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Note on this document 

This report summarizes the research activities carried out during the two years of the exploratory research 
project IDENTICLASS. Even if we were not able to collect all the foreseen experimental data, the image datasets 
acquired and elaborated were enough to be processed by machine learning. The main objectives of the project 
were achieved and the colour-based, texture-based and spectroscopy-based classification models were 
developed successfully. Since this document is a technical report, we focused mainly on the big picture of our 
achievements describing how the models work to identify and classify potential seized UOCs powders using 
only their colour and morphological and hyperspectral images. For this reason, the discussion on the results are 
limited on the performance of the final classification models, while the results obtained during the models 
development procedure are largely omitted.  
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Abstract 

The IDENTICLASS project gave its contribution to the Exploratory Research (ER) Programme in 2018-2020. This 
ER project was focused on the development of a new analytical approach for the quick characterization and 
classification of uranium containing powders, primarily UOCs (Uranium Ore Concentrates), to combat their illicit 
trafficking. The study combines colour analysis by spectrophotometric measurements, different image texture 
analysis methods (such as AMT, angle measure technique; GLCM, grey level co-occurrence matrix; GLRLM, grey 
level run length matrix, local binary pattern), with information on the molecular structure (obtained by NIR 
spectroscopy) and then combine the analytical data for further processing. The expected result of this 
exploratory research was to obtain a new method, which makes use of a dedicated mathematical model based 
on data fusion, hence combining colour, image texture features and NIR spectroscopy data. To develop the 
models, a suite of 79 UOC samples available in the Directorate G.II.8 laboratories have been used as training 
and test samples. The main objectives were achieved and the classification models were developed successfully. 
After a final refinement, this approach could be implement as a new methodology to investigate seized uranium 
ore concentrate powders.   
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1 Introduction 

The legal use of uranium is supposed to be only for energy production, but unfortunately, it was not always like 
that as history has taught us. The peaceful use of nuclear energy has been promoted in Europe by the EURATOM 
since 1957. It has been also established that all the Member States that signed the Euratom Treaty, should 
collaborate in promoting the peaceful use of nuclear energy and in fighting against its illegal use.  

Nuclear security remains a priority for the European Union and, in order to avoid unauthorized use of nuclear 
materials, JRC contributes actively in defining and implementing the EU Nuclear Security Policy in various 
manners. Nuclear forensics is considered as a key component to respond to a nuclear security event. JRC has 
been pioneering this area in developing new approaches for the characterization of seized nuclear materials 
and next to highly sophisticated methods; attention is now given to developing techniques for their rapid 
identification.  

Incidents involving nuclear materials out of regulatory control in the last decades have raised the necessity to 
include the early stages of the nuclear fuel cycle in nuclear forensics investigations; in this scenario increasing 
interest has been attributed to the uranium ore concentrates (UOCs) [1, 2]. 

UOCs are the precursors of nuclear fuel and they are the product resulting from the mining, milling and leaching 
of the uranium ores in the front-end of the nuclear fuel cycle. The process includes purification by means of 
solvent extraction or ion-exchange, and precipitation. The UOCs contain about 60-80% of uranium in different 
chemical composition: e.g. ammonium diuranate, uranyl hydroxide, uranil peroxide or uranium trioxide when 
calcination is performed [2]; they are produced and treated in large quantities and, therefore, diversions or 
thefts can happen. 

In the event of a discovery of illicit trafficking of UOCs, questions such as 'what is the material?', 'How it was 
produced?', 'Where did it come from?' have to be answered as soon as possible [3-6]. This approach is the core 
of nuclear forensic investigations. Typically, an investigation involves several measurable parameters, also 
termed as “signatures or fingerprints”; these can be understood as physical, chemical or isotopic characteristics 
of the nuclear materials that could collectively help to identify its origin [3-6]. Various measurable quantities 
associated with the UOCs compositions have been reported. These include analysis of major isotopes of 
uranium, minor isotopes, other minor constituents, non-volatile organics compounds and anionic impurities [7-
14].   

In the last years the application of different image analysis (IA) techniques have been explored, in order to find 
a correlation between morphological characteristics of different UOCs and their processing or production history 
[1, 15-17]. Image analysis methods that need to be further investigated in nuclear forensics domain are image 
texture analysis and the hyperspectral image analysis, combined with machine learning. Image texture analysis 
can provide information related on the bulk powder environment [18] (i.e. how the particles are arranged 
together), while hyperspectral image analysis can provide information related to the chemical composition of 
the sample analysed because, in each pixel composing the image, the near infrared spectra are also stored [19]. 
Machine learning, as sub-domain of Artificial Intelligence (AI), allow to find correlation among large amount of 
data providing, in short time, information about similarities among samples because of the so-called 
classification models [20]. 

This ER project aims to further study the methodology proposed by Fongaro et al. [17], developing a new 
approach for the UOCs characterization combining colour, image texture and spectroscopy analysis, to combat 
illicit trafficking. In this report the project description, the methodology and the results reached during the two 
years of the exploratory research, are summarised. Even if not all the goals established during the planning 
phase have been reached, this research represent a milestone, opening new perspective in the R&D of nuclear 
forensics.  

1.1 Project description 

After the publication on the first application of the angle measure technique algorithm, as image texture 
analysis method to identify and classify uranium powders [17], a further investigation became necessary. 

When the development of a new procedure for nuclear forensics purpose is taken into consideration, like in this 
case to identify and classify seized uranium powders, the time factor plays an important role in the investigative 
process. Nowadays, the research and development in the frame of nuclear forensic science, is focused on new 
procedures that are preferably faster or more precise than the other already available, helping in the origin 
attribution by revealing the processing history.  
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Our research was oriented not only to extend the application of the image texture analysis to a larger number 
of uranium ore concentrate samples, and to try other textural feature extraction algorithms; but also to test 
other selected analytical techniques that can provide, together with image texture analysis, important 
information in the shortest time possible. In this way, the overall accuracy of the final response in terms of the 
sample´s origin attribution, can be also improved.   

In the IDENTICLASS project different analytical methods were considered: colour analysis, image texture 
analysis applying different algorithms and hyperspectral imaging. The expected result of the development of 
this new approach was a dedicated mathematical model, developed by machine learning and based on data 
fusion, combining colour, image texture features and NIR spectroscopy data. This new methodology was 
developed and tested using a suite of 79 UOC samples that are available in the JRC Karlsruhe. 

In particular:  

- Colour analysis was carried out via spectrophotometric/colorimetric measurements. This technique allowed 
the creation of a predefined numbers of colour classes in which seized samples can be attributed factually 
before being analysed with the other following techniques. It should be noted that the colour of uranium 
powders is also a reflection of their chemical composition and therefore processing history.  

- Image Texture analysis was carried out applying different image texture features extraction algorithms (angle 
measure technique, AMT, grey level co-occurrence matrix, GLCM, grey level run length matrix, GLRLM, local 
binary pattern, LBP; etc.). The features extracted with these techniques are related to the morphology 
characteristics of the powder samples and they are also correlated to the process technology.  

- Hyperspectral image analysis was carried out with a near infrared hyperspectral camera in the wavelengths 
range from 970 nm to 1700 nm. This technique provides information about the chemical composition of the 
samples analysed. The spatial and spectroscopy information are combined in one single image, where in each 
pixel composing the image the correspondent infrared spectra is also stored.  

The project´s work break down structure is shown in Figure 1. It was organized in four phases; in the first 3 
phases, a classification model for each methodology was developed using machine learning. In particular, a 
colour-based, texture-based and spectral-based classification models were successfully developed. The 4th 
phase focused on the selection of the best data fusion strategy followed by the development of the final 
classification model; this phase is still on-going. With this final model the chemical composition, and therefore 
the probably process history of the UOCs should be possible to be narrowed down using only the textural and 
hyperspectral images.  

Each of the phases was organized into specific tasks including: 

1. Development of the appropriate analytical procedure to collect the experimental data 

2. Data collection 

3. Data pre-processing, explorative data analysis and Machine Learning for the supervised classification 
model development. 

4. Validation tests and results assessment 
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Figure 1. Work breakdown structure of the IDENTICALSS project. 

It is important to note that a hierarchical modelling approach was followed allowing to reduce the number of 
samples to which a seized uranium powder can be attributed. As can be seen from Figure 1, the output of the 
phase 1 is the input for the following phases 2 and 3. In practice all the colour classes with a specific number 
of samples, that have been identified and chosen during the colour-based classification model development, 
are the input for the textural and hyperspectral based classification models development. This means that for 
each colour class there will be the correspondent textural and hyperspectral classification models. The same 
approach is applied for the phase 4 where the outputs (the experimental data or the models) of the phases 2 
and 3 are used as the input for the phase 4. 
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2 Materials and methods  

2.1 Materials 

The samples investigated in the present study are 79 UOC powders which were mostly collected between 1950 
and 2000. The powders exhibit colours grading from white/light yellow, yellow and orange to brown and black 
(Figure 2). A detailed list of the examined samples is shown in Table 1 together with the corresponding major 
chemical component.   

Table 1. List of the analysed UOC samples. 

 

Numbe

r 

Sample                    

(Country-Facility) 

Major Chemical 

Composition

Number Sample                    

(Country-Facility) 

Major Chemical 

Composition

1
England                

Wheal Edward 
Unknown 41

Canada                   

North Span 
UO2(OH)2 

2
USA                          

Kerr MgGee 
(NH4)2U2O7 42

USA                           

Utah 
(NH4)2U2O7 + U3O8 

3
Spain                           

Jen 
(NH4)2U2O7 43

Australia                

Ranger 
Na2U2O7 

4
Australia                 

Yeelirrie 
Mixture 44

Germany            

Brunhilde 
(NH4)2U2O7 

5
S. Africa                 

Rossing 
U3O8 45

Germany             

Helweiler 
(NH4)2U2O7 

6
S. Africa                    

Mindola 
Unknown 46

S. Africa                

Somair 
Na2U2O7 

7
USA                            

Cotter 
Na2U2O7 47 Portugal Unknown

8
S. Africa                    

EFI(Mouand) 
(NH4)2U2O7 48

USA                      

Lucky McGill 
(NH4)2U2O7 

9
USA                   

Pathfinder 
UO2(OH)2 49

USA                       

Everest Black 

(NH4)2U2O7 + mixed 

oxide

10
Canada                 

Stanrock 
(NH4)2U2O7 50

Canada                      

Rio Algom 
(NH4)2U2O7 

11
Holland                      

Delft 
Mixture 51

Canada                    

Rabbit Lake 
UO4.2H2O + U3O8

12
S. Africa                

Maruzi 
Unknown 52

USA                     

Everest Yellow 
UO4.2H2O 

13
S.Africa                

Palabora 
U3O8 53

Sweden               

Ranstadt 
Na2U2O7 

14
Belgium                   

Belgian Congo 
UO2(OH)2 54

USA                            El 

Mesquite 
UO4.2H2O 

15
Brazil                       

Nuclebras 
(NH4)2U2O7 55

USA                        

Union Carbide 
Mixture

16
Spain                           

Enusa 
(NH4)2U2O7 56

Canada               

Denison 
(NH4)2U2O7 

17
Australia               

Queensland 
U3O8 57

USA                            

Atlas 
U3O8 + oxide

18
Germany                

Wismut 
(NH4)2U2O7 58

Australia                  

Mary Kathleen 
U3O8 

19
USA                       

Yankee Yellow 
Na2U2O7 59

USA                        

United Uranium 
UO2(OH)2 

20
Canada                        

Dyno 
UO2(OH)2 60

USA                        

South Dakota 

Mixed oxide + 

UO2(OH)2

21
Canada                   Key 

Lake 
U3O8 61 Argentina Na2U2O7 

22
China                    

Hengyang 
U3O8+UO2 62

USA                       

Federal American 
U3O8 

23
USA                         

Petromic 
Mixed oxide 63

USA                           

Dawn 
(NH4)2U2O7 

24
Canada                     

Blind River 
UO2(OH)2 64

Canada               

Milliken Lake 
(NH4)2U2O7 

25
Canada                     

Gunnair 
UO2(OH)2 65

Australia               

Rum Jungle 
(NH4)2U2O7 

26
Yugoslavia                

Spisak Black 
UO2(OH)2 66

Canada                         

El Dorado 
(NH4)2U2O7 

27
Canada                   

Faraday 
UO2(OH)2 67

Canada                       

Ray Rock 
UO2(OH)2 

28
Australia              

Olympic Dam 
U3O8 

USA                    

Chevron Hill 
(NH4)2U2O7 + oxide

29
Yugoslavia               

Spisak Yellow 
(NH4)2U2O7 69

S.Africa                 

Nufcor 
U3O8 

30
USA                       

Mulberry 
(NH4)2U2O7 70

Russia                   

Technab 
U3O8 

31
USA                            

Falls City 

Na2U2O7 + mixed 

oxide
71

USA                    

United Nuclear 
(NH4)2U2O7

32
Canada                  

Madawaska 
Oxide 

Yugoslavia            

Rudnik 
(NH4)2U2O7 

33
USA                            

Irigaray 
UO4.2H2O 73

Australia                

South Alligator 
UO2(OH)2 

34
USA                                 

ESI 
(NH4)2U2O7 74

USA (Vermount)                        

Yankee Black 

(NH4)2U2O7  + mixed 

oxide

35
Canada                 

Macassa 
UO2(OH)2 75

USA               

Sesquehann
UO2(OH)2 + oxide

36
USA                  

Anaconda 
(NH4)2U2O7 76 Romania Na2U2O7 + oxide

37
USA                        

Shirley Basin 
Na2U2O7 + oxide 77

USA                          

EFI 
(NH4)2U2O7 

38
USA                         

Mobil 
UO4.2H2O 78

USA               

Homestake 
(NH4)2U2O7 

39
Canada                        

ESI 
(NH4)2U2O7 79

Canada               

Stanleigh 
(NH4)2U2O7 

40
Australia                 

Radium Hill 
(NH4)2U2O7 
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Figure 2. Subset of the samples under investigation. The powders shown are representative of some 
of the different colours possessed by the UOCs. 

