is applied because there
was no previous demand upon which to rescale. The previously-used factors are then
adjusted for any mismatch between demand and production.

2.2 Raster model

In EFDM-geo’s raster model, an overall cost for each management activity type (final
felling, thinning or no management) is associated to each raster cell. Only one type of
activity will be assigned to each one-hectare cell. The total cost for an activity for a cell
is determined based on a combination of several layers affecting the total cost to
manage forests in any given cell; and the probability of each activity being applied to the
forest type found in that raster cell. Naturally, the potential for each cell to actually
succumb to final felling or thinning, despite its relative probability within the activities
choices, will depend on the demand for wood products, solved in the regional model.
This means that although a raster cell may contain a forest type that is ripe for final
felling, it may not be felled at all if the demand is insufficient to request the wood
contained in that cell.

2.2.1 Allocation of management activities

At the heart of the simulation is the discrete allocation of activities to 1-ha parcels of
forested land. The regional amount of activities is disaggregated among the cells based
on their characteristics (location, forest type) while minimizing cost.

Each raster cell (i), has an associated forest type (f) (refer to Table 1 for notations). This
means that the cell is either labelled as coniferous or broadleaved at time=0 (this
remains intact for the duration of the simulation), and has a given age and volume class
(these vary throughout the simulation). Furthermore, each raster cell belongs to a region
(r). The description of each cell at time=0 (T0), or start of the simulation, is what is
called the “initial state” and is denoted as r^0Y_{vg}. The sum of the initial states of all cells
must equal the sum of the initial state vector (used in the regional model) of the region
in which the cells are found (eq 4):

$$
\forall r,f: r^0X_{vg} = \sum_i R_i^r \cdot qY_{i}^{v,g}
$$ \hspace{1cm} \text{eq. 4}

The initial state in a matrix model is not usually spatially-explicit and is indeed presented
as a vector in the regional model. In the raster model however, we transform the initial
state into a spatially-explicit input into the model with the help of satellite data. We
derive three layers using satellite data: age, volume and species (see Section 3.1 for
details). Each raster cell also has an activity potential based on the forest type present.
Furthermore, given its location in space, each cell will have an associated cost,
influencing the likelihood that the activity will actually take place or not. The minimum
total cost (presented as the inverse of cost in the annotation $^aS_{l,a}$), is sought during the
process of allocating the activities to the individual cells (eq. 5):

$$
\sum_{l,a} ^aS_{l,a} \cdot M_i^g
$$ \hspace{1cm} \text{eq. 5}
Equation 5 is resolved while taking into account the important following constraint, which is the sum of the activities for the entire region (eq. 6):

$$\forall f, a: \sum_i R_i^r \cdot i^s Y_i^{x,v,g} \cdot M_i^a = r_s B_v^a \cdot r_s X_vg$$ \hspace{1cm} \text{eq. 6}$$

Decisions are taken locally based on a cost that is offset by a shadow price per region per activity to meet these constraints. A positive shadow price reflects a 'subsidy' that might be required to get sufficient locations for an activity whereas a negative shadow price reflects a 'taxation' to prevent an excessive allocation. This is a handy mechanism for scenario configuration as well. Regional or local-level subsidies to harvest a certain forest type can be represented with this mechanism. When too many different locations have the same relative cost for one activity, the discrete allocation will only allocate the required amount of cells by taking arbitrary choices. In these cases, costs are artificially perturbated10.

The allocated activities and associated transitions are then used to calculate the probability distribution (which is equal to 1) for the new state of each cell for the following time step (eq. 7):

$$\text{Prob}_{t+1} Y_i^{x,v,g'} = 1 \Leftrightarrow \sum_{\text{avg}} a_{s_p} v_g^g \cdot i_{M_i^a} \cdot Y_i^{x,v,g}$$ \hspace{1cm} \text{eq. 7}$$

The expected occurrence of the new state will balance with the new regional totals (eq. 8a, or eq. 8b):

$$\sum_{\text{avg}} a_{s_p} v_g^g \cdot \sum_i R_i^r \cdot i^s Y_i^{x,v,g} \cdot M_i^a = r_s X_vg$$ \hspace{1cm} \text{eq. 8a}$$

$$\sum_{\text{avg}} a_{s_p} v_g^g \cdot r_s B_v^a \cdot r_s X_vg = r_s X_vg$$ \hspace{1cm} \text{eq. 8b}$$

2.2.2 Cost maps

"Cost" maps are crucial to the simulation. In this context, forests situated in what we estimate as being the least expensive areas for management activities, are more likely to be managed. The cost maps can be specific to different management practices as well as regions due to different harvesting technologies for different species. Figure 2 shows the example map for final felling. The colour gradient from reds to greens represents a decreasing cost in felling the forests. In order to get the model running, we developed a generic map combining a buffer zone to riparian areas, slope, topography and roads. This is used as a placeholder in this configuration, knowing that the actual cost is highly site and species specific, and depends heavily on the harvesting techniques available in the regions. This is therefore subject to further improvement.

Figure 2. Costs for final felling, based on a combination of factors described in 2.2.2
(red->green=high cost->low cost)
2.3 Summary

Figure 2 summarises the processes in EFDM-geo, including the exogenous data that is generated in different modelling environments. First, EFDM-geo generates the initial state on the fly. It does so by reading text files where volume and age class divisions are stipulated. The volume and age class divisions and thresholds are usually different for different NUTS 1 regions within large countries. It then reads the portion of the pan-European maps of volume and age that is geographically relevant for the user. This is usually one NUTS 1 region, but can be several regions or countries if a batch is launched. Following this, the optimisation process to allocate species to 1-ha cells is initiated and a species distribution map is generated on the fly\(^\text{11}\). Once the species distribution map is in place, the software can then generate a vector of the initial state(s) on the fly. There will be one vector per NUTS 1 region per species. EFDM-geo then reads the demand file for assortments computed by the GFTM model, and translates the assortments to categories of forest types that could satisfy the requested harvest level. The management activities probabilities are then read by EFDM-geo. These probabilities can be generated in different ways. In this implementation, the datasets were generated using an R script, which generically assigns higher probabilities for final felling to larger age and volume classes; and higher probabilities of thinning in medium age and volume classes\(^\text{12}\). Once the demand and management potential are known to the model, it proceeds to optimise the allocation of management activities to meet the demand, based on the stock available in the forest. This is done at a NUTS 1-level of computation. The model then applies the management activities to where it thinks are the most logical locations, using cost maps to guide the choices. Using the transition probabilities matrices, which are usually generated in the EFDM R-code, the forests transit through the areas matrix according to the rules

\(^{11}\) It is foreseen to generate the volume and age maps in a similar way. At the time of writing, these two layers are generated outside of EFDM-geo.

