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Abstract 

The expansion of the electric vehicle market globally and in the EU will increase 

exponentially the demand for cobalt in the next decade. Cobalt supply has issues of 

concentration and risk of disruption, as it is mainly produced in Democratic Republic of 

Congo and China. According to our assessment these risks will persist in the future, likely 

increasing in the near term until 2020. Minerals exploration and EV batteries recycling 

can make for an improvement in the stability of cobalt supply from 2020 on, which 

together with the expected reduction in the use of cobalt, driven by substitution efforts, 

should help bridge the gap between supply and demand. Despite this, worldwide, 

demand is already perceived to exceed supply in 2020 and such a loss making trend is 

expected to become more consistent from 2025 on. In the EU, although the capacity to 

meet rising demand is projected to increase through mining and recycling activities, 

there is an increasing gap between endogenous supply and demand. The EU's supplies of 

cobalt will increasingly depend on imports from third countries, which underscores the 

need for deploying the Raw Materials Initiative and the Battery Alliance frameworks. 
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Executive Summary 

As a result of the accelerated introduction of electric vehicles (EVs), the demand for 

lithium-ion batteries (LIB) is expected to increase significantly in the future. However, a 

potential limiting factor in the deployment of LIBs may be the supply of cobalt, largely 

used in a number of conventional battery chemistries.  

Potential disruptions in cobalt supply can arise from the near-monopolistic supply 

structures for both mined and refined cobalt, unethical practices in producing countries, 

the long lead-time for developing new mining projects, and the fact that cobalt is mainly 

mined and recovered as a co- or by-product of copper and nickel.  

In 2016, 126 000 tonnes of cobalt were mined in 20 countries around the world, with the 

largest supply coming from the Democratic Republic of the Congo (55 % of global cobalt 

production). In turn, EU production of cobalt was estimated at 2 300 tonnes, all sourced 

from Finland.  

Considering various levels of uptake of LIB and other cobalt uses, we estimate that global 

cobalt demand will increase at a compound annual growth rate of between 7 % and 13 % 

from 2017 to 2030. On average, annual global cobalt consumption is expected to reach 

about 220 000 tonnes in 2025, increasing to 390 000 tonnes in 2030, if not alleviated by 

substitution mechanisms with the adoption of alternative battery chemistries requiring 

less cobalt. In the EU, overall cobalt demand may amount on average to 53 500 tonnes 

in 2025, increasing to 108 000 tonnes in 2030.  

The production capacity of cobalt from operating mines worldwide is currently estimated 

at 160 000 tonnes. In 2030, considering additional exploration projects under late stage 

development, cobalt mining may provide for around 193 000 – 237 000 tonnes. Whilst 

some projects are expected to bring significant cobalt into the market by 2025, additional 

supply will most likely come from the expansion of existing producers, led by DRC. In the 

future, countries such as Australia and Canada are expected to gain additional 

importance as cobalt producing countries, helping to reduce the concentration of supply 

and the risk of disruption by 29 % in 2030. In the EU, future mine production might be of 

2 700 tonnes in 2020, increasing to 3 200 tonnes in 2030. By then, this amount could 

provide for around 6 % of European cobalt consumption in the EVs sector. 

Substitution of cobalt in Li-ion batteries, although possible, has not taken place. Lately, it 

has even gone in the opposite direction, as the majority of automakers switch to cobalt-

intensive chemistries, drawing on its comparative advantages in terms of energy density 

and range. Although the present trend is expected to continue until 2020, leading to 

further increases in cobalt demand of up to 6 %, there is broad consensus over the 

reduction of cobalt consumption in batteries from 2020 onwards. Until 2025, cobalt can 

be reduced by 17 %, and by another 12 % between 2025 and 2030, on account of 

changes in the EV battery chemistry mix. Nickel is likely to be the main substitute in such 

applications.   

Significant opportunities to recycle cobalt may also be anticipated over the coming years. 

In the EV batteries sector the recycling potential is significant, as these batteries will be 

easier to collect. However, given the recent introduction of EVs in global and European 

markets, large-scale recycling can only be more effectively accomplished beyond 2025. 

In 2030, recycling of EV batteries can provide for around 10 % of the European cobalt 

consumption in the EVs sector, if established to the extent of the assumptions used to 

develop the forecasts.  

Considering annual supply and demand balances in global average scenarios, including 

the effects of substitution over demand, and of EV batteries recycling over projected 

mine supply, demand is already perceived to exceed supply in 2020. By then, around 

8 000 tonnes of additional cobalt would be needed to cover global demand. This deficit is 

expected to increase to 64 000 tonnes in 2030.  
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Bridging gaps between supply and demand in the EU may require specific actions along 

the three pillars of the European Raw Materials Initiative.  

In the mining sector, the promotion of specific brownfield projects merits further action, 

along with the attraction of investment to reactivate inactive projects and promote 

efficient greenfield exploration in highly prospective areas. Private investment in minerals 

exploration may come in line with improvements in the regulatory context, as many EU 

countries do not currently ensure the right to exploit a new deposit provided other 

regulatory conditions are met.  

As the EU will continue to depend on imports in the future, consolidating trade 

agreements with countries such as Australia and Canada, projected to gain additional 

importance as cobalt producing countries, can also be beneficial as a means of ensuring 

responsible sourcing practices.  

Cobalt recycling is likely to be boosted by higher collection rates of EV batteries from 

2025 on. Nonetheless, the high share of PHEV in Europe may entail additional 

uncertainties as to whether relevant collection rates are met in the future. Ensuring that 

such targets are met is of particular importance to the optimisation of future balances 

between supply and demand.  

On the use of cobalt in EV batteries, an overall reduction of 29 % per unit is expected by 

2030. However, the deployment on a mass scale of such low-cobalt chemistries will still 

be needed. As nickel is likely to bear the load of the substitution strategy, these 

developments should come in line with close monitoring exercises of the nickel supply 

and demand situation. In the longer term, additional reductions in the use of cobalt in 

the automotive sector might also come in line with the market uptake of fuel cell vehicles 

and other cobalt-free chemistries. 

Finally, the raw materials sector plays an important role in the value-chain of battery and 

automotive industries. Increasing the industries' manufacturing capacities, which now 

represent only 2 % of the global capacities, besides preventing a technological 

dependency on competitors, should also have positive spill-over effects on private 

investment along all segments of the value-chain. If properly developed, it should 

promote the responsiveness and competitiveness of the European raw materials sector 

whilst ensuring cobalt supplies through domestic mining and recycling.  
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1 Introduction 

1.1 Setting the scene: the importance of cobalt and pressing 

challenges of supply security 

Some analysts believe that cobalt can be a limiting factor in the deployment of lithium-

ion batteries (LIB) [e.g. (MIT, 2017), (Bloomberg, 2017), (Greentech Media, 2016)]. 

Emphasis has been put on the ability to secure relevant supply streams to fast-growing 

markets, the prevalence of near-monopolistic supply structures and the fact that cobalt is 

usually mined as a co- or by-product of copper and nickel.  

Cobalt is needed for LIB in the market for electric vehicles (EVs) and stationary energy 

storage, both with increasing global relevance in the transition to a low-carbon economy. 

Globally, EVs demand is expected to grow considerably as parity price is achieved with 

internal combustion engine vehicles (ICE)1. Also, it will be pushed up by pollution 

prevention legislation, for example in China, or efforts to decarbonise road transport, as 

in the case of Europe. 

As long as the expansion of the use of these technologies is certain, and subject to 

significant growth rates, supplementary cobalt supply will be needed, creating additional 

pressure upon traditional and emerging supply sources. Thus, substantial increases in 

mining and recycling are expected to move in line with market expectations. However, 

limitations to supply, resulting in production lagging behind demand or price increases, 

may arise for several reasons.    

Constrains to mineral supply may arise, for example, with cutbacks on copper and nickel 

production or lack of capacity at existing mine facilities. Although it is acknowledged that 

mineral resources and reserves are dynamically changing over time as the costs of 

extraction and price of metal change, giving mining companies some flexibility to re-

adjust production as appropriate, the ability to manage new supply and demand balances 

is likely to be achieved at the expense of increased prices to downstream users (e.g. 

(Bloodworth & Gunn, 2014), (SEI, 2012).  

On the other hand, while a continued price increase could galvanise efforts to open new 

mines, the long lead-time for their development could give rise to shortfalls in future 

provision. Although high market prices remain the driving force behind innovation, 

assisting the search for substitution chemistries, supply-demand imbalances can persist 

and be amplified by the long development time of successful substitutes.  

Limitations to supply can also arise due to geopolitical constraints. This is particularly 

relevant in the case of cobalt, whose gross production is concentrated in a small number 

of countries, including politically insecure suppliers.  Around 55 % of cobalt is mined in 

the Democratic Republic of the Congo (DRC) (WMD, 2018), viewed as politically unstable 

(WGI, 2018), thereby reducing the certainty of access to supply. Moreover, according to 

(Bloomberg, 2018), DRC declares cobalt to be strategic and intends to more than double 

the taxes applied to cobalt exports, which could lead to an aggressive increase in the 

commodity price.    

Adding to DRC’s instability and weak governance, the country is under pressure to 

restrict artisanal mining, in which a prevalent and unethical use of child labour has been 

identified (Amnesty International, 2017). According to Roskill, around 7 000 tonnes 

resulted in 2012 from artisanal mining, whilst SMRE argues that presently approximately 

20 % (or ≈ 14 000 tonnes) of DRC’s cobalt production comes from artisanal based 

operations (Roskill Information Services, 2014), (SMRE, 2017), (Darton Commodities, 

2016).  

At the same time as analysts believe DRC will continue to be a main source of cobalt in 

the future, car makers and technology companies such as Apple, Microsoft and Tesla are 

looking to secure future cobalt supply and to ensure the metal used in rechargeable 

                                           
1 According to (Bloomberg, 2017), beyond 2025 falling battery costs will push EVs to price parity. 
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batteries is sourced ethically (Cobalt Investing News, 2018), (Bloomberg, 2018). To this 

end, companies' strategies have included closing long-term supply deals directly with 

mining companies (Bloomberg, 2018) or engaging actively in promoting and 

implementing traceability mechanisms throughout the supply chain (e.g. The Better 

Cobalt pilot project).  

In the longer term, demand levels for the strategic raw materials will also depend to a 

large extent on the level at which present technologies will be employed in the future.  

Factors such as efficiency improvements or the uptake of alternative materials and/or 

technologies, within the concept of substitution, are likely to affect global demand.  

 

Figure 1. Cobalt position within the 
European Commission criticality matrix, 

as of 2017. 

In the European context, cobalt has been 

identified as a critical raw material on the basis 

of its economic importance and high supply risk, 

in the 2011, 2014 and 2017 assessments carried 

out by the European Commission (European 

Commission, 2018) (Figure 1).  

This status and the context described call for 

regular monitoring exercises of supply and 

demand developments.  

1.2 The European Commission's initiatives concerning batteries  

Recognising the importance of batteries for the clean energy transition, the European 

Commission established sectoral policy priorities and actions expressed in the following 

initiatives2: 

- The European Battery Alliance, launched in October 2017, whereby key strategic 

objectives were laid down. These involved the creation in the short term of a competitive 

manufacturing value chain in Europe to prevent the technological dependence on 

competitors in third countries and ultimately capitalise on the jobs, growth and 

investment potential of batteries.   

- The Strategic Battery Action Plan, adopted in May 2018, whereby a set of 'concrete 

measures to develop an innovative, sustainable and competitive battery 'ecosystem' in 

Europe' were adopted. The plan is structured around six priority actions to promote the 

production and use of high-performing batteries and to set sustainability targets 

throughout the batteries value chain. Securing the sustainable supply of raw materials 

for battery applications is one strategic action area.  

In May 2018, the European Commission published a Staff Working Document Report on 

Raw Materials for Battery Applications (EC, 2018), to detail the implementation of the 

Battery Action Plan in this strategic action area. 

1.3 Cobalt prices – fluctuation and causes 

International cobalt prices have fluctuated significantly over the past decades (Figure 2). 

Since 2000, cobalt demand has begun to rise progressively. Strong demand for 

rechargeable batteries, initially used in electronic equipment, was the main driver of 

growth.  Cobalt mine production increased by around 270 %, from 34 000 tonnes in 

                                           
2 https://ec.europa.eu/growth/industry/policy/european-battery-alliance_en  

Co 

https://ec.europa.eu/growth/industry/policy/european-battery-alliance_en
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2000 to around 126 000 tonnes in 2016 (WMD, 2018)3. While prices have remained 

relatively stable and low since 2012 (on average 24 000 EUR/tonne), these nearly 

doubled to values around 50 000 EUR/tonne in 2017, reaching 65 000 EUR/tonne4 in 

February 2018 (S&P Global Market Intelligence, 2018).  

Figure 2. Historical mine production and prices of cobalt. 

 
 

Data sources: (BGS, 2017), (USGS, 1999), (USGS, 2015), (S&P Global Market Intelligence, 2018). 

Various events that have affected cobalt prices are noted in Figure 3. These range from 

de-stocking, geopolitical unrest, the setting of a joint price and recession.    

  

                                           
3 To be noted that (WMD, 2018) and (USGS, 2018) have calculated different figures for cobalt mine production.  
4 Official 3-month prices per tonne according to London Metal Exchange (LME), adjusted to euro-dollar 

exchange rates as of February 2018 (0.80).  
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Figure 3. Significant events affecting cobalt prices in the past. 

 
 

=>1967-1976 Sales of significant quantities of cobalt from U.S. Government stockpile 

=>1978 Strong cobalt demand, invasion of Zaire's copper-cobalt mining region, and free 
market developed 

=>1981-1982 Sharp recession 

=>1984 Zaire and Zambia announce a joint producer price 

=>1990 Strikes in Zaire and political unrest in Zambia, 

cave-in at Zaire's Kamoto copper-cobalt mine, Russia began 
exporting cobalt to western markets 

=>1991 Unrest in Zaire and dissolution of the 

Soviet Union 

=>1991-1993 Economic downturn and 

decrease in U.S. defence spending 

=>1993-1998 Sales of cobalt from 
the U.S. Government stockpile 

=> > 2000 Steady demand 
increase owing to Li-ion powered 
electronics (including cell phones & 

computers) 

=> 2008 Cobalt 
deficit, DRC instability 

=> 2012 

Cobalt surplus, 

China de-stocking 
Data sources: (USGS, 1999), (GGC, 2011), (SEI, 2012). 

Since 2017, concerns over cobalt supply in the context of soaring demand for batteries 

for transport, together with concerns over long-term access to cobalt resources following 

instability in DRC, appear to have pushed prices up [e.g. (Roskill (PR), 2018)]. This could 

be transitory, with the industry returning to the lower prices of the recent past, or 

alternatively, further price increases may occur due to limited cobalt output, as discussed 

above.  

Considering the historical volatility of cobalt prices over time, it is also reasonable to 

assume that the present context can be prone to stockpiling, which in the past triggered 

sudden sharp increases in cobalt prices. For example sales from US stocks would have 

resulted in increased cobalt prices in 1995 (Figure 3). 

1.4 Objectives, approach and layout of the study 

The present analysis aims to assess the increased need for cobalt in the transition to 

electric mobility while comparing it with projected supply over an equivalent period. The 

overall approach is summarised in Figure 4 and details are given in Table 1. The analysis 

is global in scope but focuses on a number of elements specific to the EU. Its timeframe 

extends to 2030.  
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Figure 4 Summary of the study's phased approach. 

 

 

The demand situation is presented in section 2. Demand forecasts incorporate expected 

levels for various intensities of uptake of electric vehicles. Several scenarios based on the 

International Energy Agency (IEA) targets for EVs deployment were used to estimate 

market growth. In those scenarios the scale and size of the EV market and Li-ion demand 

vary with deep decarbonisation, market expectations and business as usual 

considerations.  

The third section deals with mine supply. Future supply estimations were assessed 

against the reported and estimated production capacities of operating mines and ongoing 

late-stage exploration projects. The analysis took into account the magnitude of current 

mining operations, the time taken to start new operations, the availability of resources at 

operating facilities and ongoing late-stage exploration projects. Although the analysis is 

set against a general market context of continuing high prices, as a precondition for 

making all inventoried projects profitable, it offers an indication of the relative potential 

to increase production in the future, therefore providing a reasonable basis for the 

analysis carried out in this study. 

The effects of substitution over demand patterns and of EV battery recycling as a means 

of increasing supply are also assessed in the same timeframe. The analysis is presented 

in sections 4 and 5, respectively. The analysis of substitution focused on the increased 

uptake of those battery chemistries with a reduced cobalt content until 2030. The 

quantification of additional cobalt supply available to the market from recycling EV 

batteries relied on certain product life-times, collection rates and efficiency assumptions.  

The balances between production and consumption are then used to assess shortages 

and surpluses, in the timeframe 2018 to 2030. The results are provided on a yearly basis 

(non-cumulative approach), comparing directly the production potentially available from 

mining and recycling activities with the annual overall demand, seen as dependent on the 

scale and size of the EV market and substitution efforts. The analysis is also carried out 

on a cumulative basis, for each 5 year period.  

Partial analysis of gaps between supply and demand in each sub-system, constructed 

with the conditions gradually laid down, is provided at the end of each main chapter. In 

Demand-Supply Balances (2018-2030) 

Effects 

factors affecting core variables 

Core variables 

Demand Mine supply 

Production capacity 
EVs deployment of operating mines 

scenarios and exploration 
projects 

Substitution 
of Co in EV 
batteries 

Recycling 
of EV 

batteries 

Annual  

balances 

Cumulative  

balances 
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the concluding chapter (section 6), future scenarios are related to each other in one 

consistent forecasting approach.   

The European demand and endogenous supply of cobalt are also evaluated in this report. 

Cobalt mine production and recycling capacities within EU Member States are examined 

alongside, with the extent to which they may contribute in the future to the effective 

management of supply and demand balances. As in the global context, cobalt demand 

will be influenced mainly by the expansion of the EVs market, evolving according to the 

projections made by the European Road Transport Research Advisory Council (ERTRAC). 

 

Table 1 Key elements considered in the analysis of gaps between supply and demand. 

A. Demand (2010-2030) 

Rational: Co is needed for LIB in the market for EVs. In the future Co demand will be influenced 
mainly by the expansion of the EV market, pushed by price parity with ICE, legislation and 

decarbonisation efforts. 

EVs deployment scenarios  

World EU 

1. Reference Technology Scenario.  

2. Paris Declaration on Electro-Mobility and 
Climate Change Scenario (100 million EVs in 
2030). 

3. Deep decarbonisation scenario - IEA 2DS 
(160 million EVs in 2030) 

4. Deep decarbonisation scenario - IEA B2DS 

(200 million EVs by 2030) 

1. ERTRAC – low scenario: CO2 targets are 
achieved by more efficient and hybridised 
internal combustion engine vehicles. 

 

2. ERTRAC – high scenario: expected mass 
production of EVs in the context of deep 
decarbonisation.  

Methodological aspects 

Cobalt demand in the EVs market 
Factors influencing the calculation: 

1. Type of vehicle (BEV/PHEV shares)  

2. Battery storage capacity  

3. LIB preferred cathode chemistry in 2017 

4. Co consumption per KWh  

5. Replacement of end-of-life batteries 

6. Population growth in the EU 

 

 Cobalt demand in other sectors 

1. Assumed to grow moderately at an annual 
growth rate of 2.5 % 
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B. Mine supply (2018-2030) 

Rational. In the transition to electric mobility, supplementary cobalt supply will be needed, 
creating additional pressure upon mining activities. Exploration efforts to increase production 
through successful mineral discoveries are underway. These projects will add capacities and new 
actors to the current list of suppliers while contributing to diversification in the market.      

