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Foreword  
Our society is changing so fast we need to know as soon as possible when things go wrong 
(Euroabstracts, 2003). This is where composite indicators enter into the discussion. A composite 
indicator is an aggregated index comprising individual indicators and weights that commonly 
represent the relative importance of each indicator. However, the construction of a composite 
indicator is not straightforward and the methodological challenges raise a series of technical 
issues that, if not addressed adequately, can lead to composite indicators being misinterpreted or 
manipulated. Therefore, careful attention needs to be given to their construction and subsequent 
use.  

This document reviews the steps involved in a composite indicator’s construction process and 
discusses the common pitfalls to be avoided. We stress the need for multivariate analysis prior to 
the aggregation of the individual indicators. We deal with the problem of missing data and with 
the techniques used to bring into a common unit the indicators that are of very different nature. 
We explore different methodologies for weighting and aggregating indicators into a composite 
and test the robustness of the composite using uncertainty and sensitivity analysis. Finally we 
show how the same information that is communicated by the composite indicator can be 
presented in very different ways and how this can influence the policy message.  

 

 
 

 

 

 

 

 

 

Important note 
The material presented here will eventually feed in a joint OECD-JRC Handbook of composite 
indicators building, expected to appear in fall 2005.      
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1. Introduction 
Composite indicators are increasingly recognized as a useful tool for policy making and public 
communications in conveying information on countries’ performance in fields such as 
environment, economy, society, or technological development. Composite indicators are much 
easier to interpret than trying to find a common trend in many separate indicators. Composite 
indicators have proven to be useful in ranking countries in benchmarking exercises. However, 
composite indicators can send misleading or non-robust policy messages if they are poorly 
constructed or misinterpreted. Andrew Sharpe (2004) notes:  
 
“The aggregators believe there are two major reasons that there is value in combining indicators 
in some manner to produce a bottom line. They believe that such a summary statistic can indeed 
capture reality and is meaningful, and that stressing the bottom line is extremely useful in 
garnering media interest and hence the attention of policy makers. The second school, the non-
aggregators, believe one should stop once an appropriate set of indicators has been created and 
not go the further step of producing a composite index. Their key objection to aggregation is what 
they see as the arbitrary nature of the weighting process by which the variables are combined.”  
 
In Saisana et al. (2005) one reads: 
 
“[…] it is hard to imagine that debate on the use of composite indicators will ever be settled […] 
official statisticians may tend to resent composite indicators, whereby a lot of work in data 
collection and editing is “wasted” or “hidden” behind a single number of dubious significance. 
On the other hand, the temptation of stakeholders and practitioners to summarise complex and 
sometime elusive processes (e.g. sustainability, single market policy, etc.) into a single figure to 
benchmark country performance for policy consumption seems likewise irresistible.” 
 
Synthetically the main pros and cons of using composite indicators could be summarized as 
follows: 
     
Pros of composite indicators 
+ Summarise complex or multi-dimensional issues, in view of supporting decision-makers. 
+ Are easier to interpret than trying to find a trend in many separate indicators.  
+ Facilitate the task of ranking countries on complex issues in a benchmarking exercise. 
+ Assess progress of countries over time on complex issues.  
+ Reduce the size of a set of indicators or include more information within the existing size limit. 
+ Place issues of countries performance and progress at the centre of the policy arena. 
+ Facilitate communication with ordinary citizens and promote accountability.   
 
Cons of composite indicators 
- May send misleading policy messages, if they are poorly constructed or misinterpreted. 
- May invite drawing simplistic policy conclusions, if not used in combination with the indicators. 
- May lend themselves to instrumental use (e.g be built to support the desired policy), if the 

various stages (e.g. selection of indicators, choice of model, weights) are not transparent and 
based on sound statistical or conceptual principles. 

- The selection of indicators and weights could be the target of political challenge. 
- May disguise serious failings in some dimensions of the phenomenon, and thus increase the 

difficulty in identifying the proper remedial action. 
- May lead wrong policies, if dimensions of performance that are difficult to measure are ignored. 
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A composite indicator is the mathematical combination of individual indicators that represent 
different dimensions of a concept whose description is the objective of the analysis (see Saisana 
and Tarantola, 2002). The construction of composite indicators involves stages where subjective 
judgement has to be made: the selection of indicators, the treatment of missing values, the choice 
of aggregation model, the weights of the indicators, etc. These subjective choices can be used to 
manipulate the results. It is, thus, important to identify the sources of subjective or imprecise 
assessment and use uncertainty and sensitivity analysis to gain useful insights during the process 
of composite indicators building, including a contribution to the indicators’ quality definition and 
an appraisal of the reliability of countries’ ranking. 

We would point that composite indicators should never be seen as a goal per se. They should be 
seen, instead, as a starting point for initiating discussion and attracting public interest and 
concern. The aim of the present document is to provide guidance on how to ascertain that the 
process leading to the construction of a composite indicator meets certain quality objectives. The 
structure of this document is as follows: Section 2 describes the main issues related with the 
construction of composite indicators, which are then treated in detail in the following sections. 
Sections 3 to 5 deal with the statistical treatment of the set of indicators: multivariate analysis, 
imputation of missing data and normalization techniques aim at supplying a sound and defensible 
dataset. Section 6 gives the developers and users of composite indicators an introduction to the 
main weighting and aggregation procedures. Section 7 explores the merits of applying uncertainty 
and sensitivity analysis to increase transparency and make policy inference more defensible. 
Section 8 shows how different visualization strategies of the same composite indicator can 
convey different policy messages. The Technology Achievement Index (TAI), a composite 
indicator developed by the United Nations (Human Development Report, UN 2001), has been 
chosen as example to elucidate the various steps in the construction of a composite indicator and 
guide the reader into the different problems that may arise (a detailed description of the 
composite indicator is given in the Appendix).  
 
 

2. Construction of composite indicators  
The composite indicators’ controversy can perhaps be put into context if one considers that 
indicators, and a fortiori composite indicators, are models, in the mathematical sense of the term. 
Models are inspired from systems (natural, biological, social) that one wishes to understand. 
Models are themselves systems, formal system at that. The biologist Robert Rosen (1991, Figure 
2.1) noted that while a causality entailment structure defines the natural system, and a formal 
causality system entails the formal system, no rule of encoding the formal system given the real 
system, i.e. to move from perceived reality to model, was ever agreed.  
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Figure 2.1, From Rosen 1991. 

 
The formalization of the system generates an image, the theoretical framework, that is valid 
only within a given information space. As result, the model of the system will reflect not only 
(some of) the characteristics of the real system but also the choices made by the scientists on how 
to observe the reality. When building a model to describe a real-world phenomenon, formal 
coherence is a necessary property, yet not sufficient. The model in fact should fit objectives and 
intentions of the user, i.e. it must be the most appropriate tool for expressing the set of objectives 
that motivated the whole exercise.  The choice of which sub-indicators to use, how those are 
divided into classes, whether a normalization method has to be used (and which one), the choice 
of the weighting method, and how information is aggregated, all these features stem from a 
certain perspective on the issue to be modelled. Reflexivity is thus an essential feature of a model 
since “the observer and the observation are not separated […] the way human kind approaches 
the problem is part of the problem itself.”  (Gough at al. 1998). 
 
No matter how subjective and imprecise the theoretical framework is, it implies the recognition of 
the multidimensional nature of the phenomenon to be measured and the effort of specifying the 
single aspects and their interrelation. Most of the issues described with a composite indicator are 
complex problems, think to concepts like welfare, quality of education, or sustainability. 
Complexity is reflected by the multi-dimensionality and multi-scale representation of the issue.  
 
The European Commission, for example, recognises the multi-dimensionality in the definition of 
sustainability claming that the social, environmental and economic dimensions must be dealt with 
together (European Commission, ‘A Sustainable Europe for a Better World: a European Union 
Strategy for Sustainable Development’ COM(2001)264 final of 15.05.2001). Defining 
sustainability within a multi-dimensional framework entails merging multidisciplinary point of 
views, all equally legitimate opinions of what is sustainability and how should be measured. 
Then, for each discipline, e.g. economics, sustainability can be measured at different 
(hierarchical) levels like economic agents, households, economic sectors, nations, European 
Union, or the entire planet. Synergies and conflicts, that would appear when sustainability is 
measured on a national or on a wider scale (think to policies related to the climate change), are 
likely to disappear at the local level where other aspects prevail. The change in scale might also 
produce contradictory implications and remedies all equally justifiable (e.g. windmills are 
desirable sources of clean energy at a national level but might produce social disputes in the local 
communities where windmills have to be placed).  
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Giampietro et al. (2004) notice that in complex issues the ‘quality’ of the theoretical framework 
depends on “ three crucial challenges for the scientific community”: 

1. check the feasibility of the effect of the proposed [framework] in relation to different 
dimensions (technical, economic, social, political, cultural) and different scales: local 
(e.g. technical coefficients), medium (e.g. aggregate characteristics of large units) and 
large scales (e.g. trend analysis and benchmarks to compare trajectories of 
development)…. (italics added) 

2. address several legitimate (and often contrasting) perspectives found among stakeholders 
on how to structure the problem….  

3. handle in a credible way the unavoidable degree of uncertainty, or even worst, genuine 
ignorance associated to any multi-scale, multi-dimensional analysis of complex adaptive 
systems.” 

 
If we accept a definition of the theoretical framework requiring the integration of a broad set of 
(probably conflicting) points of view and the use of non-equivalent representative tools then the 
problem becomes to reduce the complexity in a measurable form. In other terms non-measurable 
issues like sustainability need to be replaced by intermediate objectives whose achievement can 
be observed and measured. The reduction into parts has limits when crucial properties of the 
entire system are lost: often the individual pieces of a puzzle hide the whole picture.   

As suggested by Box (1979): ‘all models are wrong, some are useful’.  The quality of a 
composite indicator is thus in its fitness or function to purpose. This is recognised by A. K. Sen 
(1989), Nobel prize winner in 1998, who was initially opposed to composite indicators but was 
eventually seduced by their ability to put into practice his concept of ‘Capabilities’ (the range of 
things that a person could do and be in her life) in the UN Human Development Index1.  
 
Although we cannot tackle here the vast issue of quality of statistical information, there is one 
aspect of the quality of composite indicators which we find essential for their use. This is the 
existence of a community of peers (be these individuals, regions, countries, facilities of various 
nature) willing to accept the composite indicators as their common yardstick based on their 
understanding of the issue. In discussing pedigree matrices for statistical information (see Section 
2.2) Funtowicz and Ravetz note (in Uncertainty and Quality in Science for Policy, 1990)    
 
“[…] any competent statistician knows that "just collecting numbers" leads to nonsense. The 
whole Pedigree matrix is conditioned by the principle that statistical work is (unlike some 
traditional lab research) a highly articulated social activity. So in "Definition and Standards" we 
put "negotiation" as superior to "science", since those on the job will know special features and 
problems of which an expert with only a general training might miss”.  
 
We would add that, however good the scientific basis for a given composite indicator, its 
acceptance relies on negotiation.   
 

2.1 Steps towards composite indicators 
 
As first step towards the construction of a composite indicator, one should look at the indicators 
as an entity, with a view to investigate its structure. Multivariate statistic is a powerful tool to 

                                                      
1 This Index is defined as a measure of the process of expanding people’s capabilities (or choices) 
to function. In this case, composite indicators’ use for advocacy is what makes them valuable. 
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achieve this objective. This type of analysis is, thereafter, of exploratory nature and is helpful in 
assessing the suitability of the dataset and providing an understanding of the implications of the 
methodological choices (e.g. weighting, aggregation) during the construction phase of the 
composite indicator. In the analysis, the statistical information inherent in the indicators’ set can 
be dealt with grouping information along the two dimensions of the dataset, i.e. along indicators 
and along constituencies (e.g. countries, regions, sectors, etc.), not independently of each other.  
 
Factor Analysis and Reliability/Item Analysis (e.g. Coefficient Cronbach Alpha) can be used to 
group the information on the indicators. The aim is to explore whether the different dimensions of 
the phenomenon are well balanced -from a statistical viewpoint- in the composite indicator. The 
higher the correlation between the indicators, the fewer statistical dimensions will be present in 
the dataset. However, if the statistical dimensions do not coincide with the theoretical dimensions 
of the dataset, then a revision of the set of the sub-indicators might be considered. Saisana et al. 
(2005) phrase that, depending on a school of thought, one may see a high correlation among 
indicators as something to correct for, e.g by making the weight for a given indicator inversely 
proportional to the arithmetic mean of the coefficients of determination for each bivariate 
correlation that includes the given indicator. On the other hand, practitioners of multi-criteria 
decision analysis would tend to consider the existence of correlations as a feature of the problem, 
not to be corrected for, as correlated indicators may indeed reflect non-compensable different 
aspects of the problem. 
 
Cluster Analysis can be applied to group the information on constituencies (e.g. countries) in 
terms of their similarity with respect to the different sub-indicators. This type of analysis can 
serve multiple purposes, and it can be seen as: 

(a) a purely statistical method of aggregation of the indicators, 
(b) a diagnostic tool for assessing the impact of the methodological choices made during the 

construction phase of the composite indicator, 
(c) a method of disseminating the information on the composite indicator, without losing the 

information on the dimensions of the indicators, 
(d) a method for selecting groups of countries to impute missing data with a view to decrease 

the variance of the imputed values.  
 
Clearly the ability of a composite to represent multidimensional concepts largely depends on the 
quality and accuracy of its components. Missing data are present in almost all composite 
indicators, and they can be missing either in a random or in a non-random fashion. However, 
there is often no basis upon which to judge whether data are missing at random or systematically, 
whilst most of the methods of imputation require a missing at random mechanism. When there 
are reasons to assume a non-random missing pattern, then this pattern must be explicitly modelled 
and included in the analysis. This could be very difficult and could imply ad hoc assumptions that 
are likely to deeply influence the result of the entire exercise.  
 

Three generic approaches for dealing with missing data can be distinguished, i.e. case deletion, 
single imputation or multiple imputation. When an indicator is missing for a country, case 
deletion either removes the country from the analysis or the indicator from the analysis. The main 
disadvantage of case deletion is that it ignores possible systematic differences between complete 
and incomplete sample and may produce biased estimates if removed records are not a random 
sub-sample of the original sample. Furthermore, standard errors will, in general be larger in a 
reduced sample given that less information is used. The other two approaches see the missing 
data as part of the analysis and therefore try to impute values through either Single Imputation 
(e.g. Mean/Median/Mode substitution, Regression Imputation, Expectation-Maximisation 
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Imputation, etc.) or Multiple Imputation (e.g. Markov Chain Monte Carlo algorithm). The 
advantages of imputation include the minimisation of bias and the use of ‘expensive to collect’ 
data that would otherwise be discarded. In the words of Dempster and Rubin (1983): “The idea of 
imputation is both seductive and dangerous. It is seductive because it can lull the user into the 
pleasurable state of believing that the data are complete after all, and it is dangerous because it 
lumps together situations where the problem is sufficiently minor that it can legitimately handled 
in this way and situations where standard estimators applied to real and imputed data have 
substantial bias.”  

Whenever indicators in a dataset are incommensurate with each other, and/or have different 
measurement units, it is necessary to bring these indicators to the same unit, to avoid adding up 
apples and pears. Normalization serves primarily this purpose. There are a number of 
normalization methods available, such as ranking, standardization, re-scaling, distance to 
reference country, categorical scales, cyclical indicators, balance of opinions. The selection of a 
suitable normalization method to apply to the problem at hand is not trivial and deserves special 
care. The normalization method should take into account the data properties and the objectives of 
the composite indicator. The issues that could guide the selection of the normalization method 
include: whether hard or soft data are available, whether exceptional behaviour needs to be 
rewarded/penalised, whether information on absolute levels matters, whether benchmarking 
against a reference country is requested, whether the variance in the indicators needs to be 
accounted for. For example, in the presence of extreme values, normalisation methods that are 
based on standard deviation or distance from the mean are preferred. Special care to the type of 
the normalisation method used needs to be given if the composite indicator values per country 
need to be comparable over time.   
 
There is one further aspect which the normalization method may interfere with. This is the scale 
effect, i.e. the different measurement units in which an indicator can be expressed. Ebert and 
Welsch (2004) mention that particular attention needs to be placed if the raw data are expressed 
in different scales either interval scale (e.g. temperature in Celsius or Fahrenheit) or ratio scale 
(e.g. kilograms or pounds). In that case, a proper normalisation method should be applied to 
remove the scale effect from all indicators simultaneously. If for example, some indicators in the 
dataset are expressed on interval scale, whilst others on a ratio scale, then dividing by a reference 
value does not remove the scale effect from those indicators expressed on interval scale. 
However, the standardisation method does so.  
 
Two types of transformations that are sometimes applied to the raw data prior to normalisation 
are truncation and functional form. The choice of trimming the tails of the indicators’ 
distributions is supported by the need to avoid having extreme values overly dominate the result 
and, partially, to correct for data quality problems in such extreme cases. The functional 
transformation is applied to the raw data to represent the significance of marginal changes in its 
level. In most cases, the linear functional form is used on all of the variables, de facto. This 
approach is suitable if changes in the indicator’s values are important in the same way, regardless 
of the level. If changes are more significant at lower levels of the indicator, the functional form 
should be concave down (e.g. log or the nth root). If changes are more important at higher levels 
of the indicator, the functional form should be concave up (e.g. exponential or power).  
 
Central to the construction of a composite index is the need to combine in a meaningful way the 
different dimensions, which implies a decision on the weighting model and the aggregation 
procedure. Different weights may be assigned to indicators to reflect their economic significance 
(collection costs, coverage, reliability and economic reason), statistical adequacy, cyclical 
conformity, speed of available data, etc. Several weighting techniques are available, such as 
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weighting schemes based on statistical models (e.g. factor analysis, data envelopment analysis, 
unobserved components models), or on participatory methods (e.g. budget allocation, analytic 
hierarchy processes). For example, weights would be determined based on correlation 
coefficients or principal components analysis to overcome the “statistical” double counting 
problem when two or more indicators partially measure the same behaviour. Weights may also 
reflect the statistical quality of the data, thus higher weight could be assigned to statistically 
reliable data (data with low percentages of missing values, large coverage, sound values). In this 
case the concern is to reward only sub-indicators easy to measure and readily available, punishing 
the information that is more problematic to identify and measure. Indicators could also be 
weighted based on experts’ opinion, who know policy priorities and theoretical backgrounds, to 
reflect the multiplicity of stakeholders’ viewpoints. Weights usually have an important impact on 
the results of the composite indicator especially whenever higher weight is assigned to indicators 
on which some countries excel or fail. This is why weighting models need to be made explicit and 
transparent. Moreover, one should have in mind that, no matter which method is used, weights 
are essentially value judgments and have the property to make explicit the objectives underlying 
the construction of a composite (Rowena et al., 2004).  
 
The issue of aggregation of the information conveyed by the different dimensions into a 
composite index comes together with the weighting. Different aggregation rules are possible. 
Sub-indicators could be summed up (e.g. linear aggregation), multiplied (geometric aggregation) 
or aggregated using non linear techniques (e.g. multi-criteria analysis). Each technique implies 
different assumptions and has specific consequences. 
 
Linear aggregation can be applied when all indicators have the same measurement unit and 
further ambiguities related to the scale effects have been neutralized. Furthermore, linear 
aggregation implies full (and constant) compensability, i.e. poor performance in some indicators 
can be compensated by sufficiently high values of other indicators. Geometric aggregation is 
appropriate when strictly positive indicators are expressed in different ratio-scales, and it entails 
partial (non constant) compensability, i.e. compensability is lower when the composite indicator 
contains indicators with low values. The absence of synergy or conflict effects among the 
indicators is a necessary condition to admit either linear or geometric aggregation. Furthermore, 
linear aggregations reward sub-indicators proportionally to the weights, while geometric 
aggregations reward more those countries with higher scores. In both linear and geometric 
aggregations weights express trade-offs between indicators: the idea is that deficits in one 
dimension can be offset by surplus in another. However, when different goals are equally 
legitimate and important, then a non-compensatory logic may be necessary. This is usually the 
case when very different dimensions are involved in the composite, like in the case of 
environmental indexes, where physical, social and economic figures must be aggregated. If the 
analyst decides that an increase in economic performance can not compensate a loss in social 
cohesion or a worsening in environmental sustainability, then neither the linear nor the geometric 
aggregation are suitable. Instead, a non-compensatory multicriteria approach will assure non 
compensability by formalizing the idea of finding a compromise between two or more legitimate 
goals.  
 
Doubts are often raised about the robustness of the results of the composite indicators and about 
the significance of the associated policy message. Uncertainty analysis and sensitivity analysis 
is a powerful combination of techniques to gain useful insights during the process of composite 
indicators building, including a contribution to the indicators’ quality definition and an 
assessment of the reliability of countries’ ranking.   
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As often noted, composite indicators may send misleading, non-robust policy messages if they 
are poorly constructed or misinterpreted. The construction of composite indicators involves stages 
where judgement has to be made. This introduces issues of uncertainty in the construction line of 
a composite indicator: selection of data, data quality, data editing (e.g. imputation), data 
normalisation, weighting scheme/weights, weights’ values and aggregation method. All these 
sources of subjective judgement will affect the message brought by the composite indicator in a 
way that deserves analysis and corroboration. For example, changes in weights will almost in all 
cases lead to changes in rankings of countries. It is seldom that top performers becomes worse 
performance due to changes in weights but a change in ranking from for example ranking 2 to 
ranking 4 is not uncommon even in well-constructed composite indicators.   

A combination of uncertainty and sensitivity analysis can help to gauge the robustness of the 
composite indicator, to increase its transparency and to help framing a debate around it. 
Uncertainty analysis (UA) focuses on how uncertainty in the input factors propagates through the 
structure of the composite indicator and affects the composite indicator values. Sensitivity 
analysis (SA) studies how much each individual source of uncertainty contributes to the output 
variance. In the field of building composite indicators, UA is more often adopted than SA 
(Jamison and Sandbu, 2001; Freudenberg, 2003) and the two types of analysis are almost always 
treated separately. A synergistic use of UA and SA is proven to be more powerful (Saisana et al., 
2005; Tarantola et al., 2000).  
 
The types of questions for which an answer is sought via the application of UA&SA are: 
  
(a) Does the use of one construction strategy versus another in building the composite indicator 
provide actually a partial picture of the countries’ performance? In other words, how do the 
results of the composite indicator compare to a deterministic approach in building the composite 
indicator?  
(b) How much do the uncertainties affect the results of a composite indicator with respect to a 
deterministic approach used in building the composite indicator?  
(c) Which constituents (e.g. countries) have large uncertainty bounds in their rank (volatile 
countries) and therefore, if excluded, the stability of the system would increase? 
(d) Which are the factors that affect the ranks of the volatile countries? 

 
All things considered, a careful analysis of the uncertainties included in the development of a 
composite indicator can render the building of a composite indicator more robust. A plurality of 
methods (all with their implications) should be initially considered, because no model 
(construction path of the composite indicator) is a priori better than another, provided that internal 
coherence is always assured, as each model serves different interests. The composite indicator is 
no longer a magic number corresponding to crisp data treatment, weighting set or aggregation 
method, but reflects uncertainty and ambiguity in a more transparent and defensible fashion. The 
iterative use of uncertainty and sensitivity analysis during the development of a composite 
indicator can contribute to its well-structuring, provide information on whether the countries’ 
ranking measures anything meaningful and could reduce the possibility that the composite 
indicator may send misleading or non-robust policy messages. 

The way of presenting composite indicators is not a trivial issue. Composite indicators must be 
able to communicate the picture to decision-makers and users quickly and accurately. Visual 
models of these composite indicators must be able to provide signals, in particular, warning 
signals that flag for decision-makers those areas requiring policy intervention. The literature 
presents various ways for presenting the composite indicator results, ranging from simple forms, 



 

 14

such as tables, bar or line charts, to more sophisticated figures, such as the four-quadrant model 
(for sustainability), the Dashboard, etc.   

If we were to stress the importance of visualising properly the composite indicators, we would 
use the general remark made by Shumpeter 1933:  
 
“…as long as we are unable to put our arguments into figures, the voice of our science, although 
occasionally it may help to dispel gross errors, will never be heard by practical men.” 
 
One final suggestion for this introductory section concerns the ‘Transparency’ of the indicator. 
It would be very useful, for developers, users and practitioners in general, if composite indicators 
could be made available via the web, along with the data, the weights and the documentation of 
the methodology. Given that composite indicators can be decomposed or disaggregated so as to 
introduce alternative data, weighting, normalisation approaches etc., the components of 
composites should be available electronically as to allow users to change variables, weights, etc. 
and to replicate sensitivity tests.  
 

2.1 Requirements for quality control 
 
As mentioned above the concept of quality of the composite indicators is not only a function of 
the quality of its underlying data (in terms of relevance, accuracy, credibility, etc.) but also of the 
quality of the methodological process used to build the composite indicator itself2.  The safe use 
of the composite requires proper evidence that the composite will provide reliable results. If the 
user simply does not know, or is not sure about the testing and certification of the composite, then 
composite’s quality is low. Up to now, tests for the quality of quantitative information have been 
much undeveloped. There are statistical hypothesis tests, and elaborated formal theories of 
decision-making, but none of these approaches helps with the simple question that a decision-
maker wants to ask: is this message reliable, can I use it safely?  
 
A notational system called NUSAP (an acronym for five categories: Numeral, Unit, Spread, 
Assessment, Pedigree) has been devised to characterise the quality of quantitative information 
based in large part on the experience of research work in the matured natural sciences (Funtowicz 
and Ravetz, 1990). 
 
The categorical scheme on which NUSAP is based enables providers and users of composite 
indicators to communicate their quality. One category of NUSAP, the pedigree, is an evaluative 
description of the procedure used to build the composite indicator.   The pedigree is expressed by 
means of a matrix Each column of the matrix represents one phase of the construction process. 
For example, the first phase of the process could be “problem definition and purpose”. A score is 
assigned to each phase according to the mode the phase itself has been executed. In the example, 
the phase “problem definition and purpose” could be executed in various modes: “result of 
negotiation”, “purely science-based”, “based on different subjective interpretations”, “purely 
abstract” or “not explored”. In very general terms, the pedigree is laid out as in Table 2.1, where 
the top row has grade 4 and the bottom two rows, 0. For a numerical evaluation, average scores of 
4 downwards are rated as High, Good, Medium, Low and Poor. All the scores are then elaborated 
to provide an assessment of the quality of the process, which in turns suggests recursive actions 
for the improvement of the process itself.  

                                                      
2 This chapter is based on text available on www.nusap.net  
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The whole pedigree matrix is conditioned by the principle that statistical work is a highly 
articulated social activity. Thus, the pedigree matrix, with its multiplicity of categories, enables a 
considerable variety of evaluative descriptions of the composite indicator to be simply scored and 
coded. In practical cases, a specific pedigree matrix has to be constructed for each specific 
composite indicator. An example of pedigree matrix used to characterise the quality of a set of 
statistical indicators of knowledge economy can be found in Sajeva, 2004. The pedigree matrix 
builds on a series of interviews made to statisticians, concerning the process they followed for the 
development of the indicators (the complete text of one such interview is reported in Sajeva, 
2004). 
 
 
Table 2.1 The Pedigree Matrix for Statistical Information 
 
Grade Definitions & 

Standards 
Data-collection & 
Analysis 

Institutional 
Culture 

Review 

4 Negotiation Task-force Dialogue External 
3 Science Direct Survey Accommodation Independent 
2 Convenience Indirect Survey Obedience Regular 
1 Symbolism Educated Guess Evasion Occasional 
0 Inertia Fiat No-contact None 
0 Unknown Unknown Unknown Unknown 
 
In the following Sections we present a detailed discussion of some of the main steps in the 
construction of a composite indicator. 
 
 

3. Multivariate analysis 
The information inherent in a dataset of sub-indicators that measure the performance of several 
countries can be studied along two dimensions, i.e. along sub-indicators and along countries, not 
independently of each other.  
 
Information on sub-indicators. The analyst must first decide whether the nested structure of the 
composite indicator is well defined and if the set of available sub-indicators is sufficient or 
appropriate to describe the unknown phenomenon. This decision can be based both on experts’ 
opinion (e.g. experts in the relevant field will tell which indicators better capture the sustainability 
or the quality of the education) and on the statistical structure of the dataset. Factor Analysis and 
Reliability/Item Analysis can be used complementarily to explore whether the different 
dimensions of the phenomenon are well balanced -from a statistical viewpoint- in the composite 
indicator. If this is not true, a revision of the set of the sub-indicators might be considered. For 
instance, in the e-business readiness index the human capital factor is clearly understated, whilst 
the technological factor is favoured. In the same example, the distinction between “use” and 
“adoption” of information and communication technologies is not supported statistically, since 
Principal Components Analysis shows that some of the sub-indicators conceptually allocated to 
“use” are better associated with the sub-indicators on “adoption”.  
 
Information on countries. The use of cluster analysis to group countries in terms of similarity 
between different sub-indicators can serve as: 

(e) a purely statistical method of aggregation, 
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(f) a diagnostic tool for assessing the impact of the methodological choices made during the 
construction phase of the composite indicator, 

(g) a method of disseminating the information on the composite indicator, without losing the 
information on the dimensions of the sub-indicators, 

(h) a method for selecting groups of countries to impute missing data with a view to decrease 
the variance of the imputed values.  

 
Cluster Analysis could, thereafter, be useful in different sections of this document.   
 
The notation that we will adopt throughout this document is the following. 

t
c,qx : raw value of sub-indicator q for country c at time t, with q=1,…,Q and c=1,…,M  

t
c,qI : normalised value of sub-indicator 

q,rw : weight associated to sub-indicator q, with r=1,…,R  
t
cCI : value of the composite indicator for country c at time t.  