\(^{12}\) This estimation should be replaced by local experts before the model becomes operational.
governing the management activities – including the ‘no management’ option. Thus, the state of the forest for the following time step is computed.

3 Data Preparation

A major inhibitor to spatial modelling of forest resources is the availability of seamless datasets. These datasets should be sufficiently descriptive to assign a profile that is detailed enough to distinguish between forest types. Furthermore, they should be accurate enough to produce realistic results. The data behind the initial state matrix would ideally be provided by national experts, significantly improving the reliability of the tools described here. In the absence of detailed national-level data, publicly-available datasets are used. This section outlines a possible methodology for producing seamless spatially-explicit input data at the best spatial resolution available from public sources of data.

3.1 Initial State

The initial state is a description of the forest at the beginning of the simulation, which is the year 2015. The area of forest in each volume and age class category, for each species group (broadleaves or conifers) is quantified. The initial state is a matrix of forest types, with each “box” of the matrix containing their associated area in hectares. In EFDM-geo, each species has its own initial state file. This is to facilitate control on a per species basis, with the foresight of detailing species groups beyond what is applied here (broadleaves and conifers as two main groups). Furthermore it allows the user the freedom to configure species by age and volume class breakdown, in a completely independent manner. In the original configuration of the model in R, the initial state was analogous to the “state space”, referred to when describing Markov models (further detailed in Section 3.2.2), which implied that the initial state files had to contain all possible states regardless of whether or not they can be verified as actually being realistic with respect to the field data. Since the state space had to contain an element for each potential combination of factor levels, the total number of possible combinations was always a multiple of the factors used to describe the forest type. However in EFDM-geo, the initial state files do not have to contain all possible states, although the unnamed states will be generated and filled in a following time step, should any forest area occupy that space in the matrix.

The best available datasets should be used for each country. In the absence of country-specific data, the following datasets are used in the current configuration, for estimating forest area per volume and age class (Table 4):

- Maps of the growing stock derived from satellite imagery and expert knowledge. There are different datasets available, including products for conifers and broadleaves by Gallaun et al (2010) or from the Biomasar (Santoro et al., 2011) for all tree species groups combined
- Forest map 2006 at 25 m resolution (Kempeneers et al, 2013)
- Corine Land Cover13
- National Forest Inventory (NFI) data stored in “ForeStats” in-house JRC database: the latest, publicly available NFI data for forest parameters of European countries (EU27 + Norway, Switzerland and Balkan countries), at the highest possible level of spatial disaggregation (i.e., at the smallest available NUTS level). ForeStats includes forest area, growing stock volume, annual increment of growing stock volume and forest biomass. Sources for this dataset are listed in Annex A.

• State of Europe’s Forests 2015

In a future configuration, where species groups are disaggregated:

• Estimation of the relative probability of presence for 78 taxa and genus on a 1km x 1km grid (de Rigo et al., 2016). Each layer considers only the probability of presence of the relevant taxa, and not information from other taxa. The maps are generated based on a frequency-of-observations analysis, whereby presence and absence of species given by field observations within each square kilometer is factored into the algorithm, as is the Corine Land Cover 2006 classification of broadleaves and conifers (method detailed in de Rigo et al. 2014).

Table 4. Summary of input data

<table>
<thead>
<tr>
<th>Data source</th>
<th>Authors</th>
<th>Resolution</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growing stock volume</td>
<td>Gallaun et al (2013) or Santoro et al (2011)</td>
<td>1km x 1km</td>
<td>m³ / ha</td>
</tr>
<tr>
<td>Forest non-forest</td>
<td>Kempeneers et al. (2013) and Pekkarinen et al. (2009)</td>
<td>25m x 25m</td>
<td>boolean</td>
</tr>
<tr>
<td>Corine Land Cover 2006</td>
<td>European Environment Agency http://www.eea.europa.eu/publications/COR0-landcover</td>
<td>250m x 250m (rescaled to 1-ha)</td>
<td>classes</td>
</tr>
<tr>
<td>ForeStats</td>
<td>Busetto, Pilli and Mc Inerney (JRC internal documentation)</td>
<td>Best available, regional</td>
<td>Different for different parameters</td>
</tr>
<tr>
<td>State of Europe’s Forests 2015</td>
<td>Ministerial Conference on the Protection of Forests in Europe</td>
<td>Country</td>
<td>Different for different parameters</td>
</tr>
</tbody>
</table>

In a future configuration:

| Probability of presence of tree species | De Rigo et al (2016) | 1km x 1km | 0-100% |

Based on the available data, mapped estimates of forestry resources needed for spatial modelling can be produced. The maps are generated with the best resolution available at the grid cell (i) level of the input data. A description of our approach in generating the following maps is given in this chapter in the respective sub-sections:

1. Estimated area occupied per species group per hectare \[s_i \]
2. Estimated total growing stock volume per species per hectare \[v_i \]
3. Estimated average age per species per hectare \[g_i \]

14 The notation used in these sections follow those described in section 2; simulation loop is always 0 for this section and is therefore not explicitly notated.
3.1.1 Species distribution
Species distribution is the result of a balanced allocation of cells to broadleaves (BL), conifers (CF) and other (not forest). Allocation, a process also used elsewhere in the model to allocate management activities, is the optimized assignment of a specific category from a set within the category (such as species classes) to a raster cell, based on several criteria. In this case, the allocation is “discrete” or whole (no partial allocation of species classes to fractions of cells) because each cell is allocated to only one out of a limited set of species classes. This translates into the assumption that there is a dominant species per 1-ha cell.

There are three main required data sets for discrete allocation: 1. A set of numbers describing how many hectares should be assigned to each class; 2. Suitability criteria, analogous to the cost mapping approach we described earlier in section 2.2.2, only this time for species distribution; 3. A base map from which to start the “seeding” of the allocation process.