Mine supply scenarios 

Low-case: Life-of-mine production profiles were simulated using a declining resources method. 
Reported resources were used to estimate the no. of production years that could theoretically be 
supported at full capacity. 

High-case: All operating mines with reported production capacities are considered including those 
for which resources are not reported.  

Low-case intermediate: A recovery rate of 90 % is assumed throughout the reference period to 

allow for technological improvements in refining operations (adding on the low-case scenario).  

High-case intermediate: throughout the reference period, 20 % of current total production will 
become unavailable due to unethical practices, geo-political risks or unforeseeable production 
stoppages (subtracted from the high-case scenario). 

 

Methodological aspects 

Projects reviewed fall into the following stages: 

1. Operating mines  

2. Mine-stage projects: Preproduction and commissioning stages (assumed to come online in 2019) 

3. Feasibility-stage exploration projects (assumed to start up in 2021) 

4. Prefeasibility and reserves development exploration projects (expected to start up in 2026). 

Assumption. The analysis is set against a general market context of continuing high prices as a 
precondition for making all inventoried projects profitable. The start-up dates of late-exploration 

projects were assumed to be fixed and established on the basis of the current development stage, 
irrespective of the project economics. 

 

  



 

12 

C. Recycling and substitution  effects (2017-2030) 

Rational. The full or partial replacement of cobalt in EV batteries can affect demand patterns by 
triggering a potential reduction in demand. The potential for cobalt substitution in batteries is 
extensive. Until 2030, other cathode chemistries requiring less cobalt and with higher nickel and 
aluminium contents will be used increasingly. The recycling of EV batteries will create an 

alternative cobalt supply, thereby increasing its availability and supply security. 

Recycling of EV batteries 

(2010-2030) 

Substitution of Co in EV batteries 

(2018-2030) 

Methodological aspects 

Cobalt available through recycling of EV 
batteries calculated with the following 
assumptions: 

1. Global EOL-RIR (72 %) 

2. Global collection rate (90 %) 

3. EU EOL-RIR (variable over time depending 
on the number of BEV and PHEV units 
deployed): EU BEV collection rate (90 %); EU 
PHEV collection rate (50 %) 

4. Recovery efficiency (80 %) 

5. EV battery life-time (8 years) 

 

 % of reduction of cobalt use motivated by 
the deployment of optimised chemistries 
between 2017 and 2030, calculated 

assuming: 

1. Potentially prevalent EV cathode chemistry 
mixes in 2017, 2020, 2025 and 2030 – 
examples from the literature.  

Assumption. A potential second use for EV 
batteries, with the effect of delaying their 
recycling potential, is not considered.  

 

Assumption. Disruptive technologies beyond 
those which are market-ready or with short-term 
maturity were discarded.  

D. Supply-demand Balances (2018-2030) 

Rational The deployment of LIB for EVs can be limited by constraints in the supply of cobalt, 
resulting in production lagging behind demand or causing subsequent price increases. Constraints 
to mineral supply may arise, for example, because of a lack of capacity at existing facilities and the 
long lead-time for the development of a mining programme from exploration to extraction. 
Although it is reasonable to assume that, to some extent, mining companies enjoy the flexibility to 

adjust production through investments in higher capacities together with mineral reserves 
replacement strategies, these are likely to be achieved at the expense of increased prices to 
downstream users. In resilient scenarios, shortages, surpluses and respective price fluctuations 
should be short-lived if backed by adequate mining capabilities and mineral discoveries in a 
number of countries characterised by political stability, if demand is alleviated by substitution 
mechanisms, and recycling outputs are able to compensate for potential gaps.  

Annual demand-supply balances  Cumulative demand-supply balances 

Each year cobalt will be produced to the 
extent of the demand. The extent to which 
supply exceeds demand and vice-versa is 
assessed yearly. 

 Each year cobalt will be produced to the extent 
of the capacity of available mines and EVs 
recycling output; the amounts that are not 
consumed will be stockpiled and stored for use 

in the following years. The analysis is conducted 
for each 5-year period on a cumulative basis. 
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2 Cobalt demand 

2.1 The current global situation 

2.1.1 Cobalt uses and the rechargeable battery market 

In 2016, the global demand for refined cobalt was around 98 000 tonnes (BGS, 2017), 

an amount which had almost tripled since 2000. The current consumption of the metal is 

apportioned as shown in Figure 5 below. 

Figure 5. Refined cobalt demand by end-use and end-use specifications in 2015 (Darton 
Commodities, 2016) (A); market shares of cathode active materials used in Li-ion batteries in 2016 

according to (Avicenne Energy, 2017) (B); cobalt content in each type of cathode (Avicenne 
Energy, 2017) (C). 

 

 =>  Battery chemicals: Li-ion (LCO, NCM, NCA cathode) and NiMH/NiCd (anode/cathode). 

 => Superalloys: Aerospace; Land based turbines/IGT; Medical (prosthetics); Others 

 => Hardmetals: Cutting tools, mining, oil & gas drilling, etc 

 => Ceramics/Pigments: Ceramics, glass and colouring applications 

 => Catalysts: Oxidation (thermoplastic polymers production); 
Hydrotreating/desulfurisation (gas, oil, refining, petrochemicals); Fischer 

Tropsch process to convert carbon monoxide and hydrogen into liquid 
hydrocarbons 

 => Hard Facing: Satellites; Triballoy, etc 

 => Magnets: AlNiCo; SmCo; NdFeB; CoFe 

=> Others: Electroplating; high speed steels; agriculture/animal 

feed; synthetic diamonds 
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The rechargeable battery market is the largest and fastest growing for cobalt demand. 

Demand from this industry grew by nearly 12 % in 2015, driving consumption in this 

sector close to 45 000 tonnes (Darton Commodities, 2016). While cobalt is still used in 

nickel-cadmium (NiCd) and nickel-metal hydride (NiMH) batteries, over 90 % of current 

consumption in the battery industry is bound to the production of LIB (Darton 

Commodities, 2016). In 2015, rechargeable batteries accounted for 49 % of total cobalt 

consumption, while this usage represented merely around 28 % of total cobalt demand in 

2010 (Figure 6).  

The remaining end sectors consist of nickel alloys, including superalloys, which accounted 

for 18 % of total consumption in 2015, tool materials, catalysts, pigments and 

decolourisers, magnets, soaps and dryers and a number of other minor end-uses (Figure 

5).  

Figure 6. Cobalt demand share in rechargeable batteries.  

 

Own compilation based on (BRGM, 2014), (Roskill Information Services, 2014), (Darton Commodities, 2016), 
(Bloomberg, 2018). 

 

Although consumer electronics has traditionally driven demand for LIB, within the 

rechargeable batteries market, the greater demand growth is currently driven by the 

automotive industry. In the electric vehicles market, cobalt consumption is boosted by 

the usage of NMC (nickel-manganese-cobalt) cathode materials.  According to (Darton 

Commodities, 2016), while until recently the cathode chemistry of choice for the majority 

of electric and plug-in hybrid vehicles (BEV and PHEV) producers was a combination of 

NMC with a non-cobalt chemistry material, mainly LMO (lithium-manganese), an 

increasing number of automakers are choosing full NMC chemistry to achieve higher 

energy density, and thus longer distances per charge. 

In addition, Electrical Storage Systems (ESS), both for residential (smaller systems below 

10 KWh) and professional or utility use, are increasingly using Li-ion batteries, because 

of inherent advantages such as dynamic charge acceptance, longer shelf life, reliability 

and total cost of ownership (Darton Commodities, 2016). As with the EVs market, a 

growing number of producers are developing ESS batteries based on NMC chemistries.  

In 2016, the demand for cathode active materials in rechargeable batteries was above 

180 000 tonnes (Avicenne Energy, 2017), with 26 % of the LIB market comprised of 

NMC (Figure 5B). In such chemistries, cobalt contents are in the range of 10-30 %, 
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representing around 4 % by weight of the individual battery cell5. According to (Avicenne 

Energy, 2018), cathode materials account for around 27 % of battery costs.  

 

Table 2 Types of lithium ion battery chemistries [Sources: (Cobalt Institute, 2018), (Benchmark 
Minerals, 2016) quoting information from Battery University], (Avicenne Energy, 2017).  

Name Abb. Chemical formula Cobalt content Properties and applications 

Lithium Cobalt 

Oxide 

LCO LiCoO2 60 % High capacity. Mobile phones, 

tablets, laptops, cameras 

Lithium 

Manganese Oxide 

LMO LiMn2O4 no Co Safest; lower capacity than 

LCO but high specific power 
and long life. Power tools, 

e-bikes, EVs, medical devices. Lithium Iron 
Phosphate 

LFP LiFePO4 no Co 

Lithium Nickel 
Manganese 
Cobalt Oxide 

NMC LiNiMnCoO2 10–30 % 

Lithium Nickel 
Cobalt Aluminium 

Oxide 

NCA LiNiCoAlO2 10 -15 % High capacity; gaining 
importance in electric 

powertrain and grid storage; 
industrial applications, medical 
devices 

 

In EV batteries, cathode active materials accounted for 18 % of cobalt consumption in 

2017 (or 9 % in comparison with overall uses) (Figure 7A). Several configurations with 

different cobalt contents are currently employed, at the rates shown in Figure 7: NMC 

(111) (42 %), NMC (433) (5 %), and NMC (532) (7 %), LMO (7 %), LFP (24 %) and NCA 

(14 %).  

While cobalt represents around 30 % of the mass fraction of the preferentially used 

configuration (NMC 111), other chemistries, requiring less cobalt, are being used 

increasingly, amongst them the NCA with 14 % of cobalt (Figure 7C)6.  

  

                                           
5 On average, 10Kg of cobalt are used to produce a battery weighting 250 Kg.  
6 In the future, different cathode mixes are expected. The respective evolution in 2030, and the proportional 

reduction in the use of cobalt over time, will be given in chapter 5.  
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Figure 7. Cobalt demand in EV batteries (A), preferred cathode chemistries used in EV batteries 
(B) and respective cobalt contents (C) in 2017. 

 

Data source: (Bloomberg, 2018). 

Notes: LCO is not used in large format cells where NMC is preferred. LMO is mostly used as a blend 
with NMC in EVs; NCA is used in Panasonic cells in Tesla cars and as a blend with LMO in other EVs 
(Avicenne Energy, 2018). 

According to (Avicenne Energy, 2018) cobalt price can account for a fraction between 

3 % and 12 % of the total cell cost, depending on the chosen chemistry, as given in 

Figure 8. These are highest in NMC 111. In such compositions, the impact of current high 

prices and of any further increases in the future is even greater.    

Figure 8 Impact of the cobalt price on the total cell cost. 

 

Data source: (Avicenne Energy, 2018) 

 

2.1.2 Global EVs market and present cobalt demand 

Electric cars can mean partially electrified vehicles and full EV’s (see Box 1). Although the 

latest category additionally includes fuel cell vehicles (FCEV), their deployment has been 

lagging as sales of battery electric vehicles consolidate. Though FCEVs are currently on 

the road, cost competitiveness in relation to conventional alternatives is pointed out as a 

key challenge for their short-term deployment (IEAHEV, 2018). Hence, for the present 

11.60% 

6.30% 5.90% 

2.70% 

NMC 111 NMC 532 NMC 622 NMC 811
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assessment, further segmentations of the EVs market beyond Battery electric vehicles 

(BEV) and Plug-in hybrid electric vehicles (PHEV) were not implemented.   

Globally, sales of BEV and PHEV surged during 2015, as the total number of electric 

vehicles registered, sold or entered into service increased to around 1.3 million units 

(IEA, 2017). From 2015 until the end of 2017, the cumulative number of vehicles sold 

globally amounted to 3.0 million. In this period, sales of EVs increased by around 60 % 

on a yearly basis (approximation based on (IEA, 2017)).   

Annual sales of EVs were estimated at 550 000 in 2015, and 1.2 million in 2017 (Figure 

9). The proportion of BEV sales was higher than that of PHEV, at 66 % against 34 % 

(IRENA, 2017). 

Box 1. EVs market – types of vehicles  

Electric cars comprise partially electrified vehicles and full EV’s. The following systems are 
marketed: 

Battery electric vehicles (BEVs) – propelled by an electric motor (or motors) and powered by 

rechargeable battery packs. 

Plug-in hybrid electric vehicles (PHEVs) - have both an internal combustion engine and 

electric motor; are powered by conventional fuel and a battery, which is charged up by plugging 
into an electrical outlet or charging station. 

Fuel-cell vehicles (FCEVs) - propelled by an electric motor and powered by hydrogen. 

Figure 9. Past annual EV sales. 

 

Data source: (IEA, 2017) 

 

While until 2014, preferential countries for EVs deployment were the United States and 

Japan, the Chinese market has grown consistently since then. In 2016, China became the 

country with the largest electric car stock (IEA, 2017).  

Assuming that an average cobalt amount of 5.5 Kg7 was used per vehicle until 2017, the 

cumulative consumption of cobalt in the EVs sector would have been about 17 600 

tonnes.  

                                           
7 Details concerning the amount of cobalt used per vehicle globally and in the EU are given next in the 

discussion of projected demand levels until 2030.  
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2.2 The European cobalt demand  

2.2.1 Current perspective in the EVs market 

In the EU between 2010 and 2017, EV sales amounted to around 681 000 units8  (EAFO, 

2018).  

In 2017, approximately 217 500 vehicles were sold, which represents a market share in 

new car sales of approximately 1.5 % (estimate based on (ICCT, 2017)).  

Out of this volume, around 56 % was accounted for by PHEVs and the remainder by 

BEVs (EAFO, 2018). This contrasts with the global trend, in which the uptake of BEV has 

been consistently ahead of that of PHEV.  

As of 2017, Europe had an estimated market share of 21 % of worldwide sales of EVs 

throughout the period in question. While this varies on an annual basis, the EU fraction of 

global sales appears to have decreased slightly in 2017, to around 18 % (Figure 10). 

Figure 10. EV sales in the EU. 

 
Data sources: based on (EAFO, 2018) and (IEA, 2017) 

Assuming that an average cobalt amount of 4.5 Kg9 was used per vehicle, the total 

amount of cobalt consumed on the European EV market to date can be estimated at 

around 3 000 tonnes. In 2017 alone, levels attained by the EV market in the EU have 

created a demand of nearly 1000 tonnes of cobalt.  

2.2.2 Cobalt demand from EU manufacturers 

According to (Deloitte Sustainability, 2015), the amount of cobalt contained in several 

finished products used in the EU amounted to nearly 20 000 tonnes in 2012 (Table 3). 

Although this represents around 20 % of the world cobalt consumption in 2015, only 

55 % was used by European manufacturing industries (nearly 11 000 tonnes) in the 

production of finished products.  

 

                                           
8 373,000 PHEV and 307,000 BEV have been sold in the EU between 2010 and 2017 (EAFO, 2018).  
9 Details concerning the calculation of the amount of cobalt used per vehicle are given next in the discussion of 

projected demand levels until 2030. Differences between the EU and world regions in terms of cobalt 
amount per unit are related to higher shares of PHEV sales in the EU. 
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Table 3 EU demand for cobalt (in tonnes) per end-use sector in 2012. 

 

Data Source: (Deloitte Sustainability, 2015). 

 

Similarly, while cobalt usage in batteries that entered the EU market in 2012 ascended to 

10 100 tonnes, only 3 % of the demand was met by European manufacturing processes 

(Table 3). 

Currently, Li-ion battery cells for EVs and storage are produced mainly in Asian countries 

& companies (~85 % of global manufacturing capacity) with the EU having a limited 

share of about 2 % (or 3 GWh of global cell manufacturing capacities) (BNEF, 2018).  

2.3 Global demand projections in the EVs sector 

Meeting the Paris Declaration targets on climate change, thereby limiting the global 

temperature increase to below 2 degrees Celsius, shall entail a consistent reduction of 

greenhouse gas emissions across the full range of transport modes (passenger cars, two 

and three wheelers, light commercial vans, trucks, etc). For achieving these targets, an 

expansion of the global EVs fleet to around 20 % electric vehicles in use by 2030 is 

essential. This translates into 110 million electric cars in 2030 and entails that annual 

sales must account for at least 35 % of global vehicle sales in 2030 (UNCC, 2015).  

In addition to the Paris Declaration, other projections on the uptake of EVs have been put 

forward by the International Energy Agency (IEA) (see Box 2). These scenarios reflect 

the effects of announced policy actions (IEA-RTS) or are aligned with different levels of 

ambition to combat climate change (IEA – 2DS and IEA-B2DS). 
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Box 2. EVs deployment – IEA scenarios, deployment targets and assumptions 

The following scenarios and targets on global EVs deployment are put forward by (IEA, 

2017): 

• Reference Technology Scenario (RTS) - reflects projections that respond to policies 

on energy efficiency, energy diversification, air quality and decarbonisation that have 

been announced or are under consideration. 

• 2DS Scenario (2DS) - reflects the ambition for 160 million electric cars in 2030 in a 

context consistent with a 50 % probability of limiting the expected global average 

temperature increase to 2°C. 

• B2DS Scenario (B2DS) - projects around 200 million electric cars in 2030, targeting 

the achievement of net-zero GHG emissions from the energy sector shortly after 2060. 

• Paris Declaration on Electro-Mobility and Climate Change (announced at COP21) 

- expresses the ambition to exceed the global threshold of 100 million electric cars and 

400 million electric two-wheelers by 2030 – about a third below the number of electric 

cars projected in the 2DS and half the EV stock of the B2DS.  

The following assumptions were adopted in the present study: 

The envisaged world EV fleet may include partially electrified vehicles (PHEV) and full 

EV’s (BEV, FCEV). For the present assessment it is assumed that until 2030, new EV 

sales will rely on battery technologies and basic car system configurations (either BEV or 

PHEV). Throughout the relevant period, no relevant deployment of FCEVs will occur to 

the extent necessary to affect the future consumption of cobalt by reducing the market 

share of battery vehicles.  

 

To meet the most stringent emission targets set out in the 2DS and B2DS scenarios, the 

global electric car stock would need to increase from an estimated 3.2 million in 2017 to 

23-25 million by 2020, and 156-204 million in 2030, with annual sales growing by a 

compound annual rate of 25 % to 27 %.  

More conservative projections can be inferred from the IEA-RTS scenario. Under the 

assumptions made in this scenario, the size of the EV fleet is estimated to be around 9 

million electric cars in 2020, increasing to 56 million in 2030. Albeit more moderate, a 

significant scale-up by 2030 would also arise under this scenario, for which a CAGR of 

15 % between 2017 and 2030 may be inferred from annual sales. 

Annual EV sales, calculated on the basis of deconstruction of cumulative figures given by 

IEA using an interpolation procedure10, are given in Figure 11. 

  

                                           
10 A spline interpolation method was applied.   
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Figure 11. Global deployment projections of electric cars until 2030. 

 

Note: annual EV sales were interpolated based on cumulative data from IEA scenarios. 