2.2 Methods 

2.2.1 Colour analysis by spectrophotometer measurements 

The colour analysis was carried out via spectrophotometric measurements. This technique allowed the creation 
of predefined colour classes in which seized samples can be attributed objectively before being analysed with 
the other techniques. The colour spectra have been measured using a diffuse-reflected spectrophotometer, a 
Konika Minolta CM-700d, equipped with a silicon photodiode array detector, an integrating sphere having a 
diameter of 40 mm, a xenon lamp with a UV cut filter operating in the visible range of the electromagnetic 
spectrum (360-740 nm). The light reflected by the sample, collected in the integrating sphere, is normalized to 
the zero reflection condition and to a pure white standard (100% reflection). , The samples were introduced in 
quartz vials (75 x 10 mm) or borosilicate glass vials (45 x 14.7 mm) for the colour measurements and two 
types of data were collected: the reflectance values in the wavelengths range of 360 nm to 740 nm and with a 
resolution of 10 nm, and the “tristimulus” values in terms of L*, a*, b* in the CIE 1976 L*a*b* colour space [21-
22].   

At the end 38 variables from the spectral data + 3 variables from the L*a*b* colour space, have been acquired 
from each sample and used to create the spectrophotometric dataset for the colour based classification model 
development. Each sample has been measured 5 times and only the average was taken into account [23]. 

2.2.2 Scanning electron microscopy and image texture analysis 

SEM images of the UOC samples were acquired using a FIB/SEM FEI Versa 3D in low-vacuum mode (pressure 
= 10 Pa) equipped with a concentric backscattered detector for backscattered electrons. 

To develop the texture-based classification model, the textural images have been collected (using an in-house 
produced sample holder in graphite) following the scheme showed in Figure 3. For each specimen, 3 independent 
sample preparations were done and 5 images were acquired at three different magnifications of 100x, 250x 
and 500x or 1000x for each sample preparation. Each sample has an image data set of 45 independent images 
(15 for each magnification), corresponding to a whole image dataset of 3555 images. 

As an example, two image data sets (250x and 1000x of magnifications) with all the textural images of the 
samples belonging to colour class 1, are shown in the Figure 4. 

 

Figure 3. Sample holder with the 5 different regions from which the textural images have been 

acquired. From each square, the images at 100x, 250x and 500x/1000x of magnification were 

collected maintaining always the same centre. 
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Figure 4. Image texture dataset of samples belonging to the colour class 1. The images represented 
have been acquired at 250x (top) and 1000x (bottom) of magnification. 
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2.2.3 Image texture analysis 

There are different definitions of image texture, but in general this is an image property highly dependent on 
the physical surface characteristic of the object analysed (surface topography, morphology, surface texture): it 
could be defined as the spatial distribution, frequency and grey level value of each pixel composing the image. 
Different approaches can be used for image texture evaluation; statistical, structural and spectral [17]. 

To develop the texture-based classification model, different texture features extraction algorithms, belonging 
to all the three approaches, were used in order to create the textural features datasets; in particular, the texture 
image datasets were analyzed with the following methods (their description can be found in ANNEX 1): 

First Order Statistics (FOS).  

Grey Level Co-Occurrence Matrix (GLCM).  

Grey Level Run Length Matrix (GLRLM).   

Grey Level Size Zone Matrix (GLSZM).  

Local Binary Pattern (LBP).  

Angle Measure Technique (AMT). 

The lists of each of the extracted textural features used for the texture-based classifications models 
development are listed from Table 10 to Table 12 in ANNEX 1. 

2.2.4 Hyperspectral image analysis 

The hyperspectral images have been acquired using the SisuCHEMA hyperspectral Chemical Imaging Analyser 
(SPECIM, Spectral Imaging LTD, Oulu, Finland) system (Figure 5). This system employs a push-broom imaging 
technology providing several advantages: high speed, less heat load from illumination and flexibility to most 
sample shapes and sizes.  The push-broom technology allows to acquire images one line at time while scanning 
the sample on a sliding table. Each line could have 320 to 1312 pixels’ field of view in function of the 
hyperspectral camera spatial resolution. In the scanning dimension, the number of lines (refers to the final 
image height) is dependent on the selected scanning length. The system is composed of: 

Scanner table: with a maximum scanning rate of 60 mm/s with a spatial resolution of 600 µm, maximum 
sample size is 200 x 300 x 45 mm (W x L x T), integrated illumination system with the SPECIM´s diffusive line 
illumination unit. 

FX17 hyperspectral camera: with spectral range of 900-1700 nm, spectral resolution of 8 nm, spatial resolution 
of 640 pixels, spectral sampling/pixel of 3.5 nm, free wavelengths selection from the 224 bands within the 
camera coverage, built-in image correction. 

 

Figure 5. SisuCHEMA system installed at the JRC Karlsruhe. 
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To acquire the hyperspectral images, the same sample holder was used as to acquire the SEM images. For each 
sample holder was acquired 1 hyperspectral image. The final hyperspectral images dataset is represented by a 
total of 237 hyperspectral images.    

Figure 6 shows the process to create the final hyperspectral image dataset. 

 

Figure 6. Procedure to create the hyperspectral images necessary to build the corresponding 

hyperspectral image dataset. The columns show (from left to right) the raw hyperspectral images, 
the reflectance calibrated images, the reflectance calibrated images with the selected area from 

which the sub images were cropped, and finally the 4 square sub images cropped from the selected 

area. 

The raw hyperspectral images acquired for each sample were pre-processed before the spectra were extracted 
and inserted into datasets. The spectra used in this study were first reflectance calibrated and then converting 
the spectra to absorbance, and baseline corrected [23]. The effect of the reflectance calibration on the 
appearance of a hyperspectral image can be clearly seen in Figure 7, where the vertical noise appears to be 
removed. 

 

Figure 7. Hyperspectral image before (left) and after (right) the reflectance calibration using the 
white and dark reference images. 

In ANNEX 2 can be found, as an example, the spectra extracted from the color class 3 after each pre-processing 
steps. 

2.2.5 Models developments by Machine Learning 

The colour based classification model was developed using PLSToolbox v. 8.7 (Eigenvector Research, Seattle, 
USA) for Matlab v R2018b (MathWorks Inc, USA). It was carried out, at the beginning, different explorative 
analysis by PCA; later a hierarchical cluster analysis (HCA) was performed to select the number of different 
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colour groups in which the UOCs samples should be classified and finally support vector machine (SVM) was 
used as classifier to build the supervised colour–based classification model. 

To build the textural and hyperspectral classification models, different codes were written by Isak Lande in the 
programming language Python. An extensive description of these codes and their dependencies can be found 
in [23]. The analysis: image texture features extraction, infrared spectra extraction and pre-processing, machine 
learning for the models development, was conducted through the integrated development environment (IDE) 
Spyder (v. 3.3.6). Only the AMT features were extracted using the jAMT Explorer plugin in the open source Java 
image processing program imageJ [24]. In general, the computational time required from the codes, to elaborate 
and analyse the data, was rather long reaching a maximum runtime of 12 hours.    

The process for finding the most promising classifier for the UOCs classification (based on textural features) 
was found using the images acquired at 250x that had been attributed by the colour based classification model 
to the colour class 1 named Black-Dark Brown (see section 3.1).  

Several classifiers underwent a screening to find the best one. The screening was done by performing nested 
cross-validation (n-CV) and this was done on datasets consisting of the different features groups from AMT, 
GLCM, GLRLM, GLSZM, LBP, all (i.e. containing all the combined group of features). The investigated classifiers 
were Logistic Regression (LR), Support Vector Machine (SVM), GaussianNB (NB), Linear Discriminant Analysis 
(LDA), Random Forest Classifier (RF), KNeighbors Classifier (KNN) [23].  

The best classifier found on the first dataset was applied also on the other SEM image datasets and on the 
spectral datasets. Figure 8 illustrate the process of arriving at the best (most promising) classifier.   

 

Figure 8. Steps used for finding the best classifier and the dataset used (red dotted squares). 

At the end, the classifier was trained on optimized feature sets for each dataset, as a final model for each 
colour category, and their performance was tested on hold-out test data. As outlined in Figure 9, the dataset 
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analysed were split three times into a training set and hold-back test set. All samples in the three test sets were 
unique. The test set consisted of one single sample from each class. For each of these three training sets, an 
optimised feature set was determined, resulting in three feature sets. 

 

Figure 9. Overview of the process of finding optimized feature sets for a dataset and estimating 
their performance on hold-out test data. 

An additional code was also created to develop a model able to classify “new” (unknown) UOC samples. The 
information needed to predict these unknown samples were: the colour class in which the unknown sample is 
attributed and the type of image acquired (SEM with magnification or HSI). The code would then retrieve the 
features that were optimized during the model development. The feature set would then be extracted from the 
unknown UOC samples and used as test data by the model to classify the sample. The unknown sample must 
consist of the same resolution and have underwent the same pre-processing to be applicable for the predictive 
model.   
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3 Results 

During the first year of the exploratory research, we were able to develop the procedure to measure the colour 
of the UOC samples, to collect all the data and to build the colour-based classification model. The procedure to 
acquire the textural images was also developed and they were acquired for most of the samples. During the 
second year, the SysuCHEMA system was purchased, delivered and installed into the laboratory. The 
methodology of the hyperspectral image acquisition was also developed and the hyperspectral images were 
collected. The collection of the textural and hyperspectral image datasets for all samples was not possible for 
various reasons. First of all, the FIB that was used to collect the textural images was undergoing its 
“nuclearization” (attached into the glove-box), and it hindered the work considerably. Secondly, the delivery of 
the SysuCHEMA system was delayed. Anyhow, the image data sets collected were enough to develop the first 
correspondent textural and hyperspectral classification models. Table 2 shows the samples for which the colour 
data, textural and hyperspectral images have been collected, processed and analysed. 

 

Table 2. List of samples with the corresponding data that have been collected and analysed during 

the exploratory research. Yes, means that the data have been acquired and analysed; Yes/No, means 

that the data have been only acquired and need to be still analysed; No, means that the data need 

to be still acquired and analysed. 
ID Number Sample C SE SP ID Number Sample C SE SP 

1 England-Wheal Edward Yes Yes No 41 Canada North Span Yes No Yes 

2 USA-Kerr McGee Yes Yes No 42 USA Utah Yes No Yes 

3 Spain-Gen Yes Yes Yes 43 Australia Ranger Yes Yes Yes 
4 Australia- Yeelirre Yes Yes No 44 Germany -Brunhilde Yes Yes No 
5 Nambia-Rossing Yes Yes No 45 Germany -Helwiler Yes Yes Yes 

6 Zambia-Mindola Yes Yes Yes 46 Niger-Somair Yes Yes No 

7 USA Cotter Yes Yes Yes 47 Portugal Yes No No 
8 Gabon-EFI(Mouand) Yes Yes No 48 USA-Lucky McGill Yes Yes Yes 

9 USA-Pathfinder Yes Yes No 49 USA-Everest-Black Yes No No 
10 Canada-Stamrock Yes Yes No 50 Canada-Rio Algom Yes No No 

11 Holland Delft Yes Yes Yes 51 Canada-Eldore(Rabbit Lake) Yes Yes No 
12 Mozambique-Maruzi Yes No No 52 USA-Everestr-Yellow Yes Yes Yes 

13 S.Africa-Palabora Yes Yes Yes 53 Sweden Ranstadt Yes Yes Yes 

14 Belgian-Congo Yes Yes No 54 USA-El Mesquite Yes Yes No 
15 Brazil Nuclebras Yes Yes Yes 55 USA-Union Carbide Yes No No 
16 Spain-Enusa Yes No No 56 Canada-Denison Yes Yes No 

17 Australia-Queensland Yes Yes No 57 USA-Atlas Yes Yes No 

18 Germany Wismut Yes No Yes 58 Australia-Mary Kathleen Yes Yes Yes 

19 USA Yankee Yellow Yes Yes No 59 USA-United Uranium Yes No No 

20 Canada-Dyno Yes Yes Yes 60 USA-South Dakota Yes Yes No 
21 Canada-Key Lake Yes Yes Yes 61 Argentina Yes No No 
22 China-Hengyang Yes Yes Yes 62 USA-Federal American Partners Yes Yes No 
23 USA-Petromic Yes No No 63 USA Dawn Yes Yes No 