3.1.1.1 Land claims for broadleaves and coniferous forests
The areas of land to be covered in either broadleaves or conifers are given by National Forest Inventory Data in the ForeStats database at the best available NUTS level (usually NUTS 2), normalised by the SOEF 2015 figures on total forest at national-level. In this way, the forest areas always sum to those reported in SOEF for 2015 for any given country.

3.1.1.2 Suitability maps
The main dataset used for estimating suitability for broadleaves and conifers is the forest map 2006 at 25 m resolution (Kempeneers et al, 2013). In many cells, according to the high-resolution raw data, cells can be shared between broadleaves and conifers, for a total of full coverage, and the sum of cover of CF + BL can be less than 100%. (Figure 4):

![Figure 4. Example of 1-ha cell partially covered by broadleaves (1,875 m²) and conifers (8,125 m²).](image)

Some cells with the lowest fractions are considered as "other land use" while other cells with high fractions are considered as 100% CF or 100% BL. Figure 5 shows an example of the cell density in a region in central Finland.
Figure 5. Cells can be fully forested (100%=10,000 m²), partially forested (1250–9,999 m²), or considered to not be forested (<1,250 m²).

The discrete allocation algorithm is used to assign areas of forest per species to the most suitable cells, whereby a single species class (broadleaf or conifer) is assigned to each cell, given the forest type map (e.g. Figure 5).

3.1.1.3 Base map

A base map is required for the model, in order to give a guidance of where coniferous and broadleaved forests are roughly located. The base map (Figure 6) was generated using the forest map 2006, and Corine Land Cover 2006 (CLC) forest classes as the base map for the allocation. The forest map is used to determine whether or not a cell is dominantly forested and if so, by conifer or the broadleaf class. There tended to be an underestimation of forest area with the 2006 forest map, causing an overflow of demand because there were too few allocatable cells. This was corrected by adding cells from the third data source, the CLC map, whose classes corresponded to forests. These were mosaicked in the background. If the CLC classes were of mixed forests, burnt areas or transitional woodland/shrubland, they were labelled as “mixed”. Mixed forest cells are used as passive land use to absorb the overflow of either broadleaves or coniferous areas, as reported in SOEF 2015. A fourth class, labelled as “other” is used as a placeholder for an eventual expansion of the model to handle afforestation, deforestation, and the diversification of non-forested land to short-rotation forestry land.
3.1.2 Volume distribution

A volume, in m^3 per species per region, is given by the NFI data (v_{NFI}). v_{NFI} is disaggregated using the volume given by a remote sensing-derived product (v_{RS}). Remotely-sensed volume estimates are corrected by NFI figures to give absolute values of volume of species per cell (eq. 9):

$$r_s V_i = \left(\frac{r_s v_{RS_i}}{\sum r_s v_{RS_i}} \right) * r_s v_{NFI}$$

3.1.3 Age distribution

The model requires the designation of a time-step. Regardless of the length of this interval, which could be considered analogous to a growing period, the individual trees in each class may either remain in the same class with a given probability; increase one size class with a given probability; increase more than one size class; be harvested; or be thinned. Estimating age per species is therefore a crucial step. The ForeStats database does not always contain information on the breakdown of age by species and volume classes; it may only report the proportion of forest area per age group. The challenge therefore lies in spatially allocating this forest area per age group based on some proxy. This may be done using species and site-specific yield curves as a proxy to determine the likely age given volume and increment data per species in ForeStats.
Ideally however, maps of age are made available through national expertise. This is the case, for example, for Sweden15 and Finland16.

3.1.4 Resulting initial state

The resulting spatially-distributed species, age and volume maps are used to generate the initial state matrix. This can be visualized graphically as shown in Figure 7.

![Graphical view of area distribution over age and volume classes](image)

Figure 7. Graphical view of area distribution over age and volume classes (blue -> red = lowest -> highest areas of forest in the vol/age class combination).

In this example for a given region and for conifers only, we have 11 volume classes along the x-axis, and 26 age classes along the y-axis. Different regions of Europe will have different age and volume classes. From this graph, we can see immediately that

15 https://www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish-national-forest-inventory/forest-statistics/slu-forest-map/

16 http://kartta.luke.fi/index-en.html
there is a large amount of forest area in middle-range volume and age classes and in the highest age and mid-volume classes for conifers.

3.2 Transition Matrices

The transitions that are modelled with EFDM-geo are those between age-volume classes: as the forest ages, it gains volume. The rate at which the volume increments according to age differs between the factors such as species and site qualities. Often this will be non-linear. Volume increments more quickly at young ages. Figure 8 illustrates this concept if one matrix exists for one species group, as is the case in the EFDM-geo configuration.

Figure 8. The progress of a group of trees in a “no management” scenario whereby volume class may increase with age class.

The above schema is an example of natural succession in the absence of management activities. In EFDM-geo, the user determines the number of transition matrices, as well as how they are generated, as the result of how many dimensions should be modelled.

The transition matrices are generated using the R-code of EFDM, as shown in Figure 4, but could be generated using growth/yield curves such as those produced by Pilli et al. (2013). These are not ideal situations. Preferably, the transition probabilities matrices are generated using pair data from two consecutive NFI campaigns. In an ideal situation, sufficient plot data are available to estimate the transition probabilities based on the proportion of times a transition occurs out of the total number of times it is tried and observed. The best predictor that an event will happen is the proportion of times that it happens out of a total number of trials. This boils down to how many successes are witnessed vs. how many failures; or the fact that the outcome is either true or false. However in this situation, it is almost impossible to have a sufficient number of observations to rely on this approach. The next section describes a work-around for these situations.
3.2.1 Iterative Bayesian Estimation

In the document written by S. Sirkia (“Some mathematics behind EFDM”, October 2012), she describes that in the absence of sufficient plot data, a recursive Bayesian filter can be applied. This approach involves using aggregated data to sketch a rough prior, then iteratively narrowing down the hypothesis among all possible states to the most likely outcome state given the more refined data available. In practical terms, EFDM will count the frequency of transitions between the volume class from a point in time in the past, and the volume class for a later point in time from the field data. The count will correspond to the fraction k1 observations out of a total of N1 observations whose start step was volume class j for all pooled data (Figure 9).