 
Note that time suffix is present only in Section 5. For reasons of clarity the time suffix has been 
dropped out. When no time indication is present, the reader should consider that all variables 
have the same time dimension. The rest of the notation will be introduced section by section.  
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3.1 Grouping Information on sub-indicators   

3.1.1 Principal Components Analysis  
 
The goal of the Principal Components Analysis (PCA) is to reveal how different variables change 
in relation to each other, or how they are associated. This is achieved by transforming correlated 
original variables into a new set of uncorrelated variables using the covariance matrix, or its 
standardized form – the correlation matrix. The new variables are linear combinations of the 
original ones and are sorted into descending order according to the amount of variance they 
account for in the original set of variables. Usually correlations among original variables are large 
enough so that the first few new variables, termed principal components account for most of the 
variance in the dataset. If this holds, no essential insight is lost by further analysis or decision 
making, and parsimony and clarity in the structure of the relationships are achieved. A brief 
description of the PCA approach is provided in the next paragraphs. For a detailed discussion on 
the PCA the reader is referred to Jolliffe (1986), Jackson (1991) and Manly (1994). Social 
scientists may also find the shorter monograph by Dunteman (1989) to be helpful.  
 
The technique of PCA was first described by Karl Pearson in 1901. A description of practical 
computing methods came much later from Hotelling in 1933. The objective of the analysis is to 
take Q  variables Q21 x,...x,x and find linear combinations of these to produce principal 

components Q21 Z,...Z,Z that are uncorrelated, following 
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QQ12121111

xa...xaxaZ
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(3.1) 

 

 
At this point there are still Q principal components, i.e. as many as there are variables. The next 
step is to select the first, say P<Q principal components that preserve a “high” amount of the 
cumulative variance of the original data. 
The lack of correlation in the principal components is a useful property because it means that the 
principal components are measuring different “statistical dimensions” in the data. When the 
objective of the analysis is to present a huge data set using a few variables then in applying PCA 
there is the hope that some degree of economy can be achieved if the variation in the Q original 
x  variables can be accounted for by a small number of Z variables. It must be stressed that PCA 
cannot always reduce a large number of original variables to a small number of transformed 
variables. Indeed, if the original variables are uncorrelated then the analysis does absolutely 
nothing. On the other hand, a significant reduction is obtained when the original variables are 
highly correlated, positively or negatively. 
 
The weights ija applied to the variables jx in Equation (3.1) are chosen so that the principal 

components iZ satisfy the following conditions:  
(i) they are uncorrelated (orthogonal), 
(ii) the first principal component accounts for the maximum possible proportion of the variance 

of the set of x s, the second principal component accounts for the maximum of the remaining 
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variance and so on until the last of the principal component absorbs all the remaining 
variance not accounted for by the preceding components, and3 

(iii)  Q,...,2,1i,1... 2
iQ

2
2i

2
1i ==+++ ααα  

 
In brief, PCA just involves finding the eigenvalues λj of the sample covariance matrix CM,  
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where the diagonal element iicm is the variance of ix and ijcm  is the covariance of variables 

ix and jx . The eigenvalues of the matrix CM are the variances of the principal components. There 
are Q eigenvalues, some of which may be negligible. Negative eigenvalues are not possible for a 
covariance matrix. An important property of the eigenvalues is that they add up to the sum of the 
diagonal elements of CM. This means that the sum of the variances of the principal components 
is equal to the sum of the variances of the original variables, 
 
λ 1 + λ2 + ... + λQ = cm11 + cm22 + ... + cmQQ (3.3) 
 
In order to avoid one variable having an undue influence on the principal components it is 
common to standardize the variables x s to have zero means and unit variances at the start of the 
analysis. The matrix CM then takes the form of the correlation matrix (Table 3.1). For the TAI 
example, the highest correlation is found between the sub-indicators ELECTRICITY & 
INTERNET with a coefficient of 0.84.  
 

Table 3.1. Correlation matrix for the TAI sub-indicators, n=23. Marked correlations are 
statistically significant at p < 0.05.  
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PATENTS 1.00 0.13 -0.09 0.45 0.28 0.03 0.22 0.08 
ROYALTIES  1.00 0.46 0.25 0.56 0.32 0.30 0.06 
INTERNET   1.00 -0.45 0.56 0.84 0.63 0.27 
EXPORTS    1.00 0.00 -0.36 -0.35 -0.03 
TELEPHONES     1.00 0.64 0.30 0.33 
ELECTRICITY      1.00 0.65 0.26 
SCHOOLING       1.00 0.08 
ENROLMENT        1.00 

                                                      
3 For reasons of clarity in this section we substitute the indexing q=1,…Q with the indexing 
i=1,…,Q and j=1,…,Q.  
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Table 3.2 gives the eigenvalues of the correlation matrix of the eight sub-indicators 
(standardised values) that compose TAI. Note that the sum of the eigenvalues is equal to the 
number of sub-indicators ( 8=Q ). Figure 3.1 (left) is a graphical presentation of the eigenvalues 
in descending order. Given that the correlation matrix rather than the covariance matrix is used in 
the PCA, all 8 sub-indicators are assigned equal weights in forming the principal components 
(Chatfield and Collins, 1980). The first Principal Component explains the maximum variance in 
all the sub-indicators – eigenvalue of 3.3. The second principal component explains the maximum 
amount of the remaining variance – a variance of 1.7.  The third and fourth principal components 
have an eigenvalue close to 1. The last four principal components explain the remaining 12.8% of 
the variance in the dataset.  

  

Table 3.2. Eigenvalues of the 8 sub-indicators’ set in TAI (n=23). Extraction method: 
Principal Components Analysis 
 Eigenvalue % of variance Cumulative %  
1 3.3 41.9 41.9 
2 1.7 21.8 63.7 
3 1.0 12.3 76.0 
4 0.9 11.1 87.2 
5 0.5 6.0 93.2 
6 0.3 3.7 96.9 
7 0.2 2.2 99.1 
8 0.1 0.9 100.0 
 
A drawback of the conventional PCA is that it does not allow for inference on the properties of 
the general population. This is because, traditionally, drawing such inferences requires certain 
distributional assumptions to be made regarding the population characteristics, and the PCA 
techniques are not based upon such assumptions (see below on the “Assumptions of the PCA”). 
Furthermore, in a traditional PCA framework, there is no estimation of the statistical precision of 
the results, which is essential for relatively small sample sizes as in the present case of the TAI 
example. Therefore, the bootstrap method has been proposed to be utilized in conjuction with 
PCA to make inferences about the population (Efron and Tibshirani, 1991, 1993). Bootstrap 
refers to the process of randomly re-sampling the original data set to generate new data sets. 
Estimates of the relevant statistics are made for each bootstrap sample. A very large number of 
bootstrap samples will give satisfactory results but the computation may be cumbersome. Various 
values have been suggested, ranging from 25 (Efron and Tibshirani, 1991) to as high as 1000 
(Efron, 1987; Mehlman et al., 1995). 
 
An issue that arises at this point is whether the TAI data set for the 23 countries can be viewed as 
a ‘random’ sample of the entire population as required by the bootstrap procedures (Efron 1987; 
Efron and Tibshirani 1993). Several points can be made regarding the issues of randomness and 
representativeness of the data. First, it is often difficult to obtain complete information for a data 
set in the social sciences because, unlike the natural sciences, controlled experiments are not 
always possible, as in the case here. As Efron and Tibshirani (1993) state: ‘in practice the 
selection process is seldom this neat […], but the conceptual framework of random sampling is 
still useful for understanding statistical inferences.’ Second, the countries included in the 
restricted set show no apparent pattern as to whether or not they are predominately developed or 
developing countries. In addition, the countries of varying sizes span all the major continents of 
the world, ensuring a wide representation of the global state of technological development. 
Consequently, the restricted set could be considered as representative of the total population. A 
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third point on the data quality is that a certain amount of measurement error is likely to exist. 
While such measurement error can only be controlled at the data collection stage, rather than at 
the analytical stage, it is argued that the data represent the best estimates currently available 
(United Nations, 2001, p. 46).  
 

Figure 3.1 (right) demonstrates graphically the relationship between the eigenvalues from the 
deterministic PCA, their bootstrapped confidence intervals (5th and 95th percentiles) and the 
ranked principal components. These confidence intervals allow one to generalize the conclusions 
concerning the small set of the sub-indicators (23 countries) to the entire population (e.g. of 72 
countries or even more general), rather than confining the conclusions only to the sample set 
being analyzed. Bootstrapping has been performed for 1000 sample sets of size 23 (random 
sampling with replacement). It is shown that the values of the eigenvalues drop sharply at the 
beginning and then gradually approach zero after a certain point.  

Figure 3.1. Eigenvalues for the 8 sub-indicators in the TAI examples (23 countries). Eigenvalues 
from traditional Principal Components Analysis - Scree plot (left graph), Bootstrapped 
eigenvalues, 1000 samples randomly selected with replacement (right graph).  

The correlation coefficients between the principal components Z  and the variables x are called 

component loadings, )x,Z(r ij . In case of uncorrelated variables x, the loadings are equal to the 

weights ija  given in equation (3.1). Analogous to Pearson's r , the squared loading is the percent 
of variance in that variable explained by the principal component. The component scores are the 
scores of each case (country in our example) on each principal component. The component score 
for a given case for a principal component is calculated by taking the case's standardized value on 
each variable, multiplying by the corresponding loading of the variable for the given principal 
component factor, and summing these products.  

Table 3.3 presents the components loadings for the TAI sub-indicators. High and moderate 
loadings (>0.50) indicate how the sub-indicators are related to the principal components. It can be 
seen that with the exception of PATENTS and ROYALTIES, all the other sub-indicators are 
entirely accounted for by one principal component alone and that the high and moderate loadings 
are all found in the first four principal components. An undesirable property of these components 
is that two sub-indicators are related strongly to two principal components. 
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Table 3.3. Component loadings for the TAI example (23 countries) of the eight sub-indicators. 
Extraction method: principal components. Loadings greater than 0.5 (absolute values) are 
highlighted. 

 1 2 3 4 5 6 7 8 
PATENTS -0.11 -0.75 0.13 0.60 -0.10 -0.12 -0.17 0.05 
ROYALTIES -0.56 -0.48 0.22 -0.54 0.27 -0.17 -0.04 0.10 
INTERNET -0.92 0.21 0.02 -0.10 0.04 0.11 -0.27 -0.13 
EXPORTS 0.35 -0.85 0.01 -0.13 0.11 0.35 0.06 -0.08 
TELEPHONES -0.76 -0.39 -0.16 -0.16 -0.41 -0.16 0.16 -0.09 
ELECTRICITY -0.91 0.13 0.01 0.07 -0.19 0.30 0.04 0.16 
SCHOOLING -0.74 0.11 0.37 0.39 0.33 -0.02 0.20 -0.07 
ENROLMENT -0.36 -0.12 -0.87 0.15 0.26 -0.03 0.02 0.02 

The question of how many principal components should be retained in the analysis without losing 
too much information and how the interpretation of the components might be improved are 
addressed without further ado in the following section on Factor Analysis. 

3.1.2 Factor Analysis 
   
Factor analysis (FA) has similar aims to PCA. The basic idea is still that it may be possible to 
describe a set of Q variables x1, x2 ,..., xQ in terms of a smaller number of m factors, and hence 
elucidate the relationship between these variables. There is however, one important difference: 
PCA is not based on any particular statistical model, but FA is based on a rather special model 
(Spearman, 1904).  
In a general form this model is given by: 
 
x1 = α11F1 + α12F2 +...+ α1mFm + e1 
x2 = α21F1 + α22F2 +...+ α2mFm + e2 
... 
xQ = αQ1F1 + αQ2F2 +...+ αQmFm + eQ 

 

(3.4) 

 

where xi is a variable with zero mean and unit variance; αi1, αi2, ..., αim are the factor loadings 
related to the variable Xi; F1, F2,...,Fm are m uncorrelated common factors, each with zero mean 
and unit variance; and ei are the Q specific factors supposed independently and identically 
distributed with zero mean. There are several approaches to deal with the model in equation (3.4), 
e.g. communalities, maximum likelihood factors, centroid method, principal axis method, etc. All 
them giving different values for the factos. The most common is the use of PCA to extract the 
first m principal components and consider them as factors and neglect the remaining. Principal 
components factor analysis is most preferred in the development of composite indicators (see 
Section 6), e.g. Product Market Regulation Index (Nicoletti et al. 2000), as it has the virtue of 
simplicity and allows the construction of weights representing the information content of sub-
indicators. Notice however that different extraction methods supply different values for the 
factors thus for the weights, influencing the score of the composite and the corresponding country 
ranking. 

On the issue of how factors should be retained in the analysis without losing too much 
information methodologists’ opinions differ. The decision of when to stop extracting factors 
basically depends on when there is only very little "random" variability left, and it is rather 
arbitrary. However, various guidelines (“stopping rules”) have been developed, and they are 
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reviewed below, roughly in the order of frequency of their use in social science (see Dunteman, 
1989: 22-3).  

 Kaiser criterion. Drop all factors with eigenvalues below 1.0. The simplest justification to 
this rule is that it doesn't make sense to add a factor that explains less variance than is 
contained in one sub-indicator. According to this rule, 3 factors should be retained in the 
analysis of the TAI example, although the 4th factor follows closely with an eigenvalues of 
0.90 (see Table 3.2).  

 Scree plot. This method proposed by Cattell plots the successive eigenvalues, which drop off 
sharply and then tend to level off. It suggests retaining all eigenvalues in the sharp descent 
before the first one on the line where they start to level off. This approach would result in 
retaining 3 factors in the TAI example (Figure 3.1).  

 Variance explained criteria. Some researchers simply use the rule of keeping enough 
factors to account for 90% (sometimes 80%) of the variation. The first 4 factors account for 
87.2% of the total variance (see Table 3.2).  

 Joliffe criterion. Drop all factors with eigenvalues under 0.70. This rule may result in twice 
as many factors as the Kaiser criterion, and it is less often used. In the present case study, this 
criterion would have lead to the selection of 4 factors.  

 Comprehensibility. Though not a strictly mathematical criterion, there is much to be said for 
limiting the number of factors to those whose dimension of meaning is readily 
comprehensible. Often this is the first two or three.  

 A relatively recent method for deciding on the number of factors to retain combines the 
bootstrapped eigenvalues and eigenvectors (Jackson 1993, Yu et al. 1998). Based on a 
combination of the Kaiser criterion and the bootstrapped eigenvalues, we should consider the 
first 4 factors in the TAI example.  

In light of the above analysis, we retain the first four principal components as identified by the 
bootstrap eigenvalue approach combined with the Kaiser criterion. This choice implies a greater 
willingness to overstate the significance of the fourth component and be in line with the idea that 
there are four main categories of technology achievement indicators. 

After choosing the number of factors to keep, rotation is a standard step performed to enhance 
the interpretability of the results (see for instance Kline, 1994). With rotation the sum of 
eigenvalues is not affected by rotation, but rotation, changing the axes, will alter the eigenvalues 
of particular factors and will change the factor loadings. There are various rotational strategies 
that have been proposed. The goal of all of these strategies is to obtain a clear pattern of loadings. 
However, different rotations imply different loadings, and thus different meanings of principal 
components  - a problem some cite as a drawback to the method. The most common rotation 
method is the “varimax rotation”. 

 
Table 3.4 presents the factor loadings for the first factors in the TAI example. Note that the 
eigenvalues have been affected by the rotation. The variance accounted for by the rotated 
components is spread more evenly than for the unrotated components (Table 3.2). The first four 
factors account now for 87% of the total variance and are not sorted into descending order 
according to the amount of the original’s dataset variance explained. The first factor has high 
positive coefficients (loadings) with INTERNET (0.79), ELECTRICITY (0.82) and 
SCHOOLING (0.88). Factor 2 is mainly dominated by PATENTS and EXPORTS, whilst 
ENROLMENT is exclusively loaded on Factor 3. Finally, Factor 4 is formed by ROYALTIES 
and TELEPHONES. Yet, despite the rotation of factors, the sub-indicator of EXPORTS has 
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sizeable loadings in both Factor 1 (negative loading) and Factor 2 (positive loading). A 
meaningful interpretation of the factors is not straightforward. Furthermore, the statistical 
treatment of the eight sub-indicators results in different groups (factors) than the conceptual ones 
(see Table A.1 in Appendix).   
 
Table 3.4. Rotated factor loadings for the TAI example (23 countries) of the eight sub-indicators. 
Extraction method: principal components, varimax normalised rotation. Positive loadings 
greater than 0.5 are highlighted. 
 Factor 1 Factor 2 Factor 3 Factor 4 
PATENTS 0.07 0.97 0.06 0.06 
ROYALTIES 0.13 0.07 -0.07 0.93 
INTERNET 0.79 -0.21 0.21 0.42 
EXPORTS -0.64 0.56 -0.04 0.36 
TELEPHONES 0.37 0.17 0.38 0.68 
ELECTRICITY 0.82 -0.04 0.25 0.35 
SCHOOLING 0.88 0.23 -0.09 0.09 
ENROLMENT 0.08 0.04 0.96 0.04 
Explained variance 2.64 1.39 1.19 1.76 
Cumulative variance explained (%) 33 50 65 87 
 
Another method of extracting factors that deals with the uncorrelation issue of the specific factors 
would have given different results. Just to give an example, Table 3.5  presents the rotated factor 
loadings of the four factors for the TAI case study (extraction method: principal factors maximum 
likelihood). For instance, ELECTRICITY and SCHOOLING are not loaded any more both on F1, 
but ELECTRICITY is loaded on F4 and SCHOOLING on F3. There is 76% variance that is 
common in the sub-indicators set and expressed by the four rotated common factors. In contrast, 
the total variance explained in the previous analysis by the four rotated principal components was 
much higher (87%).  

Table 3.5. Rotated factor loadings for the TAI example (23 countries). Extraction 
method: principal factors maximum likelihood, varimax normalised rotation.  

 Factor 1 Factor 2 Factor 3 Factor 4 
PATENTS 0.01 0.11 0.88 0.13 
ROYALTIES 0.96 0.14 0.09 0.18 
INTERNET 0.31 0.56 -0.29 0.60 
EXPORTS 0.29 -0.45 0.58 -0.14 
TELEPHONES 0.41 0.13 0.18 0.73 
ELECTRICITY 0.13 0.57 -0.13 0.73 
SCHOOLING 0.14 0.95 0.10 0.14 
ENROLMENT -0.01 0.03 0.03 0.39 
Explained Variance 1.31 1.80 1.27 1.67 
Cumulative variance explained (%) 16 39 55 76 

 
To sum up the steps of PCA/FA as exploratory analysis method: 
1. Calculate the covariance/correlation matrix: if the correlations between sub-indicators are 
small, it is unlikely that they share common factors.  
2. Identify the number of factors that are necessary to represent the data and the method for 
calculating them. 
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3.  Rotate factors to enhance their interpretability (by maximizing loading of sub-indicators 
individual factors).   
There are several assumptions in the application of PCA/FA, which we are discussed in the box 
below. These assumptions are mentioned in almost all textbooks, yet they are often neglected 
when composite indicators are developed. 
 
Box: Assumptions in Principal Components Analysis and Factor Analysis 

1. Enough number of cases. The question of how many cases (or countries) are necessary to do 
PCA/FA has no scientific answer and methodologists’ opinions differ. Alternative arbitrary 
rules of thumb in descending order of popularity include those below.  

(a) Rule of 10. There should be at least 10 cases for each variable.   
(b) 3:1 ratio. The cases-to-variables ratio should be no lower than 3 (Grossman et al. 1991). 
(c) 5:1 ratio. The cases-to-variables ratio should be no lower than 5 (Bryant and Yarnold, 

1995; Nunnaly 1978, Gorsuch 1983).  
(d) Rule of 100: The number of cases should be the larger between (5 × number of 

variables), and 100. (Hatcher, 1994).  
(e) Rule of 150: Hutcheson and Sofroniou (1999) recommend at least 150 - 300 cases, more 

toward 150 when there are a few highly correlated variables.  
(f) Rule of 200. There should be at least 200 cases, regardless of the cases-to-variables ratio 

(Gorsuch, 1983).  
(g) Significance rule. There should be 51 more cases than the number of variables, to support 

chi-square testing (Lawley and Maxwell, 1971) 

These rules are not mutually exclusive. Bryant and Yarnold (1995), for instance, endorse both 
the cases-to-variables ratio and the Rule of 200. In the TAI example, there are 23:8 cases-to-
variables, therefore the first and the second rule are satisfied.  

2. No bias in selecting sub-indicators. The exclusion of relevant sub-indicators and the 
inclusion of irrelevant sub-indicators in the correlation matrix being factored will affect, often 
substantially, the factors which are uncovered. Although social scientists may be attracted to 
factor analysis as a way of exploring data whose structure is unknown, knowing the factorial 
structure in advance helps select the sub-indicators to be included and yields the best analysis 
of factors. This dilemma creates a chicken-and-egg problem. Note this is not just a matter of 
including all relevant sub-indicators. Also, if one deletes sub-indicators arbitrarily in order to 
have a "cleaner" factorial solution, erroneous conclusions about the factor structure will result 
(see Kim and Mueller, 1978a: 67-8). 

3. No outliers. As with most techniques, the presence of outliers can affect interpretations 
arising from PCA/FA. One may use Mahalanobis distance to identify cases which are 
multivariate outliers and remove them prior to the analysis. Alternatively, one can also create 
a dummy variable set to 1 for cases with high Mahalanobis distance, then regress this dummy 
on all other variables. If this regression is non-significant (or simply has a low R-squared for 
large samples) then the outliers are judged to be at random and there is less danger in 
retaining them. The ratio of the regression coefficients indicates which variables are most 
associated with the outlier cases.  

4. Assumption of interval data. Kim and Mueller (1978b, pp.74-75) note that ordinal data may 
be used if it is thought that the assignment of ordinal categories to the data does not seriously 
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distort the underlying metric scaling. Likewise, these authors allow the use of dichotomous 
data if the underlying metric correlations between the variables are thought to be moderate 
(.7) or lower. The result of using ordinal data is that the factors may be much harder to 
interpret. Note that categorical variables with similar splits will necessarily tend to correlate 
with each other, regardless of their content (see Gorsuch, 1983). This is particularly apt to 
occur when dichotomies are used. The correlation will reflect similarity of "difficulty" for 
items in a testing context, hence such correlated variables are called difficulty factors. The 
researcher should examine the factor loadings of categorical variables with care to assess 
whether common loading reflects a difficulty factor or substantive correlation. 

5. Linearity. Principal components factor analysis (PFA), which is the most common variant of 
FA, is a linear procedure. Of course, as with multiple linear regression, nonlinear 
transformation of selected variables may be a pre-processing step, but this is not common. 
The smaller the sample size, the more important it is to screen data for linearity.  

6. Multivariate normality of data is required for related significance tests. PCA and PFA have 
no distributional assumptions. Note, however, that a variant of factor analysis, maximum 
likelihood factor analysis, does assume multivariate normality. The smaller the sample size, 
the more important it is to screen data for normality. Moreover, as factor analysis is based on 
correlation (or sometimes covariance), both correlation and covariance will be attenuated 
when variables come from different underlying distributions (ex., a normal vs. a bimodal 
variable will correlate less than 1.0 even when both series are perfectly co-ordered).   

7. Underlying dimensions shared by clusters of sub-indicators are assumed. If this assumption 
is not met, the "garbage in, garbage out" principle applies. Factor analysis cannot create valid 
dimensions (factors) if none exist in the input data. In such cases, factors generated by the 
factor analysis algorithm will not be comprehensible. Likewise, the inclusion of multiple 
definitionally-similar sub-indicators representing essentially the same data will lead to 
tautological results.  

8. Strong intercorrelations are not mathematically required, but applying factor analysis to a 
correlation matrix with only low intercorrelations will require for solution nearly as many 
factors as there are original variables, thereby defeating the data reduction purposes of factor 
analysis. On the other hand, too high inter-correlations may indicate a multi-collinearity 
problem and collinear terms should be combined or otherwise eliminated prior to factor 
analysis.   

(a) The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy is a statistics for 
comparing the magnitudes of the observed correlation coefficients to the magnitudes of the 
partial correlation coefficients. The concept is that the partial correlations should not be very 
large if one is to expect distinct factors to emerge from factor analysis (see Hutcheson and 
Sofroniou, 1999, p.224). A KMO statistic is computed for each individual sub-indicator, and 
their sum is the KMO overall statistic. KMO varies from 0 to 1.0. A KMO overall should be 
.60 or higher to proceed with factor analysis (Kaiser and Rice, 1974), though realistically it 
should exceed 0.80 if the results of the principal components analysis are to be reliable. If 
not, it is recommended to drop the sub-indicators with the lowest individual KMO statistic 
values, until KMO overall rises above .60.  

(b) Variance-inflation factor (VIF) is simply the reciprocal of tolerance. A VIF value greater 
than 4.0 is an arbitrary but common cut-off criterion for suggesting that there is a multi-
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collinearity problem. Some researchers use the more lenient cutoff VIF value of 5.0.  

(c) The Bartlett’s test of sphericity is used to test the null hypothesis that the sub-indicators in 
a correlation matrix are uncorrelated, that is to say that the correlation matrix is an identity 
matrix. The statistic is based on a chi-squared transformation of the determinant of the 
correlation matrix. However, as Bartlett’s test is highly sensitive to sample size (Knapp and 
Swoyer 1967), Tabachnick and Fidell (1989, p.604) suggest implementing it with the KMO 
measure (point a above). 

 

PCA/FA as exploratory analysis 

Advantages                                                         Disadvantages 

 Can summarise a set of sub-indicators 
while preserving the maximum possible 
proportion of the total variation in the original 
set. 

 Largest factor loadings are assigned to the 
sub-indicators that have the largest variation 
across countries (a desirable property for 
cross-country comparisons, as sub-indicators 
that are similar across countries are of little 
interest and cannot possibly explain 
differences in performance) 
 

 Correlations do not necessarily represent 
the real influence of the sub-indicators on the 
phenomenon being measured.  

 Sensitive to modifications in the basic data: 
data revisions and updates (e.g. new 
countries). 

 Sensitive to the presence of outliers, which 
may introduce a spurious variability in the 
data. 

 Sensitive to small-sample problems, which 
are particularly relevant when the focus is on 
a limited set of countries.  
 Minimisation of the contribution of sub-

indicators which do not move with other sub-
indicators. 
 

Examples of use  
Environmental Sustainability Index 

General Indicator of Science & Technology 
Internal Market Index 

Business Climate Indicator 
 

3.1.3 Cronbach Coefficient Alpha 
 
A way to investigate the degree of the correlations among a set of variables is to use the Cronbach 
Coefficient Alpha, c-alpha hencefort, (Cronbach, 1951). The c-alpha  is the most common 
estimate of internal consistency of items in a model or survey – Reliability/Item Analysis (e.g. 
Boscarino et al., 2004; Raykov, 1998; Cortina, 1993; Feldt et al., 1987; Green et al., 1977; Hattie, 
1985; Miller, 1995). It assesses how well a set of items (in our terminology sub-indicators) 
measures a single unidimensional object (e.g. attitude, phenomenon etc.).  
 
Cronbach's Coefficient Alpha can be defined as:  



 

 27

Q,..,1j,i;M,..,1c
)xvar(

)xvar(
1

1Q
Q

)xvar(

)x,xcov(

1Q
Q

o

j
j

o

ji
ji

c ==















−








−

=







−

=
∑∑

≠α  

 

(3.5) 

 
where M as usual indicates the number of countries considered, Q the number of sub-indicators 

available, and ∑
=

=
Q

1q
jo xx is the sum of all sub-indicators. C-alpha measures the portion of total 

variability of the sample of sub-indicators due to the correlation of indicators. It grows with the 
number of sub-indicators and with the covariance of each pair of them.  If no correlation exists 
and sub-indicators are independent then c-alpha is equal to zero, while if sub-indicators are 
perfectly correlated the c-alpha is equal to one.  
 
C-alpha is not a statistical test but a coefficient of reliability based on the correlations between 
sub-indicators: if the correlation of high, then there is evidence that the sub-indicators are 
measuring the same underlying construct. Therefore a high c-alpha, or equivalently a high 
“reliability”, means that the sub-indicators considered measure well the latent phenomenon. 
Though widely interpreted as such, strictly speaking c-alpha is not a measure of 
unidimensionality. A set of sub-indicators can have a high alpha and still be multidimensional. 
This happens when there are separate clusters of sub-indicators (separate dimensions) which 
inter-correlate highly, even though the clusters themselves are not highly correlated. An issue is 
how large the c-alpha must be. Nunnally (1978) suggests 0.7 as an acceptable reliability 
threshold. Yet, some authors use 0.75 or 0.80 as cut-off value, while others are as lenient as 0.60. 
In general this varies by discipline. 
 
If the variances of the sub-indicators vary widely, like in our test case, a standard practice is to 
standardize the sub-indicators to a standard deviation of 1 before computing the coefficient alpha. 
In our notation this would mean substituting xi with Ii. The c-alpha is 0.70 for the dataset of the 23 
countries, which is equal to the Nunnally’s cutoff value. An interesting exercise is to determine 
how the c-alpha varies with the deletion of each sub-indicator at a time. This helps to detect the 
existence of clusters of sub-indicators, thus it is useful to determine the nested structure of the 
composite. If the reliability coefficient increases after deleting a sub-indicator from the scale, one 
can assume that the sub-indicator is not correlated highly with other sub-indicators in the scale.   
 
Table 3.6 presents the values for the Cronbach coefficient alpha and the correlation with the total 
after deleting one sub-indicator at-a-time. TELEPHONES has the highest variable-total 
correlation and if deleted the coefficient alpha would be as low as 0.60. If EXPORTS were to be 
deleted from the set then the value of standardized coefficient alpha will increase from the current 
0.70 to 0.77. Note that the same sub-indicator has the lowest variable-total correlation value (-
0.108). This indicates that EXPORTS is not measuring the same construct as the rest of the sub-
indicators are measuring. Note also, that the factor analysis in the previous section had indicated 
ENROLMENT as the sub-indicator that shares the least amount of common variance with the 
other sub-indicators. Although both factor analysis and the Cronbach coefficient alpha are based 
on correlations among sub-indicators, their conceptual framework is different.    
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Table 3.6. Cronbach coefficient alpha results for the 23 countries after deleting one sub-
indicator (standardised values) at-a-time 

Deleted sub-indicator Correlation with total Cronbach coefficient alpha  
PATENTS 0.261 0.704 
ROYALTIES 0.527 0.645 
INTERNET 0.566 0.636 
EXPORTS -0.108 0.774 
TELEPHONES 0.701 0.603 
ELECTRICITY 0.614 0.624 
SCHOOLING 0.451 0.662 
ENROLMENT 0.249 0.706 

 

Coefficient Cronbach alpha  

Advantages   Disadvantages  

 It measures the internal consistency in the set 
of sub-indicators, i.e. how well they describe a 
unidimensional construct. Thus it is useful to 
cluster similar objects. 