24 Canada-Blind river Yes Yes No 64 Canada Milliken Lake Yes Yes Yes 

25 Canada-Sunnar Yes No Yes 65 Australia Run Jungle Yes Yes Yes 

26 Yogoslavia Spisak Black Yes Yes No 66 Canada El Dorado Yes Yes No 
27 Canada Faraday Yes No Yes 67 Canada Ray Rock Yes No No 
28 Australia Olympic Dam Yes Yes Yes 68 USA Chevron HILP Yes No No 

29 Yogoslavia-Spisak-Yellow Yes Yes Yes 69 S.Africa Nufcor Yes Yes No 

30 Usa-Mulberry(IMC)  Yes Yes Yes 70 Russia-Techsnab Yes Yes Yes 
31 USA-Falls City Yes Yes Yes 71 USA-United Nuclear Yes No No 

32 Canada-Madawaska Yes Yes No 72 Yogoslavia-Rudnik Yes Yes Yes 
33 USA-Irigaray Yes Yes Yes 73 Australia S Alligator Yes Yes Yes 
34 USA-ESI Yes Yes No 74 USA Yankee Black Yes No No 
35 Canada-Macassa Yes Yes No 75 USA Sesquehan Yes No No 

36 USA-Anaconda Yes Yes Yes 76 Rumania Yes Yes Yes 

37 USA-Shirley Basin Yes No No 77 USA-Efi(White Messa) Yes No No 
38 USA-Mobil Yes Yes Yes 78 USA Homestake Yes Yes Yes 
39 Canada-ESI Yes Yes No 

79 Canada Stanleigh Yes No No 
40 Australia-Radium Hill Yes Yes Yes 

 

As can be seen from the Table 2, the collection of textural images is still missing for 22 samples, and 
hyperspectral images for 44 samples, while the textural and spectral features have to be extracted from 30 
and 48 samples, respectively.  
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3.1 Colour based classification model development 

In case of discovery of uranium powder outside of the regulatory control, the provenance and the origin of the 
material should be understood, preferably as soon as possible. After the nuclear forensics analysis and 
characterisation of the seized sample, the results may be compared with the data available in nuclear forensics 
databases. Similarly, in the context of the exploratory research, the data of an unknown sample may be 
compared with the data of the 79 samples used as training samples in this study.  

As reported by Klunder et al. [25], the colour of UOCs powders is usually the first and easiest discriminator. The 
colour is an indicator to be correlated to the processes used for the UOCs production; in particular, in terms of 
different reagents, separation procedures and drying conditions reflecting the U compound in question. 

The idea behind the creation of colour classes, in which the 79 industrial UOCs powder samples can be grouped, 
is the following: instead to compare an unknown sample to all the samples in the database, so in this case 1 to 
79, could be done a comparison between 1 to X number of samples, depending on how many samples there 
will be in the colour class in which the unknown sample will be attributed by the colour-based classification 
model. Basically in this way the number of samples to which the unknown sample can be assigned is reduced 
to the number of samples belonging to each colour class. 

It is true that the colour of one sample can be defined by a simple subjective evaluation, as suggested by 
Klunder et al. [25], but to create colour classes, a more structural and mathematical approach is necessary.    

After the creation of the dataset with the spectrophotometric and L*a*b* colour values, the first approach was 
to carry out a simple explorative analysis by Principal Component Analysis (PCA), in order to understand if there 
were some similarities among all the sample. It was clear that there was some trend in the sample 
representation, as can be seen in Figure 10a. 

 

Figure 10. Sample distribution in the score plot before (a) and after (b) a subjective predefined 

colour labels attribution to all the samples. 

In order to better understand the sample distribution in function of their colour (score plot of Figure 10a), a 
colour label to each sample (based on a visual inspection) have been attributed. These colour labels have been 
used afterwards as category variables in the data matrix and a PCA was repeated.  

Looking the score plot of Figure 10b, the trend is more visible and understandable: the colour changes mainly 
along the PC1 where on the left side there are sample characterised with dark colours while on the right side 
there are samples characterised with light colours; and it seems that the samples can be grouped in different 
clusters.  

This was not sufficient to establish in how many colour classes the samples should have been grouped. Thus, 
in order to understand better how many classes have to be created, a hierarchical cluster analysis (Clustering 
analysis based Mahalanobis distance) was performed. Figure 11 shows the connection dendrogram. The clusters 
can be chosen selecting a threshold, by intersecting the horizontal lines with a sliding vertical line; the 
intersection points defines the number of clusters. In this case, six colour-groups (colour classes) were chosen 
(from colour class 1 to colour class 6; CC1 - CC6) and they were labelled as: Black/Dark Brown (B-DB), Dark 
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Brown/Orange (DB-O), Orange/Dark Yellow (O-DY), Dark Yellow/Yellow (DY-Y), Yellow/Light Yellow (Y-LY), Light 
Yellow/White (LY-W), as can be seen in Table 2. It is worthwhile to highlight that peroxides belong mostly to the 
CC6 (LY-W), ammonium diuranate, sodium diuranate and hydroxides to CC5, CC4 and CC3 (Y-LY, DY-Y, O-DY), 
mixed compounds fall in the CC2 (DB-O) whilst the B-DB group (CC1) contains mostly oxides. This categorisation 
reflects the capability of the cluster analysis to intercept variations in the powders chemical composition that 
is reflected into their colours appearance. Differences in the colour nuances for powders having identical 
chemical composition (e.g. yellow and dark yellow) might be the consequence of a specific production process. 
Figure 12 shows the scattergram with the sample distribution in function of their colour index values (a* vs L*): 
the x-axis corresponds to a* values, z-axis corresponds to the L* values and the dimension of each point (sphere 
diameter) corresponds to the b* values. 

 

Figure 11. Resulting dendogram after the Hierarchical cluster analysis of the entire samples 
collection. Different clusters are possible by selecting different threshold level in the dendogram. In 

this work 6 different colour-groups were chosen. 

 

Figure 12. Scattergram representing the sample distribution in function of their a* and L* values. 

The diameter of each sphere correspond to the b* values. 

The label names were chosen in such a way that each one should indicate a transition from one colour class to 
the next one and not one single colour. This is because few samples are overlapping, in particular as can be 
seen from Figure 12, for colour class 3, 4, 5 and 6. This suggests that their colour index values are close and 
the samples could have in some cases a very similar hue. This means that the colour of those samples can be 
perceived very similar by visual inspection. Table 3 reports details about the 6 colour classes, including the 
colour labels and the number of UOCs samples that ended up in each class. In addition, the ∆E value between 
the consecutive colour classes have been also calculated. ∆E is a single number representing the "distance" 
between two colours and it is tempting to simply compare the Euclidean distance difference between the L*, a* 
and b* colour values in the L*a*b* colour space [21-22]. 
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∆E was calculated between CC1-CC2, CC2-CC3, CC3-CC4, CC4-CC5 and CC5-CC6 in order to understand if the 
colours of the neighbour colour classes can be considered different. In fact, generally a result of ∆E value less 
than 2 indicates that the colours compared can be considered to be perceptually equivalent.   

Table 3. Details about the 6 colour classes obtained after the cluster analysis: average values of L*, 

a* and b* index with the relative standard deviation and the ∆E values, the range and the colour 
class labels are reported. 

Colur Class 

(CC) 
Colour Class Label 

N° of 

Sample 
L* MINL* MAXL* a* MINa* MAXa* b* MINb* MAXb* ∆E 

CC1 Black / Dark Brown 15 44.4±2.1 40,36 47,09 -0.7±1.9 -2,63 4,86 6.9±3 1,65 11,08   

CC2 Dark Brown / Orange 15 55.9±4 47,06 60,76 4±4.2 -2,98 11,13 20.6±8.1 1,72 35,36 18 

CC3 Orange / Dark Yellow 22 69.3±3.9 61,88 74,39 10.3±3.1 1,3 15,78 37.7±7.8 17,68 52,205 22 

CC4 Dark Yellow / Yellow 18 79.3±2.9 75,02 84,36 11±5.2 6,24 25,37 48.2±5.9 34,18 55,9 14 

CC5 Yellow / Light Yellow 5 84±2.4 81,18 87,71 4.6±4.1 0,01 9,28 46.9±3.5 43,03 52,53 8 

CC6 Light Yellow / White 4 87.1±1.3 85,43 88,23 -1.2±1.6 -3,5 -0,22 30.1±2.4 27,26 33,04 18 

As can be seen from Table 3, ∆E index suggests that the colours of the 6 colour classes can be considered being 
different.  

Continuing with the explorative analysis, a new PCA was carried out one more time, using the colour class 
chosen with the cluster analysis as category variables for each sample. As can be seen in Figure 13, now is 
perfectly clear how the samples are distributed in the score plot.  

 

Figure 13. Score plot of colour data using the colour classes, defined by HCA, as category variables. 

After the creation of the colour classes, Super Vector Machine Discriminant Analysis (a supervised classification 
algorithm) was selected as classifier algorithm to build the colour-based classification model. Also in this case, 
the name of the classes has been used as prior information and as category variables.  

The model´s performance, obtained in cross-validation, and in terms of sensitivity and specificity values for 
each colour class, are reported in Table 4 [26]. The model in cross-validation has a Matthews Correlation 
Coefficient average value of 0.95 which is closed to the maximum possible value of 1 (MCC was used due to its 
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capability to cope with imbalances in datasets [27-28]). The validation was achieved with a set of new measures 
for 25/79 UOC powders: in prediction, 24/25 are attributed to the correct class, while one Orange sample is 
classified as Yellow (see Figure 14). Also in this case the MCC average value is 0.95; this indicates, together 
with the sensitivity and specificity values in cross-validation and prediction reported in Table 4, that the colour 
based classification model developed works properly.  

 

Figure 14. Samples of test-set classified in the Yellow group. The classification prediction 

membership is measured either by a 0 (non-membership) or by a 1 (membership). Specifically, only 

the sample 66 is misclassified. 

Table 4. Evaluation metric, in cross-validation (CV) and prediction (P), of the colour-based 
classification model developed with SVM classifier. 

COLOUR CLASS CC1 CC2  CC3  CC4  CC5 CC6 

Sensitivity (CV)  1 0,93 1 0,96 0,8 1 

Specificity (CV)  1 1 0,97 0,98 1 1 

Sensitivity (P)  1 1 0,89 1 1 1 

Specificity (P)  1 1 1 1 0,96 1 

 

Table 5 lists the six different colour classes with all the UOCs samples that have been assigned to each class 
by the colour-based classification model. For each sample it is reported if the SEM and hyperspectral images 
have been acquired and analysed in order to understand how many samples have been used to develop the 
relative texture-based and spectral-based classification model for each colour class. When known, information 
about the different steps: in terms of dissolution, extraction, precipitation and dry/calcination processes, used 
during the production, are also reported. 
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Table 5. List of the six different colour classes with all the UOCs samples belonging to each class. 

Yes, means that the data have been acquired and analysed; Yes/No means that the data have been 

only acquired and must be analysed; No means that the data must be acquired and analysed. 
Information about the main steps of the production process have been reported (IX, ion exchange; 

SX, solvent extraction).  

 

 

COUNTRY / FACILITY MAJOR COMPOSITION DISSOLUTION PROCESS EXTRACTION PROCESS PRECIPITATION PROCESS DRY/CALCINATION COLOUR CLASS COLOUR NAME COLOUR CODE COLOUR SEM SPECTRA

S. Africa-Rossing U3O8 Acid Leach IX, Strip, SX NH3 Calcinated - 500 °C Class 1 Black-Dark Brown B-DB Yes Yes No

S. Africa-Mindola Uknown Unknown Unknown Unknown Unknown Class 1 Black-Dark Brown B-DB Yes Yes/No Yes

USA-Pathfinder UO2(OH)2 Acid Leach Eluex Process NH3 N/A Class 1 Black-Dark Brown B-DB Yes Yes No

S.Africa-Palabora U3O8 Acid Leach SX, Strip NH3 Calcinated - 700 °C Class 1 Black-Dark Brown B-DB Yes Yes Yes/No

Australia-Queensland U3O8 Acid Leach SX, Strip NH3 Calcinated - 500 °C Class 1 Black-Dark Brown B-DB Yes Yes No

Canada-Key Lake U3O8 Acid Leach SX, Strip NH3 Calcinated - 750 °C Class 1 Black-Dark Brown B-DB Yes Yes Yes

China-Hengyang U3O8 + UO2 Acid Leach IX N/A N/A Class 1 Black-Dark Brown B-DB Yes Yes Yes

Yogoslavia-Spisak Black UO2(OH)2 Unknown Unknown Unknown Unknown Class 1 Black-Dark Brown B-DB Yes Yes No

Australia-Olympic Dam U3O8 Acid Leach SX, Strip NH3 Calcinated - 750 °C Class 1 Black-Dark Brown B-DB Yes Yes Yes

USA-Shirley Basin Na2U2O7 + oxide N/A N/A N/A N/A Class 1 Black-Dark Brown B-DB Yes No No

USA-Atlas U3O8 + oxide Pressure Leach / Acid Leach SX, Strip NaOH, H2O2 & NH3 Calcinated - 650 °C Class 1 Black-Dark Brown B-DB Yes Yes No