![Diagram of NFI data used to describe transition probabilities]

\[p(H|O) = \frac{\alpha + k_1}{\beta + f + k_1} \]
\[p(H|O) = \frac{\alpha + k_1}{\beta + (N_1 - k_1) + \alpha + k_1} \]
\[p(H|O) = \frac{\alpha + k_1 + k_2}{\beta + (N_1 - k_1) + (N_2 - k_2) + \alpha + k_1 + k_2} \]
\[p(H|O) = \frac{\alpha + k_1 + k_2 + k_3}{\beta + (N_1 - k_1) + (N_2 - k_2) + (N_3 - k_3) + \alpha + k_1 + k_2 + k_3} \]

Figure 9. Illustration of how NFI data is used to describe transition probabilities.

The subscripts indicate the iteration level. In the first order estimate, k1 corresponds to the number of cases where, for all factors pooled together, the individuals moved up to volume class v+1. Within this data pool, there are different factors to contend with: The species, site or region classes may have an influence on the increment. EFDM then splits the k1 data into factors. In the illustration above, a subset of k1 is extracted based on the factor level, corresponding to N2 samples. The number of samples that correspond to the size class pair increment under examination (from v to v+1) with the additional

s/EFDMinstructions/Seija_Mathematics_behind_EFDM.pdf
criteria of a specific factor level, corresponds to \(k_3 \). Since \(N_3 \in N_2 \in N_1 \) and \(k_3 \in k_2 \in k_1 \), the frequencies of "truths" are actually repeating; they are summed. Imagine a tree of species \(s \) and region \(r \) that increments from \(v \) to \(v+1 \). The number of truths are summed 4 times, one for each time it was included in the data pool \(N \). If there is an unlikely situation within the state space, such as an increment from class 1 to class 4 directly, \(N_1 \) will probably equal to 0. The very low prior, in this case, will remain intact. EFDM will therefore be more likely to shift size class 1 areas to another more probable class, such as class 2 (Figure 10).
For the purposes of developing the EFDM-geo prototype, we only use one additional point of information to refine the prior: the species. For real modelling exercises, it would be possible to add other factors, such as site quality, ownership or topography. These are intended to be region-specific, meaning that different factors can be attributed to different regions within a same country.
3.2.2 Application of transition matrices

The transitions correspond to a second-order Markov assumption whereby current transition rates are estimated based on the state of an individual and on its previous transition\(^{18}\). The transitions are related to the probability of remaining in same volume class within the age class; the probability of increase by one volume class within the same age class; the probability of increase by more than one volume class within the same age class. The forest cells are, in a sense, maintaining a “memory” of their previous state because of the state they find themselves at present. The probability of transiting into another state in the age-volume dimension is based on their actual state, which in turn, was due to their preceding state. So, contrary to a first-order Markov assumption whereby the probabilities are applied to the state space irrespective of what happened in previous time steps, the probabilities will be applied to a specific state which has succumbed to an activity in the previous state.

EFDM follows the assumption of stationarity. With such an assumption, transition matrices are invariable over time, which means the probabilities neither increase nor decrease as a function of time.

The transition probabilities must be included in EFDM-geo ready-made, after having generated them using pre-defined functions in EFDM called “hackfunctions\(^{19}\). This same set of functions is also used to generate the rough prior. Instructions on usage published in the EFDM repository\(^{20}\).

3.3 Activity matrices

In EFDM-geo, the following activities are modelled: thinning, final felling and no management. These are based on an associated probability of the activity occurring should be quantified. For example, based on statistics, the user should estimate the likelihood that any class of forest be managed in any particular way. The age, volume and species type will play a role in the likelihood of thinning or harvesting. Generally, no management prevails in very young forests, thinning prevails in medium-aged forests and final felling prevails in older forests (Figure 11). Ingrowth, is also, in a sense, included as a modelled activity but can only occur in volume and age class 0. Depending on the transition matrix, the model could assume that only a part of this area in bare land is actually recruited and moves up one volume class in the next time step; or it may be so well managed that it even moves up two volume classes in one age step. The fraction of the area that is not afforested, remains in the same volume state ‘0’, although it ages.

\(^{18}\) This differs from most matrix models in which the first-order Markov assumption is accepted. The first order assumption relies only on the state of an individual at time \(t\), and is independent of the previous states – in this way it has no “memory” of previous treatments.

The activity probability matrices (a-c) are ideally provided by national experts. In the absence of expert opinion, the activities matrices are generated automatically in an R code following a textbook solution, an example is shown in Figure 11, a-c. The proportion of each activity is taken from a distribution over the forest types. The activities are then rescaled according to demand, as described in detail in section 2 and shown in Figure 11, d-i. Activities probabilities are used in the model in conjunction with the cost to perform the activity, described in section 2.2.2.

4 Output

The model output is numerous, generous and flexible. Processing time depends on the size of the country. The model must read in all the rasters for the country, as well as the associated datasets. For a large country such as Finland, the model will spend
approximately 3 minutes to process 85 years (2015-2100) on a Windows machine with 2 Intel Xeon 2.40 GHz processors (only one is used in a run for one country), 32 Gb RAM on a 64-bit Windows 7 operating system. The fixed input maps are on a solid-state drive, which accelerates the runs. Many maps can be generated to estimate the spatial allocation of different attributes of forests. These maps, overlain with other thematic information such as bio-geo-climate variables, can result in interesting indicators. Beyond the spatially-explicit output is the fundamental information on the volume of wood removed from forests over the time span of the simulation, and the volume of wood remaining in the forests after meeting demand. These are discussed in the following sections.

4.1 State of the forest

We have seen that as the simulation runs in EFDM-geo, forest area moves through the volume/age matrix. This is visible as a spatially explicit output, whereby each 1-ha cell carries a forest type, and it is also possible to visualize the distribution of forest area within the matrix. The next series of figures shows an example of output for the ITF NUTS 1 region of Italy (Figure 12).