The graph in Figure 12 depicts annual cobalt consumption figures calculated for each 

deployment scenario using the assumptions in  Box 3. Values therein also take into 

account additional sales over the same period to compensate for those batteries that 

reach end of life after approximately 8 years of use.  

Figure 12. Annual global cobalt demand in EVs between 2017 and 2030. 
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Assuming that an increasing average amount of between 5.5Kg and 11Kg of cobalt is 

used per vehicle from today until 2030, on account of projected growths in the storage 

capacity of EV batteries and the continued increase of BEV systems, the cumulative 

usage of cobalt in the automotive sector at the end of 2030 would be in the range of 1.6 

to 2.1 million tonnes in high-case scenarios (IEA 2DS and IEA B2DS)11. In both scenarios 

the annual cobalt demand would increase from 6 650 tonnes in 2017 to 300 000 - 

400 000 tonnes in 2030.  

Box 3. Cobalt consumption per EV – assumptions underlying global demand 

calculations 

 

The following assumptions underpin the estimation of the average cobalt consumption 

per electric car and its evolution until 2030: 

• Average cobalt content per KWh: it is assumed to be 0.2 kg/kWh, estimated 

taking into account the 2017 EVs cathode chemistry mix proposed by (Bloomberg, 2018) 

(see  

Figure 7) and the cobalt contents per chemistry given by (Olivetti, Ceder, Gaustad, & Fu, 

2017) as follows; NMC (111) = 0.394 Kg/KWh; NMC (433)= 0.36 Kg/KWh; NMC (532)= 

0.23 Kg/KWh; LMO = 0 Kg/KWh; NCA = 0.143 Kg/KWh; LFP = 0 Kg/KWh).   

• Average battery storage capacity: in addition to contrasts in cathode chemistries, 

the storage capacity of the battery is a fundamental aspect conditioning the consumption 

of cobalt. This is higher amongst BEVs with an average capacity of 30 kWh, than PHEVs 

with an average capacity of 10 kWh. Moreover, until 2030, the BEV's battery storage 

capacity is expected to increase to 60 kWh and that of PHEVs to 30 kWh (IRENA, 2017). 

• Market shares of BEV and PHEV: at global level, the BEV market share is expected 

to increase from 66 % in 2017 to 75 % in 2030, while the share of PHEV sales is 

expected to decrease from 34 % to 25 % in 2030 [ (IEA, 2017), (Bloomberg, 2017)]. 

 

On the basis of these assumptions, 

the average cobalt content was 

estimated to be 5.5 kg per EV in 

2017. This amount is expected to 

increase to 11 kg in 2030 on account 

of projected growths in the storage 

capacity of EV batteries and the 

continued increase of BEV 

systems12. 

 

Under the RTS scenario, cumulative demand for cobalt in the EV market shall not exceed 

575 000 tonnes at the end of 2030, with consumption in 2030 just exceeding 100 000 

                                           
11 In the future, a reduction in the use of cobalt from the optimisation of chosen cathode chemistries is 

expected. This effect will be assessed in chapter 5.  
12 We acknowledge however that it is unlikely that the cobalt content will increase linearly with the batteries’ 

capacity on account of improvements in the material efficiency.  
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tonnes. As for the Paris Declaration, it is estimated that a cumulative amount of 1.2 

million tonnes of cobalt is necessary to reach the respective 2030 targets.  

For reference purposes, the same graph includes the yield of the Bloomberg analysis over 

the same period (Bloomberg, 2018), which is found to be comparable to the IEA-RTS 

projections until 2025, and from then onwards to the Paris Declaration targets.  

Although it is beyond the scope of the present study, the Li-ion market for ESS is 

expected to grow an average of 30 % per year until 2030 (Darton Commodities, 2016). 

From data made available by (Bloomberg, 2018) one can estimate that the consumption 

of cobalt in such technologies can represent an average fraction of 8 % of the global EVs 

market until 2025, and 7 % from then onwards until 2030. At the end of the period, 

around 55 000 tonnes of cobalt would have been used globally to fulfil ESS demand. 

2.4 European demand projections in the EVs sector 

In the EU, projections derived from ERTRAC scenarios (ERTRAC, 2017), suggest that the 

cumulative number of electrified passenger cars will range from 1.7 to 3.1 million in the 

year 2020, rising to 7-20 million in 2025 and 18-61 million in 2030 (see Box 4 for details 

on ERTRAC scenarios).   

The more conservative scenario presents a compound annual growth rate of 22 % in 

2017-2030, whilst in the high scenario, a growth rate of 34 % is expected.  

Figure 13 European deployment projections of electric vehicles – annual EV sales forecast in the 
EU until 2030, based on ERTRAC scenarios.  
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Box 4. EVs deployment in the EU – ERTRAC scenarios and annual sales 

estimation 

Projections for the deployment of electric vehicles in Europe until 2030 are presented by 

ERTRAC. Forecasts are made for electrified passenger cars and based on a multitude of 

factors and their interplay. These include, as stated: technological developments and 

breakthroughs, policy support, deployment of charging infrastructure, production 

capacity, future customer needs for mobility and their acceptance of new technologies, 

and economic parameters such as vehicle production cost, vehicle TCO and energy prices 

(ERTRAC, 2017). 

Two scenarios – hereafter referred to as LOW and HIGH – result from an ERTRAC 

forecasting exercise, describing the introduction of electric vehicles in 2020, 2025 and 

2030. Projections for EVs are given as market shares of new car sales. 

LOW scenario: foresees that electric vehicles will constitute 4-5 % of market share in 

2020, based on current policies. Additionally, this scenario anticipates a market 

penetration of 10 % for BEVs and PHEVs by 2025, increasing to 20 % by 2030. Under 

this scenario, CO2 targets are achieved by more efficient and hybridised ICE (internal 

combustion engine) vehicles.  

HIGH scenario: foresees a market share of 8-10 % in 2020, developed in the context of 

appropriate political support. In 2025, the number of vehicles will increase in line with 

major innovation, leading to a revised EV system and new mobility models. In 2030, 

market shares may be up to 70 %, with technical breakthroughs resulting in competitive 

products and mass production of EVs.   

Annual EV sales were subsequently estimated taking into account projections of 

demographic growth from Eurostat (2018) and a constant ratio of new car registrations 

per inhabitant. This was estimated to be 0.028, calculated assuming that against a 

universe of 512 million inhabitants, 14.6 million cars were sold in 2016 (ICCT, 2017).  

Until 2030, the cumulative amount of cobalt consumed in the European automotive 

sector may be of 170 000 tonnes in the low demand scenario or up to 570 000 tonnes in 

the high scenario (Figure 14). This represents between 27 % and 29 % of the amounts 

used globally in electric vehicle batteries to fulfil projected high and low demand 

scenarios, respectively (IEA B2DS and RTS) 13.   

On an annual basis, the demand for cobalt may increase from 970 tonnes in 2017 to 

36 370 – 123 200 tonnes in 2030 (Figure 14).  

                                           
13 See Box 5 for details on procedures to estimate the cobalt demand. 
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Box 5. Cobalt consumption per EV – assumptions underlying European demand 

calculations 

While assumptions relating to the battery storage capacity and cathode chemistry mix 

are identical to those discussed for the global context (see Box 3), the relative shares of 

BEV and PHEV reflect European specificities. 

In the EU, unlike the situation globally, the share of PHEV sales is higher than that of 

BEVs. In 2017, PHEV accounted for 56 % of EV registrations in the EU with the remaining 

44 % held by BEV (EAFO, 2018). These relative shares have changed over the past 

years. In 2015, PHEVs held 60 % of the market share, experiencing a reduction of -4 % 

until 2017. Applying a similar reduction rate in the PHEV fleet until 2030, it can be 

assumed that by then, 32 % of European EVs will tend to be PHEV and the remaining 

68 % shall consist of full electric vehicles. 

In the light of this, the average cobalt content per EV in the EU market can be estimated 

as 4.5 kg in 2017 and is anticipated to increase to 10.7 kg in 2030.  

Figure 14 Annual cobalt demand in the European EV sector, estimated based on ERTRAC 
deployment scenarios. 

 

2.5 Demand from announced LIB mega-factories 

The changing characteristics of mobility and the prevalent use of lithium ion batteries are 

drivers to surging LIB mega-factories.  

According to Benchmark Mineral Intelligence (quoted by (Sienna Resources, 2017)), 

more than 20 facilities with a capacity of above 1GWh have been announced, 10 of which 

are located in China (Figure 15).  

Amongst these investments, the Tesla Gigafactory (projected capacity of 35 GWh, in the 

United States) and CATL (expanded capacity of 100 GWh, in China) will likely consume 

around 7 000 t/yr and 23 000 t/yr of cobalt, respectively.  

By 2021, the LIB manufacturing capacity is expected to be around 400 GWh, with more 

than 70 % capacity installed in China (BNEF, 2018). Cobalt supply to these factories can 

be estimated at some 80 000 tonnes/yr. 
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Figure 15 LIB mega-factories with information on annual and expanded capacities by 2021.  

 

Data source: Benchmark Mineral Intelligence (quoted by (Sienna Resources, 2017). 

In Europe, the capacity expected to be available in 2021-2023 will ascend to 40 GWh, 

increasing from 3 GWh currently in place (Benchmark Mineral Intelligence (quoted by 

(Sienna Resources, 2017), (BNEF, 2018). Announced capacities will be developed mainly 

in Sweden and Poland (the Northvolt LIB mega-factory in Sweden, with a production 

capacity of 32 GWh14 and the LG Chem in Poland with a production capacity of 5 GWh). 

This represents around 9 % of the global estimated capacity and entails an estimated 

cobalt consumption of around 7 400 tonnes/year.  

                                           
14 NorthVolt plans to expand its capacity to 8 GWh by 2021, and up to 32 GWh by 2023. 

http://www.eib.org/stories/northvolt-lithium-ion-battery  
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2.6 Demand projections for the assessment of supply-demand 
balances  

To establish balances between supply and demand, annual projections of global cobalt 

consumption in the EVs sector were further added to the amounts consumed in other 

end-sectors beyond the EVs. These amounts were estimated to increase at a Compound 

Annual Growth Rate (CAGR) of 2.5 %, from 97 600 tonnes in 2017 to 135 300 tonnes in 

2030 (Bloomberg, 2018).  

In the four IEA scenarios, the following overall consumption levels are implied: 

1- IEA B2DS: against the backdrop of a more widespread uptake of EVs, a compound 

annual growth rate of 13.4 % is estimated for the annual global consumption of cobalt in 

the period between 2017 and 2030; the potential cobalt demand is projected to increase 

from 104 300 today to 534 500 in 2030. 

2- IEA 2DS: the potential global demand for cobalt is expected to more than quadruple in 

2030, reaching 438 500 tonnes by then.  

4- Paris declaration: global consumption of refined cobalt may amount to 200 500 tonnes 

in 2025 and 344 000 tonnes in 2030, increasing by 9.6 % between 2017 and 2030.  

5- IEA RTS: cobalt demand shall not exceed 241 500 tonnes in 2030. This represents an 

annual growth rate of 6.7 % for the period between 2017 and 2030.  

Figure 16 Overall global demand of cobalt simulated according to the four scenarios discussed in 
the text. 

 

Forecast amounts in each relevant timeframe are given in Table 4.  
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Table 4 Annual demand projections of refined cobalt (tonnes) in reference years – overall uses in 
the global context.  

Data source [1] IEA B2DS [2] IEA 2DS [3] Paris Declaration [4] IEA RTS 

CAG-R 13.4 % 11.7 % 9.6 % 6.7 % 

Reference period 2017-2030 2017-2030 2017-2030 2017-2030 

Scenario High Medium-high Medium-low Low 

2020 171 778 164 132 154 442 123 016 

2025 272 212 233 414 200 530 170 452 

2030 534 523 438 517 344 205 241 498 

  

Figure 16 provides the evolution of cobalt consumption until 2030 calculated as an 

average of the four scenarios presented above.  

Figure 17 Annual average global demand of cobalt until 2030 – overall uses in the global context. 

 

Note: Error bars show the standard deviation of forecasted demand taking into account the various EV 
deployment scenarios. 

In the EU, taking into consideration the deployment of EVs until 2030 put forward by 

ERTRAC, and the amounts of cobalt consumed in the remaining end-use sectors15, the 

total cobalt demand for various uses could be 24 400 - 29 300 tonnes in 2020, 37 300 - 

69 700 tonnes in 2025, and 64 300 - 151 100 tonnes in 2030, increasing by 9 % and 

16.3 % in low and high demand scenarios respectively (Table 5). 

Until 2030, between 503 000 and 903 400 tonnes will be needed to fulfil expected 

demand levels within the EU. 

  

                                           
15 In 2017, it is estimated that 20,256 tonnes were consumed in the EU in other sectors beyond EVs. This is 

estimated assuming that 19,280 tonnes were used in 2015 (Statista, 2018), increasing since then with a 
constant growth rate of 2.5%.  
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Table 5. Annual demand projections of refined cobalt (tonnes) in reference years – overall uses in 
the European context. 

Data source [1] ERTRAC High [2] ERTRAC low 

CAG-R 16.3 % 8.9 % 

Reference period 2017-2030 2017-2030 

Scenario High Low 

2020 29 311 24 381 

2025 69 736 37 254 

2030 151 131 64 300 

Figure 18. Average demand of cobalt until 2030 – overall uses in the European context. 

 
Note: Error bars show the standard deviation of forecasted demand in the various scenarios. 
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3 Cobalt mine supply 

3.1 Recent trends in cobalt supply - global outlook 

Most cobalt is obtained as a co- and by-product of copper (46 %) and nickel (39 %) 

mining16. In 2016, 16 % of world cobalt production came from primary producers, of 

which the only significant operation outside DRC is the Bou Azzer mine in Morocco, and 

0.2 % from mines targeting PGMs as primary product. 

The largest resources of cobalt occur in sediment-hosted stratiform and stratabound 

copper deposits such as those mined in DRC and Zambia (Table 6). DRC is the main 

mining producer, accounting for 55 % of global production in 2016. Other producers 

include China (accounting for 8 % of total supply), Canada (6 %) and New Caledonia 

(5 %) (WMD, 2018). In total, cobalt is mined in 20 countries (Figure 19). 

Table 6 Types of mineral deposits and respective average cobalt contents. 

Types of deposits Commodities and terms of reference Average grades % 

Sediment hosted 
copper deposits 

Typically worked for copper with cobalt as a by-product. 
Examples are found in the Central African Copperbelt 
which spans the Democratic Republic of the Congo 

(DRC) and the north-west part of Zambia. 

0.1 to 0.4 

Magmatic nickel- 
copper-cobalt 
sulphide deposits 

Primarily mined for nickel, copper and PGMs, such as 
those found in Russia and Canada 

0.1 

Nickel laterites Primarily mined for nickel, such as those found in 

Cuba and New Caledonia 

0.05 to 0.15 

Hydrothermal 

cobalt deposits 

Ultramafic-rock hosted deposits with cobalt as primary 

commodity are comparatively rare, such as those in 

Bou Azzer in Morocco 

0.1 

Manganese nodules 
and cobalt rich 
crusts 

The feasibility of such projects has still to be 
demonstrated 

Up to 2.5 

Data sources: (Roskill Information Services, 2014), (Cobalt Institute, 2018). 

  

                                           
16 Own calculation based on (S&P Global Market Intelligence, 2018) taking into account production amounts at 

operating mines in 2016, representing 90% of overall production in that year. Other organisations have 
calculated different figures for this division. The Cobalt Development Institute states that approximately 
50% of global supplies of cobalt come from the nickel mining industry, whilst 44% is sourced from copper 
mining and only 6% from mining operations where cobalt is the primary product (Cobalt Factsheet, 2017). 
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Figure 19 Distribution of cobalt supply amongst world countries.  

 

Data source: (based on (WMD, 2018). 

 

The largest cobalt project is the Mutanda mine, followed by Tenke Fungurume, Luiswishi 

and Lubumbashi, all located in DRC (Table 7). In 2016, these operations were 

responsible for 43 % of the world’s cobalt production.  

The ranking provided in Table 7 also includes significant facilities in Zambia, Cuba, 

Canada, Russia and Madagascar, which account for another 15 % of global cobalt 

production.  
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Table 7. Largest mining projects by production (Top-10) in 2016.  

Mine name Country 
Commodity 

Primary 
Production 

Cobalt - 
production 
(tonnes) 

Global 
capacity 
share 
(%) 

Production 
(tonnes/yr) 

Capacity 
utilisation 
(%) 

Mutanda DRC Cu 24 500 20 23 000 107 

Tenke 
Fungurume 

DRC Cu 16 054 13 16 783 96 

Luiswishi DRC Co 7 000 6 3 100 226 

Lubumbashi 
Slag Hill 

DRC Co 5 000 4 5 500 91 

Konkola Zambia Cu 3 888 3 NA NA 

Moa Bay Cuba Ni 3 694 3 3 400 109 

Sudbury 

Operations 

Canada Ni, Cu, PGM 3 500 3 600 583 

Ruashi DRC Cu 3 391 3 4 500 75 

Polar Division Russia Ni, Cu, PGM 3 368 3 NA NA 

Ambatovy Madagascar Ni 3 273 3 5 600 58 

Total - - 73 668 61 62 483 
 

Data source: (S&P Global Market Intelligence, 2018)17 

In total, (S&P Global Market Intelligence, 2018) identifies 54 active mines, accounting for 

110 350 tonnes of cobalt mine production in 201618.  

In 2016, refinery production amounted to 98 000 tonnes (BGS, 2017). China is the 

largest producer of refined cobalt, accounting for 46 % of global production in 2016. 

Other significant producers include Finland (13 %), Belgium and Canada (6.5 % each) 

(Table 8).  

Although cobalt is mainly mined in DRC, the country is only responsible for 0.4 % of 

global refinery production, despite the high level of unutilised capacity (Table 8). DRC is 

perceived to provide the majority of the feed material for China’s production of refined 

cobalt (Cobalt Factsheet, 2017). In 2013 it was announced that DRC intended to ban 

exports of copper and cobalt concentrates to encourage refining within the country. To 

date, this has been put on hold and its implementation is not foreseen at any point over 

the coming years (Roskill, 2017).  The importance of raw material exports to national 

GDP and a lack of electricity for such an energy-intensive sector19, are pointed out as the 

main reasons. Nevertheless, according to (Cobalt Factsheet, 2017) based on OECD, the 

country has imposed export taxes of up to 25 % on cobalt ores and concentrates over 

the period 2010-2014. 

                                           
17 Recent expansions at the mine site are thought to explain the situations in which production is higher than 

the known capacity (capacity utilisation > 100%).  
18 S&P Global Market Intelligence figures may not align with production totals from other sources due to a lack 

of reliable mine information for some countries. 
19 According to (USGS, 2011), electricity requirements for the recovery of cobalt cathode from intermediate 

products by electrowinning in chloride and sulfate media are on average 3400 KWh/tonne and 5300 
KWh/tonne for operations in China, Japan, Norway, Zambia, DRC and Canada. In DRC these requirements 
are said to vary between 5000 and 6000 KWh/tonne. The same study also mentions that the DRC plants 
were undergoing major renovations to reduce the electricity requirements per unit of cobalt cathode 
produced. 
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Table 8 Cobalt refinery production in 2016. 