Australia-Mary Kathleen U3O8 Acid Leach SX, Strip MgO, NH3 Calcinated - 700 °C Class 1 Black-Dark Brown B-DB Yes Yes Yes/No

USA-Federal American Partners U3O8 Acid Leach Eluex Process NH3 Calcinated - 600 °C Class 1 Black-Dark Brown B-DB Yes Yes No

S.Africa-Nufcor U3O8 Acid Leach IX NH3 Calcinated Class 1 Black-Dark Brown B-DB Yes Yes No

Russia-Technab U3O8 N/A N/A N/A N/A Class 1 Black-Dark Brown B-DB Yes Yes Yes

England-Wheal Edward Unknown N/A N/A N/A N/A Class 2 Dark Brown-Light Brown DB-LB Yes Yes No

Mozambique-Maruzi Unknown N/A N/A N/A N/A Class 2 Dark Brown-Light Brown DB-LB Yes No No

USA-Petromic Mixed oxide Acid Leach SX, Strip MgO Calcinated - 400 °C Class 2 Dark Brown-Light Brown DB-LB Yes No No

Canada-Madawaska Oxide Acid Leach IX, Strip MgO N/A Class 2 Dark Brown-Light Brown DB-LB Yes Yes No

Canada-ESI (NH4)2U2O7 N/A N/A N/A N/A Class 2 Dark Brown-Light Brown DB-LB Yes Yes No

USA-Utah (NH4)2U2O7 + U3O8 N/A N/A NH3 N/A Class 2 Dark Brown-Light Brown DB-LB Yes No Yes

Australia-Ranger Na2U2O7 Acid Leach SX, Strip NH3 (Calcinated) Class 2 Dark Brown-Light Brown DB-LB Yes Yes Yes

Portugal-Mine Unknown Uknown N/A N/A N/A N/A Class 2 Dark Brown-Light Brown DB-LB Yes No No

USA-Everest-Black (NH4)2U2O7 + mixed oxide N/A N/A N/A N/A Class 2 Dark Brown-Light Brown DB-LB Yes No No

USA-Union Carbide Mixture Acid Leach SX, Strip NH3 UO Class 2 Dark Brown-Light Brown DB-LB Yes No No

USA-South Dakota UO2(OH)2 + mixed oxide Acid Leach IX MgO N/A Class 2 Dark Brown-Light Brown DB-LB Yes Yes No

USA-Chevron HILL U3O8 Acid Leach SX NH3 N/A Class 2 Dark Brown-Light Brown DB-LB Yes No No

USA-United Nuclear (NH4)2U2O7 Carbonate Leach N/A NaOH, NH3 (Calcinated) Class 2 Dark Brown-Light Brown DB-LB Yes No No

USA-Vermont Yankee Black (NH4)2U2O7 + mixed oxide N/A N/A N/A N/A Class 2 Dark Brown-Light Brown DB-LB Yes No No

USA-Homestake (NH4)2U2O7 N/A N/A N/A N/A Class 2 Dark Brown-Light Brown DB-LB Yes Yes Yes

Australia- Yeelirre Mixture Alkaline Leach N/A NH3 Calcinated - 260/650 °C Class 3 Lighr Brown-Dark Yellow LB-DY Yes Yes No

USA-Cotter Na2U2O7 Pressure Leach / Acid Leach SX, Strip NaOH, H2SO4 & H2O2 N/A Class 3 Lighr Brown-Dark Yellow LB-DY Yes Yes Yes

Belgian-Congo UO2(OH)2 N/A N/A N/A N/A Class 3 Lighr Brown-Dark Yellow LB-DY Yes Yes No

Brazil-Nuclebras (NH4)2U2O7 Acid Leach SX, Strip Possibly NH4OH N/A Class 3 Lighr Brown-Dark Yellow LB-DY Yes Yes Yes

Spain-Enusa (NH4)2U2O7 Heap Leach SX N/A N/A Class 3 Lighr Brown-Dark Yellow LB-DY Yes No No

Germany-Wismut (NH4)2U2O7 N/A N/A N/A N/A Class 3 Lighr Brown-Dark Yellow LB-DY Yes Yes Yes

Canada-Dyno UO2(OH)2 Acid Leach SX, Strip MgO N/A Class 3 Lighr Brown-Dark Yellow LB-DY Yes Yes Yes

Canada-Blind river UO2(OH)2 N/A N/A N/A N/A Class 3 Lighr Brown-Dark Yellow LB-DY Yes Yes/No No

Canada-Sunnar UO2(OH)2 Acid Leach IX, Strip MgO Dried Class 3 Lighr Brown-Dark Yellow LB-DY Yes No Yes

Canada-Faraday UO2(OH)2 Acid Leach IX, Strip MgO N/A Class 3 Lighr Brown-Dark Yellow LB-DY Yes No Yes

Yogoslavia-Spisak-Yellow (NH4)2U2O7 Unknown Unknown Unknown Unknown Class 3 Lighr Brown-Dark Yellow LB-DY Yes Yes Yes

USA-Falls City Na2U2O7 + mixed oxide Acid Leach SX, Strip NaOH; NH3 N/A Class 3 Lighr Brown-Dark Yellow LB-DY Yes Yes Yes

USA-ESI (NH4)2U2O7 Sulphate digestion (75-85 °C) OPAP extraction,  Strip N/A N/A Class 3 Lighr Brown-Dark Yellow LB-DY Yes Yes No

Canada-Macassa UO2(OH)2 Acid Leach IX MgO N/A Class 3 Lighr Brown-Dark Yellow LB-DY Yes Yes No

USA-Anaconda (NH4)2U2O7 Acid Leach SX, Strip MgO Dried - 90-120 °C Class 3 Lighr Brown-Dark Yellow LB-DY Yes Yes Yes/No

Australia-Radium Hill (NH4)2U2O7 Acid Leach IX, Strip MgO Dried - 320 °C Class 3 Lighr Brown-Dark Yellow LB-DY Yes Yes Yes

USA-Lucky McGill (NH4)2U2O7 Acid Leach Eluex Process NH3 N/A Class 3 Lighr Brown-Dark Yellow LB-DY Yes Yes/No Yes/No

Argentina-Mine Unknown Na2U2O7 Acid Leach SX, Strip NaOH N/A Class 3 Lighr Brown-Dark Yellow LB-DY Yes No No

Australia-Rum Jungle (NH4)2U2O7 Acid Leach SX, Strip MgO Calcinated - 800 °C Class 3 Lighr Brown-Dark Yellow LB-DY Yes Yes Yes

Canada-Ray Rock UO2(OH)2 N/A N/A N/A N/A Class 3 Lighr Brown-Dark Yellow LB-DY Yes No No

Yogoslavia-Rudnik (NH4)2U2O7 Acid Leach SX NH3 N/A Class 3 Lighr Brown-Dark Yellow LB-DY Yes Yes/No Yes

USA-Susquehan UO2(OH)2 + oxide N/A N/A N/A N/A Class 3 Lighr Brown-Dark Yellow LB-DY Yes No No

USA-Kerr McGee (NH4)2U2O7 Acid Leach SX, Strip NH3 N/A Class 4 Dark Yellow-Yellow DY-Y Yes Yes No

Spain-Jen (NH4)2U2O7 N/A N/A NH3 N/A Class 4 Dark Yellow-Yellow DY-Y Yes Yes Yes

Gabon-EFI(Mouand) (NH4)2U2O7 N/A N/A N/A N/A Class 4 Dark Yellow-Yellow DY-Y Yes Yes No

USA-Yankee Yellow Na2U2O7 N/A N/A N/A N/A Class 4 Dark Yellow-Yellow DY-Y Yes Yes/No No

Canada-North Span UO2(OH)2 N/A N/A N/A N/A Class 4 Dark Yellow-Yellow DY-Y Yes No Yes

Germany-Brunhilde (NH4)2U2O7 N/A N/A N/A N/A Class 4 Dark Yellow-Yellow DY-Y Yes Yes/No No

Germany-Helwiler (NH4)2U2O7 N/A N/A N/A N/A Class 4 Dark Yellow-Yellow DY-Y Yes Yes Yes

S. Africa-Somair Na2U2O7 Acid Leach SX, Strip NaOH N/A Class 4 Dark Yellow-Yellow DY-Y Yes Yes/No No

Canada-Rio Algom (NH4)2U2O7 Acid Leach IX, Strip MgO N/A Class 4 Dark Yellow-Yellow DY-Y Yes No No

Sweden-Ranstadt Na2U2O7 Acid Leach SX, Strip NaOH N/A Class 4 Dark Yellow-Yellow DY-Y Yes Yes Yes

Canada-Denison (NH4)2U2O7 Acid Leach IX, Strip NH3 N/A Class 4 Dark Yellow-Yellow DY-Y Yes Yes No

USA-United Uranium UO2(OH)2 N/A N/A N/A N/A Class 4 Dark Yellow-Yellow DY-Y Yes No No

Canada-Milliken Lake (NH4)2U2O7 Acid Leach IX NH3 Dried Class 4 Dark Yellow-Yellow DY-Y Yes Yes Yes

Canada-El Dorado (NH4)2U2O7 Alkaline Leach N/A NaOH N/A Class 4 Dark Yellow-Yellow DY-Y Yes Yes/No No

Australia-S. Alligator UO2(OH)2 Acid Leach SX, Strip MgO Dried - 84 °C Class 4 Dark Yellow-Yellow DY-Y Yes Yes Yes

Romania-Mine Unknown Na2U2O7 + oxide N/A N/A N/A N/A Class 4 Dark Yellow-Yellow DY-Y Yes Yes Yes

USA-MESA EFI(White Messa) (NH4)2U2O7 Acid Leach SX, Strip NH3 N/A Class 4 Dark Yellow-Yellow DY-Y Yes No No

Canada-Stanleigh (NH4)2U2O7 Acid Leach IX, Strip MgO N/A Class 4 Dark Yellow-Yellow DY-Y Yes No No

Canada-Stanrock (NH4)2U2O7 Heap Leach IX MgO N/A Class 5 Yellow-Light Yellow Y-LY Yes Yes No

Holland-Delft Mixture N/A N/A N/A N/A Class 5 Yellow-Light Yellow Y-LY Yes Yes Yes

Usa-Mulberry(IMC) (NH4)2U2O7 N/A N/A N/A N/A Class 5 Yellow-Light Yellow Y-LY Yes Yes/No Yes

USA-El Mesquite UO4.2H2O N/A N/A Peroxide N/A Class 5 Yellow-Light Yellow Y-LY Yes Yes No

USA-Dawn (NH4)2U2O7 Acid Leach IX, Strip NH3 N/A Class 5 Yellow-Light Yellow Y-LY Yes Yes No

USA-Irigaray UO4.2H2O N/A N/A Peroxide N/A Class 6 Light Yellow-White LY-W Yes Yes Yes

USA-Mobil UO4.2H2O N/A N/A N/A N/A Class 6 Light Yellow-White LY-W Yes Yes Yes

Canada-Eldore(Rabbit Lake) UO4.2H2O + U3O8 Acid Leach SX, Strip NH3; MgO and H2O2 Calcinated - 650 °C Class 6 Light Yellow-White LY-W Yes Yes No

USA-Everestr-Yellow UO4.2H2O N/A N/A N/A N/A Class 6 Light Yellow-White LY-W Yes Yes Yes
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3.2 Image Texture based classification model development 

The categorisation of the UOCs reflectance spectra (colours) allows preliminary discrimination among the 79 
UOC samples; this can contribute to reducing the investigation time when an unknown uranium powder is seized. 
The samples belonging to each colour class represents the dataset used to build the correspondent texture-
based classification models. 

3.2.1 Preliminary results 

To develop the texture based classification model, a preliminary study was carried out in 2014/2015 [17], where 
image texture analysis was used for the first time to extract textural features from 26 UOCs powder samples.  

The first implementation [26] was focused on the application of the AMT and GLCM to extract the textural 
features and subsequently, to use these features alone and combined together to develop the texture-based 
classification model for two colour classes. It is important to note that the extracted textural features are 
correlated to the morphological particularities of each UOCs powders. 

The models were created for CC5 (Y-LY) and CC6 (LY-W) by applying first the SVM algorithm to the GLCM 
textural features, then to the mean angle spectra and successively by combining all the variables extracted 
[26]. 

The obtained results have indicated that the strategy taken into consideration is valid; in fact, all the models 
developed, in function of the magnification and the feature´s dataset used, performed very well. All of them 
have shown good performance in terms of the diagnostic index values calculated for each model. Furthermore, 
it was decided to extend the attention to the application of other textural features extraction algorithms and 
other classifiers; to do that with a consistent and systematic approach, machine learning was employed.  

3.2.2 Development of the final model 

As mentioned earlier, the discussion on the results are limited on the performance of the final classification 
models developed for each methodology. Here we focused on the texture-based classifications models. The 
detailed results obtained during the model development procedure can be found elsewhere [23].  