The resulting maps show the spatial distribution of the forests in different age/volume classes for broadleaves and conifers; and the resulting matrices show the sum of the forest area in each volume/age class (Figure 13 & Figure 14). These are meant as examples to show the format of the output; the data are not real.
Figure 13. Example of resulting map and corresponding forest area distribution on the volume/age matrix for broadleaves in ITF in 2045.
Figure 14. Example of resulting map and corresponding forest area distribution on the volume/age matrix for conifers in ITF in 2045.
4.2 Activities & Drain

The activities probabilities, shown in Figure 15 describes the likelihood of an activity occurring at time=0, so before any rescaling to meet demand occurs. If we look at the first year of the simulation, a rescale factor of roughly 0.26 is given as the outcome of the model Figure 17, with an outcome shown in Figure 16. The sum of the columns in Figure 16 is used to compute the total production for each age/volume class. We can compute the total production of broadleaves and conifers by multiplying the harvest from each activity per age/volume class (e.g. Figure 18) by the activity that the model expects will occur in each class. This figure will always sum to the demand (see section 2.1.1). The volume extracted from thinning, for example, is calculated based on the mean value of the volume class from which the volume is taken, minus the mean value of the volume class to which the forest area falls after thinning. We assume a drop of one volume class in all regions and species groups after thinning in this prototype. Figure 18 shows a sample of this output, whereby the result of the subtraction is calculated in the final column “yield” (referring to “harvest”). Similarly, the volume extracted from final felling of conifers is calculated based on the mean value of the volume class from which the volume is taken. We assume a drop to the first volume class and first age class after final felling in all regions and species groups in this prototype. This is analogous to a clear cut of the interested area.
Figure 15. Activities probabilities table, \(t \).

Figure 16. Updated activities, \(t+1 \).

Figure 17. Factor to rescale activities to meet commodities demands for coniferous wood for \(t+1 \).
Figure 18. Example of data showing yield from thinning per age/volume class in conifers in FI1.

The location in which the activity took place throughout the simulation can also be verified, as shown in Figure 19.
Figure 19. Example of a time series of management treatments.

<table>
<thead>
<tr>
<th>Year</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>No management</td>
</tr>
<tr>
<td>2030</td>
<td>Thin</td>
</tr>
<tr>
<td>2040</td>
<td>Harvest (final fell)</td>
</tr>
<tr>
<td>2050</td>
<td></td>
</tr>
<tr>
<td>2060</td>
<td></td>
</tr>
<tr>
<td>2070</td>
<td></td>
</tr>
<tr>
<td>2080</td>
<td></td>
</tr>
<tr>
<td>2090</td>
<td></td>
</tr>
</tbody>
</table>
5 Overview of Graphical User Interface

The Graphical user interface (Figure 20), is divided into four main panels. In the first, the tree structure allows the user to visualize the individual containers of the model. All aspects of the model, from details on the configuration to the containers that are used to execute the run can be visualized in this panel. Each container is described in further sections. The second panel is the data panel. When an element in the tree in panel 1 is clicked, this second panel will display either the map or table that is being requested. Similarly, it may also display calculation rules if requested through the third panel. The third panel has several tabs. Each tab displays slightly different information about the tree item that is highlighted in the first panel. The main tab is labelled “General”, and allows the user to read important details about the tree item at a glance. Other tabs include “Explore”, which shows the relative paths of the data in the tree item; “Properties”, which defines the item according to its properties, as intended for the GeoDMS language; Metadata, which can be a pdf uploaded by the user to give further background information on the tree item, such as its history; “Statistics” summarise the raster data by showing basic statistics such as minimum and maximum values of the raster cells for the entire raster, and calculated values such as standard deviation, variance etc; “Configuration” summarises the expression used to obtain the tree item; “XML” summarises the tree item in XML format; and “Source Descr” shows paths of the datasets used to compute the tree item. The fourth panel is analogous to a descriptive progress bar when a tree item that requires computation is selected. Depending on the complexity of the calculation, the tree item may not appear immediately in the second panel (viewer). The user can follow the progress of the calculation through the messages give in this fourth panel.

Figure 20. Graphical User Interface of EFDM-geo includes a tree structure (1), data panel (2), details pages (3), progress messages (4).
5.1 Detailed contents

The detailed contents of the model are visible to the user in the first panel called "tree items". All items below the main container consist of the configuration of the implementation of the EFDM model in GeoDMS.

Geometries. The first item under the main container is the "geometries" container. In this container, the map projection is defined. As an INSPIRE-conform tool, all input datasets are in Lambert-LAEA89 projection. This projection is defined within EFDM-geo and all rasters or vectors is assigned this projection. Furthermore, the maps of the regional divisions are set up in this container. Up to the time of writing, the NUTS regions NUTS0, NUTS1, NUTS2, NUTS3) are defined in this container. In the future, national-level regional divisions based on forest inventories could be added. This is relevant because the model will process data within the administrative boundaries defined by the maps in this container. Thus if forest inventory data corresponds to a particular administrative region, only the area within the boundary of this region will be processed with that data. Furthermore, each region is part of a larger region. When highlighting the tree item for run regions, a table appears showing this dependency (Figure 21).

![Figure 21. Regions modelled in EFDM-geo.](image-url)

Units. The Units container defines basic units used in the model. This is necessary because each item can have an associated unit. This facilitates integrity checks, whereby the model will only compute a result of the units are compatible. The container contains very basic units, such as meters squared and hectares, and other units may be added, which is especially important for complex calculations that may be required, for example, to compute indicators.

Templates. Templates are a fundamental concept in GeoDMS in that they allow for the definition of basic data and calculations that will be called through other tree items. These are contained in one place.

Classifications. Classifications split continuous data into categories. This container
describes how the raw data is categorised and the colour ramps associated to the classes. In EFDM-geo, this is fundamental because the model works with age and volume classes.

Source Data. The source data container hosts the raw datasets used in the calculations of the model. It refers to templates container for the source and geographical projection of the base raster maps. Both maps and a tabular view of the data at regional level are given in this container.

Region Data. All data related to each region in Europe is contained in this mother container. Sub-containers are divided by country and each country container is further divided by region. Maps and data for the regions are visible at this finest geographical level. The main sub containers of direct interest to the simulations are described below.

- **CLASS_BREAKS.** The regional division consents a definition of class breaks on a regional level. This is important since regions in large countries in particular, will have different definitions of forest type. Age classes may be different from country to country, but will not vary from region to region as they are based on a common NFI strategy, which is set at national level (Figure 22). The class breaks for volume and age are read from the templates container, which in turn read from the source data, which is a csv file, whose source is defined in the code. The source data can be changed by the user to change the class breaks.

![Figure 22. Volume class breaks can be defined per NUTS region in EFDM-geo](image)

- **raster_impl.** This sub-container includes the components that are directly involved in the computation of the raster model. This is what can be considered as the core of the model computation because it is where the allocation of activities occurs. This allocation is dependent on the density of forests in each 1ha cell.