Country Production 
in 2016 
(tonnes) 

(a) 

Global 
production 
share in 

2016 (%) 

Refinery 
Capacity 
in 2015 

(tonnes/yr)(b) 

Form (b) 

Australia 3 200 3.3 6 700 metal powder & oxide hydroxide 

Belgium 6 329 6.5 1 500 metal powder, oxide, hydroxide 

Brazil 400 0.4 3 000 metal 

Canada 6 355 6.5 6 520 metal, metal powder, oxide 

China 45 046 46.0 50 000 metal, metal powder, oxide, salts 

DRC 400 0.4 9 050 metal 

Finland 12 393 12.6 13 000 metal powder and salts 

France 119 0.1 500 chloride 

India 100 0.1 2 060 metal and salts 

Japan 4 305 4.4 4 500 metal 

Madagascar 3 273 3.3 5 600 metal powder 

Morocco 2 081 2.1 2 250 metal and oxide 

New Caledonia 2 531 2.6 NA carbonate 

Norway 3 541 3.6 5 200 metal 

Russia 2 100 2.1 10 000 metal 

South Africa 1 101 1.1 1 500 metal powder and sulfate 

Zambia 4 725 4.8 9 600 metal 

Uganda 0 0 720 metal 

Total 97 999 - 132 000 - 

Data sources; (a) (BGS, 2017), (b) (USGS, 2015). 

Prior to refining, cobalt ores/concentrates are further processed into intermediate 

products (see Box 6). Although the majority of mining producers undertake processing to 

intermediate products domestically to lower the high costs of shipping bulky, low value 

ores/concentrates, the following exceptions were identified by (Roskill Information 

Services, 2014) in 2012: Ni-Cu-Co concentrates from Australia, Finland, Spain and 

Zimbabwe shipped to Canada, China and South Africa; Co and Cu-Co concentrates from 

DRC to China, Finland, India and South Korea; Laterite ores from Indonesia to Australia; 

Co concentrate from Russia to Finland; PGM-Ni-Cu-Co concentrates from Zimbabwe to 

South Africa.  
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Box 6. Stages of the cobalt production chain 

Cobalt is traded in the following forms: 

Cobalt ores and concentrates: common cobalt-bearing minerals found in economic 

deposits outlined in Table 6 include erythrite, skutterudite, cobaltite, carrollite, linnaeite 

and asbolite, belonging to the arsenates, arsenides, sulphosalts, sulphides and oxides 

mineral groups. Whilst these can form a valuable minor component of copper and nickel 

sulphide or oxide ore deposits, cobalt is mostly associated with, or contained in, Ni and 

Cu sulphide minerals, such as pyrrhotite, pentlandite and chalcopyrite, replacing other 

metals or forming inclusions.  

Intermediate cobalt products: include cobalt salts (hydroxide, carbonate and sulphate), 

accounting for 56 % of capacity and production, crude cobalt oxide, cobalt alliage blanc, 

and cobalt containing mattes.  

Refined products: can be split into chemical products and metal products (such as 

cathodes, briquettes, ingots, granules and powder). The metallurgical process that can 

be used, individually or in combination, for the production of pure cobalt metal can be 

classified broadly into hydrometallurgy or pyrometallurgy. Hydrometallurgical operations 

are mainly employed in the recovery of cobalt from copper products. 

Sources: based on (Roskill Information Services, 2014) and (Cobalt Institute, 2018), 

(Cobalt Factsheet, 2017). 

3.2 Cobalt reserves and resources 

Globally, the largest cobalt resources are located in DRC and identified in connection with 

active mines. In DRC, these amount to almost 10 million tonnes of cobalt and represent 

55 % of worldwide resources (Figure 20).  

The amount of cobalt resources at mine-stage operations worldwide amounts to 12 

million tonnes, while around 5.9 million tonnes have been identified at late-stage 

exploration projects (see Box 7).  

The countries with the highest number of mine and late-stage exploration projects are 

Australia (49), followed by Canada (33) and DRC (17). Most projects in Australia and 

Canada consist of late-stage exploration ventures (see Annex 1).  
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Figure 20 Cobalt resources (inclusive of reserves) available at operating mines and late-stage 
exploration projects. 

 

Data source: (S&P Global Market Intelligence, 2018)20. 

                                           
20 Only active projects with declared resources are considered. Resource estimates are, in general, compliant 

with the Joint Ores Reserve Committee (JORC) reporting standard. Resources are inclusive of reserves and 
include inferred, indicated and measures volumes.  
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Box 7. Development stage of projects considered in the assessment 

Projects reviewed fall into the following stages:  

- Mine-stage (includes pre-production, further breakdown into construction planned and 

started, and production stage including operating, satellite, expansion, limited production 

and residual production phases): a project that has made a decision to move forward 

with production or is actively producing. 

- Late-stage exploration (split into reserves development, pre-feasibility and feasibility, 

started or completed): a project with a defined resource that has not yet reached a 

production decision. 

Projects without a defined resource estimate (in general all early-stage and some late-

stage projects) were excluded from the analysis. As for the activity status, both active 

projects and on-hold were considered. Inactive projects were excluded from the 

assessment.  

Most currently operating mines focus on copper as primary product of the mine output 

(Table 9). However, future cobalt production from late-stage exploration projects is likely 

to have nickel as primary product. 

Table 9. Cobalt mine production capacity shares based on the typologies of the primary product.  

 
Copper (%) Cobalt (%) Nickel (%) 

Operating* 54 12 34 

Preproduction/commissioning 47 17 36 

Late-stage 20 12 68 

* Lack of uniformity between this assessment and the figures presented in section 3.1 reflect differences 
between actual production and existing production capacities.  

3.3 Potential barriers to cobalt supply 

Cobalt has, in general, high recovery efficiency, typically of 75-90 %, and it represents 

an important source of refinery revenue of approximately 15 %21 (Oakdene Hollins and 

Fraunhofer ISI, 2013). Thus, there are large incentives for its recovery, both at existing 

refineries, and for developing poly-metallic deposits.  

However, although cobalt may be mined, it is not always recovered during processing of 

copper or nickel concentrates and was, in the past at least, often lost to mine tailings or 

stored pending further processing. According to (Roskill Information Services, 2014) this 

decision seems to depend heavily on the price of cobalt in comparison to extraction 

costs, and the process routes used in individual operations22.   

A decrease in cobalt recovery is seen when comparing mine and refinery production on a 

year-on-year basis, as given in Figure 21. From this, the annual average amount of 

cobalt recovered can be estimated at 79 %, falling below known average efficiency 

values. Moreover this ratio appears to have declined significantly over recent years, and 

was on average 66 % between 2010 and 2015. 

  

                                           
21 To be noted that since 2012, cobalt prices almost doubled to the current amount of 65,000 EUR/tonne. 
22 According to (Roskill Information Services, 2014), numerous nickel operations in Philippines and New 

Caledonia, although implementing cobalt extraction, do not recover it. 
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Figure 21 Cobalt mine and refinery production and ratio on a year-on-year basis. 

 
Data source: (BGS, 2015) 

Several barriers can limit cobalt production from mining activities (Box 8). These factors 

include reserves depletion or unforeseeable production stoppages at active mines, the 

slow speed of developing mining projects from exploration to production, and economic 

and socio-environmental determinants. 
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Box 8. Mine supply - barriers to accessibility 

The rate of cobalt production from mining is affected by a number of factors: 

• Exhaustion of mineral reserves at operating mines; 

• High costs of production restricting extraction at certain prices; 

• Unfavourable economic environment, restricting investment in the exploration of new 

reserves; 

• A retreat into resources protectionism in producing countries; 

• Socio-environmental determinants whereby economic extraction also implies 

developing a social license to operate.  

• Events such as strikes, plant failures and other factors that can lead to unforeseeable 

production stoppages; 

• Expansions at the mine site aimed at increasing production and/or extending mine-life 

are likely to occur throughout the mine’s life, if market conditions are favourable. Other 

factors that can be expected to increase production are technical developments and 

improvements in mining configuration, processing and metallurgical performance;  

On the other hand, structural adjustments to meet changes in demand patterns while 

maintaining a stable price level might not be possible:  

• Bringing new supply or capacity on stream is lengthy; it takes on average 10-15 years 

from discovery to production, thus supply shortages can persist and lead to significant 

price rises. These time frames can be further constrained by delays during the 

development period, which can be expected, especially in less favourable market 

conditions. Uncertainties and challenges in raising investment for mine development – 

due to generally increasing mining costs combined with uncertainties associated with 

market prices – are a major source of delays in setting up new operations. Developments 

are normally brought into line with material prices picking up, while some delayed 

projects may be reactivated by the appropriate market signals. 

• Unexpected factors, such as geopolitical events, labour disruptions, permit issues and 

various technical challenges (e.g. mining engineering and metallurgical problems) can 

stall or put the development of planned and prospective mines on hold. 

• Once capacity is in place and fixed costs are paid, producers are reluctant to limit 

output in response to lower prices (SEI, 2012). 

Another frequently highlighted risk relates to what is referred to as by-products market 

dynamics, whereby cobalt production is largely driven by demand for the primary 

metal/s, hence it will not be increased if it is not cost-effective to increase the production 

of the primary metal/s.  

This makes uncertain whether existing cobalt contents in potentially available resources 

can be produced. For example, global cobalt mine production decreased from 141 000 

tonnes in 2015 to 126 000 tonnes in 2016, mainly owing to lower production from nickel 

operations (WMD, 2018), (USGS, 2017).  

The prices of copper and nickel contribute decisively to this dynamic, affecting the 

quantity of cobalt that is produced, and consequently the amount of cobalt that is 

recovered from these sources. Disruptions may occur as a result of low prices, yet in 

cases of high revenues, a by-product may also influence the supply of the primary 

metals.  

Figure 22 provides an overview of nickel and copper prices since 2000. Here it is 

observed that the price of nickel is significantly higher than that of copper, and that in 

general both nickel and copper prices show a slight decrease since 2010, a trend which is 
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more pronounced in the case of nickel. Moreover, with the exception of the last two years 

when cobalt prices surged, generally since 2000, these have followed the same trends as 

nickel prices.  

The current situation with nickel prices threatening to decrease, might pose additional 

risks to cobalt production, potentially rendering around 39 % of its production, thought 

to come from nickel operations, more vulnerable to disruption. 

Figure 22 Evolution of cobalt and nickel prices and comparison with cobalt prices. 

  

Data sources: [based on USGS and (S&P Global Market Intelligence, 2018) data]. 

Note: Copper and nickel prices respectively refer to: LME, grade A, min. 99.9935 % purity, cathodes and wire 
bar (copper); LME, cathodes, minimum 99.8 % purity (nickel). 

3.4 Cobalt supply in the European context  

In the EU, production of cobalt ores and concentrates was estimated at 2 300 tonnes in 

2016 (WMD, 2018), all sourced from Finland (around 1.8 % of global primary cobalt 

supply).  

Refined cobalt, on the other hand, comes from a wider spectrum of countries. It is 

produced in Finland (13 % of the global total), Belgium (6.5 %) and France (0.1 %) 

(BGS, 2017). Norway also hosts refining capacities which represent around 3.6 % of the 

global supply. 

According to (Cobalt Factsheet, 2017) the EU reliance on imports of cobalt ores and 

concentrates was estimated at 32 %, whilst the import reliance of refined cobalt 

amounted to 52 %23.  

Imports of ores and concentrates originate mainly from Russia (approximately 589 

tonnes per year) and are intended for refining in Finland. Refined cobalt, on the other 

hand, is mainly imported from DRC. On average, over 2010-2014, the EU has imported 

about 19 700 tonnes of refined cobalt-bearing materials, 48 % of which originated from 

DRC24. Moreover, despite its high market share in the production landscape, the volume 

of European imports of refined cobalt from China is relatively small, at around 5 % 

(Cobalt Factsheet, 2017). 

                                           
23 The EU import reliance of cobalt ores and concentrates, as given in the EC raw materials factsheets (2017), 

does not include intermediate cobalt products, which were considered as part of bulk refinery imports.  
24 Imports from DRC most likely refer to intermediate cobalt products.  
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In Finland, cobalt is currently produced in four mines, Talvivaara (see Box 9), Kylylahti, 

Kevitsa and Hitura (S&P Global Market Intelligence, 2018), where it is a by-product of 

nickel or copper.  

The Talvivaara open-pit mine started production in 2009 with a capacity of 30 000 

tonnes/y Ni and 65 000 tonnes/y Zn25. In 2016, Talvivaara reported a production of 193 

tonnes of cobalt from a low-grade cobalt-nickel concentrate, an amount which has fallen 

from 942 tonnes produced in 2014. By then, the expectation was that from 2018 

onwards the mine would produce 1200 tonnes of cobalt annually. At full scale, cobalt 

production capacity is estimated at 1800 tonnes/y. Talvivaara's measured, indicated and 

inferred JORC resources26, inclusive of reserves, ascend to 1 458 million tonnes, 

averaging 0.02 wt% Co, which represents around 300 000 tonnes of contained cobalt. 

Kylylahti is an underground mine operated by Boliden Mining. Production from this mine 

started in 2012. The amount of cobalt contained in resources and reserves was calculated 

at 12 200 tonnes. Although recent production estimates are not known, a feasibility 

study completed in 2009 anticipated a production capacity of 800 tonnes of cobalt per 

year.   

The Kevitsa open-pit mine, also operated by Boliden Mining, started-up in 2012 and was 

reported to have 21 years of production remaining. Although recent cobalt resources and 

reserves estimates are unknown, cobalt production from this mine is thought to have 

been 400 tonnes in 201627.  

Even though Finland is the sole mine producer, within the EU, resources of cobalt are 

also known to exist in Sweden and Spain (Table 10). To date, around 58 000 tonnes of 

cobalt have been identified in projects undergoing reserves development and advanced 

exploration stages in these countries and Finland. The deposits concerned are in general 

low-grade, averaging 0.08 wt% Co. In total, 24 late-stage exploration projects28 are 

listed by (S&P Global Market Intelligence, 2018), many of which (a total of 13 projects) 

appear to be inactive (Table 10). The amount of cobalt in resources from inactive 

projects is estimated at 19 000 tonnes. 

Sakatti, operated by Anglo American Plc and located in Finland, is the largest project in 

reserves development stage. It targets copper, nickel, PGMs and gold, and presents 

around 19 900 tonnes of cobalt, of which 16 000 tonnes are contained in JORC inferred 

resources, grading on average 0.05 wt% Co. 

Other projects at an early stage of exploration or development29, without a defined 

resource estimate, can be found in Finland, Sweden, Cyprus, Slovakia, Austria, Czech 

Republic, Germany, Italy and Poland. In total, 20 projects are listed by (S&P Global 

Market Intelligence, 2018) in these countries, of which 4 appear to be inactive (Figure 

23). During the Minerals4EU project it was identified that in 2013, exploration projects 

having cobalt in their portfolio were also undertaken in Portugal (Cobalt Factsheet, 

2017). 

                                           
25 In 2013, the mine was targeting a production of 50,000 tonnes/y Ni and 90,000 tonnes/y Zn which was 

expected to be realised in 2018. 
26 JORC stands for Joint Ores Reserve Committee. It is a common reporting standard for mineral reserves and 

resources.  
27 In 2016, the mine produced around 11,000 tonnes of nickel, 20,500 tonnes of copper and 15,600 oz of gold. 

As of December 2016, Kevitsa was undergoing expansion. 
28 Late-stage exploration projects include those undergoing reserves development, feasibility, 

prefeasibility/scoping and advanced exploration. 
29 Early-stage exploration projects include the following developments: target outline, grassroots and 

exploration. 
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Box 9. The Talvivaara Black Shale-Hosted Ni-Zn-Cu-Co Deposit in Eastern 

Finland  

Talvivaara is one of the largest known nickel sulphide deposits in Europe. It is located in 

Sotkamo in Eastern Finland, approximately 35 km southeast of the town of Kajaani. The 

Ni-Cu-Co-Zn mineralisations at Kuusilampi and Kolmisoppi are hosted almost entirely by 

high grade metamorphosed and intensively folded black shales of the Talvivaara 

formation in the Kainuu schist belt (central part of the Fennoscandian Shield). The main 

sulphides are pyrrhotite, pyrite, chalcopyrite, sphalerite and pentlandite. The sulphide 

content in the ore ranges typically from 15 % to 25 %. Roughly 90 % of the ore is 

hosted by black schist and the remaining 10 % by metacarbonate rocks, micaschists, 

quartzites and graywackes.  

Sources: (S&P Global Market Intelligence, 2018), (Kontinen & Hanski, 2015) 

Table 10 Cobalt resources in mine and late-stage projects undertaken in EU Member States. 

Country No. projects Cobalt contained in 

resources & reserves 

Grade 

(weighted 
average)  Operating Late-

stage 
Inactive (tonnes) 

Finland 2 15 10 359 166 0.08 % 

Sweden 0 7 1 1 676 0.043 % 

Spain 0 1 1 5 700 0.13 % 

Germany 0 1 1 NA NA 

Data source: (S&P Global Market Intelligence, 2018). 

Table 11. Cobalt reserves in the EU. 

Country Reserves 

(Mt) 

Cobalt contained 

(tonnes) 

Grade 

(% Co) 

Reserve type/ 

Reporting 
code 

Finland 1.51 2 416 0.16 % Proved/ JORC 

 
75 10 500 0.014 % Proven/NI43-101 

Data source:  (Minerals4EU, 2014). 

In addition to the Member States, in Europe, cobalt resources and/or the potential for 

polymetallic deposits possibly containing cobalt are also known in Albania, Greenland, the 

former Yugoslav Republic of Macedonia, Norway, Serbia and Turkey (S&P Global Market 

Intelligence, 2018)30. Prospective areas in such countries are identified in Figure 24 (Box 

10). 

Comparing Figure 23 and Figure 24, within and across EU Member States, it is clear that 

recent exploration activity has focused on some of the favourable areas delimited in the 

Promine study. Nevertheless, this comparison additionally shows that many other 

prospective areas have remained relatively under-explored. 

  

                                           
30 See also the outputs of the EU-funded project Promine (Promine, 2015) for details on mineralisation systems, 

metallogenic belts and predictive maps of mineral potential for certain commodity associations. 
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Figure 23 Distribution of cobalt resources and projects in different development stages within the 
EU-28. 

 

Note: Properties additionally identified with the symbol  are considered to be inactive.  
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Box 10. Favourability for cobalt mineralisation within the EU – types of deposits 

and mineralisation styles - insights from the Promine project. 

The ProMine MD database identifies a relatively large number of showings, occurrences 

and ore deposits which contain cobalt – 239 in total.  

The following deposit types, in descending order of importance, are more significantly 

enriched in cobalt: mafic/ultramafic, volcanogenic massive sulphides (VMS) and residual 

deposits developed above ophiolitic basements. 

  

Figure 24 Predictive map of cobalt mineral potential 
reproduced from (Promine, 2015). 

Favourability for cobalt deposits is 

most significant in the 

Fennoscandian Shield (Finland and 

Sweden), where it is mostly related 

to mafic and ultramafic complexes 

emplaced during the 

Paleoproterozoic and the early 

stages of the Caledonian orogeny.  

In other regions, favourable cobalt 

enrichments occur in relation to 

Mesozoic-Cenozoic ophiolites 

(especially lateritic nickel 

mineralisation in the Balkans), to 

Bi–Co–Ni–Ag–U veins in the 

Bohemian Massif, and to VMS-type 

Cu mineralisation, in Cyprus, Spain 

and Portugal. 