After different test on the black samples datasets (see section 2.5), the Linear Discriminant Analysis was 
selected for our purpose as the most promising classifier, reaching the highest classification accuracy among 
all the other tested classifiers [23]. The following steps, as indicated in Figure 9, was to find a feature set for 

each dataset1 that provides high accuracy with the smallest number of features. This was done by performing 
a features reduction.  

At the end a model was developed for each of the available datasets; i.e., for each colour class, four texture-
based classification models were developed, one for each magnification and one for all magnifications 
combined together. All the models consisted of the LDA classifier and a unique optimised features set. To build 
the dataset, labels were given that refer to the country of origin and the name of the production facility. As an 

example of the models performance, the average prediction matrices2,3 of the assigned probabilities for colour 
class 1 (CC1, B-DB: Black-Dark Brawn) and colour class 3 (CC3, O-DY: Orange-Dark Yellow) are shown in Figures 
15 and 16. Each figure has four matrices, one for each magnification (100x, 250x, 500x/1000x) plus one for 
all the magnification combined together. The first column with the acronym denotes the true class of the 
samples. The header of the other columns indicates the predicted class of the samples.  

 

 

 

 

 

                                         
1 One dataset is a data table (matrix) with all the features extracted from the images acquired at one 

magnification, for all the samples belonging to a specific colour class. 
2 The prediction has been carried out three times for each dataset, with an independent and unique validation set 

for each run (see section 2.5); here only the matrix resulted averaging the three matrices of the three 

validation tests is reported. 
3 The figures with the average prediction probabilities matrices for all colour classes, are reported in ANNEX 3. 



Page | 21  

 

1
0

0
X

 

True Pred. Au_MAK Au_OLD Au_QUE Ca_KeL Ch_Hey Ru_Tec SAf_Nuf Saf_Pal SAf_Ros USA_Atl USA_FAP USA_Pet Yo_YuSp   

Au_MAK 58,35% 0,02% 0,01% 0,00% 0,00% 0,00% 19,40% 0,20% 16,50% 0,07% 0,43% 4,85% 0,16% TRUE 

Au_OLD 0,17% 96,91% 0,01% 0,08% 0,00% 0,00% 0,00% 0,00% 1,75% 0,04% 1,02% 0,02% 0,00% TRUE 

Au_QUE 0,06% 0,00% 41,51% 0,10% 0,00% 33,27% 0,03% 0,00% 2,83% 0,00% 22,14% 0,00% 0,05% TRUE 

Ca_KeL 0,00% 0,02% 17,02% 81,81% 0,00% 1,03% 0,05% 0,00% 0,01% 0,00% 0,01% 0,00% 0,06% TRUE 

Ch_Hey 0,00% 0,00% 0,00% 0,00% 100,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% TRUE 

Ru_Tec 0,00% 0,31% 0,19% 0,43% 0,00% 99,03% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,03% TRUE 

SAf_Nuf 20,84% 25,70% 0,52% 0,00% 32,90% 0,48% 3,77% 0,03% 14,39% 0,02% 0,07% 1,09% 0,20% FALSE 

Saf_Pal 5,08% 0,00% 0,00% 0,00% 0,00% 0,00% 0,82% 26,91% 1,08% 0,01% 0,00% 66,10% 0,00% FALSE 

SAf_Ros 14,19% 0,00% 0,03% 0,00% 0,00% 0,00% 6,95% 0,00% 45,71% 2,13% 22,67% 0,35% 7,97% TRUE 

USA_Atl 1,21% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 7,19% 87,12% 0,38% 4,09% 0,00% TRUE 

USA_FAP 0,96% 0,00% 0,00% 0,00% 0,00% 0,00% 0,08% 0,00% 24,25% 1,90% 72,80% 0,00% 0,00% TRUE 

USA_Pet 1,94% 0,00% 0,00% 0,00% 0,00% 0,00% 0,09% 6,89% 12,60% 20,02% 0,38% 58,08% 0,00% TRUE 

Yo_YuSp 3,54% 0,03% 0,18% 0,00% 0,00% 0,01% 4,36% 0,00% 1,55% 0,00% 0,03% 0,00% 90,30% TRUE 
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True Pred. Au_MAK Au_OLD Au_QUE Ca_KeL Ch_Hey Ru_Tec SAf_Nuf Saf_Pal SAf_Ros USA_Atl USA_FAP USA_Pet Yo_YuSp   

Au_MAK 48,29% 0,02% 0,16% 0,00% 0,00% 0,00% 14,92% 0,11% 26,30% 2,56% 0,13% 7,35% 0,17% TRUE 

Au_OLD 7,75% 49,71% 5,56% 1,09% 0,00% 26,93% 0,05% 0,00% 8,61% 0,00% 0,20% 0,00% 0,11% TRUE 

Au_QUE 0,61% 24,47% 33,00% 9,18% 0,00% 0,00% 0,10% 0,00% 29,89% 0,00% 1,03% 0,00% 1,72% TRUE 

Ca_KeL 0,67% 4,47% 42,71% 35,69% 0,00% 0,00% 0,00% 0,00% 4,32% 0,01% 0,10% 0,00% 12,02% FALSE 

Ch_Hey 0,00% 0,00% 0,00% 0,00% 100,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% TRUE 

Ru_Tec 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% TRUE 

SAf_Nuf 7,73% 0,00% 30,23% 1,29% 0,00% 0,00% 45,55% 8,94% 0,05% 0,00% 0,01% 4,38% 1,82% TRUE 

Saf_Pal 0,07% 0,00% 0,00% 0,00% 0,00% 0,00% 33,26% 33,81% 0,00% 0,00% 0,00% 32,85% 0,00% TRUE 

SAf_Ros 18,52% 0,85% 3,03% 0,02% 0,00% 0,00% 0,01% 0,00% 61,86% 0,25% 14,93% 0,01% 0,52% TRUE 

USA_Atl 0,02% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 2,67% 97,00% 0,30% 0,00% 0,01% TRUE 

USA_FAP 0,11% 0,00% 0,18% 0,27% 0,00% 0,00% 0,00% 0,00% 24,71% 0,77% 71,66% 0,00% 2,30% TRUE 

USA_Pet 2,29% 0,00% 0,00% 0,00% 0,00% 0,00% 0,27% 6,11% 0,07% 0,02% 32,95% 58,28% 0,00% TRUE 

Yo_YuSp 0,37% 0,52% 12,29% 5,22% 0,00% 0,00% 0,01% 0,00% 15,00% 0,14% 1,72% 0,00% 64,73% TRUE 
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True Pred. Au_MAK Au_OLD Au_QUE Ca_KeL Ch_Hey Ru_Tec SAf_Nuf Saf_Pal SAf_Ros USA_Atl USA_FAP USA_Pet Yo_YuSp   

Au_MAK 31,76% 0,14% 21,91% 0,01% 0,00% 0,00% 0,00% 0,08% 14,86% 8,21% 0,58% 13,68% 8,78% TRUE 

Au_OLD 0,16% 60,26% 0,09% 31,63% 0,43% 0,00% 2,16% 2,15% 0,98% 0,00% 1,54% 0,60% 0,00% TRUE 

Au_QUE 7,14% 0,08% 45,90% 0,06% 0,00% 0,00% 0,00% 0,07% 20,79% 0,03% 10,13% 13,70% 2,10% TRUE 

Ca_KeL 0,15% 30,09% 0,15% 56,64% 5,25% 0,33% 0,46% 0,05% 0,68% 0,00% 5,77% 0,44% 0,00% TRUE 

Ch_Hey 0,00% 0,23% 0,00% 0,78% 87,35% 11,53% 0,00% 0,00% 0,00% 0,00% 0,10% 0,00% 0,00% TRUE 

Ru_Tec 0,01% 0,00% 0,01% 0,01% 4,08% 95,68% 0,00% 0,00% 0,00% 0,13% 0,02% 0,00% 0,06% TRUE 

SAf_Nuf 0,00% 0,01% 0,00% 0,57% 0,30% 0,00% 85,66% 13,41% 0,00% 0,00% 0,04% 0,00% 0,00% TRUE 

Saf_Pal 0,07% 0,22% 0,52% 0,53% 0,00% 0,00% 18,13% 69,28% 1,13% 0,00% 1,96% 8,16% 0,00% TRUE 

SAf_Ros 35,86% 2,41% 15,43% 1,51% 0,00% 0,00% 0,00% 0,05% 19,73% 0,09% 9,25% 15,56% 0,10% FALSE 

USA_Atl 8,22% 0,01% 0,25% 0,00% 0,05% 23,20% 0,00% 0,00% 0,10% 67,33% 0,02% 0,02% 0,80% TRUE 

USA_FAP 0,88% 12,95% 10,95% 11,37% 0,17% 0,24% 0,04% 0,74% 10,87% 0,00% 43,14% 8,59% 0,05% TRUE 

USA_Pet 16,92% 0,63% 13,73% 12,05% 0,00% 0,00% 19,05% 1,85% 17,43% 0,01% 1,59% 16,69% 0,06% FALSE 

Yo_YuSp 3,26% 0,01% 5,55% 0,01% 0,00% 0,01% 0,00% 0,03% 1,22% 0,64% 0,46% 3,98% 84,84% TRUE 
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True Pred. Au_MAK Au_OLD Au_QUE Ca_KeL Ch_Hey Ru_Tec SAf_Nuf Saf_Pal SAf_Ros USA_Atl USA_FAP USA_Pet Yo_YuSp   

Au_MAK 70,81% 0,02% 0,03% 0,00% 0,00% 0,00% 0,00% 0,01% 13,17% 0,25% 0,04% 8,36% 7,32% TRUE 

Au_OLD 0,01% 33,52% 9,24% 12,28% 0,00% 43,89% 0,01% 0,00% 0,19% 0,00% 0,87% 0,00% 0,00% FALSE 

Au_QUE 0,08% 13,67% 60,20% 1,60% 0,00% 0,00% 0,00% 0,00% 10,37% 0,00% 7,74% 0,00% 6,34% TRUE 

Ca_KeL 0,00% 2,31% 15,32% 80,92% 0,00% 0,25% 0,00% 0,00% 0,40% 0,00% 0,46% 0,00% 0,36% TRUE 

Ch_Hey 0,00% 0,00% 0,00% 0,00% 100,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% TRUE 

Ru_Tec 0,00% 0,00% 0,00% 0,19% 0,00% 99,81% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,01% TRUE 

SAf_Nuf 0,01% 0,01% 0,00% 0,00% 0,01% 0,00% 96,43% 0,19% 0,04% 0,00% 0,05% 0,07% 3,19% TRUE 

Saf_Pal 0,02% 0,00% 0,00% 0,00% 0,00% 0,00% 33,33% 53,01% 0,00% 0,00% 0,00% 13,62% 0,01% TRUE 

SAf_Ros 3,06% 2,17% 14,11% 0,02% 0,00% 0,00% 0,02% 0,00% 32,42% 1,77% 14,53% 0,01% 31,89% TRUE 

USA_Atl 1,20% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 4,33% 91,68% 2,70% 0,01% 0,08% TRUE 

USA_FAP 0,58% 1,70% 2,38% 0,04% 0,00% 0,00% 0,14% 0,00% 18,03% 0,57% 73,41% 0,00% 3,15% TRUE 

USA_Pet 2,41% 0,00% 0,00% 0,00% 0,00% 0,00% 0,34% 3,55% 0,68% 0,11% 25,83% 67,01% 0,07% TRUE 

Yo_YuSp 1,86% 0,97% 4,51% 0,03% 0,00% 0,00% 0,00% 0,00% 9,80% 0,01% 0,38% 0,00% 82,45% TRUE 

Figure 15. Average prediction matrices obtained from model´s validation test for CC1 at 100x, 250x, 

1000x and for all magnifications. 
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True Pred. USA_Ana Be_Cong Ca_Dyno USA_Cot USA_Fall Bra_Nuc Au_RadH Au_RumJ Yo_SpisYe USA_ESI Ge_Wis Au_Yee Ca_Mac   

USA_Ana 81.94% 0.00% 0.00% 16.70% 0.02% 0.13% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 1.19% TRUE 

Be_Cong 0.00% 79.75% 0.00% 0.00% 0.00% 0.00% 0.07% 20.18% 0.00% 0.00% 0.00% 0.00% 0.00% TRUE 

Ca_Dyno 0.00% 0.00% 92.64% 0.00% 0.03% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 7.32% 0.00% TRUE 

USA_Cot 11.40% 0.00% 0.00% 88.36% 0.00% 0.24% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% TRUE 

USA_Fall 0.00% 0.00% 0.01% 0.00% 63.08% 0.00% 0.00% 0.00% 32.85% 0.73% 0.08% 1.27% 1.98% TRUE 

Bra_Nuc 0.39% 0.00% 0.00% 1.00% 0.00% 98.60% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% TRUE 

Au_RadH 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.82% 0.18% 0.00% 0.00% 0.00% 0.00% 0.00% TRUE 

Au_RumJ 0.00% 6.47% 0.00% 0.00% 0.00% 0.00% 2.33% 91.20% 0.00% 0.00% 0.00% 0.00% 0.00% TRUE 

Yo_SpisYe 0.00% 0.00% 3.63% 0.00% 23.01% 0.00% 0.00% 0.00% 54.53% 0.01% 0.05% 16.34% 2.43% TRUE 