 

 Correlations do not necessarily represent 
the real influence of the sub-indicators on the 
phenomenon expressed by the composite 
indicator.  

 Cronbach coefficient alpha is meaningful 
only when the composite indicator is 
computed as a ‘scale’ (i.e. as the sum of the 
sub-indicators).  

 
Examples of use  

Compassion Fatigue (Boscarino et al., 2004) 
Secondary trauma (Boscarino et al., 2004) 

Job burnout (Boscarino et al., 2004) 
Success of software process implementation 

 
 

3.2 Grouping information on countries 

3.2.1 Cluster analysis 
 
Cluster analysis (CLA) is the name given to a collection of algorithms used to classify objects, 
e.g. countries, species, individuals (Anderberg 1973, Massart and Kaufman 1983). The 
classification has the aim of reducing the dimensionality of a dataset by exploiting the 
similarities/dissimilarities between cases. The result will be a set of clusters such that cases within 
a cluster are more similar to each other than they are to cases in other clusters.  Cluster analysis 
has been applied in a wide variety of research problems, from medicine and psychiatry to 
archeology. In general whenever one needs to classify a large number of information into 
manageable meaningful piles, or discover similarities between objects, cluster analysis is of great 
utility.  
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CLA techniques can be hierarchical (for example the tree clustering), i.e. the resultant 
classification has a increasing number of nested classes, or non-hierarchical when the number of 
clusters is decided ex ante (for example the k-means clustering). Care should be taken that groups 
(classes) are meaningful in some fashion and are not arbitrary or artificial. To do so the clustering 
techniques attempt to have more in common with own group than with other groups, through 
minimization of internal variation while maximizing variation between groups.  
 
Homogeneous and distinct groups are delineated based upon assessment of distances or in the 
case of Ward's method, an F-test (Davis, 1986). A distance measure is an appraisal of the degree 
of similarity or dissimilarity between cases in the set. A small distance is equivalent to a large 
similarity. It can be based on a single dimension or on multiple dimensions, for example countries 
in TAI example can be evaluated according to the TAI composite indicator or they can be 
evaluated according to all single sub-indicators. Notice that CLA does not “care” whether the 
distances are real (as in the case of quantitative indicators) or given by the researcher on the basis 
of an ordinal ranking of alternatives (as in the case of qualitative indicators). Some of the most 
common distance measures are listed in Table 3.7 including Euclidean and non-Euclidean 
distances (e.g. city-block). One problem with Euclidean distances is that they can be greatly 
influenced by variables that have the largest values. One way around this problem is to 
standardise the variables.  

Table 3.7. Distance measures ),( yxD between two objects x and y over dN  dimensions. 
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This is the geometric distance in a 
multidimensional space and is usually 
computed from raw data (prior to any 
normalization). The advantage is that this 
measure is not affected by the addition of 
new objects (for example outliers). 
Disadvantage: this measure is affected by the 
difference in scale (e.g. if the same object is 
measured in centimetres or in meters the 
D(x,y) is highly affected.  
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This measure places progressively greater 
weight on objects that are further apart. 
Usually this is computed from raw data and 
shares the same advantages and 
disadvantages of the Euclidean distance. 
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(Manhattan) 
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This distance is the average of distances 
across dimensions and it supplies similar 
results to the Euclidean distance. In this 
measure the effect of outliers is less 
pronounced (since it is not squared). The 
name comes from the fact that in most 
American cities it is not possible to go 
directly between two points, so the route 
follows the grid of roads.  

 

Chebychev 
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This measure is mostly used when one wants 
to define objects as “different” if they are 
different in any one of the dimensions. 
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This distance measure is useful when one 
wants to increase or decrease the progressive 
weight that is placed in one dimension, for 
which the respective objects are very 
different; r and p a user-defines parameters: p 
controls the progressive weights placed on 
differences on individual dimensions, and r 
controls the progressive weight placed on 
larger differences between objects. For p = r 
= 2, we have the Euclidean distance.  
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Useful if the data are categorical in nature. 

 
 
Having decided how to measure similarity (the distance measure), the next step is to choose the 
clustering algorithm, i.e. the rules which govern how distances are measured between clusters. 
There are many methods available, the criteria used differ and hence different classifications may 
be obtained for the same data, even using the same distance measure. The most common linkage 
rules are (Spath, 1980): 
 

 Single linkage (nearest neighbor). The distance between two clusters is determined by 
the distance between the two closest elements in the different clusters. This rule (called 
also single linkage) produces clusters chained together by single objects. 

 Complete linkage (farthest neighbor). The distance between two clusters is determined 
by the greatest distance between any two objects belonging to different clusters. This 
method usually performs well when objects naturally form distinct groups. 

 Unweighted pair-group average. The distance between two clusters is calculated as the 
average distance between all pairs of objects in the two clusters. This method usually 
performs well when objects naturally form distinct groups. A variation of this method is 
using the centroid of a cluster: the distance is then the average point in the 
multidimensional space defined by the dimensions.  

 Weighted pair-group average. Similar to the unweighted pair-group average (centroid 
included) except for the fact that the size of the cluster (i.e. the number of objects 
contained) is used as weight for the average distance. This method is useful when cluster 
sizes are very different.  

 Ward’s method (Ward, 1963). Cluster membership is determined by calculating the 
variance of elements (the sum of the squared deviations from the mean of the cluster). An 
element will belong to the cluster is it produces the smallest possible increase in the 
variance. 

 
Figure 3.2 shows the country clusters based on the technology achievement sub-indicators using 
tree clustering (hierarchical) with single linkage and squared Euclidean distances. Similarity 
between countries belonging to the same cluster decreases as the linkage distance increases. One 
of the biggest problems with CLA is identifying the optimum number of clusters. As the 
amalgamation process continues increasingly dissimilar clusters must be fused, i.e. the 
classification becomes increasingly artificial. Deciding upon the optimum number of clusters is 
largely subjective, although looking at the plot of linkage distance across fusion steps may help 
(Milligan and Cooper, 1985). Sudden jumps in the level of similarity (abscissa) indicate that 
dissimilar groups or outliers are fused. Such a plot is presented in Figure 3.3, where the greatest 
dissimilarity among the 23 countries in the TAI example is found at a linkage distance close to 
4.0, which indicates that the data are best represented by ten clusters: Finland alone, Sweden and 
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USA, the group of countries located between the Netherlands and Hungary, then alone Canada, 
Singapore, Australia, New Zealand, Korea, Norway, Japan. Notice that the most dissimilar are 
Korea, Norway and Japan, which are aggregated only at the very end of the analysis. Notice also 
that this result does not fully correspond to the division in laggard, average and leading countries 
resulting from the standard aggregation methods. Japan, in fact, would be in the group of leading 
countries, together with Finland, Sweden, USA, while Hungary, Czech Republic, Slovenia and 
Italy would be the laggards, far away from the Netherlands, USA or Sweden (see Table 6.11). 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Country clusters for the sub-indicators of technology achievement 
(standardised data). Type: Hierarchical, single linkage, squared Euclidean distances. 
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Figure 3.3. Linkage distance versus fusion step in the hierarchical clustering for the technology 
achievement example. 
 
A non-hierarchical method of clustering, different from the Joining (or Tree) clustering shown 
above, is the k-means clustering (Hartigan, 1975). This method is useful when the aim is that of 
dividing the sample in k clusters of greatest possible distinction. The parameter k is decided by 
the analyst, for example we may decide to cluster the 23 countries in the TAI example into 3 
groups, e.g. leaders, potential leaders, dynamic adopters. The k-means algorithm will supply 3 
clusters as distinct as possible (results shown in Table 3.7). This is done by analyzing the variance 
of each cluster. Thus, this algorithm can be applied with continuous variables (yet it can be also 
modified to accommodate for other types of variables). The algorithm starts with k random 
clusters and moves the objects in and out the clusters with the aim of (i) minimizing the variance 
of elements within the clusters, and (ii) maximize the variance of the elements outside the 
clusters.  
 
A line graph of the means across clusters is displayed in Figure 3.4. This plot is very useful in 
summarizing the differences in the means between clusters. It is shown for example that the main 
difference between the leaders and the potential leaders (Table 3.9) is on RECEIPTS and 
EXPORTS. At the same time, the dynamic adopters are lagging behind the potential leaders due 
to their lower performance on INTERNET, ELECTRICITY and SCHOOLING. They are, 
however, performing better on EXPORTS. Two of the sub-indicators, i.e. PATENTS and 
ENROLMENT, are not useful in distinguishing between these 3 groups, as the cluster means are 
very close.  
 
Table  3.8. K-means clustering for the 23 countries in the technology achievement case study 
Group1 (leaders) Group 2 (potential leaders) Group 3 (dynamic adopters) 
Finland 
USA 
Sweden 
Netherlands 

Canada 
Australia 
Norway 
New Zealand 

Japan 
Korea 
UK 
Singapore 
Germany 
Ireland 
Belgium 
Austria 

France 
Israel 
Spain 
Italy 
Czech Rep. 
Hungary 
Slovenia 
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Figure 3.4. Plot of means for each cluster in the technology achievement case study. Type: k-
means clustering (standardized data). 
 
Finally, expectation maximization (EM) clustering extends the simple k-means clustering in two 
ways: 
 

1. Instead of clustering the objects by maximizing the differences in means for continuous 
variables, EM clusters membership on the basis of probability distributions: each 
observation will belong to each cluster with a certain probability. EM estimates mean and 
standard deviation of each cluster so as to maximizes the overall likelihood of the data, 
given the final clusters (Binder, 1981). 

2. Unlike k-means, EM can be applied both to continuous and categorical data. 
 
Ordinary significance tests are not valid for testing differences between clusters. This is because 
clusters are formed to be as much separated as possible, thus the assumptions of usual tests, 
parametric or non parametric are violated (see Hartigan 1975). As final remark a warning: CLA 
will always produce a grouping, this means that clusters may or may not prove useful for 
classifying objects depending upon the objectives of the analysis. For example, if grouping zip 
code areas into categories based on age, gender, education and income discriminates between 
wine drinking behaviors, then this would be useful information only if the aim of the CLA was 
that of establishing a wine store in new areas. Furthermore, CLA methods are not clearly 
established, there are many options, all giving very different results (see Everitt, 1979).  
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3.2.2 Factorial k-means analysis 

In the previous sections we explored the relationships within a set of variables (e.g. sub-indicators 
by using continuous models (e.g., Principal Component Analysis or Factor Analysis) that 
summarize the common information in the data set by detecting non-observable dimensions. On 
the other hand, the relationships within a set of objects (e.g. countries) are often explored by 
fitting discrete classification models as partitions, n-trees, hierarchies, via non-parametric 
techniques of clustering.   

When the number of variables is large or when is it believed that some of these do not contribute 
much to identify the clustering structure in the data set, researchers apply the continuous and 
discrete models sequentially, frequently carrying out a PCA and then applying a clustering 
algorithm on the object scores on the first few components. However, De Sarbo et al. (1990), De 
Soete & Carroll (1994) warn against this approach, called "tandem analysis" by Arabie and 
Hubert (1994), because PCA or FA may identify dimensions that do not necessarily contribute 
much to perceive the clustering structure in the data and that, on the contrary, may obscure or 
mask the taxonomic information.  

Various alternative methods combining cluster analysis and the search for a low-dimensional 
representation have been proposed, and focus on multidimensional scaling or unfolding analysis 
(e.g., Heiser, 1993, De Soete and Heiser, 1993). A method that combines k-means cluster analysis 
with aspects of Factor Analysis and PCA is presented by Vichi and Kiers (2001). A discrete 
clustering model together with a continuous factorial one are fitted simultaneously to two-way 
data, with the aim to identify the best partition of the objects, described by the best orthogonal 
linear combinations of the variables (factors) according to the least-squares criterion. This 
methodology named factorial k-means analysis has a very wide range of application since it 
reaches a double objective: the data reduction and synthesis, simultaneously in direction of 
objects and variables; Originally applied to short-term macroeconomic data, factorial k-means 
analysis has a fast alternating least-squares algorithm that extends its application to large data 
sets. The methodology can therefore be recommended as an alternative to the widely used tandem 
analysis.  

3.3 Conclusions 
 
Application of multivariate statistics, including Factor analysis, Coefficient Cronbach Alpha, 
Cluster Analysis, is something of an art, and it is certainly not as objective as most statistical 
methods. Available software packages (e.g. STATISTICA, SAS, SPSS) allow for different 
variations of these techniques. The different variations of each technique can be expected to give 
somewhat different results and can therefore confuse the developers of composite indicators. On 
the other hand, multivariate statistic is widely used to analyse the information inherent in a set of 
sub-indicators and will continue to be widely used in the future. The reason for this is that 
developers of composite indicators find the results useful for gaining insight into the structure of 
their multivariate datasets. Therefore, if it is thought of as a purely descriptive tool, with 
limitations that are understood, then it must take its place as one of the important steps during the 
development of composite indicators.  
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4. Imputation of missing data 

Missing data are present in almost all the case studies of composite indicators. Data can be 
missing either in a random or in a non-random fashion. They can be missing at random because 
of malfunctioning equipment, weather issues, lack of personnel, but there is no particular reason 
to consider that the collected data are substantially different from the data that could not be 
collected. On the other hand, data are often missing in a non-random fashion. For example, if 
studying school performance as a function of social interactions in the home, it is reasonable to 
expect that data from students in particularly types of home environments would be more likely 
to be missing than data from people in other types of environments. More formally, the missing 
patterns could be: 

- MCAR (Missing Completely At Random): missing values do not depend on the variable of 
interest or any other observed variable in the data set. For example the missing values in 
variable income would be of MCAR type if (i) people who do not report their income have, 
on average, the same income as people who do report income, and if (ii) each of the other 
variables in the dataset would have to be the same, on average, for the people who did not 
report the income and the people who did report their income. 

- MAR (Missing At Random): missing values do not depend on the variable of interest, but 
they are conditional on some other variables in the data set. For example the missing values 
in income would be MAR if the probability of missing data on income depends on marital 
status but, within each category of marital status, the probability of missing income is 
unrelated to the value of income. Missing by design, e.g. if survey question 1 is answered yes, 
than survey question 2 is not to be answered, are also MAR as missingness depends on the 
covariates. 

- NMAR (Not Missing At Random): missing values depend on the values themselves. For 
example high income households are less likely to report their income.  

 

One of the problems with missing data is that there is no statistical test for NMAR and often no 
basis upon which to judge whether data are missing at random or systematically, whilst most of 
the methods that impute (i.e. fill in) missing values require an MCAR or at least an MAR 
mechanism. When there are reasons to assume an NMAR pattern, then the missing pattern must 
be explicitly modelled and included in the analysis. This could be very difficult and could imply 
ad hoc assumptions that are likely to deeply influence the result of the entire exercise (see Little 
and Rubin, 2002, chapter 15 for some examples of NMAR mechanisms and Kaufmann, Kraay 
and Zoid-lobatón, 1999 and 2003 for an application to governance indicators). 

Three generic approaches for dealing with missing data can be distinguished, i.e. case deletion, 
single imputation or multiple imputation. The first one, Case Deletion, simply omits the missing 
records from the analysis. The disadvantages of this approach (also called complete case analysis) 
are that it ignores possible systematic differences between complete and in-complete sample and 
produces unbiased estimates only if deleted records are a random sub-sample of the original 
sample (MCAR assumption). Furthermore, standard errors will, in general be larger in a reduced 
sample given that less information is used. As a rule of thumb (Little and Rubin, 1987) if a 
variable has more than 5% missing values, cases are not deleted, and many researchers are much 
more stringent than this. 

The other two approaches see the missing data as part of the analysis and therefore try to impute 
values through either Single Imputation (e.g. Mean/Median/Mode substitution, Regression 
Imputation, Expectation-Maximisation Imputation, etc.) or Multiple Imputation (e.g. Markov 
Chain Monte Carlo algorithm). The advantages of imputation include the minimisation of bias 



 

 36

and the use of ‘expensive to collect’ data that would otherwise be discarded. The main 
disadvantage of imputation is that it can allow data to influence the type of imputation. In the 
words of Dempster and Rubin (1983): 

The idea of imputation is both seductive and dangerous. It is seductive 
because it can lull the user into the pleasurable state of believing that the data 
are complete after all, and it is dangerous because it lumps together situations 
where the problem is sufficiently minor that it can legitimately handled in 
this way and situations where standard estimators applied to real and imputed 
data have substantial bias.  

The uncertainty in the imputed data should be reflected by variance estimates. This allows taking 
into account the effects of imputation in the course of the analysis. However, Single Imputation is 
known to underestimate the variance, because it reflects partially the imputation uncertainty. The 
Multiple Imputation method instead, which provides several values for each missing value, can 
more effectively represent the uncertainty due to imputation.  No imputation model is free of 
assumptions and the imputation results should hence be thoroughly checked for their statistical 
properties such as distributional characteristics as well as heuristically for their meaningfulness, 
e.g. whenever negative imputed values are possible.  

This section illustrates the main issues related to imputation. The literature on the analysis of 
missing data is extensive and in rapid development. Therefore, this section is not intended to be 
comprehensive, but rather to supply the reader with the basic flavour of the main methods. More 
comprehensive surveys can be found in Little and Rubin (2002), Little (1997) and Little and 
Schenker (1994). 

 

4.1 Single imputation 
 
As indicated by Little and Rubin (2002), imputations are means or draws from a predictive 
distribution of the missing values. The predictive distribution must be created by employing the 
observed data. There are, in general, two approaches to generate this predictive distribution: 
 
Implicit modeling: the focus is on an algorithm, with implicit underlying assumptions that should 
be assessed. Besides the need to carefully verify whether the implicit assumptions are reasonable 
and fit to the issue dealt with, the danger of this type of modeling missing data is to consider the 
resulting data set as complete and forget that an imputation has been done.  Implicit modeling 
includes: 
 

 Hot deck imputation: fill in blanks cells with individual data drawn from “similar” 
responding units, e.g. missing values for individual income may be replaced with the 
income of another respondent with similar characteristics (age, sex, race, place of 
residence, family relationships, job, etc.). 

 Substitution: replace non responding units with units not selected into the sample, e.g. if 
a household cannot be contacted, then a previously non selected household in the same 
housing block is selected. 

 Cold deck imputation: replace the missing value with a constant value from an external 
source, e.g. from a previous realization of the same survey. 

 
Explicit modeling: the predictive distribution is based on a formal statistical model where the 
assumptions are made explicit. This is the case of the 
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 Unconditional mean/median/mode imputation, where the sample mean (median, 

mode) of the recorded values for the given sub-indicator substitutes the missing values. 
 Regression imputation. Missing values are substituted by the predicted values obtained 

from a regression. The dependent variable of the regression is the sub-indicator hosting 
the missing value and the regressor(s) is(are) the sub-indicator(s) showing a strong 
relationship with the dependent variable (usually a high degree of correlation). 

 Expectation Maximization (EM) imputation. This model focuses on the 
interdependence between model parameters and the missing values. The missing values 
are substituted by estimates obtained through an iterative process. First, one predicts the 
missing values based on initial estimates of the model parameter values. These 
predictions are then used to update the parameter values, and the process is repeated. The 
sequence of parameters converges to the maximum likelihood estimates, and the time to 
converge depends on the proportion of missing data and the flatness of the likelihood 
function.  

 

If the simplicity is its main appeal, an important limitation of the single imputation methods is 
that they systematically underestimate the variance of the estimates (with some exceptions for the 
EM method where the bias depends on the algorithm used to estimate the variance). Therefore, 
they do not fully allow assessing the implications of imputation and thus the robustness of the 
composite index derived from the imputed dataset.  

 

3.1.1 Unconditional mean imputation  
Let Xq be the random variable associated to the sub-indicators q=1,…,Q  and  xq,c  the observed 
value of  Xq for country c, with c=1,..,M.  For some c indicate with qm  the number of recorded 

values on Xq, and M- qm the number of missing values. The unconditional mean will be calculated 
as  

∑=
recorded

c,q
q

q x
m
1x  

 
(4.1) 

Similarly, the median (the value that divides in two equal parts the distribution of the random 
variable) and the mode (the value with the highest frequency) of the distribution would be 
calculated on the available sample and substitute missing values.4 The consequences of “fill in” 
blank spaces with the sample mean is that the imputed value is a biased estimator of the 
population mean (except in the case of MCAR mechanisms) and the sample variance 
underestimates true variance with the consequence of underestimating the uncertainty on the 
composite due to the imputation.  

 

                                                      
4 A variant of unconditional mean imputation is the fill-in via conditional mean. The regression approach is one 
possible method. Another common method (called imputing means within adjustment cells) is to classify the data for 
the sub-indicator with some missing values in classes and impute provisionally the missing values of that class with the 
sample mean of the class. Then sample mean (across al classes) is then calculated and substituted as final imputation 
value. 
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4.1.2 Regression imputation  
Suppose to have a set of h-1<Q fully observed sub-indicators (x1,…,xh-1) and a sub-indicator  xh 
only observed for r countries but missing for the remaining M-r countries. Regression imputation 
computes the regression of xh on (x1,…,xh-1) using r complete observations, and impute the 
missing values as prediction from the regression5: 

∑ −

=
−=+=

1h

1j ijj0ih rM,..,1ixˆˆx̂ ββ  (4.2)    

 

Usually the strategy to define the ‘best’ regression is a two step procedure. First, all different 
subsets of predictors are adopted in a multiple regression manner. Then, the best subset(s) is 
determined using the following criteria:6 

o the value of R2 
o the value of the residual mean square RMS 
o the value of Mallows’ Ck  
o stepwise regression 

 

A variation of the regression approach is the stochastic regression approach that imputes a 
conditional draw instead of imputing the conditional mean:  

∑ −

=
−=++=

1h

1j iijj0ih rM,..,1ixˆˆx̂ εββ  (4.2)    

where iε  is a random variable )ˆ,0(N 2σ  and 2σ̂  is the residual variance from the regression of  
xh on (x1,…,xh-1) based on the r complete cases.  

A key problem of both approaches is again the underestimation of the standard errors (although 
stochastic regression ameliorates the distortions), thus the inference based on the entire dataset 
(including the imputed data) does not fully count for imputation uncertainty. The result is that p-
values of tests are too small and confidence intervals too narrow. Replication methods and 
multiple imputation are likely to correct the loss of precision of simple imputation. 

What if the variable with missing information is categorical? Regression imputation is still 
possible but adjustments using, e.g. rounding of the predictions or a logistic, ordinal or 
multinomial logistic regression models, are required. For nominal variables, frequency statistics 
such as the mode or hot- and cold-deck imputation methods might be more appropriate. 

4.1.3 Expected maximization imputation  
Suppose that X denotes the data. In the likelihood based estimation the data are assumed to be 
generated by a model described by a probability or density function )/X(f θ , where θ  is the 
unknown vector parameter vector lying in the parameter space θΩ  (e.g. the real line for means, 
the positive real line for variances and the interval [0,1] for probabilities). The probability 
function captures the relationship between the data set and the parameter of the of the data model 

                                                      
5 If the observed variables are dummies for a categorical variable then the prediction (4.2) are respondent means within 
classes defined by the variable and the method reduces to that of imputing means with adjustment cells.  
6 Define ∑ −=

i
2

ihih )x̂x(SSE , ∑ −=
i

2
hih )xx(SST , then  )SST/SSE(1R2 −= , 

)krM/(SSEMSE −−= , where k is the number of coefficients in the regression and (M-r) the number of 

observations. ∑ −=
i

2
hih )xx̂(RMS and k2)rM()MSE/SSE(C kk +−−=  where the SSEk is 

computed from a model with only k coefficients and MSE is computed using all available regressors. 
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and describes the probability of observing a dataset for a given θΩθ ∈ . Since θ  is unknown 
while the data set is known, it make sense to reverse the argument and look for the probability of 
observing a certain θ  given the data set X: this is the likelihood function. Therefore, given X, the 
likelihood function )X/(L θ  is any function of θΩθ ∈  proportional to )/X(f θ :  
 

 )/X(f)X(k)X/(L θθ =  (4.3)    
Where 0)X(k >  is a function of X and not of θ . The log-likelihood is then the natural 
logarithm of the likelihood function. In the case of M independent and identically distributed 
observations T

M1 )x,...,x(X = , from a normal population with mean µ  and variance 2σ  the 
joint density is 
 

)
)x(

2
1exp()2(),/X(f

M

1c
2

2
c2/M22 ∑

=

− −
−=

σ
µ

πσσµ  
(4.4)    

 
For a given sample X the log-likelihood is (ignoring additive constants of function )(f ⋅ ) a 
function of ),( 2σµ :  
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(4.5)    

Maximizing the likelihood function corresponds to the question of which value of θΩθ ∈  is 
mostly supported by a given sampling realization X.  This implies solving the likelihood equation:  
 

0
)X/(Lln

)X/(D obs
obsl =

∂
∂

≡
θ
θ

θ  
(4.6)    

 
When a closed-form solution of equation (4.6) cannot be found, iterative methods can be applied. 
The EM algorithm is one of these iterative methods. 7 The issue is that X contains both observable 
and missing values, i.e. )X,X(X misobs= . Thus one has to find both the unknown parameters 
and the unknown observations of the model.  
 
Assume that missing data are MAR or MCAR8, the EM consists of two components, the 
expectation (E) and maximization (M) steps. Each step is completed once within each algorithm 
cycle. Cycles are repeated until a suitable convergence criterion is satisfied. In the M step the 
maximum likelihood estimation of θ  is computed just as if there were no missing data (thus 
missing values are replaced by estimated values, i.e. initial conditions in the first round of 
maximization). In the E step the missing data are estimated by their expectations given the 
observed data and current estimated parameter values. In the following maximization step the 

                                                      
7 Other iterative methods include the Newton-Raphson algorithm and the scoring method. Both involve a calculation of 
the matrix of second derivatives of the likelihood, which, for complex pattern of incomplete data, can be a very 
complicate function of θ . As a result these algorithms often require algebraic manipulations and complex 
programming. Numerical estimation of this matrix is also possible but careful computation is needed.  
8 For NMAR mechanisms one needs to make assumption on the missing-data mechanism and include them into the 
model, see Little and Rubin, 2002, Ch. 15. 
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parameters in θ  are re-estimated using maximum likelihood applied to the observed data 
augmented by the estimates of the unobserved data (coming from the previous round). The whole 
procedure is iterated until convergence (absence of changes in estimates and in the variance-
covariance matrix). Effectively, this process maximizes, in each cycle, the expectation of the 
complete data log likelihood. On convergence, the fitted parameters are equal to a local maximum 
of the likelihood function (which is the maximum likelihood in the case of a unique maximum). 
 
The advantage of the EM is its broadness (it can be used for a broad range of problems, e.g. 
variance component estimation or factor analysis), its simplicity (EM algorithm are often easy to 
construct conceptually and practically), and each step has a statistical interpretation and 
convergence is reliable. The main drawback is that in some cases, with a large fraction of missing 
information, convergence may be very slow. The user should also care that the maximum found 
is indeed a global maximum and not a local one.  To test this, different initial starting values for 
each θ  can be used. 

4.2 Multiple imputation 
 
Multiple imputation (MI) is a general approach that does not require a specification of 
paramentrized likelihood for all data. The idea of MI is depicted in Figure 4.1. The imputation of 
missing data is performed with a random process that reflects uncertainty. Imputation is done N 
times, to create N “complete” datasets. On each dataset the parameter of interest are estimated, 
together with their standard errors. Average (mean or median) estimates are combined using the 
N sets and between and within imputation variance is calculated. 

Data set 
with missing 

values
Set 1

Set 2

Set N

Result 1

Result 2

Result N
Combine 

results

 
Figure 4.1. Logic of multiple imputation 
 
Any “proper” imputation method can be used in multiple imputation. For example, one could use 
regression imputation repeatedly, drawing N values of the regression parameters using the 
variance matrix of estimated coefficients. However, one of the most general models is the 
Markov Chain Monte Carlo (MCMC) method. Markov chain is a sequence of random variables 
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in which the distribution of the actual element depends on the value of the previous one. It 
assumes that data are drawn from a multivariate Normal distribution and requires MAR or 
MCAR assumptions. 
  
The theory of MCMC is most easily understood using Bayesian methodology (See Figure 4.2). 
Let us denote the observed data as Xobs and the complete dataset as X=(Xobs, Xmis), where Xmis is to 
be filled in via multiple imputation. If the distribution of Xmis, with parameter vector θ , were 
known then we could impute Xmis by drawing from the conditional distribution f(Xmis|Xobs, θ )9. 
However, since θ  is unknown, we shall estimate it from the data, yielding θ̂ , and use the 
distribution f(Xmis|Xobsθ̂ ). Since θ̂  is itself a random variable, we must also take its variability 
into account in drawing imputations.  
 

MCMC  method
Choose starting values: compute mean vector 
and covariance matrix from the data that does 
not have missing values. Use to estimate
Prior distribution.

Imputation step: simulate values for missing 
data items by randomly selecting a value 
from the available distribution of values

Posterior step: re-compute mean vector and 
covariance matrix with the imputed estimates 
from the Imputation step. 
This is the posterior distribution

Required iterations done?
(need enough iterations so distribution
is stationary, i.e. mean vector and cov.
matrix are unchanged as we iterate)

Use imputation from final iteration 
to form a data set without 
missing values

need more iterations

enough iterations

 
 
Figure 4.2. Functioning of MCMC method10 
 
In Bayesian terms, θ  is a random variable whose the distribution depends on the data. So the first 
step for its estimation is to obtain the posterior distribution of θ  from the data,.Usually this 
posterior is approximated by a normal distribution. After formulating the posterior distribution of 
θ , the following imputation algorithm can be used: 

 Draw *θ  from the posterior distribution of θ , f(θ |Y, Xobs) where Y denotes exogenous 
variables that may influence θ . 