The “balanced_alloc” sub-container is the first container we have come to where allocation takes place. In this step, the discrete allocation is used to assign a preferential species to a cell. The preference is given to the species with the highest coverage within the cell. The code is the following:

```plaintext
container balanced_alloc :=
  discrete_alloc(extended_species/label, domain_100m_sel,
               suitabilities, ID(extended_species), extended_species/label,
               atomic_regions, atomic_regions/UnionData, min_claims,
               max_claims, 0i, raster_impl);
```

The command “discrete_alloc” is a powerful one. This example is a very simple application. It simply assigns the species with the highest value, or highest presence, in
any given cell. As we can read from the code above, it is reading the “suitability” for each species. This corresponds to what we saw in Figure 4.

⇒ initial state. The initial state matrix can be visualized as a vector within these regional containers (Figure 23).

![Figure 23. Initial state matrix per NUTS 1 region and per species group.](image)

Transition matrices for non management situations, that is, for normal growth without immediate management, can be viewed in the regional containers as a table, ordered from -> to (Figure 24).
Figure 24. Transition matrix at NUTS 1 level per species group.

The no-management transition probabilities can also be visualized as a graph. The graphical representation allows the user to see if the transitions are realistic. If a linear diagonal pattern is seen, the transitions follow an expected pattern, that is: the ages systematically increase by one class and volume classes usually increase by one class, may remain the same or may increase by two classes. An example of a good matrix is shown in Figure 25.
Figure 25. Example of transition probabilities matrices for FI1.
Figure 26 shows a zoom of Figure 25. The central square, highlighted by a shaded box, lies on the diagonal, so up one age step and up one volume step. This box usually has the highest probability of occurring. The boxes directly above and below this central box represent exceptions that could occur. The age group will always increase as time passes, but volume may remain the same (box below the diagonal); or increase by two volume classes (box above the diagonal).

Demand. The demand container houses the figures given by the Global Forest Sector Model (GFTM). This model output is read directly into EFDM-geo and mapped (Figure 27).
Figure 27. Demand for material use of wood from the GFTM model.
Runs. This is the container in which the actual simulations happen. In this container, the regional and raster levels come together and the operations described throughout this document, are computed. Here the activities tables are used as a probability that final felling, thinning or no management will take place for any given forest type (Figure 28).

Figure 28. Activities probabilities matrix per forest type at regional level.
6 Conclusions and way forward

The approach described in this document has resulted in a powerful and fast modelling environment that is ready to implement and able to integrate further information and data in an organised and homogeneous way for forward-looking scenario assessments in the forest-based sector. The spatially-explicit features of this model enable the computation of environmental indicators. When overlain with data such as waterways, soil type and areas prone to natural disaster, the impact of forest growth and activities in the forest can be studied. Furthermore, the impacts of policies with strong spatial-explicit implications such as e.g. land zoning for nature conservation; or the simulation of new biomass processing plants can be assessed through scenarios.

As a model in prototypical phase, there is a large margin for improvement. The direction these improvements in the modelling framework will take in terms of applications, will determine which improvements are most worth investing in. If the model is to be applied in forestry and the forest sector, there is room for improvements in estimating assortments from the forest stock; modelling non-even-aged forests; and develop the feedback mechanism between the forest trade model and EFDM-geo. This implies incorporating a dedicated demand for fuelwood, or at least a source for supply of fuelwood (as a large portion of fuelwood is not traded and cannot be modelled in a trade model). Furthermore, as data and information become available on forest ownership or forest-owner reactions to market triggers in terms of wood mobilisation from their woodland, these aspects should also be integrated. At this stage the shortage of data and information are restricting the modelling capabilities in EFDM-geo with respect to ownership. If the model is to be applied to assess impacts of climate change, a detailed set of parameters to describe species growth on an individual basis, as well as the inclusion of natural disturbances (especially forest fires and pests) in the activities probabilities matrices, would be worthwhile. If, however, a focus on the competition for land from different sectors is desirable, the framework can be expanded to incorporate this feature. This would therefore allow for the inclusion of short-rotation forestry, especially coppice as an energy crop. In this direction, it would also be feasible to expand the geographical extent to areas beyond Europe, in order to assess the potential impacts of EU woody biomass needs on non-EU countries.

In the following sections, we look at the potential improvements from a technical point of view, while referring to the applications listed above.

6.1 Refinement & validation of the input data and layers

Among the most relevant improvements to tackle in this modelling environment are the refinement of the input layers used in the model. We have seen that the initial state is the basis of all the modelling that takes place in EFDM-geo. An accurate as possible estimation of the initial state is therefore clearly crucial in order to avoid the propagation and amplification of errors throughout the modelling process. Quantifying the uncertainty, especially that associated with the spatial disaggregation, is a priority. The main sources for uncertainty are the satellite-based products and their use in conjunction with NFI and SOEF data. Ideally, all data would be provided in partnership with local or national experts.

The aggregation of tree species to conifers and broadleaves was a choice we made in order to simplify the model for this test phase. Estimating species distribution, and specifically, assuming dominant species distribution in each cell is a source for uncertainty. We may want to consider refining the tree species classification using expert knowledge and the maps generated for the European Atlas of Forest Tree Species (San Miguel-Ayanz, 2016).
Further uncertainty arises, naturally, with the assumptions related to activities. We know that activities probabilities are likely not constant in time, and may vary according to the medium-term goals of the forest owner vs. the long-term impact of the same activities matrices. The configuration of the matrices depends, therefore, on the time perspective of the model run, as well as a "lump sum" of the goals of different forest owners. Thus, the activities matrices implemented in this model are purposefully a generic rule-set of reasonable management practices in each forest type, whose likelihood of being applied varies according to short-term demand, coming from an exogenous source. No long-term market perspective is provided; this is therefore not considered.

The transition probabilities are traditionally estimated using pair NFI data in this type of set-up. If this data were made available, EFDM-geo would no doubt be an excellent tool for forestry modelling, in particular, with regards to the supply side of the forest bioeconomy.