USA_ESI 0.00% 0.00% 0.00% 0.00% 0.44% 0.00% 0.00% 0.00% 0.42% 68.29% 0.06% 0.02% 30.77% TRUE 

Ge_Wis 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 0.00% 0.00% 0.20% 0.00% 99.70% 0.01% 0.00% TRUE 

Au_Yee 0.00% 0.00% 1.26% 0.00% 2.21% 0.00% 0.00% 0.00% 7.09% 0.05% 0.18% 89.14% 0.08% TRUE 

Ca_Mac 1.90% 0.00% 0.00% 18.51% 0.18% 0.07% 0.00% 0.00% 3.87% 0.03% 0.11% 0.00% 75.32% TRUE 
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True Pred. USA_Ana Be_Cong Ca_Dyno USA_Cot USA_Fall Bra_Nuc Au_RadH Au_RumJ Yo_SpisYe USA_ESI Ge_Wis Au_Yee Ca_Mac   

USA_Ana 76.65% 0.01% 0.00% 0.69% 10.49% 0.00% 0.00% 0.00% 0.44% 11.46% 0.26% 0.00% 0.00% TRUE 

Be_Cong 0.00% 76.86% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 23.13% 0.00% 0.00% 0.00% TRUE 

Ca_Dyno 32.28% 0.00% 66.66% 0.00% 0.00% 0.00% 0.00% 0.00% 0.18% 0.00% 0.88% 0.01% 0.00% TRUE 

USA_Cot 0.02% 0.00% 0.00% 67.48% 0.01% 0.00% 1.41% 0.00% 6.50% 0.00% 1.07% 0.20% 23.31% TRUE 

USA_Fall 0.01% 0.00% 0.00% 0.06% 94.70% 0.00% 0.00% 0.00% 0.08% 0.00% 5.14% 0.00% 0.00% TRUE 

Bra_Nuc 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% TRUE 

Au_RadH 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% TRUE 

Au_RumJ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% TRUE 

Yo_SpisYe 3.41% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 80.18% 0.00% 1.42% 12.51% 2.46% TRUE 

USA_ESI 0.00% 5.41% 0.00% 0.09% 30.72% 0.00% 0.02% 0.00% 2.06% 34.30% 27.39% 0.00% 0.00% TRUE 

Ge_Wis 0.32% 0.00% 0.00% 0.01% 2.10% 0.00% 0.00% 0.00% 0.16% 0.00% 97.41% 0.00% 0.00% TRUE 

Au_Yee 0.41% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 7.84% 0.00% 0.00% 83.71% 8.04% TRUE 

Ca_Mac 0.00% 0.00% 0.00% 0.37% 0.00% 0.00% 0.00% 0.00% 21.06% 0.00% 0.24% 20.67% 57.65% TRUE 
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True Pred. USA_Ana Be_Cong Ca_Dyno USA_Cot USA_Fall Bra_Nuc Au_RadH Au_RumJ Yo_SpisYe USA_ESI Ge_Wis Au_Yee Ca_Mac   

USA_Ana 97.80% 0.01% 0.00% 0.17% 0.00% 0.00% 0.73% 0.00% 0.00% 0.00% 0.21% 1.07% 0.00% TRUE 

Be_Cong 25.14% 41.78% 0.00% 0.00% 0.00% 0.00% 0.29% 0.00% 0.00% 32.74% 0.01% 0.04% 0.00% TRUE 

Ca_Dyno 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% TRUE 

USA_Cot 0.00% 0.00% 0.00% 66.84% 0.00% 0.00% 1.24% 0.01% 0.00% 0.04% 31.86% 0.01% 0.00% TRUE 

USA_Fall 0.00% 0.00% 0.00% 0.00% 96.36% 0.00% 0.00% 0.00% 0.00% 0.12% 0.18% 0.02% 3.32% TRUE 

Bra_Nuc 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% TRUE 

Au_RadH 0.00% 0.28% 0.00% 0.08% 0.00% 0.00% 99.52% 0.00% 0.00% 0.00% 0.12% 0.00% 0.00% TRUE 

Au_RumJ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.99% 0.00% 0.01% 0.00% 0.00% 0.00% TRUE 

Yo_SpisYe 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% TRUE 

USA_ESI 0.00% 0.00% 0.00% 0.00% 0.60% 0.00% 0.06% 7.41% 0.00% 41.08% 49.57% 1.03% 0.24% FALSE 

Ge_Wis 0.00% 0.00% 0.00% 0.00% 0.43% 0.00% 0.00% 0.00% 0.00% 0.00% 98.59% 0.98% 0.00% TRUE 

Au_Yee 7.62% 0.00% 0.00% 0.00% 0.61% 0.00% 0.00% 0.00% 0.00% 0.01% 0.66% 69.89% 21.20% TRUE 

Ca_Mac 0.00% 0.00% 0.00% 0.00% 22.23% 0.00% 0.00% 0.00% 0.00% 1.21% 0.50% 22.01% 54.04% TRUE 

A
L

L
 

True Pred. USA_Ana Be_Cong Ca_Dyno USA_Cot USA_Fall Bra_Nuc Au_RadH Au_RumJ Yo_SpisYe USA_ESI Ge_Wis Au_Yee Ca_Mac   

USA_Ana 73.42% 16.39% 0.00% 10.06% 0.03% 0.07% 0.00% 0.01% 0.00% 0.00% 0.01% 0.01% 0.00% TRUE 

Be_Cong 1.06% 73.74% 0.00% 0.85% 0.04% 6.02% 0.00% 0.23% 17.91% 0.00% 0.00% 0.05% 0.10% TRUE 

Ca_Dyno 0.03% 0.00% 37.79% 0.01% 31.60% 0.07% 0.00% 0.00% 0.00% 0.40% 0.00% 0.00% 30.09% TRUE 

USA_Cot 0.59% 15.36% 0.00% 53.21% 0.03% 0.00% 30.00% 0.03% 0.07% 0.42% 0.00% 0.29% 0.00% TRUE 

USA_Fall 0.70% 0.00% 0.00% 1.45% 81.99% 5.63% 0.04% 0.28% 0.00% 4.98% 0.19% 1.94% 2.80% TRUE 

Bra_Nuc 0.00% 0.00% 0.00% 1.83% 0.04% 66.97% 6.23% 4.49% 0.00% 2.74% 0.00% 17.66% 0.03% TRUE 

Au_RadH 0.01% 0.00% 0.00% 1.45% 0.01% 0.02% 95.47% 0.64% 0.00% 0.38% 0.00% 2.02% 0.00% TRUE 

Au_RumJ 0.05% 0.11% 0.00% 2.44% 0.05% 2.48% 0.12% 73.64% 11.77% 0.16% 0.00% 9.13% 0.04% TRUE 

Yo_SpisYe 0.00% 6.81% 0.00% 0.01% 0.00% 0.33% 0.00% 5.87% 86.93% 0.00% 0.00% 0.04% 0.01% TRUE 

USA_ESI 0.01% 0.00% 1.95% 1.05% 3.61% 4.16% 0.46% 0.96% 0.00% 63.29% 1.52% 8.02% 14.96% TRUE 

Ge_Wis 0.04% 0.00% 0.00% 0.00% 0.23% 0.01% 0.00% 0.00% 0.00% 0.14% 99.53% 0.04% 0.00% TRUE 

Au_Yee 0.04% 0.00% 0.01% 4.24% 1.71% 2.85% 1.00% 5.93% 0.01% 2.93% 0.00% 81.10% 0.20% TRUE 

Ca_Mac 0.03% 0.00% 5.89% 0.39% 11.33% 4.10% 0.05% 0.17% 0.00% 8.56% 0.00% 1.45% 68.03% TRUE 

 
Figure 16. Average prediction matrices obtained from the model´s validation test, for CC3 at 100x, 
250x, 1000x and for all magnifications. 

Basically, the tables show the average validation test results for the two colour classes. The numbers in the 
table represent the probabilities of each "unknown" test sample, that in our case correspond to the true class, 
to be predicted as a specific sample that correspond to that predicted class.  
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It is important to underline that the green colour of the cells along the diagonal, is proportional to the percentage 
of the correct prediction probability, while the cell with the different intensity of red colour indicates the 
probability the “unknown” test sample is predicted as a wrong sample. The last column reports “TRUE” if the 
highest value of the prediction probability is assigned to the corresponding correct predicted class of the test 
sample. In other words, the “unknown” test sample is predicted with highest probability as belonging to the 
correct class. When the last column reports “FALSE”, it means that the “unknown” test sample is predicted with 
the highest probability to belong to another class.  

To explain better how this table can be interpreted, we can focus only on the average prediction matrix of colour 
class 1 (CC1), of the Black-Dark Brown samples. 

Looking in the first matrix for CC1 at 100x of magnification (Figure 15); the model in this case has an average 
accuracy attribution equal to 85%, i.e. 11 samples over 13 were correctly predicted. Looking the ChHEY sample, 
as an example, the numbers in the ChHEY´s row represent the probability with which the “unknown” ChHEY test 
sample is attributed to the correspondent predicted classes. In this case our test sample ChHEY, has been 
classified and then assigned by the model, to the correct predicted class ChHEY with an average probability of 
100%. It is referring to an average probability because one should keep in mind that these are the average 
prediction matrices; therefore, the probability values in each cell used to describe the model performance, are 
the average of the three different validation test carried out using different images as test image for each run 
(as explained in section 2.5). This result indicates that with this model a sample that has similar texture to the 
ChHEY sample, can be identify with an average probability of 100%, using only the texture signatures. The 
same assessment can be done with AuMAK sample. The numbers in the AuMAK´s row represent the probability 
with which the “unknown” AuMAK test sample is assigned to the correspondent predicted classes. In this case, 
AuMAK test sample has been classified and then attributed from the texture-based classification model to the 
correct predicted class AuMAK with 58.35% probability, with a probability of 19.40% it was predicted as SaNUF, 
with the 16.5% as SaROS and with 4.85% as UsPET. In this case, even if the highest value of the prediction 
probability corresponds the correct predicted class, with only 58.35% probability it is difficult to state that one 
“unknown” testing sample can be the AuMAK sample. To avoid this problem, the same reasoning used to develop 
the colour-based classification model can be applied also here, and the number of samples to which the 
“unknown” AuMAK test sample can be identified, is reduced from 13 to 4. In this example, can be stated that 
our “unknown” test sample has texture similarities with 4 classes and with a total average probability of 99%, 
so the “unknown” sample can be only one of the 4 predicted samples: in particular, AuMAK with 58.35% 
probability, SaNUF, SaROS, UsPEt, with 19.4%, 16.5% and 4.85% probability respectively. If the sample has 
really the same texture properties as sample AuMAK, this can be confirmed also by other analysis like the 
hyperspectral image analysis.  

Considering now the average prediction matrixes at all magnifications for CC1 and CC3, it can be noticed that 
CC1 has an overall accuracy of 92.3%. This includes also the particular case of the SaROS sample that has 
been correctly predicted but only with highest prediction probability value of 32.42%. All the other samples 
shown a prediction probability above 50% and, using this value as a threshold level, the accuracy decreased to 
84.62% since now only 11 samples over 13 were correctly predicted. It must be taken into consideration that 
anyhow the model output is the ranking of the predicted classes in which the unknown sample can be identified, 
in function of the highest prediction probability values. At the end, the final decision will be taken considering 
also information collected from other analysis. For CC3 (Figure 16), the overall accuracy is 100%, if the case of 
the CaDyno sample is taken into account, otherwise the accuracy became 92.31%. The same approach can be 
used to assess the model performances for each colour class. 

Figure 17 shows the three different validation tests (prediction matrices) carried out using a unique image test 
set for 100x dataset of colour class 1, from which the correspondent average prediction matrix (showed in 
Figure 15) have been calculated.  