 Draw Xmis from f(Xmis|Y, Xobs, *θ ) 
                                                      
9 The missing data generating process may depend on additional parameters φ, but if φ and θ are independent, the 
process called ignorable and the analyst can concentrate on modelling the missing data, given the observed data and θ. 
If the two processes are not independent, then we have non-ignorable missing data generating process, which cannot be 
solved adequately without making assumptions on the functional form of the interdependency. 
10 rearranged from K. Chantala and C. Suchindran, 
http://www.cpc.unc.edu/services/computer/presentations/mi_presentation2.pdf 
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 Use the completed data X and the model to estimate the parameter of interest (e.g. the 
mean) *β  and its variance V( *β ) (within-imputation variance). 

 
These steps are repeated independently N times, resulting in *

nβ , V( *
nβ ), n=1,…,N. Finally, the N 

imputations are combined. A possible combination is the mean of all individual estimates (but 
also the median can be used): 
 

∑
=

=
N

1n

*
n

*

N
1 ββ  

 
(4.7)    

 
 
This combination will be the value that fills in the blank space in the dataset. The total variance is 
obtained as a weighted sum of the within-imputation variance and the between-imputations 
variance: 

B
N

1NVV * +
+=  

(4.8)    

 
where the mean of the within-imputation variances is 
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(4.9)    

and the between-imputations variance is given by 
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(4.10)   

 
Confidence intervals are obtained by taking the overall estimate plus or minus a multiple of 
standard error, where that number is a quantile of Student’s t-distribution with degrees of 
freedom: 
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(4.11)   

 
where r is the between-to-within ratio. 
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(4.12)   

 
Based on these variances, one can calculate approximate 95% confidence intervals. 
 
In conclusion, Multiple Imputation method imputes several values (N) for each missing value 
(from the predictive distribution of the missing data), to represent the uncertainty about which 
values to impute. The N versions of completed data sets are analyzed by standard complete data 
methods and the results are combined using simple rules to yield single combined estimates (e.g., 
MSE, regression coefficients), standard errors, p-values, that formally incorporate missing data 
uncertainty. The pooling of the results of the analyses performed on the multiply imputed data 
sets, implies that the resulting point estimates are averaged over the N completed sample points, 
and the resulting standard errors and p-values are adjusted according to the variance of the 
corresponding N completed sample point estimates. Thus, the 'between imputation variance', 
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provides a measure of the extra inferential uncertainty due to missing data (which is not reflected 
in single imputation).  
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5. Normalisation of data 
The indicators selected for aggregation convey at this stage quantitative information of different 
kinds11. Some indicators can be incommensurate with others, and have different measurement 
units. In the TAI, for example, the number of patents granted to residents is expressed per capita, 
and the high and medium technology exports are expressed as percentage of total exports.  
 
Therefore, to avoid adding up apples and pears, before going to the aggregation stage it is 
necessary to bring the indicators to the same standard, by transforming them in pure, 
dimensionless, numbers. We call this process normalization. There are a number of such methods 
available: the most commonly encountered in the literature are reviewed in this section. 
 
The objective is to identify the most suitable normalization procedures to apply to the problem at 
hand, taking into account their properties with respect to the measurement units in which the 
indicators are expressed, and their robustness to possible outliers in the data. Different 
normalization methods will supply different results for the composite indicator. Therefore, overall 
robustness tests should be carried out to assess their impact on the outcomes.  
 

5.1 Scale transformations 
 
There is an aspect which the normalization process may interfere with. This is the scale effect, i.e. 
the different measurement units in which an indicator can be expressed before its normalization. 
Some normalization procedures are invariant to changes in measurement unit of the indicator, as 
they provide the same normalized values whatever the measurement unit of the indicator is. That 
is, temperature could be expressed equivalently in Celsius or Fahrenheit and the result of the 
normalization is not affected. Other normalizations unfortunately are not invariant. Applying a 
normalization procedure which is not invariant to changes in the measurement unit could result in 
different outcomes for the composite indicator. Let us give a very simple example with two 
indicators (temperature and humidity) for two countries A and B for two different years. The raw 
data are given in Table 5.1, where we assume that the temperature is expressed in Celsius.  
 
Table 5.1 Raw data on temperature (in Celsius) and humidity for two  countries A and B 

 2003 2004 
Country A –Temperature (ºC) 35 35.9 
Country A –Humidity (%) 75 70 
Country B –Temperature (ºC) 39 40 
Country B –Humidity (%) 50 45 

 
We normalize each indicator by dividing by the value possessed by the country leader, and then 
aggregate the two indicators by applying equal weights. The result is given in table 5.2, where we 
can see that Country A increases its performance with time. 
 
 

                                                      
11 This chapter is based on the state-of-the-art report (JRC, 2002), the report from OECD (Freudenberg, 2003) and the 
technical paper by Jacobs et al., (2004). 
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Table 5.2 Composite indicator for A and B obtained with normalization based on “distance to 
the best performer” and temperature expressed in Celsius. 

 2003 2004 
Country A  0.94872 0.94875 
Country B  0.83333 0.82143 

 
Now, assume that the same temperature is expressed in Fahrenheit (see Table 5.3). 
 
Table 5.3 Raw data on temperature (in Fahrenheit) and humidity for two hypothetical countries 
A and B 

 2003 2004 
Country A –Temperature (F) 95 96.62 
Country A –Humidity (%) 75 70 
Country B –Temperature (F) 102.2 104 
Country B –Humidity (%) 50 45 

 
Using the same normalization procedure and aggregating by equal weights, the result shows a 
completely different pattern, i.e. that the composite indicator for country A now decreases with 
time (see Table 5.4).  
 
Table 5.4 Composite indicator for A and B obtained with normalization based on “distance to 
the best performer” and temperature expressed in Fahrenheit 
 

 2003 2004 
Country A  0.964775 0.964519 
Country B  0.83333 0.82143 

 
 
This means that, when applying this specific normalization procedure, the measurement unit in 
which the indicator is expressed influences the outcome of the analysis.  
On the other hand, using the method of standardization, described in this section, which is 
invariant to changes in measurement unit, we obtain exactly the same values for the composite 
indicator, whatever the unit of measurement for the temperature is. 
 
The example illustrated so far is a case of ‘interval scale’, based on a transformation f defined as: 

0,0;: ≠>+=→ βαβα xyxf .  
Here the variable x is the temperature expressed in Celsius and y is the temperature expressed in 
Fahrenheit. Their relationship is indeed: 
 

 32C)º(
5
9(F) += xy  

Another common change of measurement unit is the so-called ‘ratio scale’, which is based on the 
transformation: 

0;: >=→ αα xyxf . 
To give an example, a “length” might be expressed in centimeters (cm) or yards (yd). Their 
relationship is indeed: 1 yd = 91.44 cm. The normalization by country leader, not invariant on the 
‘interval scale’, is invariant on the ‘ratio scale’. In general, all normalizations that are invariant on 
the ‘interval scale’, are also invariant on the ‘ratio scale’. 
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Another transformation which is often used to reduce the skewness of (positive) data varying 
across many orders of magnitudes is the logarithmic transformation: 

0);log(: >=→ xxyxf . 
 
More in detail, when the range of country-based values for the indicator at hand is wide, or it is 
positively skewed, the log transformation shrinks the range on its right-hand side. As values 
approach zero they are also penalised because, after transformation, they become largely 
negative. When the weighted variables in a linear aggregation are expressed in logarithms, this is 
equivalent to the geometric aggregation of the variables without logarithms. The ratio between 
two weights indicates the percentage improvement in one indicator that would compensate for a 
one percentage point decline in another indicator. This transformation leads to attributing higher 
weight for a one unit improvement starting from a low level of performance, compared to an 
identical improvement starting from a high level of performance. 
 
The normalization methods described in this section are all non invariant to this type of scale 
transformation. The user may decide to use or not the log transformation before the 
normalization, yet s/he has to beware that the normalized data will surely be affected by the log 
transformation. 
 
A note on outliers12 before starting the description of the most commonly used normalisation 
approaches. Outliers can, in some circumstances, reflect the presence of unwanted information. 
Therefore, data have to be processed via specific treatment. An example is offered in the 
Environmental Sustainability Index, where the variable distributions outside the 2.5 and 97.5 
percentile scores are trimmed to partially correct for outliers as well as to avoid having extreme 
values overly dominate the aggregation algorithm. Any observed value greater than the 97.5 
percentile is lowered to equal the 97.5 percentile. Any observed value lower than the 2.5 
percentile is raised to equal the 2.5 percentile. It is advisable to first try to remove outliers, and 
consequently perform the normalisation, as this latter procedure can be more or less sensitive to 
outliers. 
 

5.2 Normalisation methods 

5.2.1 Ranking of indicators across countries 
 
The simplest normalisation method consists in ranking each indicator across countries. The main 
advantages of this approach are its simplicity and the independence to outliers. Disadvantages are 
the loss of information on absolute levels and the impossibility to draw any conclusion about 
difference in performance. 
 
This method has been employed to build a composite on the development and application of 
information and communication technology across countries (see Fagerberg, 2001) and also in 
the Medicare study on healthcare performance across US States (Jencks et al., 2003). 
 

                                                      
12 In a sample of n observations it is possible for a limited number to be so far separated in value from the remainder 
that they give rise to the question whether they are not from a different population, or that the sampling technique is a 
fault. Such values are called outliers (F.H.C. Marriott, 1990, A dictionary of statistical terms, Longman Scientific & 
Technical, Fifth edition, p.223). Eurostat adopts this definition of outlier. 
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For time-dependent studies, the ranking is carried out at each point in time. Therefore we can 
follow country performance in terms of relative positions (rankings). However, this does not 
allow the user to follow the absolute performance of each country across time: perhaps the 
country improves from one year to the next, yet its ranking deteriorates as other countries 
improve faster. 
 

5.2.2 Standardisation (or z-scores) 
  
For each sub-indicator t

qcx , the average across countries t
cqcx =  and the standard deviation across 

countries t
cqc=σ  are calculated. The normalization formula is: t

cqc

t
cqc

t
qct

qc

xx
I

=

=−
=

σ
, so that all the 

t
qcI  have similar dispersion across countries. The actual minima and maxima of the t

qcI across 
countries depend on the sub-indicator.  
 
It is the most commonly used because it converts all indicators to a common scale with an 
average of zero and standard deviation of one. The average of zero means that it avoids 
introducing aggregation distortions stemming from differences in indicators means. The scaling 
factor is the standard deviation of the indicator across the countries. Thus, an indicator with 
extreme values will have intrinsically a greater effect on the composite indicator. This might be 
desirable if the intention is to reward exceptional behaviour, that is, if an extremely good result on 
few indicators is thought to be better than a lot of average scores. This effect can be corrected in 
the aggregation methodology, e.g. by excluding the best and worst sub-indicator scores from the 
inclusion in the index or by assigning differential weights based on the “desirability” of the sub-
indicators scores. 
 
This method is used for the two composite indicators of the knowledge-based economy, 
published by the European Commission on Key Figures 2003-2004, for the environmental 
sustainability index developed at Yale University, and in the internal market index 2002. Also, 
the WHO index of health system performance has been criticized for not using appropriate 
method of transformation and the z-scores transformation has been recommended (SPRG, 2001). 
 
For time – dependent studies, in order to assess country performance across years, the average 
across countries 0t

cqcx = and the standard deviation across countries 0t
cqc=σ are calculated for a 

reference year (usually the initial time point 0t ). 
  

5.2.3 Re-scaling  

Each indicator t
qcx  for a generic country c and time t is transformed in 
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qc  and )x(max t
qc  are the minimum and the 

maximum value of t
qcx  across all the countries c at time t. In this way, the normalized indicators 

qcI  have values laying between 0 (laggard, )x(minx t
qc

t
qc = ), and 1 (leader, )x(maxx t

qc
t
qc = .  
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Here the transformation is based on the range rather than on the standard deviation. This 
procedure normalizes the indicators so that they all have identical range (0 1). The extreme values 
(minimum and maximum) could be unreliable outliers, and have a distortion effect on the 
transformed indicator. On the opposite, for indicator values lying within an interval with very 
small range, this latter is widened applying the re-scaling, thus explicitly increasing the effect on 
the composite indicator (more than they would using the z-scores transformation).  

The expression 
)x(min)x(max

)x(minx
I

00

0

t
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t
qc

t
qc

t
qct

qc −

−
=  is sometimes used for time-dependent studies. 

However, because the drawback is that, if )x(maxx 0t
qc

t
qc > , the normalised indicator t

qcy  
would be larger than 1.  
Another variant of the rescaling method is the one taking into account the evolution of indicators 

across time: 
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=  where we calculate minimum and 

maximum for each indicator both across countries and across the whole time range T of the 
analysis. With this formula the normalized indicators t

qcI  have values between 0 and 1. However, 
this transformation is not stable when data for a new time point become available. This implies an 
adjustment of the analysis period T, which may, in turn, affect the minimum and the maximum 
for some sub-indicators and, therefore, the values of the t

qcI  themselves. In such cases, to 
maintain comparability between the existing and the new data, the composite indicator would 
have to be recalculated for the existing data. 
 

5.2.4 Distance to a reference country  
 
This method takes the ratios of the indicator t

qcx  for a generic country c and time t with respect to 

the sub-indicator 0t
cqcx =  for the reference country at the initial time 0t .  

0t
cqc

t
qct

qc x
x

I
=

=  

Using the denominator 0t
cqcx = , the transformation takes into account the evolution of indicators 

across time; alternatively one can use the denominator t
cqcx = , with running time t.  

The reference could be a target to be reached in a given time frame. For example, in the Kyoto 
protocol, 8% reduction target is established for CO2 emissions within 2010 for the EU members. 
This approach is used in the Environmental Policy Performance Indicator (Adriaanse, 1993). The 
study aims to monitor the trend in the total environmental pressure in the Netherlands and to 
indicate whether environmental policies are heading in the right direction. The reference could 
also be an external benchmarking country. For example, United States or Japan are benchmark 
countries for the composite indicators built in the frame of the EU Lisbon agenda. The reference 
country could alternatively be the average country within the group of countries considered in the 
analysis. Here, the average country will be given value 1, and the countries receive scores 
depending on their distance from the average country. Indicators that are higher than 1 after 
transformation show countries with above-average performance. The reference country could also 
be the group leader (‘distance from the best performer’). The value 1 is given to the leading 
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country and the others are given percentage points away from the leader. The disadvantage is that 
this approach is based on extreme values which could be unreliable outliers. 
 
A different approach is to consider the country itself as the reference country and calculate the 
distance in terms of the initial time point as 

0t
qc

t
qct

qc x
x

I = . 

This approach is used in Concern about environmental problems (Parker, 1993) for measuring the 
concern of the public on certain environmental problems in three countries (Italy, France and the 
UK) and in the European Union. 
 
 
Another kind of distance can be used for the normalisation: 

0

0
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This is essentially equal to the one above: instead of being centred on one, it is centred on zero. In 
the same way, the reference country can either be the average country, or the group leader, or, 
finally, an external benchmark. 
 

5.2.5 Categorical scales 
 
Each indicator is assigned a categorical score. First, the categories are selected. They can be 
numerical, such as one, two or three stars, or qualitative, such as ‘fully achieved’, ‘partly 
achieved’ or ‘not achieved’. Each category is then assigned a score, which is, to a certain extent, 
arbitrary.  
 
Often, the scores are based on the percentiles of the distribution of the indicator across the 
countries. For example, the top 5% of the units receive a score of 100, the units between the 85th  
and 95th  percentiles receive 80 points, the units between the 65th and the 85th percentiles receive 
60 points, the units between the 35th and the 65th percentiles receive 50 points, the units between 
the 15th and the 35th percentiles receive 40 points, the units between the 5th and the 15th percentiles 
receive 20 points, and, finally, the bottom 5% of the units receive 0 points (see Table 1). This is a 
way to prize the most performing countries and penalize the less performing ones. 
 
An advantage of this transformation is that, using the same percentile transformation for different 
years, any small change in the definition of the indicator that could occur with time will not affect 
the transformed variable. However, in this way we will not be able to track improvements year by 
year. 
 
Categorical scales omit a large amount of information about the variance between units in the 
transformed indicators. Another disadvantage is that, if there is little variation within the original 
scores, the percentile banding forces the categorization on the data, irrespective of the distribution 
of the underlying data. One possible solution to this is to adjust the percentile brackets across the 
individual indicators in order to obtain transformed categorical variables with almost normal 
distributions. 
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This type of normalization can be found in Nicoletti et al. (2003), an OECD report describing the 
construction of summary indicators from a large OECD database of economic and administrative 
product market regulations and employment protection legislation. The summary indicators help 
to compare the economic and administrative regulatory environment across countries. The 
summary indicators are obtained by means of factor analysis, in which each component of the 
regulatory framework is weighted according to its contribution to the overall variance in the data. 
Data have been gathered basically from Member countries responses to the OECD Regulatory 
Indicators Questionnaire, which include both qualitative and quantitative information. Qualitative 
information is coded by assigning a numerical value to each of its possible modalities (e.g. 
ranging from a negative to an affirmative answer) while the quantitative information (such as data 
on ownership shares or notice periods for individual dismissals) is subdivided into classes. Then, 
the resulting coded information is normalised by ranking it on a common 0-6 scale, reflecting the 
increasing restrictiveness of the regulatory provisions. 
 

5.2.6 Indicators above or below the mean 
 
This transformation considers the indicators that are above, and below, an arbitrarily defined 
threshold p around the mean. The formula employed is: 
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The threshold builds a neutral region around the mean, where the transformed indicator is zero. 
This aims at reducing the sharp discontinuity (from -1 to +1) that would exist across the mean 
value, to two minor discontinuities (from -1 to 0 and from 0 to +1) that exist across the 
thresholds. A larger number of thresholds could be created at different distances from the mean 
value. However, this method would overlap with the transformation based on categorical scales. 
The advantage of this transformation is its simplicity and the fact that is not affected by outliers. 
The disadvantages are the arbitrariness of the threshold level and the omission of absolute level 
information. For example, assume that the value of a given indicator for country A is 3 times 
(300%) above the mean calculated across all the countries, and the value for country B is 25% 
above the mean, with a threshold of 20% around the mean. Both country A and B are then 
counted equally as ‘above average’.  
 
This transformation is used to calculate the summary innovation index (EC - DG ENTR, 2001) in 
the context of the European Innovation Scoreboard. This index is calculated by the Directorate 
General Enterprise of the European Commission. Here the component indicators are normalised 
according to distance from the overall European mean. The summary innovation index is equal to 
the number of indicators that are at least 20% above the European overall mean, minus the 
number that are more than 20% below. The index is adjusted for differences in the number of 
available indicators for each country. The index can vary between +10 (all indicators are above 
average) to -10 (all indicators are below average). 
 
For time – dependent studies, in order to assess country performance across years, the average 
across countries 0t

cqcx =  is calculated for a reference year (usually the initial time point 0t ). An 
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indicator that moves from significantly below the mean to significantly above the threshold in the 
consecutive year will have a positive effect on the composite. 
 

5.2.7 Methods for Cyclical Indicators  
 
Most institutes conducting business tendency surveys select a set of survey series and 
combine them into cyclical composite indicators. This is done in order to reduce the risk of false 
signals, and to better forecast cycles in economic activities (Nilsson, 2000). 
 
When indicators are in the form of time series the transformation can be made by subtracting the 
mean over time ( )t

qct xE  and then by dividing by the mean of the absolute values of the difference 
from the mean. 
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I

−

−
=  

The normalized series are then converted into index form by adding 100. 
This approach is used in the composite leading indicators calculated by the OECD where it is 
necessary to minimize the influence of series with marked cyclical amplitude to dominate the 
composite indicator. 
 
The method of normalisation used in the economic sentiment indicators calculated by the 
Directorate General Economic and Financial Affairs of the European Commission (EU-2004a) 
consists in transforming the indicator series so that the average month-to-month changes are 
equal for all the indicators. This treatment is also called balance of opinions because, for each 
indicator, managers of firms from different sectors and sizes are asked to express their opinion 
upon the firms which have improved and the firms which have reported deterioration with respect 
to the previous survey. The transformed indicator varies, by construction, between –100 (if all 
firms have reported deterioration) and +100 (if all firms have noted an improvement).  
This method gives implicitly less weight to the more irregular series in the cyclical movement of 
the composite indicator, unless some prior ad-hoc smoothing is performed.  
 

5.2.8 Percentage of annual differences over consecutive years 
 
Each indicator is transformed using the formula:  

t
qc

1t
qc

t
qct

qc x
xx

I
−−

= *100 

The transformed indicator is dimension-less. It does represent the percentage growth with respect 
to the previous year instead of the absolute level. The transformation can be used only when the 
indicators are available for a number of years. 
The method has been applied by the Directorate General Internal Market of the European 
Commission for the development of the Internal Market Index (Internal Market Scoreboard issue 
9, 2001).  
 
Examples of the above transformations are shown in Table 5.6 using the TAI data. The data are 
sensitive to the choice of the transformation and this might cause problems in terms of loss of the 
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interval level of the information, sensitivity to outliers, arbitrary choice of categorical scores and 
sensitivity to weighting.  
 
Table 5.5 Summary of normalisation methods. Notes: t

qcx  is the value of indicator q for country c 
at time t. c  is the reference country. The operator sgn gives the sign of the argument (i.e. +1 if 
the argument is positive, -1 if the argument is negative). eN  is the total number of experts 
surveyed. 
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Table 5.6 Different normalisation techniques using the TAI data. 
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Finland 10 15 0.26 0.59 1.04 0.83 1.41 0.04 0.41 1.00 0 65.2 60 
United States 12 23 1.52 1.00 1.25 1.00 1.69 0.25 0.69 1.08 1 100 100 
Sweden 11.4 19 1.14 0.88 1.19 0.95 1.61 0.19 0.61 1.06 0 82.6 60 
Japan 9.5 12 -0.06 0.49 0.99 0.79 1.34 -0.01 0.34 0.98 0 52.2 50 
Korea, Rep. of 10.8 17 0.76 0.76 1.13 0.90 1.52 0.13 0.52 1.03 0 73.9 60 
Netherlands 9.4 9 -0.12 0.47 0.98 0.78 1.32 -0.02 0.32 0.97 0 39.1 50 
UK 9.4 9 -0.12 0.47 0.98 0.78 1.32 -0.02 0.32 0.97 0 39.1 50 
Canada 11.6 20 1.27 0.92 1.21 0.97 1.63 0.21 0.63 1.06 1 87.0 80 
Australia 10.9 18 0.83 0.78 1.14 0.91 1.54 0.14 0.54 1.04 0 78.3 60 
Singapore 7.1 1 -1.58 0.00 0.74 0.59 1.00 -0.26 0.00 0.85 -1 4.3 0 
Germany 10.2 16 0.38 0.63 1.06 0.85 1.44 0.06 0.44 1.01 0 69.6 60 
Norway 11.9 22 1.46 0.98 1.24 0.99 1.68 0.24 0.68 1.08 1 95.7 100 
 Ireland 9.4 9 -0.12 0.47 0.98 0.78 1.32 -0.02 0.32 0.97 0 39.1 50 
Belgium 9.3 8 -0.19 0.45 0.97 0.78 1.31 -0.03 0.31 0.97 0 34.8 40 
New Zealand 11.7 21 1.33 0.94 1.22 0.98 1.65 0.22 0.65 1.07 1 91.3 80 
Austria 8.4 6 -0.76 0.27 0.88 0.70 1.18 -0.12 0.18 0.92 0 26.1 40 
France 7.9 5 -1.08 0.16 0.82 0.66 1.11 -0.18 0.11 0.90 0 21.7 40 
Israel 9.6 14 0.00 0.51 1.00 0.80 1.35 0.00 0.35 0.98 0 60.9 50 
Spain 7.3 4 -1.46 0.04 0.76 0.61 1.03 -0.24 0.03 0.86 -1 17.4 40 
Italy 7.2 3 -1.52 0.02 0.75 0.60 1.01 -0.25 0.01 0.86 -1 13.0 20 
Czech 
Republic 

9.5 12 -0.06 0.49 0.99 0.79 1.34 -0.01 0.34 0.98 0 52.2 50 

Hungary 9.1 7 -0.31 0.41 0.95 0.76 1.28 -0.05 0.28 0.96 0 30.4 40 
 Slovenia 7.1 1 -1.58 0.00 0.74 0.59 1.00 -0.26 0.00 0.85 -1 4.3 0 

 
 
Sometimes, there is no need to carry out a normalisation of the indicators. For example, if the 
indicators are already expressed with the same standard. See, for example, the case of the e-
business readiness composite indicator (Nardo et al., 2004). Here, all the sub-indicators are 
expressed in terms of percentage of enterprises possessing a given infrastructure or using a given 
ICT tool. In such case, the normalization would rather obfuscate the issue, as one would loose the 
inherent information contained in the percentages. 
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6.  Weighting and Aggregation 
Central to the construction of a composite index is the need to combine in a meaningful way 
different dimensions measured on different scales. This implies a decision on which weighting 
model will be used and which procedure will be applied to aggregate the information.   
 
Different weights may be assigned to component series in order to reflect their economic 
significance (collection costs, coverage, reliability and economic reason), statistical adequacy, 
cyclical conformity, speed of available data, etc. In this section a number of techniques are 
presented ranging from weighting schemes based on statistical models (such as factor analysis, 
data envelopment analysis, unobserved components models), to participatory methods (e.g. 
budget allocation or analytic hierarchy processes). Weights usually have an important impact on 
the value of the composite and on the resulting ranking especially whenever higher weight is 
assigned to sub-indicators on which some countries excel or fail. This is why weighting models 
need to be made explicit and transparent. Moreover, the reader should bear in mind that, no 
matter which method is used, weights are essentially value judgments and have the property to 
make explicit the objectives underlying the construction of a composite (Rowena et al., 2004).  
Weighting is strongly related to how the information conveyed by the different dimensions is 
aggregated into a composite index. Different aggregation rules are possible. Sub-indicators could 
be summed up, multiplied or aggregated using non linear techniques. Each technique implies 
different assumptions and has specific consequences. This section revises the main methods for 
aggregating sub-indicators into a composite index. However, since several variations on each 
method exist, this review does not pretend to be comprehensive but rather to supply the reader 
with a critical assessment of the most common methodologies.  
 
The layout of the section is the following. The first part is devoted to the issue of weighting sub-
indicators while the second part deals with the aggregation of the (weighted) sub-indicators into a 
composite index. A succinct “when to use what” checklist concludes. 
 

6.1 Weighting 
 
No agreed methodology exists to weight individual indicators. An analyst might be willing to 
reward with higher weight the components that are deemed more influential, regardless of any 
other consideration. Another might pay great attention to the existence of correlations among 
factors or use weights derived from principal components analysis to overcome the double 
counting problems when two or more indicators partially measure the same behaviour. Indicators 
could also be weighted based on the opinion of experts, who know policy priorities and 
theoretical backgrounds, to reflect the multiplicity of stakeholders’ viewpoints.  
 
Weights heavily influence the outcome of a composite indicator and countries ranking in a 
benchmarking exercise. Therefore, weights should ideally be selected according to an underlying 
and agreed or at least clearly stated theoretical framework. Weighting imply a “subjective” 
evaluation, which is particularly delicate in case of complex, interrelated and multidimensional 
phenomena. 
 
Indicators, and a fortiori composite indicators, are models, similar in their nature and in the way 
they are encoded, to mathematical or computational models, such as those created to describe the 
spread of diseases, the movement of tides, the production of a chemical plant, the cycles of the 
economy. Exactly as in these examples, no formal encoding procedure exists, relating the process 
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being modelled to its representation, rather than the modeller craftsmanship, and a justification of 
the practice lays in its fitness to the intended purpose (Rosen, 1991).  
 
Whatever method is used to derive weights, no consensus is likely to exist. This should not 
preclude use of a composite, but highlights the dangers of presenting any composite as 
“objective”. At best, it indicates a set of priorities that has been informed by popular or expert 
judgments (including the analyst). Assumptions ad implication of the used weighting system 
should be always made clear and tested for robustness. Soundness and transparency should guide 
the entire exercise. 
 
In many composite indicators all variables are given the same weight when there are no statistical 
or empirical grounds for choosing a different scheme. Equal weighting (EW) could imply the 
recognition of an equal status for all sub-indicators (e.g. when policy assessments are involved). 
Alternatively, it could be the result of insufficient knowledge of causal relationships, or ignorance 
about the correct model to apply (like in the case of Environmental Sustainability Index - World 
economic forum, 2002), or even stem from the lack of consensus on alternative solutions (as 
happened with the Summary Innovation Index - European Commission, 2001a).  In any case, EW 
does not mean no weighting, because EW anyway implies an implicit judgment on the weights 
being equal. The effect of EW also depends on how component indicators are divided into 
categories or groups: weighting equally categories regrouping a different number of sub-indicator 
could disguise different weights applied to each single sub-indicator. 
 
Weights may also reflect the statistical quality of the data, thus higher weight could be assigned 
to statistically reliable data (data with low percentages of missing values, large coverage, sound 
values). In this case the concern is to reward only easy to measure and readily available base-
indicators, punishing the information that is more problematic to identify and measure.  
 

Weights based on statistical models 
 
When using equal weighting it may happen that - by combining variables with high degree of 
correlation – one may introduce an element of double counting into the index:  if two collinear 
indicators are included in the composite index with a weight of w1 and w2, than the unique 
dimension that the two indicators measure would have weight (w1+w2) in the composite. The 
response has often been testing indicators for statistical correlation - for example with the Pearson 
correlation coefficient (Manly, 1994) - and choosing only indicators exhibiting a low degree of 
correlation or adjusting weights correspondingly, e.g. giving less weight to correlated indicators. 
Furthermore, minimizing the number of variables in the index may be desirable on other grounds 
such as transparency and parsimony. 
 