3.5 Competitiveness of the European mining sector 

The Fraser Institute's Annual Survey of Mining Companies is commonly used to assess 

the performance of a country in terms of their policies and investments in the raw 

materials sector e.g. (Raw Materials Scoreboard, 2016). 

The Policy Perception Index31 evaluates the perceptions of various countries based on 

policy factors such as onerous regulations, taxation levels and the quality of 

infrastructure. Meanwhile, the ranking from the Best Practices Mineral Potential is used to 

provide data on the geological potential. The 'Investment Attractiveness' index, in turn, 

results from the combination of the above indexes, thereby measuring both policy as well 

as the mineral potential of a country (Fraser Institute, 2017).  

Within the EU, Finland was in the top five of the most attractive jurisdictions in 2016, out 

of a total of 104 examined; Sweden also ranked highest in its ability to attract mining 

investment (Table 12). A relatively high Policy Perception Index was assigned to Ireland, 

Sweden and Finland, listed amongst the top five countries in terms of operating 

environment and policy practices; Portugal, Spain and Poland were also ranked in the top 

thirty of this index. As for the Best Practices Mineral Potential Index, a relatively low 

                                           
31 'Policy Perception Index' ranks jurisdictions on factors such as administration of current regulations, 

environmental regulations, the legal system and taxation regime, dispute settlements, socioeconomic and 
community development conditions, amongst others. 
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perception of mineral potential in EU countries resulting from an apparent lack of large-

scale resources can be inferred, with only Finland, Sweden and Ireland appearing in the 

top 30 country ranking (Table 12).  

Table 12. Fraser Institute's Annual Survey of Mining Companies – Indexes of performance in the 
EU in 2016. 

Country Investment 
attractiveness 
index 

- Score 

Rank 
(out of 
104) 

Policy 
perception 
index 

- Score 

Rank 
(out of 
104) 

Best practices 
Mineral 
Potential 
Index 

Rank 
(out of 
104) 

Finland 85.6 5 97.6 4 77.5 12 

Sweden 84.3 8 98.2 3 75.0 21 

Ireland 83.1 9 100.0 1 71.9 30 

Northern Ireland 72.4 32 93.0 10 58.7 60 

Poland 71.3 34 84.6 27 62.5 52 

Portugal 70.9 36 90.3 16 57.9 65 

Spain 70.4 38 85.2 24 60.5 55 

Romania 56.6 69 55.7 75 57.1 70 

Bulgaria 51.3 75 69.3 56 39.3 92 

France 50.1 79 65.3 62 40.0 91 

Greece 48.8 82 38.6 91 55.6 72 

Hungary 47.4 85 73.5 45 30.0 101 

The EU-funded project STRADE, whilst looking at the competiveness of EU mines in 

comparison to those in other countries, reached the following conclusions32 (STRADE, 

2016) (STRADE, 2017): 

- Mining operations in the EU-28 exhibit competitive cost structures for all minerals 

considered in the assessment. 

- The less competitive component of operating costs at mines within the EU is the labour 

cost, which results from multiple factors including higher wage rates in EU Member 

States, smaller and lower ore grade mines preventing greater metal production per 

employee and the prevalence of underground operations far more resource and labour 

intensive than open pit operations. However, these compare, often favourably, with 

those in other developed countries such as Australia, Canada, Chile and USA.   

- Royalty and tax costs within the EU-28 are generally more competitive than other 

countries. 

- Other cost elements are generally similar to the average costs from other regions, with 

mines operating within the EU benefiting from good access and infrastructure. 

                                           
32 The purpose of the STRADE study was to map the mining cost and regulatory framework performance of the 

EU Member States, relative to other mining jurisdictions. How the jurisdiction compares to others will 
influence the ability of a country to attract international mining investment. The methodology pursued 
considered the quality and size of the ore body, the operational costs of extracting the metal (onsite costs 
such as labour, energy and reagents), offsite costs such as royalties and taxes and the costs for shipping 
the concentrate and by-product revenues. The study focused on the following metals that are significant for 
the EU: copper, nickel, lead, zinc, gold and iron ore.  
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- By-product credits/additional revenue within the EU28 are generally above the global 

average. 

STRADE concludes that operating costs for mining in the EU are competitive and these do 

not appear to hinder or inhibit operations (Figure 25). A disappointing performance in 

terms of increasing exploration budgets and mining investments is more bound to a poor 

regulatory context in which the fundamental determinants are the security of tenure and 

the right to mine. The second may be seen to have the greatest impact on the ability of 

companies to commit to investments, as many EU countries do not ensure the right to 

exploit a new deposit provided other regulatory conditions are met. This is also seen as 

the most influential measure available to strengthen the EU’s competitiveness in mining 

and is in line with the Fraser survey, which comes to the conclusion that 40 % of a 

company's investment decision is determined by policy factors.  

Figure 25. Competitiveness position of operating mines in the EU-28. 

 

Source: (STRADE, 2017). 

3.6 Costs of cobalt mining and competitiveness of European 
cobalt mines 

With regard to cobalt mining, the highest ranked EU countries in the Fraser Institute's 

Survey – Finland and Sweden (Table 12) – also contain the highest number of projects 

having cobalt as subject of mine-, early- and late-stage activities (see also Figure 23).   

In 2017, operating costs of several cobalt producing mines worldwide were very variable. 

The highest value of 33 500 $/tonne was estimated in New Caledonia whilst the lowest 

value of 12 300 $/tonne was achieved at Norilsk, Russia. Average costs for the group of 

32 mining operations assessed by (S&P Global Market Intelligence, 2018) can be 

estimated at 20 600 $/tonnes. The cost profile is given in Figure 26, which also shows 
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that, on average, the highest cost category is related to transportation (31 %), followed 

by the cost of reagents (25 %) (Figure 27). 

Figure 26. Distribution of costs in cobalt mines. 

 

Data source: (S&P Global Market Intelligence, 2018) referent to 2017. 

Figure 27. Cost structure of cobalt production - contribution of each cost component to the overall 
cost, weighted based on production amounts. 

 

Data source: (S&P Global Market Intelligence, 2018) referent to 2017. 

In Europe, shipping costs also contribute to the largest share of total costs, while other 

cost categories remain competitive in comparison to global averages (Figure 28). Total 

average costs at EU mines are estimated at 24 000 $/tonne. 
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Figure 28. Costs in European cobalt mines in comparison to the world weighted average.  

 

Data source: (S&P Global Market Intelligence, 2018). 

Decreasing the costs of transport (via the close proximity of consumer industries to the 

mines) could improve the competitiveness of European cobalt mines. This would also 

compensate for potentially higher costs related to lower productivity. 

3.7 Mine supply projections 

Mine production capacities - the nominal level of output based on mine design - are the 

underlying data used to develop projections of future mine supply, used as inputs to 

estimate cobalt supply-demand balances.  

Both operating mines and ongoing exploration projects were assessed, using information 

largely obtained from S&P Global Market Intelligence in 2018. The evolution of supply 

sources and capacities over time has been estimated, assuming that all current late-

stage development projects will reach production, adding capacities and new actors to 

the current list of suppliers. Given the nature of the mining industry and lead time for 

exploration/mining projects (10-15 years from discovery to production), the list of 

potential new suppliers is deterministic in that only the listed suppliers may be in the 

market e.g. (Poulizac, 2011). While this assumption is legitimate, thereby allowing for a 

predictive analysis to be carried out, market conditions are the primary driver of 

decisions to further develop exploration projects or move forward with committed and 

planned production centres: projects must meet increasingly severe production-cost 

criteria in order to obtain financing for development. Therefore, estimates of potential 

future production are only reasonable under certain preconditions of growth in demand 

and rising prices.   

To capture the considerable uncertainty about long-term mine production, the 

assessment of supply trends through to 2030 relied on four assumptions: 

Scenario 1 – Low Case. Mine supply projections were calculated by simulating 

idealised, life-of-mine, production profiles. This was done by using a declining resources 

method to estimate the number of production years reported resources could 
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theoretically support at full capacity33. Since no distinction is made between reserves and 

resources (resources are inclusive of reserves), to calculate the remaining years of 

production, resource figures were adjusted by a factor of 75 %. Most information on 

production capacities was retrieved from (S&P Global Market Intelligence), however some 

statistical assumptions based on log-linear regressions between cobalt resources and 

production capacities were made to overcome data gaps in regards to production 

potential whenever information on resources was available (see Annex 2). The start-up 

dates for developing projects were established based on the development stage: mines 

under construction were assumed to come on-line in 2019; projects at feasibility stage 

were expected to come on-stream in 2021; supply from pre-feasibility and reserves 

development-stage projects was expected to be available at the project site in 2026 (see 

Annex 3). Moreover, as planned production capacities are rarely attained quickly after 

start-up, capacity profiles of mines expected to come online in the future were calculated 

assuming a ramp up trajectory over the first two years (30 % in the first year and 70 % 

in the second year), each mine reaching full capacity in the third year. Projects for which 

information on resources and reserves are not available, as a result, for instance, of the 

company involved not having or not releasing the data, were excluded from the analysis 

from 2018 on. This is likely to render estimates conservative and the resulting supply 

scenario is considered Low Case. On the other hand, depending on the project’s 

economics, it is reasonable to expect that at least some projects with less challenging 

economics will take fewer years than the fixed timeframes to come into production.  

To ensure the conversion of mine output to refined production, and thereby the 

comparability between supply and demand figures, an average recovery rate of 83 % in 

the subsequent refining was assumed34. 

Scenario 2 – High-Case. Supply projections were calculated assuming that current 

available capacities will include an amount of 53 700 tonnes until 2030, currently 

deriving from operations for which information on remaining resources is not available. In 

addition to these, capacity outputs resulting from pre-productive mines and late-stage 

exploration projects are added in different time horizons, as described in scenario 1.  This 

gives an indication of how much additional supply could be available in the short-to-

medium term. Again, a recovery rate of 83 % is assumed. Such a scenario is considered 

high case.  

Scenario 3 – Low-Case Intermediate. To make allowance for technological 

improvements in refining operations, an average recovery rate of 90 % was assumed in 

this scenario and used to adjust the mine output estimated in scenario 1. This 

assumption allows for an increase in the percentage of cobalt potentially available for 

consumption (low-case intermediate scenario).   

Scenario 4 – High-Case Intermediate. The deterrent effect on supply created by 

unethical practices in cobalt-producing countries, together with the potential for geo-

political risks and unforeseeable production stoppages (e.g. labour disruptions and 

technical challenges), were considered in this scenario. It is assumed that 20 000 tonnes 

of cobalt will become unavailable in the future. This amount is subtracted from the mine 

output included in scenario 2, giving rise to a high-case intermediate scenario.  

Figure 29 shows supply projections until 2030, estimated on the basis of the scenarios 

described above. Table 13 includes the projected amounts in relevant timeframes. 

  

 

 

                                           
33 Resources from S&P Global Market Intelligence correspond to measured, indicated and inferred quantities 

reported by companies, normally following common reporting standards (mainly JORC).   
34 The assumed recovery rate of 83% represents an average efficiency level obtained from the recovery range 

of 75-90% provided by (Oakdene Hollins and Fraunhofer ISI, 2013). 
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Figure 29 Mine supply projections until 2030. 

 

Table 13 Mine supply projections until 2030 in the relevant timeframes35. 

 
Scenario 1 Scenario 2 Scenario 3 Scenario 4 

(tonnes of Co) Low High Low-case 

intermediate 

High-case 

intermediate 

2017 160 200 160 200 160 200 160 200 

2020 125 400 169 950 136 000 149 950 

2025 170 000 214 600 184 400 194 600 

2030 192 800 237 400 209 100 217 400 

Starting from a capacity of approximately 160 000 tonnes of potentially recovered cobalt 

in 2017, projects on the horizon may make provision for limit values of around 170 000 

tonnes in 2020, 215 000 tonnes in 2025, and 237 000 in 2030 in the high-case scenario 

(scenario 2). In the low-case scenario (scenario 1), the fact that numerous mine 

operations do not have allocated resources in the database consulted, and therefore have 

not been further considered, result in the indicative decrease of mine capacities from 

160 200 in 2017 to 125 000 tonnes of potentially recovered cobalt in 2020. In 2030, 

around 193 000 tonnes are likely to be available under this scenario.   

It can be noted in Table 14 that some projects are expected to bring additional material 

into the market by 2030, however the greatest potential is bound to operating mines. 

These account for almost 60 % of total capacity (current and future). The ramping up of 

new projects can increase cobalt production by 12 % until 2020, by 23 % in 2021 and by 

20 % in 2026 (Table 14).  

 

                                           
35 The mine output in different scenarios was adjusted to average recovery rates as described in the text, to 

ensure comparability between supply and demand figures. 
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Table 14 Additional cobalt output from mining projects at different development stages. 

Development stage No. Mines/ 
Projects 

Potential 
cobalt supply 
(tonnes) from 

ongoing 
projects 

Capacity 
share (%) 

% change to 
global supply 

Operating and 

expansion 

70 160 000 60 % - 

Pre-production and 

Construction 
(potentially available 
from 2019 on) 

8 19 000 7 % 12 % 

Feasibility 
(potentially available 

from 2021 on) 

29 42 000 16 % 23 % 

Pre-feasibility and 

reserves development 
(potentially available 
from 2026 on) 

92 44 000 17 % 20 % 

Note: current and projected capacities are either consulted from S&P Global and (Roskill Information Services, 
2014) or inferred based on a correlation between available resources and production capacity described in 
Annex 2. The mine output was adjusted to average recovery rates of 83 %. The % of growth in each 
timeframe, coinciding with the start-up of projects in different development stages, does not take into account 
the closure of operations in the same time horizons and the progressive increase in production during the 
ramp-up of operations. For this reason the results in this table will not match mine supply projections given in 
Table 13.  

Figure 30 offers information on the distribution of cobalt mine production capacities per 

country in different timeframes, calculated on the basis of supply forecasts arising from 

scenario 1.  It shows that in 2017, the largest mine capacity was located in DRC and 

Zambia. Additionally, in countries such as Australia and Canada, a pipeline of projects is 

being developed. These countries are likely to gain additional importance in the future, 

helping to reduce dependency on the supply from DRC. In 2030, the contribution of DRC 

to cobalt supply can be reduced to less than 50 %, with the potential increase in 

Australia's share to around 14 %.  

After 2025, cobalt extraction from deep-sea-mining projects currently at reserves 

development stage, such as those located in Tonga36, can potentially provide for around 

6 % share. These would account for nearly 21 % of the additional cobalt capacity that 

may come on stream by 2026.  

In the EU, Finland accommodates around 1.65 % of the world’s cobalt production 

capacity (around 3000 tonnes/yr). This share can be adjusted slightly upwards in the 

short-term to around 2 % in 2020.  

 

 

                                           
36 The feasibility of such projects has still to be demonstrated. According to (USGS, 2018) and (Cobalt Institute, 

2018), significant resources of cobalt are present in deep-sea nodules and crusts which occur in the Mid-
Pacific, Atlantic and Indian Oceans; here, speculative and hypothetical resources of ~120 million tonnes of 
cobalt have been identified. The amount of proved and inferred cobalt resources in Tonga amounts to 1.5 
million tonnes (S&P Global Market Intelligence, 2018). 

 



 

51 

Figure 30 Distribution of mine supply in 2017, 2020, 2025, 2030 according to projections in 
scenario 137.  

 

 

                                           
37 The data underpinning the map projection can be found in Annex.4. 
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Figure 31 provides an insight into the evolution of supply shares within each producing 

country in reference years. It is clear that whilst cobalt supply may emerge in 2030 from 

new producers such as Argentina, Côte d'Ivoire, Solomon Islands, Sweden and Tonga, 

several other countries with current production capacities such as Botswana, New 

Caledonia and Zimbabwe might cease their cobalt mining activities if mineral resources 

are exhausted and not replaced through exploration.  
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Figure 31 Mine capacities and shares over time per producing country (based on scenario 1). 

 

3.8 Perspectives on the evolution of mine supply concentration  

It is widely taken as a proxy and accepted that supply for a specific material is 

constrained if the production is concentrated in a limited number of countries lacking 

adequate political stability (e.g. (JRC, 2017(b)). Such circumstance may lead to 

disruptive events such as supply shortages or high price volatility. 

The issues of supply concentration as well as the geopolitical risks of producing countries 

can be established using commonly accepted metrics such as the Herfindahl-Hirschman 

Index (HHI) and the Worldwide Governance Indicators (WGI).  

HHI is a measure of the relative concentration of the supply. It is defined as, 

  𝐻𝐻𝐼𝑦𝑒𝑎𝑟 𝑥 =  ∑  (𝑠𝑖2)𝑖 , 

 
where si is the fraction of the total supply the i-th supplier is responsible for, and N the 

number of suppliers on the market. Higher values of this index (up to 10000) indicate a 

higher market concentration.  

WGI, in turn, is used as a proxy for the political stability of the supplier countries. All six 

indicators that make up this parameter were used to derive average values which were 

then scaled linearly to fit between 0 and 1. Since WGI can alleviate the negative impact 

of concentration of supply, the following relationship is implemented: 

𝐻𝐻𝐼 𝑊𝐺𝐼𝑦𝑒𝑎𝑟 𝑥 = ∑ (𝑠𝑖)2
𝑦𝑒𝑎𝑟 𝑥

∗ (1 − 𝑊𝐺𝐼𝑖))

𝑖

 

Applying these metrics to the previous data, showing the potential evolution of mine 

supply sources and respective market shares over time, one can conclude that beyond 

2020 and until 2030, the concentration of supply and risk of disruptions are expected to 

decrease (Figure 32). 

The extent of this reduction can be 18 % from 2020 to 2025, and 26 % from 2025 to 

2030, leading to an overall improvement of 29 % in the considered timeframe (2017-

2030).   



 

54 

Figure 32 Estimated HHI-WGI values reflecting the market concentration of cobalt mine supply 
until 2030, based on production capacity estimates implied in scenario 1. 

 

3.9 Mine supply-demand balances 

Potential deficits and surplus of supply over demand are given in Figure 33. 

Considering simply the annual balances between supply and demand, existing mine 

capacities might already become constrained in 2018 in low supply/high demand 

scenarios (situation [1]). Additional capacities of about 14 000 tonnes would be required 

to meet demand in 2018, which would amount to around 102 000 tonnes in 2025.  

Demand also exceeds supply in 2020 by 1 900 tonnes in high supply/high demand 

scenarios (situation [2]) and this is estimated to increase to 297 000 tonnes in 2030.  

In low supply/low demand scenarios, supply and demand will likely be broadly in balance 

until 2027, before demand exceeds supply (situation [3]). 

Figure 33 Comparison between potential supply and demand of cobalt until 2030. 
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To facilitate the visualisation of data provided under various sets of supply and demand 

scenarios, and carry out the final balancing exercise, supply and demand averages were 

calculated over the reference period. When presenting them, the range for the demand is 

indicated by error bars. The same approach was followed in the next sections dealing 

with the recycling and substitution effects.  

In average scenarios, existing capacity begins to become constrained in 2020. Additional 

capacities of about 8 000 tonnes would be required to meet demand in 2020, which 

would then amount to around 11 000 tonnes in 2024, increasing to 175 500 tonnes in 

2030 (Figure 34). 