 

 

 

 

 

 

 



Page | 24  

 

First test files True Pred. Au_MAK Au_OLD Au_QUE Ca_KeL Ch_Hey Ru_Tec SAf_Nuf Saf_Pal SAf_Ros USA_Atl USA_FAP USA_Pet Yo_YuSp   

C1AuMAKU3O8100x Au_MAK 62.68% 0.03% 0.01% 0.00% 0.00% 0.00% 35.05% 0.21% 0.33% 0.00% 0.00% 1.51% 0.18% TRUE 

A3AuOLDU3O8100x Au_OLD 0.34% 99.40% 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.13% 0.01% 0.00% 0.05% 0.00% TRUE 

C1AuQUEU3O8100x Au_QUE 0.00% 0.00% 99.75% 0.00% 0.00% 0.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.15% TRUE 

A2CaKELU3O8100x Ca_KeL 0.01% 0.04% 51.05% 45.46% 0.00% 3.08% 0.16% 0.00% 0.02% 0.00% 0.03% 0.00% 0.17% FALSE 

A5ChHEYUO2_100x Ch_Hey 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% TRUE 

A2RuTECMix_100x Ru_Tec 0.00% 0.00% 0.02% 0.00% 0.00% 99.88% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% TRUE 

C1SaNUFU3O8100x SAf_Nuf 45.46% 0.00% 0.00% 0.00% 0.00% 0.00% 7.40% 0.08% 43.11% 0.07% 0.20% 3.24% 0.44% FALSE 

C4SaPALU3O8100x Saf_Pal 2.25% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 38.33% 0.04% 0.00% 0.00% 59.38% 0.00% FALSE 

C3SaROSU3O8100x SAf_Ros 0.19% 0.00% 0.00% 0.01% 0.00% 0.00% 0.01% 0.00% 40.94% 1.11% 57.69% 0.00% 0.03% FALSE 

A3UsATLU3O8100x USA_Atl 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.95% 0.04% 0.00% 0.00% TRUE 

C2UsFAPU3O8100x USA_FAP 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.68% 0.01% 99.30% 0.00% 0.00% TRUE 

A1UsPETMix_100x USA_Pet 0.77% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 37.78% 60.06% 1.13% 0.27% 0.00% FALSE 

A4YuSPBUH__100x Yo_YuSp 0.40% 0.00% 0.06% 0.00% 0.00% 0.01% 2.16% 0.00% 0.64% 0.00% 0.03% 0.00% 96.70% TRUE 

Second test files True Pred. Au_MAK Au_OLD Au_QUE Ca_KeL Ch_Hey Ru_Tec SAf_Nuf Saf_Pal SAf_Ros USA_Atl USA_FAP USA_Pet Yo_YuSp   

A4AuMAKU3O8100x Au_MAK 60.55% 0.00% 0.00% 0.00% 0.00% 0.00% 20.60% 0.40% 7.80% 0.00% 0.01% 10.63% 0.01% TRUE 

B5AuOLDU3O8100x Au_OLD 0.03% 99.97% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% TRUE 

A3AuQUEU3O8100x Au_QUE 0.18% 0.00% 24.55% 0.26% 0.00% 0.00% 0.09% 0.00% 8.49% 0.00% 66.43% 0.00% 0.01% FALSE 

B4CaKELU3O8100x Ca_KeL 0.00% 0.01% 0.01% 99.98% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% TRUE 

B3ChHEYUO2_100x Ch_Hey 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% TRUE 

C5RuTECMix_100x Ru_Tec 0.00% 0.00% 0.21% 0.00% 0.00% 99.79% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% TRUE 

B2SaNUFU3O8100x SAf_Nuf 0.00% 0.00% 0.06% 0.00% 98.70% 1.24% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% FALSE 

A5SaPALU3O8100x Saf_Pal 10.81% 0.00% 0.00% 0.00% 0.00% 0.00% 2.32% 3.32% 3.21% 0.02% 0.00% 80.33% 0.00% FALSE 

B3SaROSU3O8100x SAf_Ros 2.25% 0.00% 0.00% 0.00% 0.00% 0.00% 0.08% 0.00% 82.22% 5.28% 10.07% 0.08% 0.00% TRUE 

B4UsATLU3O8100x USA_Atl 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 10.92% 88.16% 0.69% 0.14% 0.00% TRUE 

B5UsFAPU3O8100x USA_FAP 2.88% 0.00% 0.00% 0.00% 0.00% 0.00% 0.25% 0.00% 70.36% 0.19% 26.32% 0.01% 0.00% FALSE 

C3UsPETMix_100x USA_Pet 1.79% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 2.17% 0.03% 0.00% 0.00% 95.99% 0.00% TRUE 

B4YuSPBUH__100x Yo_YuSp 10.21% 0.10% 0.05% 0.00% 0.00% 0.00% 10.69% 0.00% 4.00% 0.00% 0.07% 0.01% 74.86% TRUE 

Third test files True Pred. Au_MAK Au_OLD Au_QUE Ca_KeL Ch_Hey Ru_Tec SAf_Nuf Saf_Pal SAf_Ros USA_Atl USA_FAP USA_Pet Yo_YuSp   

B5AuMAKU3O8100x Au_MAK 51.82% 0.03% 0.01% 0.00% 0.00% 0.00% 2.57% 0.00% 41.37% 0.19% 1.28% 2.42% 0.30% TRUE 

C4AuOLDU3O8100x Au_OLD 0.16% 91.37% 0.02% 0.16% 0.00% 0.00% 0.00% 0.00% 5.11% 0.11% 3.06% 0.00% 0.01% TRUE 

B1AuQUEU3O8100x Au_QUE 0.00% 0.00% 0.23% 0.06% 0.00% 99.71% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% FALSE 

C5CaKELU3O8100x Ca_KeL 0.00% 0.01% 0.00% 99.99% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% TRUE 

C4ChHEYUO2_100x Ch_Hey 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% TRUE 

B5RuTECMix_100x Ru_Tec 0.00% 0.93% 0.35% 1.30% 0.00% 97.42% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% TRUE 

A2SaNUFU3O8100x SAf_Nuf 17.05% 77.10% 1.49% 0.00% 0.00% 0.20% 3.90% 0.00% 0.05% 0.00% 0.00% 0.04% 0.17% FALSE 

B3SaPALU3O8100x Saf_Pal 2.17% 0.00% 0.00% 0.00% 0.00% 0.00% 0.15% 39.09% 0.01% 0.00% 0.00% 58.59% 0.00% FALSE 

A4SaROSU3O8100x SAf_Ros 40.11% 0.00% 0.07% 0.00% 0.00% 0.00% 20.75% 0.00% 13.96% 0.01% 0.24% 0.97% 23.89% FALSE 

C2UsATLU3O8100x USA_Atl 3.54% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 10.66% 73.26% 0.41% 12.12% 0.00% TRUE 

A3UsFAPU3O8100x USA_FAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.71% 5.50% 92.78% 0.00% 0.00% TRUE 

B2UsPETMix_100x USA_Pet 3.25% 0.00% 0.00% 0.00% 0.00% 0.00% 0.26% 18.48% 0.01% 0.00% 0.00% 78.00% 0.00% TRUE 

C4YuSPBUH__100x Yo_YuSp 0.01% 0.00% 0.43% 0.00% 0.00% 0.01% 0.22% 0.00% 0.00% 0.00% 0.00% 0.00% 99.33% TRUE 

Figure 17. Prediction matrices for the three validation test for CC1 at 100x. UsPET sample has been 
correctly classified twice, while it was misclassified the first time. 

Figure 18 displays the original images for the test samples used for the class UsPET (top row), and one randomly 
chosen image of both the classes UsATL and SaROS (bottom row). This can help to explain the reason why some 
images are misclassified by the models. Both C3UsPETMix _100x.tif and B2UsPETMIX_100x.tif were correctly 
classified with respectively assigned probabilities of 96 % and 78 %, whereas A1UsPETMix_100x.tif were only 
assigned to its true class with 0.3% probability (Figure 17). Instead, this misclassified sample were assigned 
with 60% and 38% probability, belonging to respectively classes UsATL and SaROS. The two correctly classified 
UsPET images were both assigned to UsATL and SaROS with 0% probability. These images had large structures, 
as can be seen in Figure 18, in contrast to the fine and coarse texture in the UsATL and SaROS images 
respectively. A blend of both fine and coarse texture appears to be present in the misclassified UsPET image, 
indicating the reason why it was assigned to the wrong classes. 
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Figure 18. Example of intra- and inter-class differences of images. The top row shows the three 
images of class UsPET that were classified in the three test runs. The two bottom images belonging 

to the classes UsATL and SaROS. 

In Table 6 the summary of the models’ performances of all the datasets is reported. The overall accuracy 
obtained from each validation test can be compared and the average of the prediction accuracy (the mean 
among the three validation test) and the average of the mean attribution accuracy (how many samples are 
correctly classified averaging the three probability prediction matrices) are also given together with the average 
standard deviation values. The average of the number of textural features used by each classification model is 
also reported. 

Table 6. Summary of models’ performances of all the textural features datasets extracted from the 
SEM images4. 

 

Comparing the performances, CC5 shows the worst mean prediction accuracy values for the 1st and 2nd 
validation tests at 500x and, as consequence, also the worst mean attribution values with only 50% of accuracy. 
Apart this case, all the developed models have shown a very good prediction accuracy, going from the lowest 
value of 67% for CC5 at 500x and CC1 at 100x, up to 100% for almost all the datasets. The best performance 
was reached by the models for all colour classes developed combining the dataset of all magnification together. 

                                         

4 The empty cells mean that the classification models for that colour class, at that magnification, was not 

developed because the corresponding datasets were not created due to the lack of sample images.  

 

Magnification Description CC1 CC2 CC3 CC4 CC5 CC6

First test acc.: 62% 92% 78% 100% 100%

Second test acc.: 69% 77% 100% 100% 100%

Third test acc.: 69% 100% 100% 75% 100%

Mean prediction acc.: 67% 90% 93% 92% 100% Mean prediction acc.: 88%

Mean attribution acc.: 85% 100% 100% 100% 100% Mean attribution acc.: 97%

Mean attribution SD: 29% 14% 11% 14% 0% Avg. # of feats. in each CC 5,5

Avg. # of feats.: 6 4,7 5 6 6

First test acc.: 85% 69% 100% 100% 100%

Second test acc.: 54% 77% 89% 100% 100%

Third test acc.: 62% 92% 89% 75% 100%

Mean prediction acc.: 67% 79% 93% 92% 100% Mean prediction acc.: 86%

Mean attribution acc.: 92% 100% 100% 100% 100% Mean attribution acc.: 98%

Mean attribution SD: 23% 19% 12% 13% 3% Avg. # of feats. in each CC 5,4

Avg. # of feats.: 7 6 5,7 4,7 3,7

First test acc.: 85% 78% 50% 75%

Second test acc.: 62% 89% 50% 50%

Third test acc.: 92% 78% 100% 100%

Mean prediction acc.: 79% 81% 67% 75% Mean prediction acc.: 76%

Mean attribution acc.: 92% 100% 50% 100% Mean attribution acc.: 86%

Mean attribution SD: 23% 18% 26% 19% Avg. # of feats. in each CC 5,8

Avg. # of feats.: 6,7 5,3 6,3 5

First test acc.: 46%

Second test acc.: 77%

Third test acc.: 85%

Mean prediction acc.: 69% Mean prediction acc.: 69%

Mean attribution acc.: 85% Mean attribution acc.: 85%

Mean attribution SD: 25% Avg. # of feats. in each CC 4,0

Avg. # of feats.: 4

First test acc.: 69% 62% 100% 100% 100%

Second test acc.: 77% 92% 89% 75% 100%

Third test acc.: 92% 100% 100% 100% 100%

Mean prediction acc.: 79% 85% 96% 92% 100% Mean prediction acc.: 90%

Mean attribution acc.: 92% 100% 100% 100% 100% Mean attribution acc.: 98%

Mean attribution SD: 22% 16% 6% 11% 8% Avg. # of feats. in each CC 4,3

Avg. # of feats.: 5 4,3 5,7 3,3 3

all magn.

Mean over all colour categories

100x

250x

500x

1000x
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Combining all the features extracted from images acquired at all magnifications, the model performance 
improves comparing with those developed at a single magnification. This is due to the fact that the most 
important features extracted from each magnification are correlated to some specific morphological 
characteristics that can be captured at that magnification. In practice, if one sample is difficult to be classified 
at one magnification [17], maybe this doesn´t happen using another one. The textural features are strongly 
dependent from the magnification, therefore combining all the features together, it is sure that all the important 
features, captured at different scales, are used by the model to discriminate one sample from another.  

3.3  Spectral based classification model 

The LDA (Linear Discriminant Analysis) algorithm was selected as best classifier to develop the spectral-based 
classification model. The hyperspectral images were acquired at one magnification; thus the number of the 
developed models correspond to the number of the colour classes. The features selection was performed three 
times, similar as described in section 2.5. The detailed description about the process can be found elsewhere 
[24]. Four spectral-based classification models were developed due to the fact that only for CC1, CC3, CC4 and 
CC6 were acquired enough hyperspectral images to be analysed. The relative spectral features were then 
extracted and used afterwards to build the correspondent spectral-based classification models. In Figure 19 the 
infrared spectra for all the replicates (12) of each sample, the average spectra for each sample holder (3) and 
the average spectra for each sample (1), are shown as an example. 

 

Figure 19. The spectra for all samples replicates (top); average spectra for each sample holder 

(middle); average spectra for each UOC sample. All spectra are colour coded by UOC sample name 

(see Table 2). The black vertical dotted lines indicate all selected wavelengths given the union feature 
set. The wavelengths along the horizontal axis are given in [nm] and the vertical axis is absorbance 

in arbitrary units.  

The performance of the models are shown in Figure 20, where the average prediction matrices5 for each colour 
class are reported. 