Notice that there will almost always be some positive correlation between different measures of 
the same aggregate. Thus, a rule of thumb should be introduced to define a threshold beyond 
which the correlation is a symptom of double counting.  On the other hand relating correlation 
analysis to weighting could be dangerous when motivated by apparent redundancy. For example, 
in the CI of e-business readiness the indicator I1 “Percentage of firms using Internet” and 
indicator I2 “The percentage of enterprises that have a web site” display a correlation of 0.88 in 
2003: are we allowed to give less weight to the pair (I1, I2) given the high correlation or shall we 
consider the two indicators as measuring different aspects of Innovation and Communication 
Technologies Adoption and give them equal weight in constructing the composite indicator?  If 
weights should ideally reflect the contribution of each indicator to the composite, double counting 
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should not only be determined by statistical analysis but also by the analysis of the indicator itself 
vis à vis the rest of indicators and the phenomenon they all aim to picture.  
 

6.1.1 Principal component analysis and factor analysis  
 
Principal component analysis (PCA) and more specifically factor analysis (FA) (Section 3) group 
together sub-indicators that are collinear to form a composite indicator capable of capturing as 
much of common information of those sub-indicators as possible. The information must be 
comparable for this approach to be used: sub-indicators must have the same unit of measurement. 
Each factor (usually estimated using principal components analysis) reveals the set of indicators 
having the highest association with it. The idea under PCA/FA is to account for the highest 
possible variation in the indicators set using the smallest possible number of factors. Therefore, 
the composite no longer depends upon the dimensionality of the dataset but it is rather based on 
the “statistical” dimensions of the data. According to PCA/FA, weighting only intervenes to 
correct for the overlapping information of two or more correlated indicators, and it is not a 
measure of importance of the associated indicator.  
 
If no correlation between indicators is found, then weights can not be obtained estimated with this 
method. This is the case for the new economic sentiment indicator, where factor and principal 
components analysis excluded the weighing of individual questions within a sub-component of 
the composite index (see the supplement B of the Business and Consumer Surveys Result N. 8/9 
August/September 200113). PCA/FA was excluded in the construction of an indicator of 
environmental sustainability when it was found that this procedure assigned negative weights to 
some sub-indicators (World Economic Forum, 2002).  
 
Methodology 
 
The first step in FA is to check the correlation structure of the data: if the correlation between the 
indicators is low then it is unlikely that they share common factors. 
 
The second step is the identification of a certain number of latent factors, small than the number 
of sub-indicators, representing the data. Summarizing briefly what has been explained in Section 
3, each factor depends on a set of coefficients (loadings), each coefficient measuring the 
correlation between the individual indicator and the latent factor. Principal component analysis is 
usually used to extract factors (Manly, 199414). For a factor analysis only a subset of principal 
components are retained (let’s say m), the ones that account for the largest amount of the 
variance.  
 
The standard practice is to choose factors that: (i) have associated eigenvalues larger than one; (ii) 
individually contribute to the explanation of overall variance by more than 10%; (iii) 
cumulatively contribute to the explanation of the overall variance by more than 60%. With the 
TAI reduced dataset (the one with 23 countries) the factors with eigenvalues close to the unity are 
the first four, as summarized in Table 6.1. Individually they explain more than 10% of the total 
variance and overall they count for about the 87% of variance.   
 

                                                      
13 http://europa.eu.int/comm/economy_finance/publications/european_economy/2001/b2001_0809_en.pdf) 
 
14 Other methods are available, e.g. the Maximum Likelihood or the principal Factor centroids. Notice that these 
methods usually supply very different weights especially when the sample size of FA is small. 
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Table 6.1. Eigenvalues of the Technology Achievement Index. Dataset with 23 countries. 
 

 Eigenvalues % Total 
variance 

Cumulative 
(%) 

1 3.3 41.9 41.9 
2 1.7 21.8 63.7 
3 1.0 12.3 76.0 
4 0.9 11.1 87.2 
5 0.5 6.0 93.2 
6 0.3 3.7 96.9 
7 0.2 2.2 99.1 
8 0.1 0.9 100.0 

 
The third step involves the rotation of factors. The rotation (usually the varimax rotation) is used 
to minimize the number of sub-indicators that have a high loading on the same factor. The idea in 
transforming the factorial axes is to obtain a “simpler structure” of the factors (ideally a structure 
in which each indicator is loaded exclusively on one of the retained factors). Rotation is a 
standard step in factor analysis, it changes the factor loadings and hence the interpretation of the 
factors leaving unchanged the analytical solutions obtained ex-ante and ex-post the rotation.   
 
Table 6.2. Factor loadings of Technology Achievement Index. Varimax normalised, extraction: 
Principal Components.  
 
  Factor Factor Factor Factor Factor Factor Factor Factor 
  1 2 3 4 1 2 3 4 
Patents 0.07 0.97 0.06 0.06 0.00 0.68 0.00 0.00 
Royalties 0.13 0.07 -0.07 0.93 0.01 0.00 0.00 0.49 
Internet 0.79 -0.21 0.21 0.42 0.24 0.03 0.04 0.10 
Tech 
exports -0.64 0.56 -0.04 0.36 

0.16 0.23 0.00 0.07 

Telephones 0.37 0.17 0.38 0.68 0.05 0.02 0.12 0.26 
Electricity 0.82 -0.04 0.25 0.35 0.25 0.00 0.05 0.07 
Schooling 0.88 0.23 -0.09 0.09 0.29 0.04 0.01 0.00 
University 0.08 0.04 0.96 0.04 0.00 0.00 0.77 0.00 
Expl.Var 2.64 1.39 1.19 1.76     
Expl./Tot 0.36 0.26 0.24 0.42         

 
The last step deals with the construction of the weights from the matrix of factor loadings after 
rotation, given that the square of factor loadings represent the proportion of the total unit variance 
of the indicator which is explained by the factor. The approach used by Nicoletti G., Scarpetta S., 
Boylaud O. (2000) is that of grouping the sub-indicators with the highest factors loadings in 
intermediate composite indicators. With the TAI dataset the intermediate composites are 4 (Table 
6.2). The first includes Internet (with a weight of 0.24), Electricity (weight 0.25) and Schooling 
(weight 0.29).15 Likewise the second intermediate is formed by Patents and Technology Exports 
(worth 0.68 and 0.23 respectively), the third only by University (0.77) and the fourth by Royalties 
and Telephones (weighted with 0.49 and 0.26).  

                                                      
15 Weights are normalized squared factor loading, e.g. 0.24 = (0.79^2)/2.64 which is the portion of the variance of the 
first factor explained by the variable Internet. 
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Then the four intermediate composites are aggregated by weighting each composite using the 
proportion of the explained variance in the dataset: 0.36 for the first (0.36 = 
2.64/(2.64+1.39+1.19+1.76)), 0.26 for the second, 0.24 for the third and 0.42 for the fourth.16 
Notice that different methods for the extraction of principal components imply different weights, 
hence different scores for the composite (and possibly different country ranking). For example if 
Maximum Likelihood (ML) were to be used instead of Principal Component (PC) the weights 
obtained would be: 
 

 M L PCA 
Patents 0.19 0.17 
Royalties 0.20 0.20 
Internet 0.07 0.08 
Tech exports 0.07 0.06 
Telephones 0.15 0.11 
Electricity 0.11 0.09 
Schooling 0.19 0.10 
University 0.02 0.18 

 
 
PCA/FA for weighting indicators  
Advantages   Disadvantages  
 It does not imply any manipulation of 

weights through ad hoc restrictions. 
 It solves the double counting problem 

 

 It can only been used with correlated sub-
indicators. 
 Sensitive to modifications of basic data: data 

revisions and updates (e.g. new observations 
and new countries) may change the set of 
weights (i.e. the estimated loadings) used in the 
composite. 
 Sensitive to the presence of outliers, that 

may introduce spurious variability in the data 
 Sensitive to small-sample problems and data 

shortage that may make the statistical 
identification or the economic interpretation 
difficult (in general a relation between data and 
unknown parameters of 3:1 is required for a 
stable solution).   
 Minimize the contribution of indicators, 

which do not move with other indicators. 
 Sensitive to the factor extraction and to the 

rotation methods. 
 

Examples of use  
Indicators of product market regulation (Nicoletti et al., OECD, 2000) 
Internal Market Index (EC-DG MARKT, 2001b) 
Business Climate Indicator (EC-DG ECFIN, 2000) 
General Indicator of S&T (NISTEP, 1995) 
Success of software process Improvement (Emam et al. 1998) 

                                                      
16 To preserve comparability final weights could be rescaled to sum up to one. 
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6.1.2 Data envelopment analysis and Benefit of the doubt  
 
Data envelopment analysis (DEA) employs linear programming tools (popular in Operative 
Research) to retrieve an efficiency frontier and uses this as benchmark to measure the 
performance of a given set of countries.17 The set of weighs stems from this comparison. Two 
main issues are involved in this methodology: the construction of a benchmark (the frontier) and 
the measurement of the distance between countries in a multi-dimensional framework. 
 
The construction of the benchmark is done by assuming:  

(i) positive weights (the higher the value of one sub-indicator, the better for the 
corresponding country);  

(ii) non discrimination of countries that are best in any single dimension (i.e. sub-
indicator) thus ranking them equally; and  

(iii) a linear combination of the best performers is feasible (convexity of the frontier).  
 
The distance of each country with respect to the benchmark is determined by the location of 
the country and its position relative to the frontier. Both issues are represented in Figure 6.1, 
for the simple case of 4 countries and only two base indicators. 

 

Indicator 1

Indicator 2

a

b

c

d

d’

0

 
Figure 6.1. Performance frontier determined with Data Envelopment Analysis. Rearranged from 
Mahlberg and Obersteiner (2001). 
 
In Figure 6.1 two indicators are represented in the two axes and four countries (a, b, c, d) are 
ranked according to the score of the indicators. The line connecting countries a, b and c 
constitutes the performance frontier and is the benchmark for country d which lies beyond the 
frontier. The countries supporting the frontier are classified as the best performing, while country 
d is the worse performing. The performance indicator is the ratio of the distance between the 

                                                      
17 DEA has also been used in production theory, for a review see Charnes et al, 1995.  
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origin and the actual observed point and that of the projected point in the frontier: 'd0/d0 . The 
best performing countries will have a performance score of 1, while for the least performing it 
will be lower than one. This ratio corresponds to the expression 

)IwIw/()IwIw( *
d2d2

*
d1d1d2d2d1d1 ++ , where *

idI  is the frontier value of indicator i, i=1,2, 

while idI  is its actual value (see expression 6.1 for more than 2 indicators). The set of weights of 
each country will therefore depend on its position with respect to the frontier. The benchmark will 
correspond to the ideal point exhibiting a similar mix of indicators (d’ in the example).  
 
The benchmark could also be determined by a hypothetical decision maker (Korhonen et al. 2001, 
for an indicator of performance of academic research) who is asked to locate the target in the 
efficiency frontier having the most preferred combination of sub-indicators. In this case the DEA 
approach could merge with the budget allocation method (see below) since experts are asked to 
assign weights (i.e. priorities) to sub-indicators.  
 

Benefit of the doubt approach  
 
This methodology, originally proposed for evaluating macroeconomic performance (Melyn and 
Moesen, 1991) and only recently adapted to the index theory18, is an application of the DEA. The 
composite indicator is defined as the ratio of a country’s actual performance over its benchmark 
performance: 
 

∑
∑

=

== M

1c qc
*
qc

M

1c qcqc
c

wI

wI
CI  

(6.1)    

 
Where qcI  is the normalized (with the max-min method) score of qth sub-indicator (q=1,…,Q) for 
country c (c=1,…M) and  wqc the corresponding weight.  
 
Cherchye et al. (2004) who first implemented this method suggested obtaining the benchmark as 
solution of a maximization problem (although external benchmarks are also possible): 
 

( )∑ =
∈

==
Q

1q qqk
}M,...,1{k,I

** wImaxarg)w(II
k

    (6.2)   

 
I* is the score of the hypothetical country that maximizes the overall performance (defined as the 
weighted average), given the (unknown) set of weights w. Notice that (i) weights are country 
specific: different sets of weights may lead to choose different countries as far as there is no 
country having the highest score in all sub-indicators; (ii) the benchmark would in general be 
country-dependent, so no unique benchmark would exist (unless, as before, a country is better-off 
in all sub-indicators), (iii) sub-indicators must be comparable, i.e. have the same unit of 
measurement. 
 
The second step is the specification of the set of weights for each country. The optimal set of 
weighs (if it exists) guarantees the best position for the associated country vis á vis all other 
                                                      
18 We present the method as it has been used in Cherchye et al. 2003, and Cherchye and 
Kuosmanen 2002. 
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countries in the sample: with any other weights profile the relative position of that country would 
have been worse. Optimal weights are obtained by solving the following problem: 
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(6.3)    

 
subject to non negativity constraints on weights. 19  The resulting composite index will range 
between zero (lowest possible performance) and 1 (the benchmark). Operationally, expression 
(6.3) can be reduced to the linear programming problem (6.4) by multiplying all weights by a 
common factor (that does not alter the index value) and solved using optimizations algorithms 
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(6.4)    

 
The results of the benefit of the doubt (BOD) approach applied to the TAI example can be seen in 
Table 6.3. Weights are in the first eight columns wile the last column contains the composite 
indicator values. The example deserves a couple of remarks. The first is that Finland, USA and 
Sweden have a composite index value equal to one, i.e. they all score first in the ranking. This 
however hides a problem of multiplicity of equilibria: in Figure 6.1 any point between country a 
(say Finland) and country b (say USA) can be an optimal solution for these countries. Thus 
weights are not uniquely determined (although if the CI is unique). The weights values for these 
three countries given in Table 6.3 are thus only three among many (infinite) possible weighting 
schemes. Notice also that the multiplicity of solutions is likely to depend upon the set of 
constraints imposed to the weights of the maximization problem in (6.4): the wider is the range of 
variation of weights and the lower is the possibility of obtaining a unique solution20.   
 
Second, the set of weights for each country, as calculated by the above algorithm, that does not 
sum up to one, making the comparison with other methods (like FA or EW) impossible.21 A 
rescaling to assure comparability would be innocuous only in the case of a unique solution for all 
countries. If multiplicity arise, instead, the scaling to a unit interval may be arbitrary. 
 
 
 
 
 
 

                                                      
19 Additional constraints could be imposed. Country-specific restrictions to reflect prior information can also be added. 
20 In our example we imposed the requirement for each sub-indicator to weight at least 10% and no more than 15% of 
the total. 
21 However, precisely since the BOD weights have the meaning of relative weights, the weights as originally produced 
by the algorithm can always be normalized afterwards so as to sum up to one, leaving its intrinsic meaning unaffected 
and at the same time facilitating comparison with other methods’ results.  
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Table 6.3. BOD approach applied to the TAI dataset (23 countries). Columns 1 to 8 contain 
weights, column 9 displays the country’s composite indicator. 
 
 Patents Royalties Internet Tech. 

Exports 
Telephones Electricity Schooling University CI 

          
Finland 0.15 0.17 0.17 0.16 0.19 0.17 0.17 0.19 1 
United 
States 

0.20 0.20 0.17 0.21 0.15 0.15 0.21 0.14 1 

Sweden 0.18 0.21 0.15 0.19 0.19 0.16 0.20 0.14 1 
Japan 0.22 0.15 0.15 0.22 0.22 0.16 0.21 0.15 0.87 
Korea 0.22 0.14 0.14 0.22 0.14 0.14 0.22 0.22 0.80 
Netherlands 0.22 0.22 0.14 0.22 0.22 0.14 0.14 0.14 0.75 
United 
Kingdom 

0.14 0.21 0.14 0.21 0.21 0.14 0.20 0.15 0.71 

Canada 0.14 0.14 0.14 0.21 0.21 0.21 0.21 0.14 0.73 
Australia 0.13 0.13 0.20 0.13 0.13 0.20 0.20 0.20 0.66 
Singapore 0.14 0.14 0.14 0.20 0.20 0.20 0.14 0.20 0.62 
Germany 0.22 0.15 0.15 0.22 0.21 0.15 0.22 0.15 0.62 
Norway 0.14 0.14 0.20 0.14 0.20 0.20 0.20 0.14 0.86 
 Ireland 0.14 0.21 0.14 0.21 0.21 0.14 0.20 0.15 0.60 
Belgium 0.14 0.16 0.14 0.21 0.19 0.21 0.21 0.14 0.54 
New 
Zealand 

0.21 0.14 0.21 0.14 0.14 0.21 0.21 0.14 0.58 

Austria 0.22 0.14 0.14 0.22 0.22 0.22 0.14 0.14 0.52 
France 0.22 0.14 0.14 0.22 0.22 0.22 0.14 0.14 0.51 
Israel 0.21 0.15 0.15 0.22 0.22 0.15 0.22 0.15 0.49 
Spain 0.21 0.14 0.14 0.21 0.21 0.14 0.14 0.21 0.34 
Italy 0.22 0.14 0.14 0.22 0.22 0.22 0.14 0.14 0.38 
Czech Rep. 0.22 0.15 0.15 0.22 0.15 0.22 0.22 0.15 0.31 
Hungary 0.22 0.14 0.21 0.22 0.14 0.14 0.22 0.15 0.27 
 Slovenia 0.22 0.14 0.14 0.22 0.22 0.22 0.14 0.14 0.28 

 
 
 
Benefit of the Doubt  

Advantages  Disadvantages  

 The indicator will be sensible to national 
policy priorities, in that the weights are 
endogenously determined by the observed 
performances (this is a useful second best 
approach whenever the first best – full 
information about true policy priorities- can not 
be attained). 

 Weights are country specific, thus cross-
country comparisons is not possible.  
 Without imposing constraints on weights 

(except the non-negativity) the most likely 
solution is to have all countries with a 
composite equal to 1. When constraints on 
weights are imposed it may be the case that, for 
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 The benchmark is not based upon theoretical 
bounds but it a linear combination of observed 
best performances. 
 It is useful in policy arena, since policy 

makers could not complain about unfair 
weighting: any other weighting scheme would 
have generated lower composite scores.  
 Such an index could be “incentive 

generating” rather than “punishing” the 
countries lagging behind.  
 Weights, by revealing information about the 

policy priorities, may help to define trade-offs, 
overcoming the difficulties of linear 
aggregations. 
 

some country, no solution of the maximization 
problem exist, likewise it may happen that 
there exist a multiplicity of solutions making 
the optimal set of weights undetermined (this is 
likely to happen when the CI=1). 
 Different normalizations of the scores are 

likely to give different weighting schemes. 
 The index is likely to reward the status-quo, 

since for each country the maximization 
problem gives higher weights to higher scores.  
 Endogenous weighting has the risk of 

substituting open experts’ opinions with the 
analyst’s manipulation of weights (through the 
constraints). Transparency of the procedure 
would be lost.  
 The value of the scoreboard depends on the 

benchmark performance. If this changes the 
composite will change as well as the set of 
weights (and the country ranking). 
 The best performer (the one with a 

composite equal to one) will not see its 
progress reflected in the composite (that will 
remain stacked to 1). This can be solved by 
imposing an external benchmark. 

 
Examples of use  

Human Development Index (Mahlberg and Obersteiner, 2001) 
Sustainable development (Cherchye and Kuosmanen, 2002) 
Social Inclusion (Cherchye, Mosen, Van Puyenbroeck, 2004) 
Macro-economic performance evaluation (Melynand and Moesen, 1991, and Cherchye 2001) 
Unemployment (Storrie and Bjurek, 1999, and 2000) 
 
 

6.1.3 Regression approach  
 
Linear regression models can tell us something about the 'linkages' between a large number of 
indicators I1c, I2c, ..., IQc and a single output measure cŶ  representing the objective to be attained. 
A (usually linear) multiple regression model is then estimated to retrieve the relative weights of 
sub-indicators: 
 

QcQc11c Iˆ...IˆˆŶ ββα +++=    (6.5) 

 
where cŶ , c=1,…,M, is a measure (not necessarily an indicator) of the phenomenon that sub-

indicators aim to picture, α̂  is the estimated constant and 1β̂ to Qβ̂  are the regression 
coefficients (weights) of the associated sub-indicators I1, I2,,..., IQ. 
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This approach, although suitable for a large number of variables of different types, implies the 
assumption of linear behaviour and requires the independence of explanatory variables. If these 
variables are correlated, in fact, estimators will have high variance meaning that parameters 
estimates will not be precise and hypothesis testing not powerful. In the extreme case of perfect 
collinearity among regressors the model will not even be identified. It is further argued that if the 
concepts to be measured could be represented by a single measure cŶ , then there would be no 
need for developing a composite indicator (Muldur 2001). Yet this approach could still be useful 
to verify and adjust weights, or when interpreting sub-indicators as possible policy actions. The 
regression model, thereafter, could quantify the relative effect of each policy action on the target, 
i.e. a suitable output performance indicator identified on a case-by-case basis. 
 
Regression Approach 
Advantages  Disadvantages 
 It can be used even if component indicators 

are not correlated. 
 It does not imply any manipulation of 

weights through ad hoc restrictions. 
 It is useful to update or validate the applied 

set of weights. 

 It provides poor results in case of highly 
correlated component indicators (multi-
collinearity problems). Remedies can be found 
associating PCA with regression analysis. 
 It requires a large amount of data to produce 

estimates with known statistical properties. 

Examples of use 
Composite Economic Sentiment Indicator (ESIN)  http://europa.eu.int/comm/economy_finance   
National Innovation Capacity index (Porter and Stern, 1999) 
 
 

6.1.4 Unobserved components models  
 
Weights with the unobserved components models (UCM) are obtained by estimating with the 
maximum likelihood method a function of the base indicators. The idea is that sub-indicators 
depend on an unobserved variable plus an error term, e.g. the “percentage of firms using internet 
in country j” depends upon the (unknown) propensity to adopt new information and 
communication technologies plus an error term accounting, for example, for the error in the 
sampling firms. Therefore, by estimating the unknown component it will possible to shed some 
light on the relationship between the composite and its components. The weight obtained will be 
set so as to minimize the error in the composite. This method resembles the previous one (even if 
with a different interpretation). The main difference resides in the dependent variable that with 
UCM is unknown. 
 
Methodology  
 
To use this method one needs a set of sub-indicators, all measuring an unknown phenomenon 
(e.g. the 8 sub-indicators of TAI measuring the capacity of a country to participate in the 
“network age”). Let ph(c) the unknown phenomenon to be measured. The observed data consist 
on a cluster of q=1,…,Q(c) indicators, each measuring an aspect of ph(c). Let c=1,…M(q) the 
countries covered by indicator q. The observed score of country c on indicator q, I(c,q), can be 
written as a linear function of the unobserved phenomenon and of an error term, )q,c(ε : 
 

)]q,c()c(ph)[q()q()q,c(I εβα ++=    (6.6) 
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)q(α  and )q(β are unknown parameters mapping ph(c) on I(c,q).  

The error term captures two sources of uncertainty in the relationship between the phenomenon 
and one of its indicators. First the phenomenon could be only imperfectly measured or observed 
in each country (e.g. because of errors of measurement). Second the relationship between ph(c) 
and I(c,q) is imperfect (e.g. I(c,q)  may only be a noisy indicator of the phenomenon if there are 
differences among countries in what the indicator is considered to be). The error term )q,c(ε  is 
assumed to have zero mean, 0))q,c((E =ε , and  the same variance across countries within a 
given indicator (but a different variance across indicators), 2

q
2 ))q,c((E σε = ; it also holds 

0))h,i()q,c((E =εε for ic ≠  or hq ≠ . 
 
The assumption that errors are independent across indicators is based on the idea that sub-
indicators should ideally give independent information about one particular aspect of the 
phenomenon. Dropping this assumption is rather complicate since it would imply separating the 
correlation due to the collinearity of indicators from the correlation of error terms in order to 
obtain sound estimates. 
 
Furthermore, to facilitate calculations it is usually assumed that ph(c) is a random variable with 
mean zero and unit variance and the indicators are rescaled to take values between zero and one. 
The assumption that both ph(c) and )q,c(ε are jointly normally distributed simplifies the 
estimation of the level of  ph(c) in country c, which is done by using the mean of the conditional 
distribution of the unobserved component (once the observed scores are appropriately rescaled): 
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The weights are equal to:  
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w(c,q) is a decreasing function of the variance of indicator q (expressing the idea that the lower is 
the precision of indicator q, the lower will be the weight assigned to that indicator), and an 
increasing function of the variance of the other indicators. The weight depends on the country 
considered in the following way: w(c,q) depends on the variance of indicator q (numerator) and 
on the sum of the variances of the all the other sub-indicators including q (denominator). 
However, since not all countries have data on all sub-indicators, the denominator of w(c,q)  could 
be made up of a country-dependent number of elements. This may produce non comparability of 
country values for the composite in the same way as BOD does. Obviously whenever the set of 
indicators is equal for all countries then weights will no longer be country specific and 
comparability will be assured.  The variance of the conditional distribution is given by: 
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and can be seen as a measure of the precision of the composite indicator useful to construct 
confidence intervals. This variance is decreasing in the number of indicators for each country and 
increasing in the variance of the disturbance term for each indicator. 
 
The estimation of the model is made easier by the assumption of normality for ph(c) and )q,c(ε . 
The likelihood function of the observed data is maximized with respect to the unknown 
parameters, s)q(α , s)q(β , and s2

qσ , and their estimated values substituted in equation (6.7) 
to obtain the composite indicator and the weights.  
 
 
Unobserved components model 
Advantages Disadvantages 
 Weights do not depend on ad hoc 

restrictions.  
 Reliability and robustness of results depend 

on the availability of enough data. 
 With highly correlated sub-indicators there 

could be identification problems. Thus the 
method is likely to work well with independent 
sub-indicators. 
 The method rewards the absence of outliers, 

given that weights are a decreasing function of 
the variance of sub-indicators. 
 If each country has a different number of 

sub-indicators; weights are hence country 
specific. 

Examples of use 
Governance indicators (see Kaufmann, Kraay and Zoid-lobatón, 1999 and 2003)  
 
 

6.1.5 Budget allocation   
 
Budget allocation (BAL) is a participatory method in which experts are given a “budget” of N 
points, to be distributed over a number of sub-indicators, “paying” more for those indicators 
whose importance they want to stress (Moldan and Billharz, 1997). The budget allocation method 
implies in four different phases: 
• Selection of experts for the valuation; 
• Allocation of budget to the sub-indicators; 
• Calculation of the weights; 
• Iteration of the budget allocation until convergence is reached (optional). 
 
It is essential to bring together experts that have a wide spectrum of knowledge, experience and 
concerns, so as to ensure that a proper weighting system is found for a given application. A case 
study in which 400 German experts in 1991 were asked to allocate a budget to several 
environmental indicators related to an air pollution problem showed very consistent results, in 
spite of the fact that the experts came from opposing social spheres like the industrial sector and 
the environmental sector (Jesinghaus in: Moldan and Billharz, 1997). Special care should be 
given in the identification of the population of experts from which to draw a sample, stratified or 
otherwise.  
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Budget allocation 
Advantages Disadvantages 
 Weighting is based on experts’ opinion and 

not on technical manipulations. 
 Experts’ opinions are likely to increase the 

legitimacy of the composite and create a forum 
of discussion around which to form a 
consensus for policy action.  

 Weighting reliability. Weights could reflect 
specific local conditions (e.g. in environmental 
problems), so expert weighting may not be 
transferable from one area to another.  
 Allocating a certain budget over a too large 

number of indicators can give serious cognitive 
stress to the experts, as it implies circular 
thinking.  The method is likely to produce 
inconsistencies for a number of indicators 
higher than 10. 
 The weighting may not measure the 

importance of each sub-indicator but rather the 
urgency or need for political intervention in the 
dimension of the sub-indicator concerned (e.g. 
more weight on Ozone emissions if the expert 
feels that not enough has been made to abate 
them). 

Examples of use 
Employment Outlook (OECD,1999) 
Composite Indicator on e-Business Readiness (EC-JRC, 2004b). 
National Health Care System Performance (King’s Fund., 2001) 
Eco-indicator 99 (Pré-Consultants NL, 2000) (weights based on survey from experts). 
Overall Health System Attainment (WHO, 2000) (weights based on survey from experts) 
 

6.1.6 Public opinion 
 
Instead of letting experts determine the weights of the indicators in an index, one could ask the 
general public. Parker (1991, p. 95-98) argues that “public opinion polls have been extensively 
employed for many years for many purposes, including the setting of weights and they are easy to 
carry out and inexpensive”. In public opinion polls, issues are selected which are already on the 
public agenda, and thus enjoy roughly the same attention in the media. From a methodological 
point of view, opinion polls focus on the notion of “concern”, that is people are asked to express 
“much” or “little concern” about certain problems measured by the base indicators. As with 
expert assessments, the budget allocation method could also be applied in public opinion polls. 
However it is more difficult to ask the public to allocate a hundred points to several sub-
indicators than to express a degree of concern about the problems that the indicators represent.   
 
Public Opinion 
Advantages Disadvantages 
 deals with issues on the public agenda. 
 allows all stakeholders to express their 

 implies the measurement of “concern” . 
 the method could produce inconsistencies 
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preference, and creates a consensus for policy 
actions. 

when dealing with high number of indicators. 

Examples of use 
Concern about environmental problems Index (Parker, 1991) 

6.1.7 Benchmarking with “distance to the target” 
 
One way to avoid the immediate selection of weights is to measure the need for political 
intervention and the “urgency” of a problem by the distance to target approach. The urgency is 
high if we are far away from the goal, and low if the goal is almost reached. The weighting itself 
is realized by dividing the sub-indicator values by the corresponding target values, both expressed 
in the same units. The dimensionless parameters that are obtained in this way can be summarized 
by a simple average to produce the composite indicator.  
 
Which target?  Policy, sustainability, avoidance of the damage (cost to avoid, notice that this 
should be the same as the distance to the goal, since the distance to the goal should be 
proportional to the cost to reach the goal). Alternatively to policy goals, sustainability levels, 
quantified effects on the environment, or best performance countries can be used as goalposts. 
 