Figure 34. Year on year cobalt surplus/deficit in average mine supply and demand scenarios. 
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Note: ‘demand average’ was calculated as a simple average of the four demand scenarios, over 
the reference period (see section 2.3). Error bars show the standard deviation of demand 
forecasts in the various scenarios. ‘Supply average’ refers to the average amount of cobalt 
calculated from the four supply scenarios discussed in section 3.7. 

The available data also indicate that cobalt supply had a net surplus of around 56 000 

tonnes in 2017. Global demand was accommodated by approximately 65 % of mine 

capacity. Assuming that these extra amounts are produced each year and stored or 

stockpiled for use in the following years, in the assessment of average demand-supply 

scenarios, mine supply is expected to ensure that demand is satisfied to a reasonable 

extent until 2025 (Figure 35). At the end of 2025, a cumulative surplus of 33 200 tonnes 

can be inferred. However, in 2030, a deficit of 490 000 tonnes may occur.  

In such conditions, against an exponential growth in cobalt demand for EVs not 

countered by the adoption of substitutes or optimised battery chemistries, mining 

projects in the pipeline are not expected to compound the current oversupply situation, 

and additional supply would be necessary to satisfy future cobalt demand. Although it is 

reasonable to assume that, to some extent, mining companies enjoy flexibility to adjust 

production through investments in higher capacities together with mineral reserves 

replacement strategies, these are likely to be achieved at the expense of increased prices 

to downstream users. 
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Figure 35 Cumulative cobalt surplus/deficits in reference years.  

 

3.10 European supply-demand gaps  

The current mining infrastructure in the EU is limited, despite the high potential for its 

development (Figure 23 and Figure 24).  

Based on the latest S&P Global data (S&P Global Market Intelligence, 2018) concerning 

production capacities and resources in active European projects, both at operating mines 

and exploration projects, and taking into account the evaluation methods here 

implemented, future cobalt production capacity might be approximately 2 645 tonnes per 

year in 2020, increasing to 3 200 tonnes per year in 2028, if projects currently 

undergoing reserves development are carried over into a productive situation38 (Figure 

36).  

Nonetheless, such levels of indigenous production fall far short of what will be required in 

2030 to meet internal European demand in the EVs sector, and are also below the 

projected consumption of European LIB mega-factories thus far announced, estimated to 

be around 7 400 tonnes/year. 

  

                                           
38 It is unlikely that a project will maintain the same resources quantitative during its development. This will 

tend to increase and hence also the project/mine's production capacity. 
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Figure 36. Cobalt production capacity forecast in the EU in comparison with potential cobalt 
demand in the European EVs sector. 
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4 Substitution effects 

The extent to which a material can be fully or partially replaced in its overall uses may 

arise if technological or design changes take place in one demand sector. For example 

the implementation of more efficient product designs can reduce the demand for a 

certain material. Likewise, alternative technologies that achieve comparable functionality 

using different materials can drive the abandonment of a material for a substitute.  

Substitution can trigger a potential reduction in demand for a certain material in a given 

application, which leads to increased supply reliability, provided that the substitute has a 

more stable supply stream and increased available supply in the market, ultimately 

benefiting sectors lacking adequate substitutes.  

4.1 Cobalt substitution – trends and overview 

While in some applications the substitution of cobalt would result in a loss in product 

performance, there are a few examples where its use can be removed from the 

production process (Table 15).  

On a scale of 0 to 100, cobalt has a substitute performance of 5439 (Graedel, Harper, 

Nassar, & Reck, 2015). Details about the substitution potential and substitutes´ 

performance may be found in Box 11.  

As shown in Table 15, nickel is the primary substitute for cobalt in most applications.  

Table 15. Potential substitutes for cobalt and their performance.  

Application Application details Primary 
substitute 

Substitute 
performance 

Batteries Used in lithium-ion, nickel-metal hydride, and 
nickel-cadmium batteries in portable 

electronic devices, energy storage systems 
and electric vehicles. 

Manganese 
and nickel 

Good 

Superalloys Used primarily in turbine engine components Nickel Adequate 

Magnets Used primarily in Alnico magnets (in 
electric motors and loudspeakers) and in 

samarium- cobalt magnets (in 
turbomachinery and spectrometers) 

Neodymium 
magnets 

Good 

Hard metal 

and surface 
treatment 

Used in metal cutting and metal forming tools 

(e.g. dies), in construction and mining 
equipment 

Nickel with 

chromium 

Adequate 

Pigments Used in colouring glass and in paints - Very good 

Catalysts Used in petroleum refining, products for 
plastics and detergent manufacture, and 
polyester precursors 

Nickel Good 

Sources: (Graedel, Harper, Nassar, & Reck, 2015), (USGS, 2015), (CRM InnoNet, 2015) 

                                           
39 On this scale, zero indicates that exemplary substitutes exist for all major uses and 100 indicates that no 

substitute with even adequate performance exists for any of the major uses.  
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Box 11. Substitution potential of cobalt – compilation based on (CRM InnoNet, 

2015), (USGS, 2018). 

Batteries – LiFePO4 (LFP) and LiMn2O4 (LMO) without cobalt can be used instead of LiCoO2 (LCO), 
LiNiMnCoO2 (NMC) and LiNiCoAlO2 (NCA) in Li-Ion batteries. Amongst cobalt-bearing cathodes, 

several configurations with different cobalt contents are available.  

Superalloys - Fibre-reinforced metal matrix composites (MMC), ceramic-ceramic and carbon-
carbon composites, titanium aluminides, nickel-based single crystal alloys or iron-based super-
alloys may substitute to some extent cobalt-based ones in these applications. Loss of performance 
at high temperatures can be expected in some cases.   

Magnets - There is some potential for substitution of cobalt-alloyed magnets by nickel-iron alloys 

or neodymium-iron-boron ones. The substitution seems to be difficult though, especially in high 
temperature applications. Other potential substitutes include barium and strontium ferrites. 

Hard metal and surface treatment - There is potential for substitution of cobalt-iron-copper or 
iron-copper in diamond tools. However, there is a certain loss of performance. 

Pigments - Cerium, acetate, iron, lead, manganese, and vanadium can all be used as substitutes 
for cobalt.  

Catalysts - Ruthenium, molybdenum, nickel and tungsten can be used instead of cobalt, for 

instance in hydro-desulfurisation. An alternative ultrasonic process can also dispense with the use 
of cobalt, and rhodium can serve as a substitute for hydro-formylation catalysts. Cobalt may be 
substituted to some extent without major performance loss. 

 

 

 

  

 

Source: CRM_InnoNet, 2015 

 

  

 

4.2 Substitution of cobalt in Li-ion batteries – present and future 

developments 

A number of risk factors, including price volatility and industry concerns over supply 

shortages, have brought about shifts in the chemistries of rechargeable batteries, leading 

to a decrease in the consumption of cobalt while favouring the use of substitutes. For 

example, LCO containing 60 % cobalt, applied specially in electronics, has been gradually 

replaced by NMC, with a cobalt content of 10-30 %, NCA with 14 % cobalt and LFP with 

no cobalt.  

On the contrary, in the EVs market, the elimination of cobalt in Li-ion batteries, although 

possible, has not been the preferred option, insofar as it allows for optimal performance. 

In EV batteries, the usage of cobalt has increased in recent years: on the one hand, 

structural changes at the technology level have initiated the widespread use of Li-ion 

batteries in the hybrid vehicles segment, traditionally reliant on NiMH batteries; on the 

other hand, an increasing number of automakers are choosing full NMC chemistry to 

achieve higher energy density, and thus longer autonomy ranges, abandoning 
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combinations of this chemistry with cobalt-free Li-ion battery technologies, namely LFP 

(Darton Commodities, 2016). Also (Benchmark Minerals, 2016) reinforce this idea by 

assigning overriding importance to cobalt-bearing NMC and NCA chemistries in the 

automotive sector.  

In the context of EV batteries, several NMC configurations with different cobalt contents 

are currently employed. Recalling Figure 7, it is noted that today, NMC 111 (with nickel-

cobalt-manganese in the proportion of 1:1:1) is the most commonly used, with a market 

share of 42 %. In this configuration, cobalt represents around 30 % of the mass fraction. 

Until 2020, either NMC (111) or NMC (532) are thought to remain the first choice for EVs 

(Figure 37). Such a trend, combined with a reduced use of cobalt-free cathodes (e.g. 

LFP), is likely to push up cobalt demand before it starts to decline after 2020, driven by 

substitution efforts.  

In 2025 and 2030, other chemistries, requiring less cobalt and with higher nickel and 

aluminium contents, are likely to be used increasingly (e.g. (EC, 2018). Amongst them, 

NMC (811) with 9 % of cobalt40 may be used at a rate of 46 % in 2025 and of 58 % in 

2030, according to (BNEF, 2018) (Figure 37).  

Although there is broad consensus over the reduction of cobalt consumption in batteries 

(e.g. less cobalt per kWh), at least from 2020 on, there is no general agreement on 

which cathodes will be prevalent in the future. In relation to the above-mentioned NMC 

811, (BMO, 2018) argue that it will only be deployed to a limited extent in 2025 (up to 

2 %), as shown in Figure 37. Additionally, while BNEF forecasts point to the 

disappearance of NMC (111) by 2025, BMO analysis concludes that NMC (111) will 

remain important (Figure 37). The same source anticipates that cars equipped with NMC 

(622) will be prevalent, and LFP will still be used up to a level of 20 %, in 2025.   

Figure 37. Cathode chemistry mix in EVs. 

 

Data sources: (Bloomberg, 2018), (BMO, 2018) 

Irrespective of the mix of technologies adopted, changes on the horizon will contribute to 

the achievement of a substantial reduction in the use of cobalt in EV batteries until 2030. 

In the present analysis, the extent of this reduction was estimated over time, taking into 

                                           
40 According to (Business Insider, 2017), despite incentives to move towards NCM 811, the technology still 
needs to be developed and rigorously tested to be deployed on a mass scale. 
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account the cobalt loading in the various cathodes and the cathode mixes potentially 

adopted in 2020, 2025 and 2030. For the scenarios assessed, the results are given in 

(Figure 38). The graph shows that until 2025, cobalt can be reduced by 17 %, and 

between 2025 and 2030 by another 12 %41. These trends are likely to follow a period of 

average increase in consumption of up to 6 %, possibly lasting until 2020 (Figure 38).  

The overall percentage of reduction between 2017 and 2030 was estimated to be 29 %.  

Figure 38. Percentage of variation in cobalt use based on potentially prevalent LIB cathode 

chemistries by 2030.  

 

Data sources: own calculation based on (BNEF, 2018) and (BMO, 2018) EV cathode mix forecasts.  

Some analysts argue that this reduction might be of larger magnitude, reaching 60 % in 

2025 (Cobalt Investing News, 2018). Cobalt-free materials for LIB are in the sights of 

many battery producers and automakers determined to abandon mainstream 

technologies while moving towards non-cobalt cathodes (e.g. (Tesla, 2018).  

4.3 Disruptive technologies on the horizon 

The strongest performing EV segment seems currently to rely on standard battery 

chemistries, not allowing for the anticipation of any disruptive technological or design 

changes beyond those mentioned above.   

Although, with potentially limited market uptake in the next decade, still further 

depending on major innovative steps, the following technologies are thought to merit 

closer examination: 

- Advanced cell generations such as lithium air and lithium sulphur, the two most 

promising at present for use in EVs (Benchmark Minerals, 2016). According to (EC, 

2018), such batteries could be relevant beyond 2025.  

- Technologies such as solid-state batteries.  

- The market uptake of fuel cell vehicles leading to a revised EV system, thereby 

decreasing the use of battery vehicles to accomplish decarbonisation targets. 

4.4 Substitution – resizing supply-demand balances 

Figure 39 shows revised cobalt demand/supply balances obtained assuming a 6 % 

increase in the amount of cobalt used in automotive batteries until 2020, followed by a 

progressive reduction throughout the considered period, up to 29 % in 2030. 

                                           
41 Intermediate values of the forecast horizons (2020, 2025 and 2030) were determined by linear interpolation. 
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The following conclusions can be drawn: 

 Demand exceeds supply in 2018 by 15 000 tonnes in high demand/low supply 

scenarios (situation [1]). 

 5000 tonnes of additional supply are required to meet demand levels in 2020 in 

high demand/high supply scenarios (situation [2]), increasing to 180 000 tonnes 

in 2030.  

 In the intersection of baseline scenarios, no major deficits are expected in the 

period to 2029 (situation [3]). 

Figure 39. Revised demand/supply balances following cobalt substitution in EV batteries.  

 

In average scenarios, demand exceeds supply in 2020 by 10 500 tonnes (Figure 40A). 

This trend is expected to become more consistent from 2025, with demand outpacing 

supply by a projected amount of 12 600 tonnes, increasing to 101 700 tonnes in 2030 

Figure 40B). 

In the assessment of cumulative average scenarios, cobalt is expected to remain in 

surplus until 2025. However, between 2025 and 2030, exceeding amounts might not be 

enough to cover year-on-year shortfalls, resulting in a sizeable cumulative deficit of 

around 218 000 tonnes in 2030 (Figure 41). 
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Figure 40. Average demand/supply balances following cobalt substitution in EV batteries (top 
figure) and year-on-year cobalt deficit/surplus (bottom figure). 

 

 

Note: ‘average demand affected by substitution’ was calculated as a simple average of the four demand 
scenarios (see section 2.3), each adjusted by the reduction factors set out above (see section 5.2) to reflect the 
uptake of different cathode chemistries in the EVs sector over the reference period. ‘Demand average’ refers to 
demand levels calculated as a simple average of the four demand scenarios, in which cobalt use in EVs was 
assumed to remain constant throughout the period – the same cathodes used today will be deployed until 
2030. Error bars show the extent of variation of demand in the various EV deployment scenarios. ‘Supply 
average’ refers to the average amount of cobalt calculated from the four mine supply scenarios discussed in 
section 3.7. 
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Figure 41. Cumulative cobalt surplus/deficits in reference years, in average scenarios assuming 
revised demand levels resulting from cobalt substitution in EV batteries. 
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5 Recycling effects 

The global supply of cobalt will also be affected by the degree to which recycling occurs. 

To the extent that it creates an alternative supply stream, recycling can contribute to an 

increase in the security of cobalt supply. 

However, recycling developments will primarily depend on the economics and viability of 

the recycling businesses, linked to the costs of the process, the need to achieve 

economies of scale and materials prices e.g. (JRC, 2017(a)) (European Parliament, 

2015). Recycling will also depend on the effective collection of batteries and battery-

containing products (e.g. (Huisman et al., 2017). 

5.1 Recycling trends and overview 

Recovery of metals from new and ‘post-consumer’ scrap42 is a rapidly moving topic in the 

political agenda, in the context of the circular economy43.  

While certain cobalt uses are dissipative such as pigments, ceramics, paints, etc, making 

the metal not available for recycling, cobalt used in applications such as superalloys, hard 

metals, batteries or even spent catalysts can be collected and either reused or recycled 

(Cobalt Factsheet, 2017). 

Currently, cobalt post-consumer recycling is widely common. Globally, according to 

(UNEP, 2011), the end-of-life recycling rate (EOL-RR) of cobalt is estimated at 16 %, 

assuming that the fraction of old scrap to the overall scrap market is around 50 % and 

the fraction of secondary metal produced in comparison with the total metal input is 

32 %. The same source (UNEP, 2011) considers realistic an increase of the EOL-RR to at 

least 30 % by 2020, depending on applications with long-term lifetime. In the EU this 

amount is already estimated at 35 % (Deloitte Sustainability, 2015).   

The average lifetime of cobalt bearing products is given in Table 16.  

Table 16 Lifetimes and recycling rates for cobalt bearing products in 2005. 

Application Lifetime (years) Recycling rate (%) 

Superalloys 5 90 

Catalysts 2-8 0-89 

Batteries 2.5-8 10-90 

Magnets 5 10 

Hard materials 1 15-75 

Chemical & other 1 _ 

Source: (Roskill Information Services, 2014). 

Focusing on rechargeable batteries, cobalt is the material of most interest to LIB 

recyclers, and is currently mainly recovered from electronic waste. Although the 

efficiency of the recovery procedure is high, the overall recycling rate is limited due to 

poor collection rates not exceeding 9 % (JRC, 2016 (a)). Improvements are, however, 

anticipated over the coming years. Specifically in the EV batteries sphere, the recycling 

potential is significant, as these batteries may be easier to collect if a dedicated system 

of return is established (JRC, 2017(a)).  

To increase the efficiency of waste collection and raw materials recovery from EVs, 

several regulatory instruments are already applicable. In the EU, end-of-life vehicles are 

                                           
42 'New scrap' is commonly used for e.g. production waste and 'old scrap' for consumer goods at end of life. 
43 http://ec.europa.eu/environment/circular-economy/index_en.htm  

http://ec.europa.eu/environment/circular-economy/index_en.htm
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subject to EC Directive 2000/53/EC (End-of-Life Vehicles Directive)44. This Directive aims 

at reducing waste from end-of-life cars by ensuring that their constituent parts can be 

recycled. Under this Directive, Member States shall take the necessary measures to 

ensure that economic operators set up systems for the collection of all end-of life vehicles 

and the adequate availability of collection facilities. Batteries, in turn, are subject to EC 

Directive 2006/66/EC (Batteries Directive)45 and Regulation No 493/201246. These 

regulate the end-of-life management and set detailed rules and targets regarding the 

recycling efficiencies of waste batteries. Under the Batteries Directive, Member States are 

obliged to collect a minimum of 45 % of all portable batteries by 2016 and achieve a 

recycling efficiency of 50 %. The Battery Directive is currently under review. At the 

moment there is no separate collection target for industrial and automotive batteries, for 

which the easily removable and valuable lead-acid and NiCd batteries are collected to a 

high degree47. 

Given the recent introduction of EVs in global and European markets, with sales only 

reaching higher values in 2015, and taking into account the average lifetime of EV 

components, estimated to be approximately 8 years, a significant number of EVs have 

not reached yet end-of-life. Thus, large-scale recycling is not expected before 2020 and 

should only be more effectively realised beyond 2025 (JRC, 2017(a)).  

5.2 Recycling of Li-ion batteries – available infrastructure 

Future recycling will additionally depend on the existence of adequate treatment 

infrastructure. An overview of Li-ion recycling plants is given in Annex 5, based on data 

compiled by (JRC, 2016 (b)) and (CM Solutions, 2015). 

Worldwide, the recycling infrastructure is thought to range between 79 000 and 96 000 

tonnes of batteries per year. Taken together, the EU Member States have the highest 

installed capacity, accounting for a market share of 40-48 % (Table 17). China also holds 

a large percentage, ranging between 30 % and 42 %48.  

In the EU, recycling of Li-ion batteries is carried out by 10 specialised companies, with a 

collective processing capacity of 38 000 tonnes/y. Valdi, an ERAMET Group subsidiary in 

France, has the largest capacity, at 20 000 tonnes/year49. It is followed by Umicore in 

Belgium with a capacity of 7 000 tonnes/y, which enables the treatment of around 

250 000 000 mobile phone batteries, 2 000 000 E-bike batteries, 200 000 HEV batteries 

and 35 000 EV batteries (Umicore, 2017). The recycling process employed by UMICORE 

is presented in Box 12.  