 

 

                                         
5 See notes 2, at page 23. 
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COLOUR CLASS 1 (CC1) 

True Pred. Aus_Oly Can_Key Chi_Hen Rus_Tec Zam_Min   

Aus_Oly 100,00% 0,00% 0,00% 0,00% 0,00% TRUE 

Can_Key 0,01% 99,99% 0,00% 0,00% 0,00% TRUE 

Chi_Hen 0,00% 0,00% 100,00% 0,00% 0,00% TRUE 

Rus_Tec 0,00% 0,00% 0,00% 100,00% 0,00% TRUE 

SAf_Min 0,00% 0,00% 0,00% 0,00% 100,00% TRUE 

 

COLOUR CLASS 3 (CC3) 

True Pred. Aus_Rad Aus_Run Bra_Nuc Can_Dyn Can_Far Can_Sun Ger_Wis USA_Cot USA_Fal Yog_Rud Yog_Spi   

Aus_Rad 80,22% 13,68% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 6,10% 0,00% 0,00% TRUE 

Aus_Run 2,60% 64,77% 0,00% 0,00% 0,00% 0,00% 0,00% 0,84% 31,78% 0,00% 0,00% TRUE 

Bra_Nuc 0,00% 0,00% 99,90% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,10% TRUE 

Can_Dyn 0,00% 0,00% 0,00% 93,97% 0,00% 6,03% 0,00% 0,00% 0,00% 0,00% 0,00% TRUE 

Can_Far 0,00% 0,00% 0,00% 0,00% 100,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% TRUE 

Can_Sun 0,00% 0,00% 0,00% 4,46% 0,00% 95,54% 0,00% 0,00% 0,00% 0,00% 0,00% TRUE 

Ger_Wis 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00% 0,00% 0,00% 0,00% TRUE 

USA_Cot 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00% 0,00% 0,00% TRUE 

USA_Fal 6,10% 24,04% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 69,86% 0,00% 0,00% TRUE 

Yog_Rud 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00% TRUE 

Yog_Spi 0,00% 0,00% 0,44% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 99,56% TRUE 

 

COLOUR CLASS 4 (CC4) 

True Pred. Aus_S A Can_Mil Can_Nor Ger_Hel Rum_Rum Spa_Gen Swe_Ran   

Aus_S A 99,47% 0,19% 0,00% 0,00% 0,35% 0,00% 0,00% TRUE 

Can_Mil 0,61% 99,15% 0,00% 0,21% 0,04% 0,00% 0,00% TRUE 

Can_Nor 0,00% 0,00% 92,20% 0,00% 0,00% 0,00% 7,80% TRUE 

Ger_Hel 0,00% 2,76% 0,00% 97,24% 0,00% 0,00% 0,00% TRUE 

Rum_Rum 0,00% 0,00% 0,00% 0,00% 99,99% 0,00% 0,00% TRUE 

Spa_Gen 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00% TRUE 

Swe_Ran 0,00% 0,00% 1,13% 0,00% 0,00% 0,00% 98,87% TRUE 

 

COLOUR CLASS 6 (CC6) 

True Pred. USA_Eve USA_Iri USA_Mob   

USA_Eve 79,76% 14,51% 5,72% TRUE 

USA_Iri 0,08% 96,14% 3,78% TRUE 

USA_Mob 24,92% 10,26% 64,82% TRUE 

Figure 20. Average prediction matrices for CC1, CC3, CC4 and CC6 obtained from the spectral-

based models validation test. 

The interpretation of the results can be made in the same way as have been done for the results obtained with 
the texture-based classification models. 

As can be seen from the Table 7, the model performances are very good; all of them have an average prediction 
probabilities equal to 100%. There are only four samples, three in colour class 3 and one in colour class 6, that 
have been assigned to the correct predicted class with a prediction probability less than 90%, but always above 
64%. The summary of the model performances of all the datasets are reported in Table 7. Similar to the Table 
6, the overall accuracy obtained for each validation test can be compared and the average of the prediction 
accuracy (the mean among the three validation test) and the average of the mean attribution accuracy (how 
many samples are correctly classified averaging the three probability prediction matrices) are also given 
together with the average standard deviation. The average of the number of spectral features used by each 
classification model is also reported. 

 

Table 7. Summary of model performances of all the textural features datasets extracted from the 

SEM images. 

 

 

Description CC1 CC3 CC4 CC6

First test acc.: 100% 100% 100% 67%

Second test acc.: 100% 100% 100% 100%

Third test acc.: 100% 100% 100% 100%

Mean prediction acc.: 100% 100% 100% 89% Mean prediction acc.: 97%

Mean attribution acc.: 100% 100% 100% 100% Mean attribution acc.: 100%

Mean attribution SD: 0% 13% 3% 13% Avg. # of feats. in each CC 2,9

Avg. # of feats.: 2 2 2,7 4,7

Mean over all colour categories



Page | 28  

 

In Table 7 one can be see how the models reached 100% of prediction probability in all the validation test for 
all the colour classes, apart for colour class 6 that reached 67% of accuracy in the first validation test and 89% 
of average prediction accuracy. One of the most important thing is the average number of features that have 
been used for each single model to reach that specific accuracy. In particular, the spectral-based classification 
model for CC1 employed only two features (two wavelengths) as did the model for CC3; the classification model 
for CC4 employed 2.7 average features while CC6 employed 4.7. The spectral-based classification model for 
CC6 was the only one that employed more than four average number of features to be able to classify sample 
in its class. This can be probably explained by the fact that all the samples that have been attributed to CC6 by 
the colour-based classification model (see Table 5 in section 3.1), and used afterwards as training samples to 
develop the spectral-based classification model for CC6, are peroxides. This means that they have the same 
major chemical components, so more features are needed to differentiate one sample to the other.  

However, the results clearly indicate how the near infrared spectra, acquired with the hyperspectral camera, 
can be considered as a fingerprint for the UOC powders.  
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4 Conclusions 

The aim of this project was to develop a new approach for a quick identification and classification of unknown 
UOC samples. The main objectives were reached and the colour-based, texture-based and spectral-based 
classification models were successfully developed.  

This new approach could be taken into consideration, after the completion of the missing experimental activities 
and an appropriate validation process, as a new analytical methodology that can be used by the nuclear 
forensics community to identify and classify interdicted UOC powders. It is important to underline that this 
approach was not thought to give one single answer, like to have an attribution 1 to 1, but to reduce the number 
of samples to which an unknown one could be compared. In other words, for an unknown sample, will be given 
an attribution ranking probability saying to which sample it has the more similarities in terms of morphology 
characteristics (particle size, particle shape and distribution) and chemical composition, and with which 
percentage. This could help also in retrieve information related to the production process that could have been 
used during the production. Should be taken into consideration that, since this approach uses comparative 
signatures, the results must be also compared with those obtained from other techniques. This can help in 
taking the final conclusion about the understanding of the process history, the chemical composition and 
eventually the probably provenience and/or origin (country, place of production/facility) of the interdicted 
sample.  

In this way, this new approach could also give a positive contribution to the investigative process; in fact, 
reducing from three to five the probably samples to which an unknown UOC powder could be identified, could 
speed up the starting of the investigation allowing the authorities to take proper decisions in less time. 
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5 Further developments and future implementation 

Even if the results reached were successful, the final objective to have one single model must be reached. To 
do that, first of all the spectral-based classification model must be upgraded including also the hyperspectral 
image analysis with the correspondent hyperspectral-based classification model. Then, different strategy to 
combine all the models together, maybe using a model builder approach, can be explored.  

A graphical User Interface must be also developed, in order to allow people involved in nuclear forensic analysis, 
but who has no experience in machine learning and programming, to use it easily.  

Moreover, a validation test will be planned as soon as all the experimental data have been collected and the 
models have been upgraded with the new training data and a new set of features have been selected. The 
performance of the final models will be assessed considering also other different metric parameters (sensitivity, 
specificity, ROC curve, etc.), rather than only the accuracy.   
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Annexes 

Annex 1. Description of the texture feature extraction algorithms used for the texture based 

classification model development 

The principle of the texture feature extraction algorithms used in this research are here described. 

1. First Order Statistics (FOS)[xx]. Simple statistic index calculation from the images grey level histograms 

2. Grey Level Co-Occurrence Matrix[xx]. The GLCM is one of the first methods developed of for image 
texture analysis and was introduced by Haralick and co-workers in 1973 [22]. The GLCM calculates how 
often two pixels, in the matrix element Pδ (i, j), with intensity values i and j at a particular displacement 
distance δ from along a given direction θ (horizontally, vertically, or diagonally) occurs in the image [23]. 
If N is the highest number of quantized grey level values in the image, the co-occurrence matrix defined 
by Haralick is a square matrix G of dimension NxN (N can have a maximum value of 255 for a 8bit grey 
scale image), with elements represented by the frequency of occurrences of the pixel with intensity i 
next to that of intensity j. Haralick et al. [22] introduced 14 descriptors to obtain a quantitative 
measurement of the image textural features based on the co-occurrence matrix G.  

3. Grey Level Run Length Matrix (GLRLM)[xx].  GLRLM method consists in counting the number of pixel 
segments having the same intensity in a given direction, then representing the results in a matrix. A 
direction (0°, 45°, 90° or 135°) and a number of gray levels are decided on beforehand. The value 
contained in the matrix’s (l,n) square is equal to the number of segments of length l and gray level n 
[x].  

4. Grey Level Size Zone Matrix (GLSZM) [xx]. GLSZM method is considered the texture in large areas instead 
of a group of pixels or segments in any given direction. To calculate the matrix is take into account the 
size of each area with pixels of the same intensity level. It is calculated according to the RLM principle. 
The resulting SZM matrix (s,n) has a dimension equal to the number of areas of size s and of gray level 
n.  

5. Local Binary Pattern (LBP) [xx]: LBP is a simple yet very efficient texture operator which labels the pixels 
of an image by thresholding the neighborhood of each pixel and considers the result as a binary number. 
Due to its discriminative power and computational simplicity, LBP texture operator has become a 
popular approach in various applications. The most important property of the LBP operator in real-world 
applications is its robustness to monotonic gray-scale changes caused, for example, by illumination 
variations. Another important property is its computational simplicity, which makes it possible to analyze 
images in challenging real-time settings. Given a number of neighbouring points p evenly distributed on 
a circle of pixels with radius r from a center pixel, the neighbouring pixels are thresholded by the centre 
pixel so that pixels with an intensity value greater than the center pixel is 1 otherwise 0. Then, for each 
neighbouring pixel going around the circle (in a consistent way), the number two to the power of the 
position of a pixel with value 1 are added together. This is the calculate LBP value, which is assigned to 
the center pixel as a new pixel value. This is repeated for all pixels in the image. Then, a histogram of 
all these LBP values are created and used for further calculations. [R_16]. 

6. Angle Measure Technique: which describes the complexity of the signal simultaneously on all the 
existing scales through the Minimum Angle (MA) spectrum. [27]. The AMT was introduced by Andrle [28] 
for geomorphic lines, but it finds useful application in the description of grey-level images which are 
mostly isotropic: hence do not present a preferential direction in the appearance of the characteristic 
features. Detailed descriptions of the AMT algorithm are available in [17],[28–32]; here the sequence of 
operations of the AMT are briefly summarized: 

 

a) AMT performs the image unfolding: the image is represented as grey level intensities 
versus pixels in the unfolded image. 

b) In each point of the sampling-set AMT centers a circle having 1≤radius ≤n (n is, in 
general, the image width). 

c) AMT calculates the supplementary of the angle constructed by the intersection of the 
intensity line and the circle (see Figure 2). 

d) AMT averages the angle values obtained for the different points of the sampling-set at 
a fixed radius. 
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e) AMT repeats the procedure until radius = n 

In this study the scales s=(i+2) for all I in {𝑖 ∈ ℤ|−2 ≤ 𝑖 ≤ 66} were used, hence for a total of 35 features; 
basically all the mean angle values starting from s=0 to scale s= 68, taken with a step of 2.  

Lists of each of the extracted textural features that were used for the texture based classification model 
development are listed in tables below.  

Table 8. The first order statistics (FOS) features extracted from SEM images. 

 

Table 9. The GLCM, GLSZM, GLRLM features extracted from SEM images. 
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Table 10. The LBP features extracted from SEM images. 
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Annex 2. Pre-processing steps for the near infrared spectra extracted of colour class 3 

 

 

Figure 21. The raw spectra of samples in the colour category 3 dataset. The vertical axis denotes 

reflectance in arbitrary units and the horizontal axis denotes wavelengths. 

 

 

Figure 22. The reflectance calibrated spectra of samples in the colour category 3 dataset. The 

vertical axis denotes relative reflectance in arbitrary units and the horizontal axis denotes 
wavelengths. 
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Figure 23. The absorbance converted spectra of samples in the colour category 3 dataset. The 
vertical axis denotes reflectance in arbitrary units and the horizontal axis denotes wavelengths. 

 

 

 

Figure 24. Baseline correction applied on the absorbance converted spectra of samples in the colour 

category 3 dataset. The vertical axis denotes absorbance in arbitrary units and the horizontal axis 

denotes wavelengths. 
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Annex 3. Average prediction probability matrices  

 

 

Figure 25. Average prediction matrices obtained from model´s validation test for CC1 at 100x, 250x, 
1000x and for all magnifications. 
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Figure 26. Average prediction matrices obtained from model´s validation test for CC3 at 100x, 250x, 
500x and for all magnifications. 
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Figure 27. Average prediction matrices obtained from model´s validation test for CC4 at 100x, 250x, 
500x and for all magnifications. 
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Figure 28. Average prediction matrices obtained from model´s validation test for CC5 at 100x, 250x, 
500x and for all magnifications. 

 

 

Figure 29. Average prediction matrices obtained from model´s validation test for CC6 at 100x, 250x, 

500x and for all magnifications. 
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