 
Distance to the Target 
Advantages Disadvantages 
 The use of policy goals as targets convinces 

the policy makers for the “soundness” of the 
weighting method, as long as those policy 
makers have defined the policy targets 
themselves. 
 This approach is technically feasible when 

there is a well-defined basis for a certain 
policy, such as a National Policy Plan or 
similar reference documents. 
 

 For international comparisons, such 
reference policies are often not available, or 
they deliver contradictory results. 
 The benefits of a given policy should be 

valued independently of the existing policy 
goals. 
 

Examples of use 
- Environmental Policy Performance Indicator (Adriaanse, 1993) 
- Human Development Index (UN, 1990, 2000) 
 
 
 

6.1.8 Analytic Hierarchy Process  
 
The Analytic Hierarchy Process (AHP) - proposed by Thomas Saaty in the 1970s - is a widely 
used technique for multi-attribute decision making (Saaty, 1987). It enables the decomposition of 
a problem into hierarchy and assures that both qualitative and quantitative aspects of a problem 
are incorporated in the evaluation process, during which opinions are systematically extracted by 
means of pairwise comparisons. According to Forman et al. (1983): “AHP is a compensatory 
decision methodology because alternatives that are efficient with respect to one or more 
objectives can compensate by their performance with respect to other objectives. AHP allows for 
the application of data, experience, insight, and intuition in a logical and thorough way within a 
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hierarchy as a whole. In particular, AHP as weighting method enables decision-maker to derive 
weights as opposed to arbitrarily assign them.” 
The compensatory feature of the method implies that each weights obtained is a trade-offs, i.e. it 
indicates how much a group of interviewed actors, on average, is willing to forego a given 
variable in exchange for another variable (for example, in TAI example, how much “patents” can 
be exchanged for University enrolment). Weights obtained with the AHP are not importance 
coefficients, i.e. they do not indicate the degree of relevance each alternative has in explaining the 
phenomenon captured by the composite. This feature has generated many misunderstanding in 
the literature of composite indicators that often used AHP weights as importance coefficients (see 
Ülengin et al. 2001).  
 
Methodology 
 
The core of AHP is an ordinal pair-wise comparison of attributes, sub-indicators in this context, 
in which preference statements are addressed. For a given objective, the comparisons are made 
per pairs of sub-indicators by firstly posing the question - Which of the two is the more 
important? - and secondly - By how much? The strength of preference is expressed on a semantic 
scale of 1-9, which keeps measurement within the same order of magnitude. A preference of 1 
indicates equality between two sub-indicators while a preference of 9 indicates that one sub-
indicator is 9 times larger or more important than the one to which it is being compared. In this 
way comparisons are being made between pairs of sub-indicators where perception is sensitive 
enough to make a distinction. These comparisons result in a comparison matrix A (see an 
example in Table 6.4, for the TAI dataset) where Aii = 1 and Aij = 1 / Aji.  
 

Table 6.4. Comparison matrix A of eight sub-indicators (semantic scale) 

 
Objective Patents Royalties Internet Tech exports Telephones Electricity Schooling  University 
Patents 1     2     3     2     5     5     1     3     
Royalties 1/2 1     2     1/2 4     4     1/2 3     
Internet 1/3 1/2 1     1/4 2     2     1/5 1/2 
Tech. exports 1/2 2     4     1     4     4     1/2 3     
Telephones 1/5 1/4 1/2 1/4 1     1     1/5 1/2 
Electricity 1/5 1/4 1/2 1/4 1     1     1/5 1/2 
Schooling  1     2     5     2     5     5     1     4     
University 1/3 1/3 2     1/3 2     2     1/4 1     

 
For the example shown in Table 6.4, Patents is three times more important than Internet, and 
consequently Internet has one-third the importance of Patents. Each judgment reflects, in reality, 
the perception of the ratio of the relative contributions (weights) of the two sub-indicators to the 
overall objective being assessed as shown in Table 6.5 for the first three sub-indicators.  
 
Table 6.5. Comparison matrix A for three sub-indicators  
 

Objective Patents Royalties Internet …… 
Patents wP/wP wP/wROY wP/wI  
Royalties wROY/wP wROY/wROY wROY/wI  
Internet wI/wP wI/wROY wI/wI  
………     

 
The relative weights of the sub-indicators are calculated using an eigenvector technique. One of 
the advantages of this method is that it is able to check the consistency of the comparison matrix 
through the calculation of the eigenvalues. Figure 6.2 shows the results of the evaluation process 



 

 70

and the weights obtained (together with the corresponding standard deviation). The exercise was 
carried out at JRC interviewing experts in the field.  
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Figure 6.2. Results of the AHP for the TAI example.  Average weight (bold) and standard 
deviation. 
 
It is often the case that people’s thinking is not always consistent. For example, if one claims that 
A is much more important than B, B slightly more important than C, and C slightly more 
important than A, judgment is inconsistent and decisions made are less trustworthy. 
Inconsistency, however, is part of the human nature and therefore in reality it is enough just to 
measure somehow the degree of inconsistency. This appears to be the only way so results could 
be defended and justified in front of public. AHP tolerates inconsistency through the amount of 
redundancy. For a matrix of size Q × Q only Q–1 comparisons are required to establish weights 
for Q indicators. The actual number of comparisons performed in AHP is Q(Q–1)/2. This 
redundancy has two opposite consequences: on one hand it is computationally costly, but on the 
other hand it is a useful feature as it is analogous to estimating a number by calculating the 
average of repeated observations. This results in a set of weights that are less sensitive to errors of 
judgment. In addition, this redundancy allows for a measure of these judgment errors by 
providing a means of calculating an inconsistency ratio (Saaty, 1980; Karlsson, 1998). According 
to Saaty small inconsistency ratios (less than 0.1 is the suggested rule-of-thumb, although even 
0.2 is often cited) do no drastically affect the weights.  
 
Analytic Hierarchy Process 
Advantages Disadvantages 
 The method can be used both for qualitative 

and quantitative data 
 The method increase the transparency of the 

composite 

 The method requires a high number of 
pairwise comparisons and thus it can be 
computationally costly. 
 The results depends on the set of evaluators 

chosen and the setting of the experiment 
 

Examples of use 
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- Index of Environmental Friendliness, (Puolamaa et al., 1996) 
 
 

6.1.9 Conjoint analysis  
 
Merely asking respondents how much importance they attach to a sub-indicator is unlikely to 
yield effective “willingness to pay” valuations. Those can be inferred by using conjoint analysis 
from respondents’ ranking of alternative scenarios (Hair et al. 1995). Thus weights equal 
willingness to pay.  
 
The conjoint analysis (CA) is a decompositional multivariate data analysis technique frequently 
used in marketing (see McDaniel and Gates, 1998) and consumer research (see Green and 
Srinivasan, 1978). If AHP derives the “worth” of an alternative summing up the “worth” of the 
individual sub-indicators, the CA does the opposite, i.e. it disaggregates preferences. This method 
asks for an evaluation (a preference) over a set of alternative scenarios (a scenario can be thought 
as a given set of values for the sub-indicators). Then this preference is decomposed by relating 
the single components (the known values of sub-indicators of that scenario) to the evaluation.    
 
Although this methodology uses statistical analysis to treat data, it operates with people (experts, 
politicians, citizens) who are asked to choose which set of sub-indicators they prefer, with each 
person presented with several different choice sets to evaluate. The absolute value (or level) of 
sub-indicators would be varied both within the choice sets presented to the same individual and 
across individuals. A preference function would be estimated using the information coming from 
the different scenarios. Therefore a probability of the preference could be estimated as a function 
of the levels of the sub-indicators defining the alternative scenarios:  
 

)I,...,I,I(Ppref Qcc2c1c =    (6.10)  

 
where Iqc is the level of sub-indicator q=1,…,Q, for country c=1,…,M. After estimating this 
probability (often using discrete choice models), the derivatives with respect to the sub-indicators 
of the preference function can be used as weights to aggregate the sub-indicators in a composite 
index: 
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  (11) 

 
The idea is to calculate the total differential of the function P at the point of indifference between 
alternative states of nature. Solving for the sub-indicator q one obtains the marginal rate of 
substitution of Iqc. Therefore qcIP ∂∂  (thus the weight) indicates a trade-off: how the preference 
changes with the change of the indicator. This implies the compensability among indicators, i.e. 
the possibility of offsetting the lack in some dimension with an outstanding performance in 
another dimension. As for other approaches already described, this is an important feature of this 
method and should be carefully evaluated vis à vis the objectives of the whole analysis (e.g. 
compensability might not be desirable when dealing with environmental issues). 
 
 
Conjoint Analysis 
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Advantages Disadvantages 
 It obtains weights with the meaning of trade-

offs  
 It takes into account the socio-political 

context, and the values of respondents. 
 
 

 It needs a pre-specified utility function and it 
implies compensability. 
 Depends on the sample of respondent chosen 

and on how questions are framed 
 It requires a large sample of respondents and 

each respondent may be required to express a 
large number of preferences. 
 The estimation process is complex. 

 
Examples of use 

Indicator of quality of life in the city of Istanbul (Ülengin et al. 2001) 
Advocated by Kahn (1998) and Kahn and Maynard (1996) for environmental applications. 
 

6.1.10 Performance of the different weighting methods  
 
To supply the reader with an idea of the diversity in weights obtained by applying the different 
methods we calculate the weights for the TAI example using four weighting methods (Table 6.6): 
EW, FA, BAL, AHP. Clearly with each method different sub-indicators are evaluated in a very 
different way. Patents, for example, are worth 17% of the weight according to the FA but only 9% 
according to the AHP. This deeply influences the variability of each country’s ranking, as shown by 
Table 6.7 (BOD added). For examples the Republic of Korea ranks second with the AHP but only 
5th when EW or FA are used. This is because AHP rewards with high weights (more than 20%) two 
indicators, High tech exports and University enrolment ratio, where this country has higher scores 
for one or both indicators as compared with USA, Sweden or Japan. 
 
The role of the variability in the weights and their influence in the value of the composite will be 
the object of the section on sensitivity analysis (section 7).  
 
Table 6.6. Weights for the sub-indicators obtained using 4 different methods: equal weighting 
(EW), factor analysis (FA), budget allocation (BAL), and analytic hierarchy process (AHP) 
  
 Patents Royalties Internet Tech 

exports 
Telephones Electricity Schooling University 

EW 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 
FA 0.17 0.15 0.11 0.06 0.08 0.13 0.13 0.17 
BAL 0.11 0.11 0.11 0.18 0.10 0.06 0.15 0.18 
AHP 0.09 0.10 0.07 0.21 0.05 0.06 0.18 0.25 

 
 
Table 6.7. Countries rank according to five different weighting methods* 
 EW FA BOD BAL AHP 
      
Finland 1 1 1 1 1 
United States 2 2 1 2 3 
Sweden 3 3 1 3 4 
Japan 4 4 4 5 5 
Korea, Rep. of 5 5 6 4 2 
Netherlands 6 6 7 8 11 
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United Kingdom 7 8 9 7 7 
Singapore 8 11 12 6 6 
Canada 9 10 8 10 10 
Australia 10 7 10 11 9 
Germany 11 12 11 9 8 
Norway 12 9 5 13 16 
 Ireland 13 14 13 12 12 
Belgium 14 15 15 14 13 
New Zealand 15 13 14 17 18 
Austria 16 16 16 15 15 
France 17 17 17 16 14 
Israel 18 18 18 18 17 
Spain 19 19 20 19 19 
Italy 20 20 19 21 21 
Czech Republic 21 21 21 22 22 
Hungary 22 23 23 20 20 
 Slovenia 23 22 22 23 23 
(*) For example USA ranks first according to BOD, second according to EW, FA, and BAL and third 
according to AHP.  
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6.2  Aggregation techniques  
 
The literature of composite indicators offers several examples of aggregation techniques. The 
most used are additive techniques that range from summing up country ranking in each sub-
indicator to aggregating weighted transformations of the original sub-indicators. However, 
additive aggregations imply requirements and properties, both of component sub-indicators and 
of the associated weights, which are often not desirable, at times difficult to meet or burdensome 
to verify. To overcome these difficulties the literature proposes other, and less widespread, 
aggregation methods like multiplicative (or geometric) aggregations or non linear aggregations 
like the multi-criteria or the cluster analysis (the latter is explained in Section 3).  This section 
reviews the most significant ones. 
 

6.2.1 Additive methods  
 
The simplest additive aggregation method entails the calculation of the ranking of each country 
according to each sub-indicator and the summation of resulting ranking (e.g. Information and 
Communication Technologies Index  - Fagerberg J. 2001).  
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qcc RankCI  for c=1,…,M. 

  
(6.12) 

 
This method is therefore based on ordinal information. Its advantages are simplicity and the 
independence to outliers. Its disadvantage is that the method loses the absolute value information. 
 
The second method proposed is based on the number of indicators that are above and below some 
benchmark. This method uses nominal scores for each indicator to calculate the difference 
between the number of indicators that are above and below an arbitrarily defined threshold 
around the mean (e.g.the Innovation Scoreboard of European Commission, 2001a).  
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The threshold value p can be arbitrarily chosen above or below the mean. Pros and cons are the 
same as with the preceding method. Its advantages are simplicity and the fact that it is unaffected 
by outliers. The disadvantage is that it loses interval level information. For example, assume that 
the value of indicator I for country a is 30% above the mean and the value for country b is 25% 
above the mean, with a threshold of 20% above the mean. Both country a and b are then counted 
equally as ‘above average’, in spite of a having a higher score than b. 
 
By far the most widespread linear aggregation is the summation of weighted and normalized sub-
indicators: 
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with 1w
q q =∑  and 1w0 q ≤≤ , for all q=1,..,Q and c=1,…,M. 

 
Although widely used, this aggregation entails restrictions on the nature of sub-indicators. In order 
to obtain composite indexes fully and only reflecting the information contained in their components 
it is necessary to know the condition under which the weighted summation can be properly done. In 
particular the possibility to obtain a meaningful composite indicator depends upon conditions on the 
sub-indicators used for the aggregation and on the unit of measurement of these sub-indexes. 
Furthermore, additive aggregations have important implications, which are discussed next, as far 
the interpretation of weights is concerned. 
 

6.2.2 Preference independence  
 
When using a linear additive aggregation technique a necessary and sufficient condition for the 
existence of a proper composite indicator is preference independence: given the sub-
indicators{ }Q21 x,...,x,x , an additive aggregation function exists if and only if these indicators are 
mutually preferentially independent22  (Debreu, 1960; Keeney and Raiffa, 1976; Krantz et al., 
1971).  
Preferential independence is a very strong condition since it implies that the trade-off ratio between 
two variables ,x yS  is independent of the values of the Q-2 other variables, (Ting, 1971)23. From an 
operational point of view this means that an additive aggregation function permits the assessment of 
the marginal contribution of each variable separately. These marginal contribution can then be 
added together to yield a total value. If, for example, environmental dimensions are involved, the 
use of a linear aggregation procedure implies that among the different aspects of an ecosystem there 
are not phenomena of synergy or conflict. This appears to be quite an unrealistic assumption 
(Funtowicz et al., 1990). For example, "laboratory experiments made clear that the combined 
impact of the acidifying substances SO2, NOX, NH3 and O3 on plant growth is substantially more 
severe that the (linear) addition of the impacts of each of these substances alone would be.” (Dietz 
and van der Straaten, 1992)". 
 
What happens if the linear aggregation is nevertheless done? The resulting composite indicator will 
be biased, i.e. it will not entirely reflect the information of its sub-indicators. The dimension and the 
direction of the error are not easily determined, thus the correction of the composite can not be 
properly done. 
 
 
 
 

                                                      
22 A subset of indicators Y is preferentially independent of Yc (the complement of Y) only if any conditional preference among 
elements of Y, holding all elements of Yc fixed, remain the same, regardless of the levels at which Yc are held. The variables 
x1, x2,..., xQ  are mutually preferentially independent if every subset Y of these variables is preferentially independent of its 
complementary set of evaluators. 
 

23 0
z

S y,x =
∂

∂
, CYz,Yy,x ∈∀∈∀ , see the previous note above. 
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 6.2.3 Weights and aggregations: lessons from multi-criteria analysis  
 
The common practice in constructing composite indicators is well synthesized in a recent OECD 
report: “Greater weight should be given to components which are considered to be more 
significant in the context of the particular composite indicator” (OECDb, 2003, p. 10).  
 
Yet, it can be proven that when using an additive or a multiplicative aggregation rule and sub-
indicators are expressed as  quantities (and not qualities) the substitution rates equal the weights 
of the variables up to a multiplicative coefficient24 (Munda and Nardo 2003). As a consequence, 
weights in additive aggregations necessarily have the meaning of substitution rates and do 
not indicate the importance of the indicator associated. This implies a compensatory logic. 
Compensability refers to the existence of trade-offs, i.e. the possibility of offsetting a 
disadvantage on some variables by a sufficiently large advantage on other variables. For example, 
in the construction of the TAI index a compensatory logic (using equal weighting) would imply 
that one is willing to renounce, let’s say, to 2% of Patents granted to residents or to 2% of 
University enrolment in exchange of a 2% increase in Electricity consumption. 
 
The implication is the existence of a theoretical inconsistency in the way weights are actually 
used and their real theoretical meaning. For the weights to be interpreted as “importance 
coefficients” (in jargon symmetrical importance of variables, e.g. place the greatest weight beside 
the most important “dimension”) non-compensatory aggregation procedures must be used to 
construct composite indicators (Podinovskii, 1994). This can be done using a non-compensatory 
multi-criteria approach.  
 
 
A non-compensatory Multicriteria Approach (MCA) 
 
The basic features of non compensatory multi-criteria are two: countries are ordered into binary 
relations in order to allow pair-wise comparisons, and the relationships created by the binary 
relations are exploited somehow.  According to the way in which those two steps are performed 
several methods are available (see Munda 1995 for a review). One of these, suited to indicators, is 
presented next. 
 
When various variables are used to evaluate, i.e. rank, a set of countries, some of these variables 
may be in favour of one country while other variables may be in favour of another. As a 
consequence a conflict among the variables exists. This conflict can be treated at the light of a non-
compensatory logic and taking into account the absence of preferential independence within a 
discrete multi-criteria approach (Munda, 1995; Roy, 1996; Vincke, 1992).   
 
Given a set of sub-indicators G={xq}, q=1,…,Q, and a finite set M={c}, c=1,…,M of countries, let’s 
assume that the evaluation of each country c with respect to an individual indicator xq (i.e. the 

                                                      
24 Suppose that country a is evaluated according to some criteria/sub-indicators ))a(x),...,a(x( Q1 , then the 

substitution rate at a, of sub-indicator j with respect to sub-indicator r (taken as a reference) is the amount )a(S jr  

such that, country b whose evaluations are: r,jl),b(x)a(x ll ≠∀= ; 1)a(x)b(x jj −= ; and 

)a(S)a(x)b(x jrrr +=  is indifferent to country a. Therefore, )a(S jr  is the amount which must be added to 

the reference sub-indicator in order to compensate the loss of one unit on sub-indicator j keeping constant the others. 
While for additive aggregations the substitution rate is constant, in the multiplicative aggregation it is proportional to 
the relative score of the indicator with respect to the others. 
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indicator score or variable) is based on an interval or ratio scale of measurement. For simplicity of 
exposition, we assume that a higher value of an individual indicator is preferred to a lower one (the 
higher, the better). Let’s also assume the existence of a set of weights w={wq}, q=1,2,...Q,  with   

∑
=

=
Q

1q
q 1w , interpreted as importance coefficients. This information constitutes the impact matrix. 

For explanatory purposes suppose to consider only 5 of the countries included in the TAI dataset25 
and give equal weighting to all the sub-indicators (Table 6.8): 
 
 
Table 6.8. Impact matrix for the TAI example, reduced dataset.  
 
 Patents Royalties Internet Tech 

exports 
Telephones Electricity Schooling University 

Finland 187 125.6 200.2 50.7 3.080 4.150 10 27.4 
USA 289 130 179.1 66.2 2.997 4.073 12 13.9 
Sweden 271 156.6 125.8 59.7 3.096 4.145 11.4 15.3 
Japan 994 64.6 49 80.8 3.003 3.865 9.5 10 
Korea 779 9.8 4.8 66.7 2.972 3.653 10.8 23.2 
         
weight 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

 
The mathematical problem is then how to use this information to rank in a complete pre-order (i.e. 
without any incomparability relation) all the countries from the best to the worst one. Especially 
four points are important: 
 

1. Intensity of preference (how much country a is better than country b according to 
sub-indicator q); 

2. Number of indicators in favour of a given country; 
3. Weight attached to each indicator; 
4. Relationship of each country with respect to all the others. 

 
The sources of uncertainty and imprecise assessment should be reduced as much as possible. 
Unfortunately Arrow’s impossibility theorem (Arrow, 1963) clearly shows that no perfect 
aggregation convention can exist. Therefore, when aggregating it is essential to check not only 
which properties are respected by a given ranking procedure, but also that none of the essential 
properties for the specific problem faced is lost. 
 
The mathematical aggregation convention can be divided into two main steps: 

1. Pair-wise comparison of countries according to the whole set of sub-indicators used. 
2. Ranking of countries in a complete pre-order.  

 
The result of the first step is a M×M matrix, E, called outranking matrix (Arrow and Raynaud, 
1986, Roy, 1996). Any generic element of E: ejk , j≠ k is the result of the pair-wise comparison, 
according to all the Q sub-indicators, between countries j and k. Such a global pair-wise comparison 
is obtained by means of equation: 
 

                                                      
25 Data are not normalized. Normalization does not change the result of the multicriteria method whenever it does not 
change the ordinal information of the data matrix. 
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where )(Prw jkq  and )In(w jkq  are the weights of sub-indicators presenting a preference and an 
indifference relation respectively.  
In other words, in Equation 6.15 above the score of country j is the sum of the weights of sub-
indicators for which this country does better than country I, as well as – if any – half of the weights 
for the sub-indicators according to which the two countries do equally well.  
 
It clearly holds ejk + ekj = 1.  The pair-wise comparisons are different from those in the AHP 
method: there the question to be answered was whether Iq is more important than Iz, here, instead, 
the question is whether Iq is higher for country a or for country b. And if Iq is indeed higher for 
country a , it is the weight of sub-indicator q which enters into the computation of the overall 
importance of country a, in a way which is consistent with the definition of weights as importance 
measures.  
 
In our example the pair-wise comparison of e.g. Finland and USA shows that Finland has better 
scores for the sub-indicators Internet (weight 1/8), Telephones (weight 1/8), Electricity (weight 1/8) 
and University (weight 1/8). Thus the score for Finland is 4*1/8=0.5 while the complement to one 
is the score of USA. The resulting outranking matrix is in Table 6.9:  
 
Table 6.9. Outranking matrix in the multicriteria analysis 
 
 Finland USA Sweden Japan Korea 
Finland 0 0.5 0.375 0.75 0.625 
USA 0.5 0 0.5 0.625 0.625 
Sweden 0.625 0.5 0 0.75 0.625 
Japan 0.25 0.375 0.25 0 0.75 
Korea 0.375 0.375 0.375 0.25 0 
 
The way in which these information are combined generates several possible ranking procedures 
(see Young 1988 and Munda 2004), each with pros and cons. One possible algorithm is the 
Condorcet-Kemeny-Young-Levenglick (CKYL) ranking procedure (Munda and Nardo 2003). 
According to CKYL the ranking of countries with the highest likelihood is the one supported by the 
maximum number of sub-indicators for each pair-wise comparison, summed over all pairs of 
countries considered. More formally, all the M(M–1) pair-wise comparisons compose the 
outranking matrix E. Call R the set of all M! possible complete rankings of alternatives, R={rs}, 
s=1,2,..., M! For each rs, compute the corresponding score ϕ s as the summation of ejk over all the 
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


2
M

 pairs j,k of alternatives, i.e. ∑= e jksϕ reand!M...,2,1s,kjwhere sjk∈=≠  

The final ranking ( r* ) is the solution of:  
 

Rewhereer jkjk ∈=⇔ ∑max
** ϕ    (6.16) 
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In our example the number of permutations obtained from 5 countries are 120, the first 5 are listed 
in Table 6.10. The score of, for example, the first ranking (USA, Sweden, Finland, Japan and 
Korea) is obtained as follows: according to the impact matrix the comparison of USA with the other 
countries yields 0.5 against Finland and Sweden, and 0.625 against Japan and Korea (overall 2.25). 
The comparison of Sweden yields 0.625 against Finland and Korea and 0.75 against Japan (overall 
2). Finland obtains 0.625 against Korea and 0.75 against Japan (overall 1.375). Finally Japan 
obtains 0.75 against Korea. The final score of this ranking is then equal to 
2.25+2+1.375+0.75=6.375. 
 
Table 6.10. Permutations  obtained from the outranking matrix and associated score. 
USA Sweden Finland Japan Korea 6.375 
Sweden Finland USA Japan Korea 6.375 
Sweden USA Finland Japan Korea 6.375 
Finland USA Sweden Japan Korea 6.125 
Finland Sweden USA Japan Korea 6.125 
USA Finland Sweden Japan Korea 6.125 

 
According to expression (6.16) the final ranking will be the permutation(s) with the highest score. 
In our example the first 3 permutations have the highest overall score and thus all those can be 
considered as winning ranking.  
 
This aggregation method has the advantage to overcome some of the problems raised by additive or 
multiplicative aggregations: preference dependence, the use of different ratio or interval scale to 
express the same indicator and the meaning of trade-offs given to the weights. With this method, 
moreover, qualitative and quantitative information can be jointly treated. In addition, it does not 
need any manipulation or normalization to assure the comparability of sub-indicators.  
 
The drawbacks, instead, include the dependence of irrelevant alternatives, i.e. the possible presence 
of cycles/rank reversal in which in the final ranking, country a is preferred to b, b is preferred to c 
but c is preferred to a (the same problem highlighted for AHP with indicators). Furthermore, 
information on intensity of preference of variables is never used: if one indicator for country a is 
much less than the same indicator for country b produces the same ranking as the case in which this 
difference is very small26.  Notice that with this method the focal point is shifted to the 
determination of weights, which becomes crucial for the result. Examples of MCA include agro-
ecological indicators (Girardin et al., 2000) and an indicator of quality of life of three towns near to 
Puerto Vallarta, Mexico (Massam, 2002) within a project on the effects of tourism on the quality of 
life of small communities near international tourist resorts. 
 

6.2.4 Geometric aggregation 

 
As shown above, an undesirable feature of additive aggregations is the full compensability they 
imply: poor performance in some indicators can be compensated by sufficiently high values of 
other indicators. For example if a hypothetical composite were formed by inequality, 
environmental degradation, GDP per capita and unemployment, two countries, one with values 
21, 1, 1, 1; and the other with 6,6,6,6 would have equal composite if the aggregation is additive. 

                                                      
26 To obviate to this problem it is possible to set thresholds of this type: if the difference between two countries in the 
indicator I is more than x%, then give to the country with the highest score a much higher weight. If the difference is 
less than x% give nearly the same weight. However, more preciseness comes at the expenses of ad hoc threshold and 
weighting values. 
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Obviously the two countries would represent very different social conditions that would not be 
reflected in the composite. If multicriteria analysis entails full non-compensability, the use of a 

geometric aggregation (also called deprivational index) ∏
=

=
Q

1q

w
c,qc
qxCI   is a in-between solution. 

In our simple example the first country would have a much lower composite than the second if 
the aggregation is geometric (2.14 for the first and 6 for the second). The use of geometric 
aggregations can also be justified on the ground of the different incentives they supply to 
countries in a benchmarking exercise. Countries with low scores in some sub-indicators would 
prefer a linear rather than a geometric aggregation (the simple example above shows why). On 
the other hand the marginal utility from an increase in low absolute score would be much higher 
than in a high absolute score under geometric aggregation: the first country increasing by 1 unit 
the second indicator would increase its composite from 2.14 to 2.54, while country 2 would go 
from 6 to 6.23. In other terms the first country would increase its composite by 19% while the 
second only by 4%. The lesson is that a country should be more interested in increasing those 
sectors/activities/alternatives with the lowest score in order to have the highest chance to improve 
its position in the ranking if the aggregation is geometric rather than linear (Zimmermann and 
Zysno, 1983). 
 
Furthermore the type of aggregation employed is strongly related with the method used to 
normalize raw data (Section 5). In particular Ebert and Welsch (2004) prove that the use of linear 
aggregations yields meaningful composite indicators only if data are all expressed in partially 
comparable interval scale (i.e. temperature in Celsius of Fahrenheit) of type 

0: >+→ αβα ixxf  (i.e. α  fixed, but iβ  varying across subindicators) or in a fully 
comparable interval scale (β constant); 
Non-comparable data measured in ratio scale (i.e. kilograms and pounds) 

0where: >→ ii xxf αα (i.e. iα  varying across subindicators) can only be meaningfully 
aggregated by using geometric functions, provided that x is strictly positive. In other terms, except 
in the case of all indicators measured in different ratio scale, the measurement scale must be the 
same for all indicators when aggregating, thus care should be used when in the same composite 
coexist indicators measured in different scale: the normalization method used should properly 
remove the scale effect. 
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6.3 Conclusions: when to use what? 
 
When using a model or an algorithm to describe a real-world issue formal coherence is a 
necessary property. Yet, formal coherence is not sufficient. The model in fact should fit 
objectives and intentions of the user, i.e. it must be the most appropriate tool for expressing the 
set of objectives that motivated the whole exercise.  As explained in Section 2 the choice of 
which sub-indicators to use, how those are divided into classes, whether a normalization method 
has to be used (and which one), the choice of the weighting method, and how information is 
aggregated, all these features stem from a certain perspective on the issue to be modelled.  
 
Table 6.11 highlights is the dependence of rankings to the aggregation methods used (in this case 
linear, geometric and based on the multicriteria technique for the TAI dataset with 23 countries). 
Although in all cases we used equal weighting, rankings produced are very different. For example 
Finland ranks first according to the linear aggregation, second according to the geometric 
aggregation and third according to the multicriteria. Notice that Korea ranks 16th with GME while 
is much above according to the other two methods, while the reverse happens for Belgium.  
 