6.2 Species shifts and death

Further improvement would result in the integration of a capacity to shift species. This is of particular interest in long-term or climate-change-related perspectives, but also with changes in market demand for different assortments. Thus the forest area that undergoes final felling and drops down to the lowest age and volume classes may also be regenerated as a different species. As described under section 3.3 on activities matrices, ingrowth only occurs in volume and age class 0. The model assumes that the same species will return, however it would technically be possible to recruit bare land with a different species in the model. Furthermore, there is no net loss or gain of forested area, which is also something that could be changed, as discussed further in sections 6.5 & 6.6.

Schematically we can represent the different path options for artificial recruitment as such (Figure 29):

![Figure 29. Possible paths for newly and artificially recruited seedlings for each size class](image)

This model configuration does not consider the probability of tree mortality. Natural mortality could also be taken into account. For example, Liang (2010) considers a presumed mortality of 20%.

6.3 Timber assortments

In order to better estimate the supply side of the forest-based sector, some work needs to be done on the split of harvested volumes of wood to the different assortments. In EFDM-geo, the split is made between coniferous and non-coniferous commodities, but there is no split between pulpwood and sawlogs, which means that all volume-age classes from which volume is removed, whether that be by thinning or by final felling, is
equally capable of supplying the demand for both. As described earlier however, the model is equipped to handle a more sophisticated and complex rule-set. This is not currently feasible because of lack of research in this field. Furthermore, it would be interesting to integrate the common situation whereby some forests labelled as coniferous are contributing to hardwood commodities to a small extent, and vice versa. Also pure forests are often mixed to a slight degree, and harvesting will pick up both species at times.

6.4 Non-even-aged forests

EFDM is available in a version that was conceived to deal with non-even-aged forests, using volume and stem numbers (instead of age) as dynamic variables when describing forest type\(^{21}\) (Salnäs et al, 2015). The model was applied by national experts in the following countries: Austria, France, the Netherlands, Portugal, Slovenia, Spain, Switzerland. The model performed well in some situations, but there were nevertheless points to consider for further development. For instance, dependence on plot data for estimation of transition matrices. Sometimes low numbers of sample plots for these types of forests, particularly unmanaged plots in smaller countries, poses a problem. Another issue to contend with is a situation as was described in Switzerland, whereby the memory of management of the plot is important because these plots tend to have a much higher growth rate. This would imply generating a specific transition probability matrix for these areas and applying them once to the areas that have been managed. Another concern to address is the age window. It is currently equivalent to the time step width, which is too large to capture management practices on coppices as was the case in Spain. These issues will probably have to be addressed on a country-by-country basis, however in general terms, the fine granularity of the raster in this system, and the possibility to move from discrete allocation to probabilistic allocation\(^{22}\) for forest types would allow for modelling non-even-aged forests.

6.5 Short-rotation forestry

Short rotation forestry (SRF) has always been a bit tricky for both the agriculture and forestry sectors to handle, also because it could be considered as being part of one or the other. On the one hand, SRF stands supply woody biomass for the forest-based sector but on the other, they can occupy agricultural land. Given the scope of EFDM-geo to assess biomass availability given demand for wood products at a pan-European scale, it makes sense to integrate SRF into the model. The challenge is in the volatile land take of SRF in very short time steps. This can be resolved by integrating a simple land use model in which parcels of agriculture land may be made available for SRF, which in turn, would make the products from SRF available to contribute to the overall supply of wood to specific markets.

Further to SRF, we may introduce more forests (afforestation) or fewer forests (permanent deforestation) to this concept, which would then lead to the creation of a simplistic land use model for biomass estimation from both forestry and agriculture (see section 6.6).

6.6 Land use modelling for biomass assessment

This spatially-explicit environment is conducive to the net land exchange between the agricultural and forestry sectors. Since the initial state is generated “on the fly”, meaning the underlying maps contributing to the initial state could theoretically be modified at every time step. Thus the forest species, age and volume maps used to

\(^{22}\) http://objectvision.nl/geodms/operators-a-functions/allocation
generate the initial state vector could be modified based on exogenous factors governing net areas of certain species. We can therefore imagine an introduction of a new “species class” on top of broadleaves and conifers, which would be short-rotation broadleaves. This new class would have its own characteristics in terms of growth rate, age and volume classes (just as conifers and broadleaves do). From a theoretical point of view, the area-based matrix set-up in a volume/age dimension, based on the Markov principles governing the shift of forest areas within the matrix, is analogous to probabilistic cellular automata within the spatial dimension. In addition to hectares of forest moving through the volume/age dimensions, we could have hectares of Short Rotation Coppice (SRC) moving through the x-y dimensions. The main conceptual difference is that we would have to add the ability of a cell to maintain the memory of the previous states in order to allow the model to make good decisions about the land use conversions; and instead of transition probabilities, we would depend on conversion probabilities of land use.

Given the growing role of biomass at the core of the bio-based economy both within and outside of Europe, it may also be appropriate to seek Global-modelling capabilities for biomass availability. This could be attempted with a degraded spatial resolution for the “rest of the world” and simplistic rules regarding growth and activities.
References

List of figures

Figure 1. Claims for management activities to occur in different age/volume groups for three time steps: 2020, 2015, 2020. Units are in forest area affected (ha). ... 11

Figure 2. Costs for final felling, based on a combination of factors described in 2.2.2 ... 14

Figure 3. Overview of EFDM-geo processing steps, including the exogenous data and origin ... 15

Figure 4. Example of 1-ha cell partially covered by broadleaves (1,875 m²) and conifers (8,125 m²). ... 18

Figure 5. Cells can be fully forested (100%=10,000 m²), partially forested (1250-9,999 m²), or considered to not be forested (<1,250 m²). ... 19

Figure 6. Base map for allocating broadleaves and conifers to 1-ha cells. Class 1=“broadleaves”; class 2 = “conifers”; class 3 = “mixed forest”; class 4 = “other”. ... 20

Figure 7. Graphical view of area distribution over age and volume classes (blue -> red = lowest -> highest areas of forest in the vol/age class combination). ... 21

Figure 8. The progress of a group of trees in a “no management” scenario whereby volume class may increase with age class. ... 22

Figure 9. Illustration of how NFI data is used to describe transition probabilities. ... 23

Figure 10. Illustration of effect of transition probabilities ... 25

Figure 11. Management activities associated to age and volume classes ... 28

Figure 12. Location of ITF in Italy ... 29

Figure 13. Example of resulting map and corresponding forest area distribution on the volume/age matrix for broadleaves in ITF in 2045. ... 30