  

                                           
44http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02000L0053-

20130611&qid=1405610569066&from=EN 

45 http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006L0066-20131230&rid=1  

46 http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32012R0493&from=EN 
47 European Commission, 2014, Frequently Asked Questions on Directive 2006/66/EU on Batteries and 

Accumulators and Waste Batteries and Accumulators 
48 Currently, the Chinese share is believed to be higher, on the back of policies to promote the development of 

this emerging industry e.g. (Roskill, 2018).  
49 A capacity of 20,000 t/y was expected at the plant from 2017 onwards. It was not possible to verify, 

however, whether the company has reached the expected level. 

http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02000L0053-20130611&qid=1405610569066&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02000L0053-20130611&qid=1405610569066&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32012R0493&from=EN
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Table 17 World and European present recycling infrastructure. 

Country Capacity 
(tonnes of batteries per year) 

Share* (%) 

North America 11 500 14.5 

Japan 6 100 7.7 

China 23 600 - 40 000 29.8 

Belgium 7 000 0.3 

France 20 610 8.8 

Finland 4 000 26.0 

Switzerland 200 5.1 

Germany 6 000 7.6 

UK 145 0.2 

Based on data compiled by (JRC, 2016 (b)) and (CM Solutions, 2015)  

* Battery types recycled in each facility include NiCd, NiMH, Li-ion (see Annex 5 for details). Shares were 
calculated taking into account the lower Chinese capacity. 

Box 12. UMICORE recycling process  

Umicore combines a pyro-metallurgical treatment and a hydro-metallurgical process to 

recycle Li-ion and NiMH batteries.  

The pyro-metallurgical process deploys Umicore’s patented Ultra-High Tmperature (UHT) 

technology, to convert the batteries into 3 fractions: 

- An alloy phase, containing the valuable metals, cobalt and nickel, to be treated in a 

downstream hydro-metallurgical process for the production of CoCl2 and Ni(OH)2. 

- A slag fraction which can be used in the construction industry (formed into concrete 

blocks) or further processed for lithium recovery using standard Li recovery flowsheets. 

In addition to lithium oxide, the slag phase contains oxides of other metals, including 

aluminium, silicon, calcium and iron. 

- A fine dust fraction. 

Although lighter batteries (mobile phones, laptops, etc) do not require pre-treatment 

prior to smelting, EV batteries must be previously dismantled to module/cell level. 

Temperatures achieved in the pyro-metallurgical process exceed 3000ºC and the average 

efficiency of the recycling process is above 50 %. 

Sources: (UMICORE, 2012), (UMICORE, 2016) 

5.3 EV battery stocks at the end of 1st life 

The transmission of end-of-life discarded EV batteries to the recycling market depends 

largely on effective collection levels and the possibilities of battery re-use, for example in 

stationary storage.  

Although the implicit assumption, that most EV batteries, due to their size, shall be 

subject to higher collection rates at the end of 1st life, seems valid, this situation may not 

apply to the EU for the quantification of domestic supply developed around the recycling 

of EVs deployed internally.  
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In the EU, collection levels of vehicles present in the European market (all fuel types) are 

undocumented, and a significant part of this is exported to third countries. In particular, 

the collection levels of EEE products with high battery content are even further under-

represented in the reported collection channels due to scavenging of product and 

components and substantial export outside the EU of reusable equipment (Huisman et 

al., 2017) (see Box 13).  

For the purposes of the present analysis, the possibilities of battery re-use were ruled-

out and a collection rate of 90 % was anticipated at global level. With these assumptions, 

the number of LIB batteries from EVs deployed worldwide potentially available for 

recycling today was estimated to be on average 20 250 units (90 % of the current 

vehicle fleet). In 2025, this number might slightly exceed 1 million, reaching nearly 7 

million in 2030 (Table 18).  

Table 18 Number of EV batteries at the end of 1st use potentially available for recycling until 2030 
(expected end-of-life stocks). 

Number of EV 

batteries available 
for recycling 

Worldwide (90 % of the 

average number of batteries 
deployed under IEA scenarios) 

EU (collection rates estimated 

based on the number of BEV and 
PHEV deployed under average 
ERTRAC scenarios) 

2018 20 250 900 

2019 38 250 8 346 

2020 103 500 17 226 

2021 188 100 37 944 

2022 291 600 50 639 

2023 497 700 97 520 

2024 670 500 104 178 

2025 1 098 000 147 272 

2026 3 192 683 230 552 

2027 5 074 538 372 489 

2028 6 087 780 619 274 

2029 6 408 248 826 840 

2030 6 739 313 1 103 764 

Note: Batteries are assumed to reach end of life after 8 years, then becoming available for recycling. In this 
study, lifespans were considered to be distributed discretely. It is assumed that 90 % of all batteries deployed 
worldwide will be collected and subsequently recycled. In the EU, up to 90 % of BEV are assumed to be 
collected, while the PHEV collection rate is assumed to be 50 %. The possibilities of battery re-use are ruled out 
in the present analysis. The number of batteries available for recycling is estimated based on the average 
number of batteries deployed in each of the IEA scenarios discussed before. EV batteries deployed in the EU 
represent an average of the high and low ERTRAC scenarios.   

In the EU, given current uncertainties and lack of data regarding unknown whereabouts 

of vehicles, a 90 % collection rate is assumed for BEV, while for PHEV this figure is 

considered lower, at 50 % (box 13). 

Based on these premises, it is expected that around 150 000 EV batteries may enter 

European recycling channels in 2025, and that this number will progressively increase to 

around 1.1 million in 2030 (Table 18).  
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Box 13. The influence of vehicle (battery) collection rates on recycling potential 

in the EU 

Two important factors regarding the amounts of batteries available for recycling in the EU 

are the lifespan of vehicles and their batteries, and the expected (future) collection rate 

of EV. According to the stock and flow modelling from the ProSUM project, the lifespan of 

an average vehicle present in the EU market (all fuel types) is 18 years (Huisman et al., 

2017). However, specific and consistent information on the lifespan of electric vehicles 

and separately on the (distribution) of lifespan of EV batteries at the end of first use is 

not yet available. More work will be necessary to adapt this model to electric vehicles and 

batteries, and also, in particular, to incorporate the potential of a second use, for which a 

number of recent reuse and remanufacturing examples are observed (Bloomberg, 2018), 

possibly even leading to an entirely new industry sector. The consequence may be a 

significantly delayed recycling potential due to these second uses. 

Regarding collection, a recent report by the Öko-Institut for DG Environment examined 

the unknown whereabouts of vehicles supposedly reported under the ELV Directive. Here, 

for 2013-2014, about 50 % of the vehicles leaving the EU fleet are collected and 

reported. Another 10 % is reported as being exported outside the EU and a significant 

value of 40 % is classified as having unknown whereabouts (Öko-Institut, 2018). The 

question for the future is what will happen with EV in comparison with the average 

drivetrain type. Here, for BEV, it can be imagined that they will stay mainly in Europe 

initially, as typical export countries may not yet have a charging infrastructure. However, 

for the EU-specific high share of PHEV, this assumption may not be valid, since home-

charging may also occur sooner or later in typical export markets. The whereabouts of EV 

will hence need to be investigated in the future to determine more precisely the 

collection rate time series. 

The Öko-Institut report also contains a number of suggestions to improve the reporting 

system. However, no recommendations are made to improve the reporting procedures 

regarding EV-specific data. The ProSUM project report recommends the amendment of 

vehicle statistics with a specification of the main drivetrain types as reported by Eurostat 

(Downes et al., 2017). 

Figure 42 Unknown whereabouts of vehicles in the EU 

 

Source: (Öko-Institut, 2018) 
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Assuming that the average weight of an EV battery is around 250 Kg e.g. (BCG, 2010), 

the currently available infrastructure worldwide is expected to suffice for the recycling of 

at least 317 000 units just above the total EOL batteries in 202250. 

In the EU, the current recycling infrastructure should enable the recycling of around 

160 000 units, well above the number of EV batteries forecast to be available for 

recycling within the EU until 2025.   

With a large share of recycling capacity located in Europe, it is likely that in the future, 

EU facilities expand their processing capacities and also attract significant volumes from 

abroad. Additional recycling capacities can easily be added, depending on market 

requirements.  

5.4 Potential additional cobalt supply from EV batteries recycling 

Considering that 90 % of all batteries deployed will be collected and subsequently 

recycled at end of life, significant opportunities to recapture and recycle cobalt can be 

anticipated. 

Potential cobalt flows resulting from the recycling of EVs deployed worldwide are given in 

Figure 44. Estimations therein assume an average lifetime of 8 years for each vehicle 

battery placed on the market, and a constant EOL recycling rate of 72 %, derived from a 

combination of collection and recovery efficiency rates of 90 % and 80 % respectively51. 

At global level, the amount of cobalt potentially recovered from old scrap EV stocks may 

amount to 452 tonnes in 2020 and 4 800 tonnes in 2025. Beyond 2025, available 

amounts will depend on the level of EV deployment. On average, this could be 38 000 

tonnes in 2030. 

Figure 45 shows potential additional cobalt supply estimates from EV battery recycling 

within the EU. These estimates were carried out assuming different collection rates for 

BEVs and PHEVs introduced in the European market (see Figure 10 and Box 5). Assuming 

an overall collection rate of 50 % for PHEV and 90 % for BEV, at constant efficiency rates 

of 80 %, potential recycling rates are considered to evolve over time as shown in (Figure 

43). The resulting EOL-RR per unit deployed may vary between 53 % and 71 % between 

now and 2030.  

The potential amounts of recycled cobalt generated from EOL vehicles deployed in the EU 

are estimated at 500 tonnes in 2025 and may amount, on average, to 5 500 tonnes in 

2030 (Figure 45). In 2030, recycling can provide for around 10 % of European cobalt 

consumption in the EVs sector.   

  

                                           
50 Although the calculation assumes that the capacity of each recycling facility is entirely used for the recycling 

of LIB batteries from EVs, this is not a realistic assumption. We acknowledge, however, that one facility will 
additionally treat other products beyond EVs, such as batteries used in consumer electronics and e-bike 
batteries, among others. 

51 According to (EPA, 2013), the range of cobalt recovery from recycling is between 60% and 99.9% (80% on 
average).  
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Figure 43 Potential end-of-life recycling rates per EV deployed in the EU. 

 

Figure 44 Additional cobalt supply generated by recycling of EV batteries deployed worldwide 
(tonnes of potentially recovered cobalt from Li-ion batteries). 

 

Figure 45. Recycling potential generated by EOL EVs deployed in the EU. 
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5.5 Recycling – resizing supply-demand balances 

Revised supply/demand balances were obtained by adding together the amounts of 

cobalt recovered through EV battery recycling to the amounts forecast to proceed from 

mining activities throughout 2030. Demand estimations used in the revised assessment 

consider the effect of cobalt substitution in EV batteries. The effects of recycling over 

supply only reflect additional amounts originated from EV battery recycling, 

notwithstanding the fact that cobalt recycling has a wider context, extending to other 

end-use sectors. 

Results are presented in Figure 46 and Figure 47. The assessment indicates that under 

average circumstances, almost 7 000 tonnes extra would still be needed to cover global 

demand in 2025. This deficit is expected to increase to 64 000 tonnes in 2030.  

On a cumulative basis, a deficit of 43 000 tonnes can be expected to occur in 2030 

(Figure 48). 

Figure 46. Revised supply/demand balances taking into consideration the effects of recycling over 

mine supply for each considered demand scenario affected by substitution.  
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Figure 47 Average global demand/supply balances including the effects of substitution over 
demand and of EV batteries recycling over supply. 
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Figure 48 Cumulative cobalt surplus/deficits in reference years in average scenarios, assuming 
revised demand levels resulting from cobalt substitution in EV batteries, and revised supply 

resulting from EV batteries recycling. 

 

5.6 European supply-demand revised gaps 

Comparing European demand levels in the EVs sector with the potential supply originated 

jointly from mine and recycling activities within the EU, the following aspects are 

highlighted (Figure 49):  

- In 2030, around 8 700 tonnes of cobalt can proceed from mining and recycling 

activities within the EU.  

- By 2030, endogenous supply can meet around 15 % of European demand in the 

EVs sector. 

Although the capacity to meet rising demand is projected to increase over time, there is 

an increasing gap between endogenous supply and demand. The EU's supplies of cobalt 

will continue to depend largely on imports from third countries, which underscores the 

need for activation policies.  
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Figure 49  Potential cobalt supply from European sources in comparison with potential cobalt 
demand in the European EVs sector. 
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6 Conclusions 

In the transition to a low carbon economy, increasing penetration of electric vehicles and 

energy storage systems is expected. In these markets, cobalt consumption will be 

boosted by the usage of Li-ion batteries, in particular Nickel-Manganese-Cobalt (NMC) 

and Nickel-Cobalt-Aluminium (NCA) chemistries, both of which use cobalt as cathode 

material, thereby making potential constraints in its supply a limiting factor in the 

deployment of lithium-ion batteries.  

The ability to secure relevant supply cobalt streams to fast-growing markets, the 

prevalence of near-monopolistic supply structures, including the introduction of export 

taxes and the fact that cobalt is usually mined as a by-product of copper and nickel, have 

been put forward as particular causes for concern. 

Various risks have been recognised in relation to the supply structure of cobalt, which is 

also rated as critical for the EU: the Democratic Republic of the Congo (DRC) is the main 

mining producer, accounting for 55 % of global production; approximately 20 % of DRC’s 

cobalt production comes from artisanal-based operations in which a prevalent and 

unethical use of child labour has been identified; China is the largest producer of refined 

cobalt, accounting for 50 % of global production; and discretionary efforts to increase 

mining production in the short to medium term are limited by the time taken to fully 

develop a mining programme. All these factors can contribute to growing uncertainties 

over global supply growth and give rise to shortfalls in the provision of cobalt in the 

future. These trends may increase the risk of disruption, either through supply shortages 

or price escalation.  

The analysis herein yielded a number of insights: 

6.1 The demand situation 

The rechargeable battery market is the largest and fastest growing demand for cobalt. In 

2015, rechargeable batteries accounted for 49 % of total cobalt consumption and in 

2020, a projected share of 60 % is expected. In the EU, while cobalt usage in batteries 

that entered the market in 2012 rose to 51 %, only 3 % of demand was provided for by 

European battery manufacturers. Currently, large format Li-ion battery cells for EVs and 

stationary storage are produced mainly in Asian countries and companies, with the EU 

having a limited share of about 2 %, or 3 GWh cell manufacturing capacity. Nonetheless, 

the EU is amongst the leaders in global car manufacturing.  

Meeting stringent climate targets will entail an increase in the global electric vehicle stock 

to 156-204 million in 2030, with annual sales growing by a compound annual rate of 25-

27 %. In the EU, available projections suggest that the number of electric vehicles will 

exceed 2 million in the year 2020, rising to 7-20 million in 2025 and 18-61 million in 

2030, which represents a compound annual growth rate of 22 % to 34 %. 

The changing characteristics of mobility and the prevalent use of lithium ion batteries are 

drivers to surging lithium ion battery mega-factories which will depend on the availability 

of an adequate supply of cobalt. The demand for cobalt intended for these facilities 

worldwide can be estimated at some 80 000 tonnes per year in 2021. 

Considering various levels of electric vehicle uptake and other cobalt uses, world cobalt 

demand may be subject to a growth rate of between 7 % and 13 % in the period from 

2017 to 2030, bringing average cobalt consumption to around 220 000 tonnes in 2025 

and 390 000 tonnes in 2030. In the EU, cobalt demand will amount to 53 500 tonnes in 

2025, increasing in 2030 to 108 000 tonnes in average circumstances. 
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6.2 The supply context 

Cobalt is currently mined in 20 countries. In 2016, just four mines in DRC were 

responsible for 43 % of the world’s cobalt production, currently estimated at around 

126 000 tonnes.  

In the EU, production of cobalt ores and concentrates was estimated at 2 300 tonnes in 

2016, all sourced from Finland, where cobalt is produced in four mines.  

Even though Finland is the sole mine producer within the EU, resources of cobalt are also 

known to exist in Sweden and Spain. Besides Talvivaara's large cobalt resource, 

estimated at 300 000 tonnes of cobalt, around 58 000 additional tonnes of cobalt have 

been identified to date, in projects undergoing reserves development and advanced 

exploration stages. However, many of these projects (13 out of 24) appear to be 

inactive. Other projects at an early stage of exploration or development, without a 

defined resource estimate, can be found in Cyprus, Slovakia, Austria, Czech Republic, 

Germany, Italy and Poland.  

Worldwide, starting from a capacity of approximately 160 000 tonnes of potentially 

recovered cobalt in 2017, mining projects may make provision for around 193 000-

237 000 tonnes in 2030. Some projects currently under development are expected to 

bring significant additional material into the market until 2025, however, additional 

supply is most likely to come from the expansion of existing producers, which currently 

hold the largest amount of resources. The ramping up of new projects can increase 

cobalt production by 21 % to 48 % in 2030.  

Whilst mine capacities are currently concentrated in DRC, a pipeline of projects is being 

developed in countries such as Australia and Canada. These countries are likely to gain 

additional importance in the future, helping to reduce dependency on the supply from 

DRC. By 2030, the concentration of supply and risk of disruption might be reduced by 

29 %. Nevertheless, DRC will still be responsible for around 48 % of the cobalt supply in 

this timeframe. 

In the EU, the current mining infrastructure is limited, despite the high potential for its 

development. On account of capacities and available resources in operating mines, and 

projects undergoing late-stage exploration, future cobalt production was estimated to be 

2 700 tonnes in 2020, increasing to 3 200 tonnes in 2030. By then, this amount could 

provide for around 6 % of the European cobalt consumption in the EVs sector.  

Several barriers that can limit cobalt production from mining activities are recognised in 

the broad global landscape, making supply forecasts complex and largely uncertain. 

Projects must meet severe cost criteria prior to reaching a productive situation, which 

can involve longer delays than envisioned in starting up production. Moreover, recent 

decreases in global cobalt mine production are bound to lower production from nickel 

operations, which seem to accompany a more or less persistent decrease trend in nickel 

prices since 2010.  

While currently operating mines focus mainly on copper as primary product of the mine 

output, future cobalt production from late-stage exploration projects will likely have 

nickel as primary product. 

6.3 Substitution effects over demand 

Substitution of cobalt in Li-ion batteries, although possible, has not been the preferred 

option in EVs. Currently, the strongest performing segment seems to rely on cobalt 

cathodes, and an increasing number of automakers are choosing full NMC chemistry, 

abandoning combinations of this chemistry with cobalt-free materials, to achieve higher 

energy density and thus longer autonomy ranges.  

Until 2020, either NMC (111) or NMC (532) are expected to remain the first choice for 

EVs. Such a trend, combined with a reduced use of cobalt free cathodes (e.g. LFP), is 
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likely to push up cobalt demand by up to 6 % before it starts to decline after 2020, 

driven by substitution efforts.  

Until 2025, cobalt could be reduced by 17 %, and between 2025 and 2030 by another 

12 %, on account of changes in the EV battery chemistry mix. Nickel will preferentially 

substitute cobalt in battery applications in the transition towards a potentially prevalent 

use of NMC 811 configurations.  

Throughout the relevant period, cobalt usage in EV batteries might be reduced by 29 %. 

As nickel is also the primary substitute of cobalt in most other applications, additional 

pressures will be put on its secure supply. 