Table 6.11 Rankings obtained using the linear and the geometric aggregations (resp. LIN and 
GME) and the multicriteria evaluation method (MCA). Dataset TAI, for 23 countries. Numbers 
refer to the position in ranking. 
 

 LIN MCA GME 
Finland 1 3 2 
United States 2 1 1 
Sweden 3 2 3 
Japan 4 4 4 
Korea, Rep. of 5 9 16 
Netherlands 6 8 5 
United Kingdom 7 5 6 
Singapore 8 12 18 
Canada 9 11 13 
Australia 10 9 14 
Germany 11 7 8 
Norway 12 6 11 
 Ireland 13 13 7 
Belgium 14 17 9 
New Zealand 15 15 17 
Austria 16 15 12 
France 17 14 10 
Israel 18 18 15 
Spain 19 20 19 
Italy 20 19 21 
Czech Republic 21 21 23 
Hungary 22 23 22 
 Slovenia 23 22 20 

 
The absence of an “objective” way of constructing composites should not result in a rejection of 
whatever type of composite. Composites can meaningfully supply information provided that the 
relation between the framing of a problem and the outcome in the the decision space are made 
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clear. A backward induction exercise could be useful in this context. Once the context and the 
modeller’s objectives have been made explicit, the user can verify whether and how the selected 
model fulfils those objectives. A plurality of methods (all with their implications) can in principle 
be used and no model is a priori better than another, provided internal coherence is assured. In 
practice, different models can meet different expectations and stakes. Therefore, stakes must be 
made clear, and transparency should guide the entire process. 
 
With this in mind we present a number of considerations that should help the reader in choosing 
the appropriate weighting and aggregation method. Table 6.12 presents the feasible combinations 
between the various aggregation and weighting methods. 
 
 
Weighting methods 
 
(a) The equal weighting can be applied after a proper scaling of the sub-indicators. Equal 

weighting works well if all dimensions (economic, social, environmental, etc.) are 
represented in the composite with the same number of sub-indicators (as in the TAI example). 
If this does not happen equal weighting implies a higher weight to the dimension represented 
by the larger number of components. Equal weighting is also appealing when high correlation 
of components indicators does not mean redundancy of information in the composite, i.e. 
when correlated components explain different aspects of the picture the composite aims to 
capture.  

 
(b) Principal Components Analysis is a very useful exploratory technique to examine the 

correlation structure of groups of variables, and Factor Analysis is usually employed as a 
supplementary method with a view to examine thoroughly the relationships among the sub-
indicators. However, there are two crucial problems with these arguments. First, weights 
assigned to sub-indicators in both of these techniques are based on correlations which do not 
necessarily correspond to the underlying relationships between the sub indicators and the 
phenomena being measured. In other words there is confusion between correlation and 
redundancy: redundancy implies correlation but the reverse is not necessarily true. Secondly, 
being based only on correlation, FA is a way to discipline homogeneity rather than to 
represent plurality. FA in fact can only be applied when variables are correlated, i.e. when 
they move in the same direction (if the correlation is positive, and in opposite direction if the 
correlation is negative).  

 
(c) The Benefit of the Doubt approach is extremely parsimonious as regards the weighting 

assumptions, because it lets the data decide on the weighting issue, and it is sensible to 
national priorities. It is argued, though, that weights are country specific and that there are a 
number of technical problems involved in the estimation. Furthermore, the BOD method 
over-scores outliers. 

 
(d) Multiple regression models can handle a large number of indicators. This approach can be 

applied in cases where the sub-indicators considered as input to the model are related to 
various policy actions and the output of the model is the target. The regression model, 
thereafter, could quantify the relative effect of each policy action on the output, i.e. the single 
indicator. However, this implies the existence of a “dependent variable” (not in the form of a 
composite indicator) that accurately and satisfactorily measures the target in question. 
Measuring the influence of a number of independent variables on this policy target is a 
reasonable question. Alternatively such an approach could be used for forecasting purposes. 
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In a more general case of multiple output indicators, canonical correlation analysis that is a 
generalization of multiple regression could be applied. However, in any case, there is always 
the uncertainty that the relations, captured by the regression model for a given range of inputs 
and output, may not be valid for different ranges.  

 
(e) Unobserved components is similar in spirit to the multiple regression models, it does not 

need an explicit value for the “dependent variable” as it treats it like another unknown 
variable to estimate. This advantage is counter-balanced by the inconvenient of the 
complexity in estimation and the computational expensiveness. 

 
(f) Participatory methods constitute a way to involve experts, citizens or politicians in the issue.  

Using policy goals as targets convinces the policy makers of the “soundness” of the 
weighting method, as long as those policy makers have defined the policy targets themselves. 
This approach is technically feasible when there is a well-defined basis for a certain policy, 
such as a National Policy Plan or similar reference documents. For international comparisons, 
such references are often not available, or they deliver contradictory results. Another counter-
argument for the use of policy goals as targets is that the benefits of a given policy must be 
valued independently of the existing policy goals.  

 
(g) Expert judgement is adopted when it is essential to bring together experts that have a wide 

spectrum of knowledge, experience and concerns, so as to ensure that a proper weighting 
system is found for a given application. The budget allocation is optimal for a maximum 
number of 10-12 indicators. If a too large number of indicators is involved, this method can 
give serious cognitive stress to the experts who are asked to allocate the budget.   

 
(h) Public opinion polls have been extensively employed for many years for the setting of 

weights. In public opinion polls, issues are selected which are already on the public agenda, 
and thus receive roughly the same attention by the media. In many case studies, public 
opinion polls in different countries and years resulted in similar weighting schemes for 
certain environmental problems, which indicates that public opinion about the main threats to 
the environment is remarkably stable across both space and time. Therefore fears that the 
public evaluates environmental issues on an irrational basis, and therefore weights base upon 
public opinion will produce instability, appear to be unfounded.  

 
(i) The Analytic Hierarchy Process is a widely used technique for multi-attribute decision 

making, as weighting method enables the decision-maker to derive weights as opposed to 
arbitrarily assigning them. An advantage of AHP is that unlike many other methods based on 
Utility Theory, its use for the purposes of comparisons does not require a universal scale. 
Furthermore, AHP tolerates inconsistency in the way people think through the amount of 
redundancy (more equations are available than the number of weights to be defined). This 
redundancy is a useful feature as it is analogous to estimating a number by calculating the 
average of repeated observations. The resulting weights are less sensitive to errors of 
judgments. These advantages may render the weights derived from AHP defensible d and 
justifiable in front of the public.  

 
(j) Conjoint analysis derives the worth of the single sub-indicators from the worth of a 

composite, i.e. it reverses the process of AHP, with which it shares advantages and 
disadvantages. Further complication is the need to specify and estimate and utility function. 

Aggregation methods 
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Linear aggregation method is useful when all sub-indicators have the same measurement unit 
and further ambiguities due to the scale effects have been neutralized, while geometric 
aggregations are appropriate when non-comparable and strictly positive sub-indicators are 
expressed in different ratio-scales. The absence of synergy or conflict effects among the 
indicators is a necessary condition to admit either linear or geometric aggregations. Furthermore, 
linear aggregations reward base-indicators proportionally to the weights, while geometric 
aggregations reward more those countries with higher scores.   
 
In both linear and geometric aggregations weights express trade-offs between indicators: the 
idea is that deficits in one dimension can be offset by surplus in another. With linear aggregations 
the compensability is constant, while with geometric aggregations compensability is lower when 
the composite contains indicators with low values. In policy terms if compensability is admitted 
(as in the case of pure economic indicators) a country with low scores on one indicator will need 
much higher score on the others to improve its situation if the aggregation of information is 
geometric. Thus in a benchmarking exercise countries with low scores should prefer a linear 
rather than a geometric aggregation. On the other hand the marginal utility of an increase in the 
score would be much higher when the absolute value of the score is low. The resulting lesson is 
that a country should be more interested in increasing those sectors/activities/alternatives with the 
lowest score in order to have the highest chance to improve its position in the ranking if the 
aggregation is geometric. The opposite is true, i.e. a country has interest in specialising along its 
most effective dimensions, when the aggregation is linear.27 
 
When different goals are equally legitimate and important, then a non compensatory logic may be 
necessary. This is usually the case when very different dimensions are involved in the composite, 
like in the case of environmental indexes, where physical, social and economic figures must be 
aggregated. If the analyst decides that an increase in economic performance can not compensate a 
loss in social cohesion or a worsening in environmental sustainability, then neither the linear nor 
the geometric aggregation are suitable. Instead, a non-compensatory multicriteria approach will 
assure non compensability by formalizing the idea of finding a compromise between two or more 
legitimate goals.  
 
Multicriteria analysis, like any other method, has pros and cons. At least in its basic form this 
approach does not reward outliers, i.e. those countries having large advantages (disadvantages) in 
sub-indicators since it keeps only the ordinal information. Another disadvantage is the 
computational expensiveness when the number of countries is high (the number of permutations 
to calculate grows exponentially). 
 
 
 
 
 
 
 
Table 6.12. When to use what: compatibility between aggregation and weighting methods. 
 

                                                      
27 Compensability of aggregations is widely studied in fuzzy sets theory, for example Zimmermann and Zysno (1983) 
use the geometric operator γγ ))I1(1()I(

q q
)1(

q q ∏∏ −−−  where γ  is a parameter of compensation: the larger is γ  the 

higher is the degree of compensation between operators (in our case sub-indicators).   
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Weighting methods Aggregation methods 
 Linear4 Geometric4 Multi-criteria 
EW Yes  Yes  Yes  
PCA/FA Yes  Yes  Yes  
BOD Yes1 No2  No2 

UCM Yes  No2 No2 

BAL Yes  Yes Yes 
AHP Yes  Yes No3 

CA Yes  Yes No3 
1 normalized with the maximin method. 
2 BOD requires additive aggregation, similar arguments apply to UCM 
3 At least with the multi-criteria methods requiring weights as importance coefficients. 
4 With both linear and geometric aggregations weights need to trade-offs and not “importance” coefficients 
 
 

7. Uncertainty and sensitivity analysis  
The reader will recall from the introduction that composite indicators may send misleading, 

non-robust policy messages if they are poorly constructed or misinterpreted. The cons also 
mentioned that the construction of composite indicators involves stages where judgement has to 
be made: the selection of sub-indicators, the choice of a conceptual model, the weighting of 
indicators, the treatment of missing values etc. All these sources of subjective judgement will 
affect the message brought by the CIs in a way that deserve analysis and corroboration. A 
combination of uncertainty and sensitivity analysis can help to gauge the robustness of the 
composite indicator, to increase its transparency and to help framing a debate around it.    

 
General procedures to assess uncertainty in composite indicators building are described in 

this section.  
 
In particular, we shall try to tackle all possible sources of uncertainty, which arise from: 
  

i. selection of sub-indicators,  
ii. data quality,  

iii. data editing,  
iv. data normalisation,  
v. weighting scheme,  

vi. weights’ values,  
vii. composite indicator formula  

 
Two combined tools are suggested: Uncertainty Analysis (UA) and Sensitivity Analysis 

(SA). UA focuses on how uncertainty in the input factors propagates through the structure of the 
composite indicator and affects the composite indicator values. SA studies how much each 
individual source of uncertainty contributes to the output variance.  

 
In the field of building composite indicators, UA is more often adopted than SA (Jamison 

and Sandbu, 2001; Freudenberg, 2003) and the two types of analysis are almost always treated 
separately. A synergistic use of UA and SA is proposed and presented here, considerably 
extending earlier attempts in this direction (Tarantola et al., 2000). We will exemplify it with the 
TAI example by building an error propagation analysis as complete as possible given the 
example, to the effect of showing the UA, SA machinery at work on a rather complicate setting, 
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e.g. one where one wants to test different index architectures. In practical applications it might 
happen that the aggregation formula and the weighing scheme will be dictated by the purpose of 
the index and/or by an agreement among the parties involved in the index construction and use, 
thus making the UA/SA simpler.    

 
With reference to the uncertainty sources (i to vii above), the approach taken to propagate 

uncertainties could include in theory all of the steps below:  
  

i. inclusion – exclusion of sub-indicators,  
ii. modelling of data error, e.g. based of available information on variance estimation.  

iii. alternative editing schemes, e.g. multiple imputation, described in section 4.  
iv. using alternative data normalisation schemes, such as rescaling, standardisation, use 

of raw data.   
v. using several weighting schemes, i.e. two methods in the participatory family (budget 

allocation BAL and analytic hierarchy process AHP), and one based on endogenous 
weighting (benefit of the doubt BOD) 

vi. using several aggregation systems, i.e. linear LIN, another based on geometric mean 
of un-scaled variable GME and finally one based on multi-criteria ordering MCA, all 
described in Section II-6 above.       

vii. weights’ values, sampled from distributions when appropriate to the weighting 
scheme. 

 
First TAI analysis. In a first analysis, in order to use the geometric mean aggregation approach 
GME, we shall omit (iii), i.e. we shall discard all countries with incomplete information. This is 
because even with imputation, we might generate zeros that might be untreatable by GME. In a 
second analysis described later we shall relax this assumption. Also modelling of the data error, 
point (ii) above, will not be included as in the case of TAI no standard error estimate is available 
for the sub-indicators. In a general case, based on estimate of the standard error associated to each 
individual sub-indicator, we could sample an error for each assuming a Gaussian error 
distribution, e.g., sampling a random number in the ]1,0[  interval and mapping it into the 
cumulative probability density function (cpdf) of the sub-indicator error.  
 
Furthermore, not all combinations of choices under (i) to (vii) above are feasible with our TAI 
index. In particular (see also Table 6.12 on previous section): 
 

A. When using LIN for aggregation and BAL or AHP for weighting, the option “use of raw 
data” for normalisation is forbidden. 

B. When using LIN for aggregation and BOD for weighting, the options  “use of raw data” 
and “standardisation” for normalisation are forbidden. 

C. When using GME for aggregation, then BOD for weighting is forbidden. Furthermore 
when using BAL and AHP, the option “standardisation” for normalisation is forbidden. 

D. When using MCA for aggregation, then BOD for weighting is forbidden. 
       
A few technicalities are also worth mentioning. 
  

E. As all weighs for both AHP and BAL are given by the experts, we sample the expert 
rather than the weight to preserve coherence among weights, e.g. to avoid generating 
combinations of weights that no expert would have advocated for. 
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F. When using BOD, the exclusion of an indicator leads to a total re-run of the optimisation 
algorithm. When using BAL or AHP a simple rescaling of the weights to unit is 
sufficient.    

    
Second TAI analysis. This differs from the first analysis in that we assume that stakeholders 

have converged to using LIN aggregation. In this case we can allow for alternative editing 
schemes, point (iii) above and consider all countries as in the original TAI. This analysis aims at 
answering mainly two questions:  

(a) Does the use of one strategy versus another in indicator building (i to vii above) provide a 
biased picture of the countries’ performance? How does this compare to the original TAI index?   

(b) To what extent do the uncertain input factors (used to generate the alternatives i to vii 
above) affect the countries’ ranks with respect to the original, deterministic TAI?  
 

7.1 Set up of the analysis  

7.1.1 Output variables of interest  
 
Let  

( ) ,...,,,..., ,2,1,,,2,1 QssscQccrsc wwwIIIfCI =  (7.1)    

 
be the index value for country c, c=1,…,M, according the weighting model 

3,2,1,3,2,1, == srf rs  where the index r refers to the aggregation system (LIN, GME, MCA) 
and index s refers to the weighting scheme (BAL, AHP, BOD). The index is based on Q sub-
indicators  cQcc III ,,2,1 ,...,  for that country and scheme-dependent weights Qsss www ,2,1, ,...,  for 
the sub-indicators.  

 
The rank assigned by the composite indicator to a given country, i.e. )( cCIRank  will be an 

output of interest studied in our uncertainty – sensitivity analysis.  
 

Additionally, the average shift in countries’ rank will be explored. This latter statistic captures in 
a single number the relative shift in the position of the entire system of countries. It can be 
quantified as the average of the absolute differences in countries’ rank with respect to a reference 
ranking over the M countries:  
 

∑
=

−=
M

1c
ccrefS )CI(Rank)CI(Rank

M
1R  

(7.2) 

 
The reference ranking for the TAI analysis is the original rank given to the country by the original 
version of the index.   
 
The investigation of )( cCIRank  and SR  will be the scope of the uncertainty and sensitivity 
analysis (both in the first and second TAI analysis), targeting the questions raised in the 
introduction on the quality of the composite indicator. We always work on )( cCIRank  rather 
than on the raw values of the index cCI  as the multi criteria approach MCA only produces ranks 
for countries, as explained in Section II-6 of the present guidelines.  
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7.1.2 General framework for the analysis 
 
As described in the following sections, we shall frame the analysis as a single Monte Carlo 
experiment, e.g. by plugging all uncertainty sources simultaneously, as to capture all possible 
synergistic effects among uncertain input factors. This will involve the use of triggers, e.g. the use 
of uncertain input factors used to decide e.g. which aggregation system and weighting scheme to 
adopt. To stay with the example, a discrete uncertain factor which can take integer values 
between 1 and 3 will be used to decide upon the aggregation system and another also varying in 
the same range for the weighting scheme. Other trigger factors will be generated to select which 
indicators to omit, the editing scheme (for the second TAI analysis only), the normalisation 
scheme and so on, till a full set of input variables is available to compute for the given run the 
statistics   Sc RCIRank ),(  described above. 

7.1.3 Inclusion – exclusion of individual sub- indicators  
 
No more than one indicator at a time is excluded for simplicity. A single random variable is used 
to decide if any indicator will be omitted and which one. Note that an indicator can also be 
practically neglected as a result of the weight assignment procedure. Imagine a very low weight is 
assigned by an expert to a sub-indicator q . Every time we select that expert in a run of the Monte 
Carlo simulation, the relative sub-indicator q  will be almost neglected for that run.   

7.1.4 Data quality  
This is not considered here as discussed above. 

7.1.5 Normalisation  
 
As described in Section II-5 several methods are available to normalise sub-indicators. The 
methods that are most frequently met in the literature are based on the re-scaled values (equation 
(7.3a)) or on the standardised values (equation (7.3b)) or on the raw indicator values (7.3c).    
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(7.3b) 
 
 
(7.3c) 

 
where cqI ,  is the normalised and cqx ,  is the raw value of the sub-indicator xq for country c. 
 
Equations (7.3a) will be used in conjunction with all weighting schemes (BAL, AHP and BOD) 
for all aggregation systems (LIN, GME, MCA). Equation (7.3b) will be used in conjunction with 
weighting schemes (BAL, AHP) for aggregation systems (LIN, MCA). Finally, Equation (7.3c) 
will be used in conjunction with weighting schemes (BAL, AHP) for aggregation systems (GME, 
MCA). 
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7.1.6 Uncertainty analysis 
All points of the (i) to (vii) chain of composite indicator building can introduce uncertainty in the 
output variables )( cCIRank  and SR . Thus we shall translate all these uncertainties into a set of 
scalar input factors, to be sampled from their distributions. As a result, all outputs )( cCIRank  

and SR  are non-linear functions of the uncertain input factors, and the estimation of the 

probability distribution functions (pdf) of )( cCIRank  and SR  is the purpose of the uncertainty 
analysis. The UA procedure is essentially based on simulations that are carried on the various 
equations that constitute our model. As the model is in fact a computer programme that 
implements steps (i) to (vii) above, the uncertainty analysis acts on a computational model. 
Various methods are available for evaluating output uncertainty.  
 
In the following, the Monte Carlo approach is presented, which is based on performing multiple 
evaluations of the model with k  randomly selected model input factors. The procedure involves 
six steps: 
 
Step 1. Assign a pdf to each input factor kiX i ...2,1, = . The first input factor, 1X  is used for the 
selection of the editing scheme (for the second TAI analysis only):  
 

1X  Editing  
1 Use bivariate correlation 

to impute missing data 
2 Assign zero to missing 

datum 
 
 
The second input factor 2X  is the trigger to select the normalisation method.  

2X  Normalisation 
1 Rescaling (Equation 7.3a) 
2 Standardisation (Equation 7.3b) 
3 None (Equation 7.3c) 

 
Both 1X  and 2X  are discrete random variables. In practice, they are generated drawing a random 
number ζ  uniformly distributed in [0,1] and applying the so called Russian roulette algorithm, 
e.g. for 1X  we select 1 if )5.0,0[∈ζ   and 2 if ]1,5.0[∈ζ . Uncertain factor 3X  is generated to 
select which sub-indicator –if any, should be omitted. The procedure is 
  

ζ  3X , excluded sub-indicator  

[0, 
1

1
+Q

)  None ( 03 =X ) all 
subindicators are used)   

[
1

1
+Q

,
1

2
+Q

) 13 =X  

… … 

[
1+Q

Q
,1] QX =3  
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i.e. with probability 
1

1
+Q

 no sub-indicator will be excluded, while with probability [1-
1

1
+Q

] 

one of the Q sub-indicators will be excluded with equal probability. Clearly we could have made 

the probability of 03 =X  larger or smaller than 
1

1
+Q

 and still sample the values QX ,...2,13 =  

with equal probability. We anticipate here that a scatter-plot based sensitivity analysis will allow 
us to track which indicator – when excluded – affects the output the most. Also recall that 
whenever a sub-indicator is excluded, the weights of the other factors are rescaled to 1 to make 
the composite index comparable if either BAL or AHP is selected. When BOD is selected the 
exclusion of a sub-indicator leads to a re-execution of the optimisation algorithm.  
 
Trigger 4X  is used to select the aggregation system  
 

4X  Scheme 
1 LIN 
2 GME 
3 MCA 

 
Note that when LIN is selected the composite indicators are computed as 

 
1

,∑
=

=
Q

q
cqsqc IwCI  

(7.4)    

 
while when GME is selected they are:   
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(7.5)    

 
When MCA is selected the countries are ranked directly from the outscoring matrix as described 
in section 6.  
 

5X  is the trigger to select the weighting scheme; 
  

5X  Scheme 

1 BAL 
2 AHP 
3 BOD 

 
 
The last uncertain factor 6X  is used to select the expert. In our experiment we had 20 expert, and 
once an expert is selected at runtime via the trigger 6X , the weights assigned by that expert 
(either for the BAL or AHP schemes) are assigned to the data. Clearly the selection of the expert 
has no bearing when BOD is selected ( 35 =X ). All the same this uncertain factor will be 
generated at each individual Monte Carlo simulation. This is because the row dimension of the 
Monte Carlo sample (called constructive dimension) should be fixed in a Monte Carlo 
experiment, i.e. even if some of the sampled factors will not be active at a particular run, they will 
be all the same generated by the random sample generation algorithm.   
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The constructive dimension of this Monte Carlo experiment, e.g. the number of random numbers 
to be generated for each trial, is hence 6=k . 
 
Note that alternative arrangements of the analysis would have been possible. We shall return on 
this point in our discussion of the results. 
  
Step 2. Having generated the input factors distributions in step 1, we can now generate randomly 
N combinations of independent input factors lX , Nl ,...2,1=  (a set l

k
lll XXX ,...,, 21=X  of 

input factors is called a sample). For each trial sample lX  the computational model can be 
evaluated, generating values for the scalar output variable lY , where lY  is either )( cCIRank , 

the value of the rank assigned by the composite indicator to each country, or SR , the averaged 
shift in countries’ rank.  
  
Step 3. We can now close the loop over l, and analyse the resulting output vector Yl , with l = 1, 
..., N. 
 
The generation of samples can be performed using various procedures, such as simple random 
sampling, stratified sampling, quasi-random sampling or others (Saltelli et. al, 2000a). The 
sequence of Yl allows the empirical pdf of the output Y to be built. The characteristics of this pdf, 
such as the variance and higher order moments, can be estimated with an arbitrary level of 
precision that is related to the size of the simulation N . 

 
 

7.1.7 Sensitivity analysis using variance-based techniques 
 
A necessary step when designing a sensitivity analysis is to identify the output variables of 
interest. Ideally these should be relevant to the issue tackled by the model, as opposed to just 
relevant to the model per se (Saltelli et al., 2000b, 2004).  
 
In the following, we shall apply sensitivity analysis to output variables )( cCIRank , and SR , for 
their bearing on the quality assessment of our composite indicator. 
 
It has been noted earlier in this work that composite indicators can be considered as models. 
When –as in the present analysis- several layers of uncertainty are simultaneously activated, 
composite indicators turn out to be non linear, possibly non additive models. As argued by 
practitioners (Saltelli et al., 2000a, EPA, 2004), robust, “model-free” techniques for sensitivity 
analysis should be used for non linear models. Variance-based techniques for sensitivity analysis 
are model free and display additional properties convenient for the present analysis: 

  
• they allow an exploration of the whole range of variation of the input factors, instead of just 

sampling factors over a limited number of values, as done e.g. in fractional factorial design 
(Box et al. 1978); 

• they are quantitative, and can distinguish main effects (first order) from interaction effects 
(higher order).  

• they are easy to interpret and to explain 
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• they allow for a sensitivity analysis whereby uncertain input factors are treated in groups 
instead of individually 

• they can be justified in terms of rigorous settings for sensitivity analysis, as we shall discuss 
later in this section. 

 
How do we compute a variance based sensitivity measure for a given input factor iX ? We start 
from the fractional contribution to the model output variance (i.e. the variance of Y  where Y  is 
either )( cCIRank , and SR   ) due to the uncertainty in iX . This is expressed as:  

 
))(( iXi XYEVV

ii −
= X  (7.6) 

 
One way of reading Equation (7.6) is the following. Imagine to fix factor iX , e.g. to a specific 

value *
ix  in its range, and to compute the mean of the output Y  averaging over all factor but 

factor iX : )( *
ii xXYE

i
=

−X  . Imagine then to take the variance of the resulting function of *
ix  

over all possible *
ix  values. The result is given by Equation (7.6), where the dependence from 

*
ix has been dropped since we have averaged over it. iV  is a number between 0 (when iX  does 

not gives a contribution to Y  at the first order), and ( )YV , the unconditional variance of Y , 
when all factors other than iX  are non influent at any order. The meaning of “order” will be 
explained in a moment. Note that it is always true that:   

 
)())(())(( YVXYVEXYEV iXiX iiii

=+
−− XX  (7.7) 

 
where the first term in (7.7) is called a main effect, and the second one the residual. An important 
factor should have a small residual, e.g. a small value of ))(( iX XYVE

ii −X . This is intuitive as the 

residual measures the expected reduced  variance that one would achieve if one could fix iX . Let 

us write this as )( *
ii xXYV

i
=

−X  , a variance conditional on *
ix . Then the residual 

))(( iX XYVE
ii −X  is the expected value of such conditional variance, averaged over all possible 

values of *
ix  and this should be small if is iX  influential. A first order sensitivity index is 

obtained by normalised the first order term by the unconditional variance:  
 

)()(
))((

YV
V

YV
XYEV

S iiX
i

ii == −X  
(7.8) 

 
One can compute conditional variances corresponding to more than one factors, e.g. for two 
factors iX  and jX  one can compute )),(( jiXX XXYEV

ijji −X , and from this a second order term 

variance contribution can be written as:   
  

))(())(()),(( jXiXjiXXij XYEVXYEVXXYEVV
jjiiijji −−−

−−= XXX  (7.9) 
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where clearly ijV  is only different from zero if )),(( jiXX XXYEV
ijji −X  is larger than the sum of 

the first order term relative to factors iX  and jX . 
 
When all k factors are independent from one another, the sensitivity indices can be computed 
using the following decomposition formula for the total output variance V(Y)  
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i ij
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ijl
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ij
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>>

 (7.10) 

 
Terms above the first order in equation (7.10) are known as interactions. A model without 

interactions among its input factors is said to be additive. In this case, ( )∑
=

=
k

i
i YVV

1
, ∑

=

=
k

i
iS

1
1 

and the first order conditional variances of equation (7.6) are all what we need to know to 
decompose the model output variance. For a non-additive model, higher order sensitivity indices, 
responsible for interaction effects among sets of input factors, have to be computed. However, 
higher order sensitivity indices are usually not estimated, as in a model with k factors the total 
number of indices (including the Si ’s) that should be estimated is as high as 2k-1. For this reason, 
a more compact sensitivity measure is used. This is the total effect sensitivity index, which 
concentrates in one single term all the interactions involving a given factor Xi. To exemplify, for a 
model of k=3 independent factors, the three total sensitivity indices would be: 
 

12313121
32

1 )(
)),(()(
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S XXX
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=  
 
(7.11) 

And analogously: 
 
ST2=S2+S12+S23+S123 
ST3=S3+S13+S23+S123 

(7.12) 

 
The conditional variance )),(( 32132

XXYEV XXX in equation (7.11) can be written in general 

terms as ))(( iX YEV
ii −−

XX  (Homma and Saltelli, 1996). It expresses the total contribution to the 

variance of Y due to non- iX  i.e. to the k-1 remaining factors, so that ))(()( iX YEVYV
ii −−

− XX  
includes all terms, i.e. a first order as well as interactions in equation (7.10), that involve factor 

iX . In general 1
1

≥∑
=

k

i
TiS .  

Given the algebraic relation (7.7), the total effect sensitivity index can also be written as:  
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(7.13) 

 
For a given factor Xi a significant difference between STi and Si flags an important role of 
interactions for that factor in Y. Highlighting interactions among input factors helps us improve 
our understanding of the model structure. Estimators for both (Si, STi) are provided by a variety of 
methods reviewed in Chan et al. (2000). Here the method of Sobol’ (1993), in its improved 
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version due to Saltelli (2002) is used. The method of Sobol’ uses quasi-random sampling of the 
input factors. The pair (Si, STi) give a fairly good description of the model sensitivities at a 
reasonable cost, which for the improved Sobol’ method is of 2n(k+1) model evaluations, where n 
represents the sample size required to approximate the multidimensional integration implicit in 
the E  and V  operators above to a plain sum. n can vary in the hundred-to-thousand range.  
 