Figure 14. Example of resulting map and corresponding forest area distribution on the volume/age matrix for conifers in ITF in 2045. ... 31

Figure 15. Activities probabilities table, t. ... 33

Figure 16. Updated activities, t+1 ... 33

Figure 17. Factor to rescale activities to meet commodities demands for coniferous wood for t+1. ... 33

Figure 18. Example of data showing yield from thinning per age/volume class in conifers in FI1 ... 34

Figure 19. Example of a time series of management treatments ... 35

Figure 20. Graphical User Interface of EFDM-geo includes a tree structure (1), data panel (2), details pages (3), progress messages (4). ... 36

Figure 21. Regions modelled in EFDM-geo ... 37

Figure 22. Volume class breaks can be defined per NUTS region in EFDM-geo ... 38

Figure 23. Initial state matrix per NUTS 1 region and per species group ... 39

Figure 24. Transition matrix at NUTS 1 level per species group ... 40

Figure 25. Example of transition probabilities matrices for FI1. ... 41

Figure 26. Zoom in to explain the transition matrix graphic. ... 42

Figure 27. Demand for material use of wood from the GFTM model ... 43

Figure 28. Activities probabilities matrix per forest type at regional level ... 44

Figure 29. Possible paths for newly and artificially recruited seedlings for each size class ... 46
List of tables
Table 1. Indices used to describe the raster and regional models .. 7
Table 2. The input data or the model. ... 8
Table 3. State variables.. 9
Table 4. Summary of input data .. 17

Annex A: Sources for NFI data used in EFDM-geo

AUSTRIA
Official reports of the National Forest Inventory 2007-2009, available at:
http://bfw.ac.at/1rz/wi.home
http://bfw.ac.at/1rz/bfwcms.web?dok=4765#aufgaben

BELGIUM - WALLONE
Official report of the 2000 Wallone Inventory. Available from:
http://environnement.wallonie.be/dnf/inventaire/indgen.htm

BULGARIA
Data provided by the National Forest Inventory for 2000, downloaded by the European Forest Institute database, available at:
http://www.efi.int/databases/authenticate.php

SWITZERLAND
Official results of the 3rd National Inventory, accessed through the Suisse NFI website:

CYPRUS
Data in the Cyprus chapter within the “National Forest Inventories - Pathways for Common Reporting” book.

CZECH REPUBLIC
http://www.uhul.cz/

23 The released software does not include the data.
GERMANY
Official results of the Second National Forest Inventory (NFI 2, 2002), available at:
http://bwi.info/start.aspx

DENMARK

ESTONIA
Official “Yearbook of Forest” 2010, available at:
http://www.keskkonnainfo.ee/failid/aastaraamat_2010a_parandatud.pdf

SPAIN
Official reports of the third National Inventory, downloaded from:

FINLAND
Official report (Statistical Yearbook of Forestry, 2011) of the 10th National Forest Inventory (referred to the period 2004-2008), available at:

FRANCE
Official Statistics of the National Inventory, exploiting data collected between 2006 and 2010. Data were downloaded using the online tool available at: http://www.ifn.fr/spip/?rubrique18

HUNGARY
Data provided by the Hungarian Forest Institute in the framework of EFICP. Data used only for internal testing purposes.
IRELAND
Official results of the 2004-2006 Inventory. Available in the “Originals” subfolder or downloadable from:
http://www.agriculture.gov.ie/nfi/nationalforestinventoryresultsdata/

ITALY
Official data of the 2nd National Forest Inventory (named INFC), referred to 2005 (“INFC 2005 - Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio. Ministero delle Politiche Agricole Alimentari e Forestali, Ispettorato Generale - Corpo Forestale dello Stato. CRA - Unità di ricerca per il Monitoraggio e la Pianificazione forestale.”), available at:
http://www.sian.it/inventarioforestale/jsp/dati_carquant_tab.jsp

LITHUANIA
In particular, the “Forest Resources” chapter was used.

Luxembourg
PDF file showing the main results of the 1998-2000 Forest Inventory:

LATVIA
Data provided by the 2009 National Forest Inventory. These data are not public and they were directly provided to JRC, IIASA and EFI in order to estimate the forest management reference level for “Submission of information on forest management reference levels by Latvia” and are used as placeholders in this modelling framework.

NETHERLANDS
Official report of the 2001-2006 Inventory. Available from:
http://www.natuurbeheer.nu/media/File/dk065%20%20meetnet%20functievervulling%20bos.pdf

NORWAY
Most data were derived from data of the National Inventory 2005-2009. Tables of interest were downloaded from:
http://statbank.ssb.no/statistikkbanken/Default_FR.asp?Productid=10.04&PXSid=0&nvl=true&PLanguage=1&tilside=selecttable/MenuSelP.asp&SubjectCode=10
POLAND

Report of the 2009 National Forest Inventory of Poland. Available from:

PORTUGAL

Official reports of the Fifth National Inventory. Tables can be accessed from the Florestat software, available at:

ROMANIA

SWEDEN

Data provided by the Swedish National Forest Inventory (referred to the period 2004-2008), available at:
http://www.slu.se/en/webbtjanster-miljoanalys/forest-statistics/

SLOVENIA

Data derived by the National Forest Inventory of 2000, downloaded from the European Forest Institute database, available at:
http://www.efi.int/databases/authenticate.php

SLOVAKIA

Data provided by the Slovakian Forest Institute in the framework of EFIPC. Data used only for internal testing purposes.
Europe Direct is a service to help you find answers to your questions about the European Union.

Freephone number (*):

00 800 6 7 8 9 10 11

(*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you).

HOW TO OBTAIN EU PUBLICATIONS

Free publications:

• one copy:
 via EU Bookshop (http://bookshop.europa.eu);

• more than one copy or posters/maps:
 from the European Union’s representations (http://ec.europa.eu/represent_en.htm);
 from the delegations in non-EU countries (http://eeas.europa.eu/delegations/index_en.htm);
 by contacting the Europe Direct service (http://europa.eu/europedirect/index_en.htm) or calling 00 800 6 7 8 9 10 11 (freephone number from anywhere in the EU) (*)

(*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you).

Priced publications:

• via EU Bookshop (http://bookshop.europa.eu).
JRC Mission

As the science and knowledge service of the European Commission, the Joint Research Centre’s mission is to support EU policies with independent evidence throughout the whole policy cycle.