6.4 Recycling effects over supply 

Significant opportunities to recapture and recycle cobalt may be anticipated over the 

coming years. The recycling potential of EV batteries is significant, as these batteries 

may be easier to collect if a dedicated system of return is established. However, given 

the recent introduction of EVs in global and European markets, and taking into account 

the average lifetime of EV components, estimated to be approximately 8 years, large-

scale recycling is not expected before 2020, and should only be more effectively realised 

beyond 2025.  

Globally, the amount of cobalt potentially recovered from old scrap EV stocks may 

amount to 452 tonnes in 2020, increasing to 38 000 tonnes in 2030. 

The potential amounts of recycled cobalt generated by end-of-life vehicles deployed in 

the EU is estimated at 500 tonnes in 2025, and may amount to 5 500 tonnes in 2030. In 

2030, recycling could provide for around 10 % of European consumption in the EVs 

sector.  

The EU already holds sufficient relevant recycling infrastructure to enable the recycling of 

around 160 000 EV battery units, well above the number of EV batteries forecast to be 

available for recycling internally until 2025.  

With a large share of recycling capacity located in Europe, it is likely that in the future EU 

facilities expand their processing capacities and also attract significant volumes from 

abroad.  

In addition, at least at global level, substantial opportunities may also exist for the 

recovery of secondary products (new scrap) that in the past were often lost to mine 

tailings. 

6.5 Supply-demand balances 

Considering annual supply and demand balances in average scenarios, including the 

effects of substitution over demand and of EV battery recycling over the projected mine 

supply, demand is already expected to exceed supply by 2020. By then, around 8 000 

additional tonnes of cobalt would be needed to cover global demand. Such a loss-making 

trend is resumed and expected to become more consistent from 2025, with demand 

outpacing supply by a projected amount of 7 000 tonnes. This deficit is projected to 

increase to 64 000 tonnes in 2030.  

In 2017 cobalt supply had a net surplus of around 55 800 tonnes. Global demand was 

accommodated by approximately 65 % of mine capacity. Assuming that these extra 

amounts are produced each year and stored or stockpiled for use in the following years, 

cobalt is expected to remain in surplus until 2025, after which a cumulative deficit of 

43 000 tonnes could occur.  

Although very significant cumulative deficits are not expected to occur until 2030, the 

possibility that cobalt supply might depend highly on relevant stockpiles is not beneficial 

and might result in unstable and increased prices in the future.  
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Figure 50 Average global supply-demand balances between 2017 and 2030. 

 

6.6 Bridging the gaps in the EU 

In the EU, bridging gaps between supply and demand may require specific actions along 

the three pillars of the European Raw Materials Initiative (RMI).  

In the mining sector, the promotion of specific brownfield projects merits further action, 

along with the attraction of investment to reactivate inactive projects and promote 

efficient greenfield exploration in highly prospective areas. Private investment in minerals 

exploration may come in line with improvements in the regulatory context, as many EU 

countries do not currently ensure the right to exploit a new deposit provided other 

regulatory conditions are met. Improving the competitiveness of European mines may 

also involve a concomitant decrease in the costs of transport, possibly through the 

reinforcement of endogenous battery manufacturing capacities.  

As the EU continues to depend on imports in the future, consolidating trade agreements 

with countries such as Australia and Canada, expected to gain additional importance as 

future cobalt producing countries, can be beneficial as a means of ensuring responsible 

sourcing practices.  

Cobalt recycling is likely to be boosted by higher recycling rates of EV batteries from 

2025 on, predetermined by the product profile and characteristics (large format cells). 

Nonetheless, the high share of PHEV in Europe may entail additional uncertainties as to 

whether relevant collection rates are met in the future. Ensuring high targets seems to 

be of particular importance to optimise future balances between supply and demand. 

Room for improvement in recycling businesses may also exist in relation to efficiency 

rates as well as the recycling of other cobalt products (not assessed in this study).  

Additionally, EU LIB recyclers already have a fair share in current global recycling 

capacity, which can act as a stimulus to attract additional scrap volumes from third 

countries, rather than just from the EU itself.  

On the use of cobalt in EV batteries, a reduction of 29 % is expected by 2030. However, 

the deployment on a mass scale of such low-cobalt chemistries will still be needed. As 

nickel is likely to bear the load of the substitution strategy, these developments should 

come in line with close monitoring exercises of the nickel supply and demand situation. 

In the longer term, additional reductions in the use of cobalt in the automotive sector 

might also come in line with the market uptake of cobalt-free batteries such as lithium-

air, lithium sulphur or solid-state, and of fuel cell vehicles.  
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Finally, the raw materials sector plays an important role in the value-chain of battery and 

automotive industries. Increasing the industries' manufacturing capacities, besides 

preventing a technological dependency on competitors, should also have positive spill-

over effects on private investment along all segments of the value-chain. If properly 

developed, it should promote the responsiveness and competitiveness of the European 

raw materials sector whilst ensuring cobalt supplies through domestic mining and 

recycling. 

6.7 Recommendations for improved analysis 

The present report provides future scenarios on cobalt supply and demand, including 

substitution and recycling, related to each other in one consistent forecasting approach. 

In its conclusions, the report shows the necessity of deploying the RMI pillars to make 

this important EU sector more resilient in the long run.  

Nonetheless, there are obviously many unknowns when doing a forward-looking study 

like this, some of which are explicitly given in Table 19.  

 

In particular, for the areas where data is not really available or is uncertain, transposing 

improvements to the analysis may not be possible.  In others, reducing the inevitable 

forecasting limitations may entail that:  

 The forecasting of demand can be improved and updated by consolidating 

information on other cobalt uses beyond EVs.  

 The forecasting of mine supply can be improved by incorporating economic factors 

influencing the success of exploration projects. This would allow setting the 

analysis against a dynamic market with premises of decreasing prices and flexibly 

adjusting the projects' start-up dates. 

 The substitution scenarios can be improved by assessing the technologies 

landscape beyond those that are market-ready or with near-term maturities.  

 The recycling scenarios can be improved by including additional information on 

stocks, lifespan distribution and the role of reuse and remanufacturing. In the EU, 

exports for reuse and EU imports for recycling need further substantiation in the 

future.  

In spite of such limitations, the study enables a usable assessment of the raw materials 

sector's resilience, both worldwide and in the EU. Yet, the sector is dynamically changing 

over time, which requires regular monitoring, reviewing and updating of its variables for 

an effective evaluation. Despite the need to maintain a certain level of consistency in 

order to facilitate the tracking of changes over time, the approach is also flexible enough 

to allow for these revisions as needed.  
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Table 19 Uncertainties of the forecasting exercise - limitations to the present analysis.  

A. Demand 

EVs deployment scenarios 

The scale and size of the global and European EV market and Li-ion demand varies substantially 
between scenarios, based on premises for deep decarbonisation, market expectations and business 
as usual considerations.  

Other sectors beyond EVs can be as influential in cobalt demand patterns in the future, growing 
more rapidly than expected.  

Cobalt demand in the European EVs market 

The EU currently lags in EV batteries manufacturing, with very limited share in global Li-ion 
manufacturing capacity. The EU market for cobalt will thus depend on the extent to which this 
sector will answer a real need in Europe. 

B. Mine supply 

Mine supply scenarios and estimations 

The amounts supplied to the market from mineral and metal producers depend on multiple 
economic factors, making forecasts complex and largely unreliable. Setting the analysis against a 
dynamic market with premises of decreasing prices would be beneficial, allowing, for example, the 
consolidation of start-up dates for exploration projects, and insights into the costs of production 
restricting extraction at certain prices.  

Assessing reserves instead of resources by looking into the amounts that may be currently 
extracted in an economically viable manner would provide a more robust basis for evaluation and 
monitoring. 

Quantifying the influence of the extraction of primary products such as copper and nickel on the 
production of cobalt, and monitoring the respective markets, would also make the dynamics of 
supply restrictions arising from a by-product status more visible.   

C. Recycling and substitution 

The % of reduction of cobalt use in EV batteries is rather uncertain. Although there is broad 
consensus on the reduction of cobalt consumption in EV batteries, at least from 2020 on, there is 
no general agreement on which cathodes will be prevalent in the future, even for options that are 
market-ready or with near-term maturities.  

The quantification of the ability of disruptive technologies to influence the conditions of the 
batteries market should also be taken on board.  

The recycling potential of EV batteries is also rather uncertain. On one hand, a delayed recycling 
potential can be expected due to second use affecting lifespan distributions. On the other hand, at 
least in the EU, overall collection rates may be lower than expected. 

Another effect on the availability for recycling in the EU, which is difficult to forecast, is the 
relatively high share of cobalt recyclers in the EU and their ability to source end-of-use EV batteries 
from the global market in the future. 
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Annexes 

Annex 1. Country ranking by cobalt reserves & resources identified in active 

mines and exploration projects 

Country Resources & reserves (cobalt 

contained, tonnes) 

Number of projects (with reported 

cobalt resources) 

Mine stage Late-stage Mine 

stage 

Late-

stage 

Total 

Dem. Rep. Congo 8 938 253 910 902 9 8 17 

Australia 350 760 1 405 598 4 45 49 

Tonga 0 1 519 000 0 1 1 

Canada 238 189 609 094 7 26 33 

Zambia 653 538 4 300 5 1 6 

Cuba 454 000 0 2 0 2 

Papua New 

Guinea 

124 000 228 300 1 2 3 

Finland 312 200 37 521 2 4 6 

Cote d'Ivoire 0 290 480 0 2 2 

Philippines 100 550 174 897 4 5 9 

China 206 141 29 785 5 4 9 

Tanzania 0 229 620 0 5 5 

Mexico 223 000 0 1 0 1 

Madagascar 215 000 0 1 0 1 

Russia 0 197 124 0 5 5 

Brazil 34 700 157 625 1 3 4 

USA 85 479 28 488 3 3 6 

South Africa 45 186 15 600 1 1 2 

Guinea 0 34 610 0 1 1 

Morocco 17 956 0 1 0 1 

Solomon Islands 0 11 090 0 1 1 

Uganda 9 400 0 1 0 1 

Sweden 0 1 446 0 2 2 

Argentina 0 1 381 0 1 1 

Vietnam 1 100 0 1 0 1 

Data source: (S&P Global Market Intelligence, 2018).  
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Annex 2. Statistical correlations used to handle missing data in the estimation 

of mine supply forecasts 

As a result of data availability issues, some data on production capacities was derived 

statistically. 

The approach described in (Cox, Wright, & Coakley, 1981) was used to fill gaps in the 

data. The procedure invoked is based on the assumption that the total metal contained in 

deposits, and their annual production, is log-normally distributed – large deposits 

produce relatively less metal per tonne of metal contained annually than medium and 

small deposits – and a high correlation between the two can be observed. This 

correlation was used by the authors for a rough prediction of the potential copper 

production from undeveloped deposits in the US. 

For the purposes of this analysis, annual production capacities of properties for which 

information is available were compared with the amount of resources and reserves. Both 

variables were first transformed by taking the natural logarithms and a regression 

equation relating them was obtained. This was used in the prediction of missing 

capacities data. Different improvements in the correlation coefficients were tested by 

eliminating outliers in the data. 

 

 

  



 

94 

Annex 3. Development timeframes over the lifecycle of a mine project 

The stages in the lifecycle of a mine have different development timeframes.  

For the pre-production stage, typical development timeframes will be around one year. 

For developments prior to the decision to build a mine, the best-case scenario will be four 

years.  

According to (S&P Global Market Intelligence, 2015), a pre-feasibility study prepared with 

suitable resources identified (after around six years of initial and advanced exploration), 

can take two years to produce. When reflecting a positive outcome for the project, a pre-

feasibility study will then be developed further into a feasibility study, which takes an 

average of two years to prepare.  

The permit and financing stage should take about three years while construction of a 

mine is likely to take at least two years.  

These timeframes can be further constrained by delays during the development period, 

which can be expected, especially in less favourable market conditions.  

On the other hand, it is reasonable to expect that at least some projects with less 

challenging economics will take fewer years than the fixed timeframes to come into 

production. 

 

Source: adapted from (Sykes J. , 2012), presented in (JRC, 2016 (a)).  
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Annex 4. Mine production capacities per country until 2030. 

Country 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 

Dem. Rep. 

Congo 

110 

025 

81 

185 

86 

285 

93 

085 

103 

036 

109 

504 

114 

355 

114 

355 

114 

355 

113 

428 

112 

193 

111 

266 

111 

266 

111 

250 

Cuba 5 408 5 408 5 408 5 408 5 408 5 408 5 408 5 408 5 408 5 408 5 408 5 408 5 408 5 408 

Finland 3 187 3 187 3 187 3 187 3 187 3 187 3 187 2 947 2 627 2 801 3 353 3 767 3 767 3 767 

Mexico 2 000 2 000 2 000 2 000 2 000 2 000 2 000 2 000 2 000 2 000 2 000 2 000 2 000 2 000 

Madagascar 5 600 5 600 5 600 5 600 5 600 5 600 5 600 5 600 5 600 5 600 5 600 5 600 5 600 5 600 

China 6 866 6 679 6 679 6 679 6 679 6 679 6 679 6 679 6 679 5 230 3 298 1 848 1 848 1 848 

Papua New 

Guinea 

3 308 3 308 3 308 3 308 3 698 4 218 4 608 4 608 4 608 5 386 6 423 7 202 7 202 7 202 

South Africa 1 033 813 813 813 813 813 813 813 813 972 1 183 1 342 1 342 1 342 

Canada 7 257 6 419 7 003 7 782 8 667 9 067 9 367 9 367 9 360 11 

088 

13 

398 

13 

893 

12 

410 

11 

358 

Zambia 17 

160 

13 

760 

13 

310 

12 

710 

12 

260 

12 

260 

12 

260 

12 

260 

12 

260 

12 

323 

11 

148 

9 531 8 271 8 271 

Australia 6 035 4 999 4 999 4 999 11 

314 

19 

464 

25 

419 

25 

148 

25 

146 

29 

090 

32 

550 

34 

095 

32 

280 

32 

261 

Morocco 2 100 2 100 1 470 630 0 0 0 0 0 0 0 0 0 0 

USA 163 163 589 1 157 1 582 1 582 1 582 1 582 1 582 1 901 2 326 2 596 2 530 2 481 

Vietnam 80 80 80 56 24 0 0 0 0 0 0 0 0 0 
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Philippines 7 321 2 721 2 721 2 721 3 801 5 154 6 118 6 031 6 031 6 242 6 524 6 557 6 320 6 142 

Brazil 2 635 935 935 935 1 930 3 256 4 251 4 251 4 251 4 299 4 364 4 412 4 412 4 412 

Guinea 0 0 0 0 280 653 933 933 933 933 933 933 933 933 

Tanzania 0 0 0 0 833 1 943 2 775 2 775 2 775 3 471 4 398 5 094 5 094 5 094 

Russia 6 520 0 0 0 130 302 432 432 432 1 519 2 968 4 055 4 055 4 055 

Solomon 

Islands 

0 0 0 0 0 0 0 0 0 124 290 415 415 415 

Tonga 0 0 0 0 0 0 0 0 0 4 142 9 666 13 

808 

13 

808 

13 

808 

Cote d'Ivoire 0 0 0 0 0 0 0 0 0 1 333 3 110 4 442 4 442 4 442 

Argentina 0 0 0 0 0 0 0 0 0 28 66 94 94 94 

Sweden 0 0 0 0 0 0 0 0 0 37 87 124 124 124 

Zimbabwe 153 0 0 0 0 0 0 0 0 0 0 0 0 0 

Botswana 350 0 0 0 0 0 0 0 0 0 0 0 0 0 

New Caledonia 4 800 0 0 0 0 0 0 0 0 0 0 0 0 0 

Indonesia 1 045 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 193 

046 

139 

357 

144 

387 

151 

070 

171 

241 

191 

091 

205 

788 

205 

190 

204 

862 

217 

357 

231 

285 

238 

481 

233 

622 

232 

308 

* Data results from scenario 1 projections. It includes mine capacities in tonnes of Co per year, not adjusted to any specific recovery in 

the refining process.
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Annex 5. Overview of world and European Li-ion recycling plants  

Company Location Process 
Battery 

type 

Capacity  

(tonnes of 

batteries 

per year) 

Glencore (former 

XSTRATA Nickel 

Ltd) 

Canada 

(Sudbury) 

Calcination> EAF> 

Hydrometallurgy 

Co-based 

LIB 
7000 

Retriev 

Technologies Inc. 

(incl. former 

Toxco Inc.) 

Canada (BC, 

Trail), US 

(Baltimore, OH; 

Anaheim, CA) Hydrometallurgical  

Li metal, 

Li-ion 4500 

AERC Recycling 

solutions 

US (Allentown, 

PA; West 

Melbourne, FL; 

Richmond, VA) Pyrometallurgical  

All types 

including 

Li-ion and 

Li-metal  

Sony Electronics 

Inc. – Sumitomo 

Metals  and 

Mining Co. Japan Pyrometallurgical  Li-ion 120-150 

Nippon Recycle 

Center Corp. 

Japan (Osaka; 

Aichi; Myagi) Pyrometallurgical  

Ni-Cd, 

NiMH, Li-

ion, 

alkaline  

Dowa Eco-

System Co. Ltd. Japan Pyrometallurgical  

Various 

including 

Li-ion 1000 

JX Nippon Mining 

and Metals Co.  Japan Pyrometallurgical  

Various 

including 

Li-ion 5000 

Shenzhen Green 

Eco-Manufacturer 

Hi-Tech Co. 

China (Jingmen, 

Hubei) Hydrometallurgical  

NiMH, Li-

ion 20000-30000 

Hunan BRUNP 

China 

(Ningxiang, 

Changsha, 

Hunhan) Hydrometallurgical  

Various 

including 

Li-ion 3600-10000 

BATREC AG  

Switzerland 

(Wimmis) 

Pyrometallurgy> 

mechanical 

treatment Li-ion 200 

UMICORE S.A. 
Belgium 

(Hoboken) 

UHT 

pyrometallurgy 

followed by 

hydrometallurgy 

Li-ion, 

NiMH 
7000 
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RECUPYL S.A. 
France 

(Grenoble) 
Hydrometallurgy Li-ion 

110 

SNAM  

France (Saint 

Quentin 

Fallavier) 

Pyrometallurgy> 

mechanical 

separation>Hydro

metallurgy 

NiCd, 

NiMH, L-ion 300 

Euro 

Dieuze/SARP France (Dieuze) Hydrometallurgy  Li-ion 200 

ERAMET (Valdi) 

France 

(Commentry) Pyrometallurgy 

Various 

including 

Li-ion 20000 

AKKUSER Ltd. Finland (Nivala) 

Mechanical 

treatment (output 

sold to 

hydrometallurgical 

plant) 

NiCd, 

NiMH, Li-

ion, Zn 

alkaline 
4000 

ACCUREC GmbH 

Germany 

(Mulheim, 

Krefeld) 

Pyrolysis> 

mechanical 

treatment> hydro 

or Pyrometallurgy 

NiCd, 

NiMH, Li-

ion 

6000 

G&P Batteries UK (Darlaston) NA 

Various 

including 

Li-ion 145 

AEA Technology UK (Sutherland) Hydrometallury Li-ion NA 

Note: Some capacities given in the table might refer to tons/year instead of tonnes/year. 

Data sources: (Weyhe, 2013), (CM Solutions, 2015) and (JRC, 2016 (b)). 
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