When the uncertain input factors Xi are dependent, the output variance cannot be decomposed as 
in equation (10). The iS , TiS  indices, as defined by (7.6) and (7.13) are still valid sensitivity 
measures for iX , though their interpretation changes as, e.g. iS  carries over also the effects of 
other factors that can be positively or negatively correlated to iX  (see Saltelli and Tarantola, 
2002), while TiS  can no longer be decomposed meaningfully into main effect and interaction 
effects. The usefulness of iS , TiS , also for the case of non-independent input factors, is also 
linked to their interpretation in terms of “settings” for sensitivity analysis.  

 
We offer here without proof a description of two settings linked to iS , TiS . A justification is in 
Saltelli et al., 2004. 
 
Factors’ Prioritisation (FP) Setting. One must bet on a factor that, once “discovered” in its true 
value and fixed, would reduce the most V(Y). Of course one does not know where the true values 
are for the factors. The best choice one can  make is the factor with the highest iS , whether the 
model is additive or not and whether the factors are independent or not.  
 
Factors’ Fixing (FF) Setting: Can one fix a factor [or a subset of input factors] at any given value 
over their range of uncertainty without reducing significantly the variance of the output?  One can 
only fix those (sets of) factors whose TiS  is zero.  
 
The extended variance-based methods, including the improved version of Sobol’, for both 
dependent and independent input factors, are implemented in the freely distributed software 
SIMLAB (Saltelli et al., 2004).  

 

7.2  Results 

7.2.1 First analysis  
 
The first analysis was run without imputation, i.e. by censoring all countries with missing data. 
As a result, only 34 countries could in theory be analysed. We further dropped countries from 
rank (original TAI) 24, Hong Kong, as this is the first country with missing data, and it was 
preferred to analyse the set of countries whose rank was not altered the omission of missing 
records. The uncertainty analysis for the remaining 23 countries is given in Figure 7.1 for the 
ranks, with countries ordered by their original TAI position, going from Finland, rank=1, to 
Slovenia, Rank=23. The reader will recall that the choice of ranks, instead of composite indicator 
values, is dictated by the use of the MCA aggregation system. The width of the 5th – 95th 
percentile bounds, as well as the fact that the ordering the medians (black hyphen) often is at odd 
with the ordering of the original TAI (grey hyphen) show that the drastic throwing of all 
uncertainty sources at the problem, including 3 different aggregation system alternative to each 
other, results in considerable differences between the new and the original TAI, although one still 
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sees the difference between the group of leaders and that of laggards. If the uncertainty plugged 
into the system were a true reflection of the status of knowledge and of the (lack of) consensus 
among experts on how TAI should be built, we would have to conclude that TAI is not a robust 
measure of country technology achievement.  
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Figure 7.1. Uncertainty analysis results showing the countries’ rank according to the original 
TAI 2001 (light grey marks), and the median (black mark) and the corresponding 5th and 95th 
percentiles (bounds) of the distribution of the MC-TAI for 23 countries. Uncertain input factors: 
normalisation method, inclusion-exclusion of a sub-indicator, aggregation system, weighting 
scheme, expert selection. Countries are ordered according to the original TAI values. 

 
Keeping up with this example, we show in Figure 7.2 a sensitivity analysis based on the first 
order indices calculated using the method of Sobol’ (1993) in its improved version due to Saltelli 
(2002). In fact we present the total variance for each country’s rank and how much of it can be 
decomposed according to the first order conditional variances. We can roughly say that 
aggregation system, followed by the inclusion-exclusion of sub-indicator and expert selection are 
the most influential input factors. The countries with the highest total variance in ranks are the 
middle-performing countries in Figure 7.1, while the leaders and laggards in technology 
achievement present low total variance. The non-additive, non-linear part of the variances that is 
not explained by the first order sensitivity indices ranges from 35% for the Netherlands to 73% 
for United Kingdom, whilst for most countries it exceeds 50%. This underlines the necessity for 
computing higher order sensitivity indices that capture the interaction effects among the input 
factors.  
 
Figure 7.3 shows the total effect sensitivity indices for the variances of each country’s ranks. The 
total effect sensitivity indices concentrate in one single term all the interactions involving each 
input factor and they clearly add up to a number greater than one due to the existing interactions. 
Again interactions seem to exist among the influential factors already identified.  
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Figure 7.2. Sensitivity analysis results based on the first order indices. Decomposition of 
country’s variance according to the first order conditional variances. Aggregation system, 
followed by the inclusion-exclusion of sub-indicator and expert selection are the most influential 
input factors. The part of the variance that is not explained by the first order indices is noted as 
non-additive. Countries are ordered in ascending order of total variance. 
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Figure 7.3. Sensitivity analysis results based on the total effect indices. Aggregation system 
inclusion-exclusion of sub-indicator and expert selection present most of the interaction effects. 
Countries are ordered in ascending order of total variance. 
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If the TAI model was additive with no interactions between the input factors, the non-additive 
part of the variance in Figure 7.2 would have been zero (in other words the first order sensitivity 
indices would have summed to 1) and the sum of the total effect sensitivity indices in Figure 7.3 
would have been 1. Yet, the sensitivity indices show the high degree of non linearity and 
additivity for the TAI model, and of the importance of the interactions. For instance, the high 
effect of interactions for Netherlands, which also had a large percentile bounds, can be further 
explored. In Figure 7.4 we see that this country is favoured by combination of “geometric mean 
system” with “BAL weighing” and unfavoured by combination of “Multi criteria system” with 
“AHP weighting”. This is a clear interaction effect. In depth analysis of the output data reveals 
that as far as inclusion – exclusion is concerned, it is the exclusion of the sub-indicator 
“Royalties” leading to worse ranking for the Netherlands under any aggregation system.  
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Figure 7.4. Rank position of the Netherlands for different combinations of aggregation system 
and weighting scheme. Average rank per case is indicated in the box. The interaction effect 
between aggregation system and weighting scheme is clear. 
 
Coming to the output variable average shift in rank (Equation 7.2) with respect to the original 
TAI rank we see in Figure 7.5 the histogram of the values. The mean value is almost 3 positions, 
with a standard deviation slightly above 1 position. The input factors affecting this variable the 
most are aggregation system plus inclusion – exclusion at the first order (Table 7.1), while if the 
interactions are considered both weighting scheme and expert choice become important (Table 
7.1). This effect can be seen in Figure 7.6 where the effect of MCA in spreading the countries 
ranks can be appreciated. In some cases the average shift in country’s rank when using MCA can 
be as high as 9 places. 
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Table 7.1.  Sobol’ sensitivity measures of first order and total effect for the output: Average shift 
in countries’ rank with respect to the original TAI. Significant values are underlined. 

Input Factors  First order (Si)  Total effect (STi) STi - Si 
Normalisation 0.000 0.008 0.008 
Exclusion/Inclusion of sub-indicator 0.148 0.435 0.286 
Aggregation system 0.245 0.425 0.180 
Weighting Scheme 0.038 0.327 0.288 
Expert selection 0.068 0.402 0.334 
Sum 0.499 1.597  
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Figure 7.5. Result of UA for the output variable: average shift in countries’ rank with respect to 
the original TAI.  Uncertain input factors: normalisation method, inclusion-exclusion of a sub-
indicator, aggregation system, weighting scheme, expert selection. 
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Figure 7.6. Average shift in countries’ rank with respect to the original TAI for different 
combinations of aggregation system and weighting scheme. Average value per case is indicated 
in the box. 
 

7.2.2 Second analysis  
 
As explained above, in the second analysis we make the realistic assumptions that TAI 
stakeholders have eventually converged to an aggregations system, which we take to be the linear 
one. In fact, one might argue that the choice of the aggregation system is somehow dictated by 
the use of the index and by the expectation of its stakeholders. MCA would be adopted if 
stakeholders were to believe that the system should be non compensatory, e.g. that one unit down 
on one sub-indicator should not be compensated by a unit up in another. Eventually, this would 
lead to an on average medium–good performance being worth more for a country than a 
performance which is very good on some sub-indicators and bad in others. A GME approach 
would flag the intention to follow progresses of the index over time in a scale-independent 
fashion (see discussion in section  6).  
 
Based on these considerations, we have based this second analysis on the LIN system, as in the 
original TAI. The uncertainty analysis plot (Figure 7.7) shows now a much more robust 
behaviour of the index, with fewer inversion of ranking when median-TAI and original TAI are 
compared. As far as the sensitivity is concerned, the consideration of uncertainty arising from 
imputation does not seem to make a significant contribution to the output uncertainties, which are 
also in this case dominated by weighing, inclusion-exclusion, expert selection. Even when, as in 
the case of Malaysia, imputation by bivariate approach ends into an unrealistic number of patens 
being imputed for this country (234 patents granted to residents per million people), its rank’s 
uncertainty is insensitive to imputation. The sensitivity analysis results for the average shift in 
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ranking output variable (Equation 7.2) is shown in Table 7.2. Interactions are now between expert 
selection and weighing, and considerably less with interaction with inclusion-exclusion.    
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Figure 7.7. Uncertainty analysis results showing the countries’ rank according to the original 
TAI 2001 (light grey marks), and the median (black mark) and the corresponding 5th and 95th 
percentiles (bounds) of the distribution of the MC-TAI for 72 countries. Uncertain input factors: 
imputation, normalisation method, inclusion-exclusion of a sub-indicator, weighting scheme, 
expert selection. A linear aggregation system is used. Countries are ordered according to the 
original TAI values. 

 
Table 7.2. Sobol’ sensitivity measures of first order and total effect for the output: Average shift 
in countries’ rank with respect to the original TAI. Significant values are underlined. 

Input Factors  First order (Si)  Total effect (STi) STi - Si 
Imputation 0.001 0.005 0.004 
Normalisation 0.000 0.021 0.021 
Exclusion/Inclusion of sub-indicator 0.135 0.214 0.078 
Weighting Scheme 0.212 0.623 0.410 
Expert selection 0.202 0.592 0.390 
Sum 0.550 1.453  
 
 

7.3 Conclusions  
We now go back to our questions on the effect of uncertainties:  
 
(a) Does the use of one strategy versus another in indicator building (the steps i to vii described 
at the beginning of this section) provide a biased picture of the countries’ performance? How this 
compare to the original TAI index? 
 
The answer to this question is that much depends on the severity of the uncertainties. As shown 
by our two analyses, if the builders of the index disagree on the aggregation system, there is not 
much hope that a robust index will emerge, not even by the best provision of uncertainty and 
sensitivity analysis. If uncertainties exist in the context of a well established theoretical approach, 
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e.g. the index builder favour a participatory approach within a linear aggregation scheme, then the 
analysis shows that the countries ranking is fairly robust in spite of the uncertainties.    
 
(b) To what extent do the uncertain input factors (used to generate the alternatives i to vii above) 
affect the countries’ ranks with respect to the original, deterministic TAI?  
 
Both imputation and normalisation do not affect significantly countries ranking when 
uncertainties of higher order are present. In this present exercises the uncertainties of higher order 
were expert selection and weighing scheme (second analysis). A fortiori normalisation does not 
affect output when the very aggregation system is uncertain (first analysis). In other words, and 
generalising these results, when the weights are uncertain, it is unlikely that normalisation and 
editing will affect sensibly the country ranks. 
 
As discussed above the aggregation system is of paramount importance and it is recommended 
that indicators builder agree on a common approach. Once the system is fixed, then it is the 
choice of the aggregation methods and of the experts that – together with indicator inclusion – 
exclusion, dominates the uncertainty in the country ranks. It is important to mention that even in 
the second analysis, when the aggregation system is fixed, the composite indicator model is 
strongly non additive, which reinforces the case for the use of quantitative, Monte Carlo based 
approaches to robustness analysis.    
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8.  Visualisation 

The way composite indicators should be presented is not a trivial issue. Composite indicators 
must be able to communicate the picture to decision-makers and users quickly and accurately. 
Visual models of these composites must provide signals, in particular, warning signals that flag 
for decision-makers those areas requiring policy intervention. 

Hereafter we give some interesting ways to display and visualize composite indicators. We 
accompany each type of visualization by a brief commentary of the pros and cons. We start from 
the simplest tools and we explore their modifications. We also give reference to the sources that 
employ these tools. 
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8.1 Tabular format 

This is the simplest format whereby, for each country, the composite indicator and its underlying 
indicators are presented as a table of values. Usually countries are displayed in decreasing 
ranking order. An example is the Human Development Index 2004 of the UNDP (see Figure 8.1). 
This is a comprehensive approach to display results, yet not particularly visually appealing. The 
approach could be adapted to show targeted information for sets of countries grouped, for 
example, by location, GDP, etc. 

 

 

Figure 8.1. Human Development Index as from the Human Development Report 2004 of the 
UNDP. The top 25 countries, with high human development, are reported here. 
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8.2 Bar charts 

The composite indicator is expressed via a bar chart (see Figure 8.2). The countries are on the 
vertical axis, the values of the composite on the horizontal axis. The top bar indicates the average 
performance of all countries in the world, and enables the reader to identify how a country is 
performing with regards to the average.  

This figure is used in the publication “Sustainable development indicators in your pocket 2004” 
of the UK government, a selection of UK indicators of sustainable development (see 
http://www.sustainable-development.gov.uk/indicators/sdiyp/index.htm ). 
 
  

 

Figure 8.2. Global consumption of grain per head in two consecutive years. 

The tool is clear, easy to understand. Country comparisons can be made with the average 
performance. Each underlying sub-indicator can be displayed with a bar chart. The use of colors 
can make the graph more visually appealing and highlight countries performing well or bad, or 
showing either growth or slow down, or, finally, to highlight countries  having reached an 
average or mandatory standard. The top bar could alternatively be thought as a target to be 
reached by countries instead of the current world average. The bar charts show values at two 
given points in time. 
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8.3 Line charts 

Line charts are used to show performance across time. Performance can be displayed using a) 
absolute levels; b) absolute growths (in percentage points with respect to the previous year or a 
number of past years); c) indexed levels and d) indexed growths. 

The word ‘indexed’ means that the values of the indicator are linearly transformed so that their 
indexed value at a given year is 100. For instance, the indicator called ‘Price level index’ shows 
values such that EU15=100 at each year; more expensive countries have values larger than 100, 
countries cheaper than EU15 have values smaller than 100 (see Figure 8.3). 
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Figure 8.3. Comparative price levels of final consumption by private households including 
indirect taxes (EU-15=100). Source: Eurostat. Data retrieved on 4 October, 2004. 

A number of lines are usually superimposed in the same chart to allow comparisons between 
countries. Another example is given by the Internal Market Index 2004, published on the Internal 
Market Scoreboard N. 13 (EU-DG MARKT, 2004). Here, groups of countries with similar 
performance (better, similar or worse than the EU) have been displayed in the same chart. All the 
countries have been indexed to 100 in the starting year (1994). See an example in Figure 8.4. 
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Figure 8.4. The Internal Market Index for Belgium, Germany, Spain, Luxembourg and Austria 
improved significantly more than the EU15 average since 1994. 

One can also consider a target for the underlying indicators and add it to the plot. The 
corresponding target for the composite indicator can be computed and displayed in the plot. See 
an example in Figure 8.5 taken from Adriaanse, 1993. See also:  

http://www.icsu-scope.org/downloadpubs/scope58/box4b.html 
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Figure 8.5. Indicator for the target group industry 
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8.4 Traffic lights to monitor progress 
 
For each indicator, where possible, an assessment of progress can be made by comparing the 
latest data with the position at a number of baselines. Table 8.1 illustrates the approach used by 
the UK government in sustainable development for three baselines: since 1970, since 1990, and 
since late 1990s. The ‘Traffic light’ assessments are used as in Table 8.2. 

Table 8.1. Assessment of each sustainability indicator for three different baselines, as 
used by UK government. 

Assessment for indicator against objective 
  Change 

since 
1970 

Change 
since 
1990 

Change 
since Strategy1 

H1 Economic output 
   

H2 Investment 
   

H3 Employment 
   

All arisings and
management    

H15 Waste 

Household waste 
   

 
 
Table 8.2. Traffic-light assessments used by UK government in sustainable development 
 

Key 

 
Significant change, in direction of meeting objective 

 
No significant change 

 
Significant change, in direction away from meeting objective  

 
Insufficient or no comparable data 
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8.5 Rankings 

A quick and easy way to display country performance is to use rankings. It consists in a simple 
tabular representation such as that supplied by the Growth Competitiveness Index, in the Global 
Competitiveness Report 2003-2004 published by the World Economic Forum (see Figure 8.6). 
The table shows the rankings of countries for two consecutive years. Thus, it can be used to track 
changes of country performance over time. The limitation of ranks is that one loses the 
information on the difference between countries performances. 

 

Figure 8.6.  Growth competitiveness index rankings from the Global competitiveness Report 
2003-2004. 

8.6 Scores and rankings 

In several cases one provides both levels and country rankings, for both the sub-indicators and the 
composite one. The British Office of National Statistics has produced indices of economic 
deprivation in six domains (income, employment, health deprivation and disability; education; 
skills and training; housing; and access to services) for the all the districts in 2000. The composite 
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is the average of scores out of a 100 for each sub-indicator (see Table 8.3). The rank is the 
average of ranks for each sub-indicator; ranks go from 1 to approximately 8,000 (the total number 
of districts). 

Table 8.3. Index of multiple deprivation by district in England, Office of National Statistics 

Variable Index of multiple deprivation 
Units Score 
Area  Income domain Employment domain 
Ascot  
Binfield  

5.20 
5.13 

Rank Score Rank Score Rank 

Bullbrook  18.72 7,991 7.38 7,640 2.26 8,330 
Central 
Sandhurst  6.55 8,014 5.36 8,205 1.80 8,388 

College 
Town  4.18 3,811 19.23 3,198 8.46 4,087 

Cranbourne  12.70 7,614 11.62 5,746 3.36 7,923 
Crowthorne  10.32 8,188 4.64 8,300 2.53 8,284 
Garth  15.14 5,460 12.29 5,443 4.56 7,100 
Great 
Hollands 
North  

12.55 6,256 5.04 8,257 8.32 4,177 

Great 
Hollands 
South  

12.28 4,690 15.68 4,200 7.54 4,669 

Hanworth  10.75 5,517 17.81 3,574 5.69 6,156 

Scores and moving average 

Sometimes we want to monitor not only the performance at a given point in time but also the 
trend over the last period. Very often this is done via the calculation of percentage growth, yet 
moving average can be a useful tool. 

An example is given by First Great Western Link railways, which use this tool to inform the 
public about the punctuality of the Thames trains service. One can read the most recent figure on 
punctuality and the corresponding moving average over the last 52 weeks. If the moving annual 
average over the last 12 months for punctuality is less than an appropriate threshold, a discount of 
up to 5% will be given on qualifying season ticket renewals! 

Four-quadrant model for sustainability 

Arup (a professional consultancy group) developed a tool to demonstrate the sustainability of a 
project, process or product to be used either as a management information tool or as part of a 
design process. The Sustainable Project Appraisal Routine (SPeAR®) is based on a four-quadrant 
model that structures the issues of sustainability into a robust framework, from which an appraisal 
of performance can be undertaken (see Figure 8.7). The outcome of the SPeAR® assessment 
reflects the utilisation of an unweighted indicator set. SPeAR® contains a set of core sectors and 
indicators that have been derived from the literature on sustainability. The appraisal is based on 
the performance of each indicator against a scale of best and worst cases. Each indicator scenario 
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is aggregated into the relevant sector and the average performance of each sector is then 
transferred onto the SPeAR® diagram. The transparent methodology behind the SPeAR® 
diagram ensures that all scoring decisions are fully audit traceable. The only limitation is that the 
diagram gives snapshot of performance at a particular time.  

 

 

Figure 8.7. The four-quadrant model of the Sustainable Project Appraisal Routine (SPeAR®). 

 

8.7 Dashboards  

The Dashboard of Sustainability (see http://esl.jrc.it/envind/ ) is a free, non-commercial software 
which allows to present complex relationships between economic, social and environmental 
issues in a highly communicative format aimed at decision-makers and citizens interested in 
Sustainable Development. It is also particularly recommended to students, university lecturers, 
researchers and indicator experts.  

The Dashboard includes maps of all continents and can be developed using one’s own dataset. A 
vast collection of dashboards already exist. To make some examples, on the internet site one can 
find the “ecological footprint”, a pure environmental composite, the “environment sustainability 
index”, presented by the World Economic Forum annual meetings, the “European Environmental 
Agency’s EEA Environmental Signals”. The "From Rio to Johannesburg" and the "Millennium 
Development Goals" versions are recommended for introductory courses on Sustainable 
Development.  
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The Dashboard can help answering some typical questions as:  

1. What is the situation of my country compared to others (see Figure 8.8)? 
2. What are specific strengths and weaknesses of my continent/my country (Figure 8.9)? 
3. How are certain indicators linked to each other (Figure 8.10)? 

 

Figure 8.8. What is the situation of my country compared to others? Source: Dashboard of 
Sustainability 
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Figure 8.9 What are specific strengths and weaknesses of my continent/my country? Source: 
Dashboard of Sustainability 

 

 

Figure 8.10. How are certain indicators linked to each other? Source: Dashboard of 
Sustainability 
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8.8 Nation Master 

The following internet site is not strictly for composite indicators. However its graphical features 
can be helpful for presentational purposes. 

www.nationmaster.com is a massive central data source on the internet with a handy way to 
graphically compare nations. Nation Master is a vast compilation of data from such sources as the 
CIA World Factbook, United Nations, World Health Organization, World Bank, World 
Resources Institute, UNESCO, UNICEF and OECD.  

It is possible to generate maps and graphs on all kinds of statistics with ease.  

On October 2004, it includes 4,350 stats, and new features and new statistics are constantly 
added. This internet site is considered the web's one-stop resource for country statistics on 
anything and everything. 

Correlation reports and scatterplots can be used to find relationships between variables. Integrated 
into these is a full encyclopedia with over 200,000 articles. See Figure 8.11 for a snapshot. 

 

 

 

 

 

 

 

 

 

 

Figure 8.11. A snapshot from the Nation Master 

Levels vs. growths 

When a composite indicator is available for a set of countries for at least two different time 
points, one is commonly interested not only in the levels at a given time point, yet also in the 
growths between the available years. 

An example is given in the 2003 edition of the European Innovation Scoreboard developed by the 
European Commission at the request of the Lisbon Council in 2000. The scoreboard includes the 
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Summary Innovation Index to track relative performance of Member Countries in Innovation. 
Here overall country trends are reported on the X-axis and levels are given on the Y-axis (see 
Figure 8.12). A horizontal axis gives the EU average value and a vertical axis gives the EU trend. 
The two axes divide the area into four quadrants. Countries in the upper quadrant are “moving 
ahead”, because both their value and their trend are above the EU average. Countries in the 
bottom left quadrant are “falling further behind” because they are below the EU average for both 
variables. The underlying indicators of innovation are also reported in a separate graph for each 
country separately. See for example the case of Italy in Figure 8.13, where levels relative to the 
EU15 countries are reported (with red, yellow and green horizontal bars) as well as the trend 
relative to EU 15. 

 

Figure 8.12. Overall country trend by Summary Innovation Index 
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Figure 8.1 Innovation indicators: performance of Italy relative to EU15 in 2003. 

Another example of this presentational tool is given by the composite indicators of investment 
and performance in the knowledge-based economy, also developed by the European Commission 
in the framework of the Lisbon agenda. In the publication Key Figures 2003/2004 of the 
Directorate General RTD one can find pictures like that given in Figure 8.14, where levels are 
given along the X-axis, and short term trends on the Y-axis. 
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Figure 8.14.  Composite indicator of investment in the knowledge-based economy for comparison 
between the EU-15 and the former Acceding Countries. 

 

8.9 Comparing indicators using clusters of countries 

In the United Nations Industrial Development Organization (UNIDO) publication Industrial 
Development Report 2002/2003: Competing through Innovation and Learning, (see 
http://www.unido.org/userfiles/hartmany/12IDR_full_report.pdf), at page 50, the technological 
evolution of industry in industrialized and transition economies in years 1985 and 1998 is based 
on clusters of countries with similar performance (see Figure 8.15). This format can be used to 
plot levels vs. growths for a given composite indicator. 
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Figure 8.15. Technological evolution in industry both in industrialized and transition economies 
in years 1985 (blue cluster) and 1998 (black cluster). Source: UNIDO.  

Graphical representation of composite indicators should provide a clear and identifiable message, 
but without obscuring the individual data points on which they depend. Booz Allen Hamilton 
consulting developed a technique of graphical ‘profile’ indicators to achieve this. The 2003 
International Benchmarking Study (IBS) includes a newly devised ‘Sophistication Index’ 
designed to provide a deeper insight into the true level of sophistication of a nation’s businesses’ 
use of ICT than simple measures of connectivity or adoption. 
 
The chart given in Figure 8.16 lays out all elements of the sophistication index, arranged 
vertically down the left hand axis. The horizontal scale represents the index score achieved by the 
UK for each component indicator, normalized between 0 and 1. To score a perfect 1.0, a nation 
must emphatically lead across all the indicators. For this reason the best performer in the group is 
generally less than 1. The segmented line represents the composite outcome for the UK across the 
set of indicators. The scores of the other nations are reported without labels. Only the best 
performer in each single indicator is given. The approach permits the focus to remain on sharing 
successful policies. 
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Figure 8.16. Sophistication Index’ proposed by Booz Allen Hamilton to measure a nation’s 
businesses’ use of ICT.  

9. Conclusions 
Our society is changing so fast that we need to know as soon as possible when things go wrong. 
Without rapid alert signals, appropriate corrective action is impossible. This is where composite 
indicators could be used as yardstick. This document provides the readers with a structured way 
of thinking for the design and construction of composite indicators.  
 
Here is an outline of the issues we touched upon in this report: 
 

• Theoretical framework - What is badly defined is likely to be badly measured.  

The first step in the construction of a composite indicator is the definition and specification of 
what should be measured, which implies the recognition of the multidimensional nature of the 
phenomenon to be measured and the effort of specifying the single aspects and their interrelation.  
 

• Data selection – The quality of composite indicators depends also on the quality of the 
underlying indicators.  

Variables that express different aspects of what is being measured should be selected on the basis 
of their analytical soundness, measurability, relevance to the phenomenon being measured, and 
relationship to each other.   

• Multivariate analysis – Multivariate statistics is a powerful tool for investigating the 
inherent structure in the indicators’ set.  
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This type of analysis is of exploratory nature and is helpful in assessing the suitability of the 
dataset and providing an understanding of the implications of the methodological choices (e.g. 
weighting, aggregation) during the construction phase of the composite indicator.  
 

• Imputation of missing data– The idea of imputation is both seductive and dangerous.  

Several imputation methods are available, from the simple regression- to more complicate 
multiple-imputation. The advantages of imputation include the minimisation of bias and the use 
of ‘expensive to collect’ data that would otherwise be discarded. The main disadvantage of 
imputation is that the results are affected by the imputation algorithm used. 
 

• Normalisation – Avoid adding up apples and pears.  

Normalization serves the purpose of bringing the indicators into the same unit. There are a 
number of normalization methods available, such as ranking, standardization, re-scaling, distance 
to reference country, categorical scales, cyclical indicators, balance of opinions. The selection of 
a suitable normalization method to apply to the problem at hand is not trivial and deserves special 
care.  
 

• Weighting and aggregation – Relative importance of the indicators and compensability 
issues.  

Central to the construction of a composite index is the need to combine in a meaningful way the 
different dimensions, which implies a decision on the weighting model and the aggregation 
procedure. Different weighting and aggregation rules are possible. Each technique implies 
different assumptions and has specific consequences.  
 

• Robustness and sensitivity – The iterative use of uncertainty and sensitivity analysis 
during the development of a composite indicator can contribute to its well-structuring.  

The construction of composite indicators involves stages where judgement has to be made 
affecting the message brought by the composite indicator in a way that deserves analysis and 
corroboration. A plurality of methods (all with their implications) should be initially considered, 
because no model (construction path of the composite indicator) is a priori better than another and 
because each model serves different interests. Uncertainty and sensitivity analysis are the 
suggested tools for coping with uncertainty and ambiguity in a more transparent and defensible 
fashion.  

• Visualisation – If arguments are not put into figures, the voice of science will never be 
heard by practical men. 

Composite indicators must be able to communicate the picture to decision-makers and users 
quickly and accurately. Visual models of these composite indicators must be able to provide 
signals, in particular, warning signals that flag for decision-makers those areas requiring policy 
intervention. The literature presents various ways for presenting the composite indicator results, 
ranging from simple forms, such as tables, bar or line charts, to more sophisticated figures, such 
as the four-quadrant model (for sustainability), the Dashboard, etc.   

The discussions in this document show how Composite Indicators ‘naturally’ emerge in a context 
where country performance is being benchmarked, we discuss some salient aspect of the 
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composite indicators controversy, pitting “Aggregators” and “Non-Aggregators against one 
another. For example:  
 

‘Composite indicators are confusing entities whereby apples and pears are added up in the 
absence of a formal model or justification.’ 

 
against 

 
‘Composite indicators are a way of distilling reality into a manageable form.’ 

 
Whether or not one likes or accepts composite indicators for the purpose of comparing countries 
performance, one might find itself exposed to a composite indicator even when unwilling.  And 
yet the composite indicators controversy is there to stay. But the bottle-neck conclusion is that 
composite indicators should never be seen as a goal per se, regardless of their quality or 
underlying variables. They should be seen, instead, as a starting point for initiating discussion and 
attracting public interest and concern. 
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APPENDIX 
TAI is made of a relatively small number of sub-indicators, which renders it suitable for the 
didactic purposes, is well documented by its developers, raw data are freely available on the 
WEB, and issues of technological development are of importance to society and often discussed 
on newspapers/press. For explanatory purposes we consider only the first 23 of the 72 original 
countries. 
 
TAI focuses on four dimensions of technological capacity (Table A.1 in the Appendix): 
 
(a) Creation of technology. Two sub-indicators are used to capture the level of innovation in a 

society: the number of patents granted per capita (to reflect the current level of invention 
activities), and the receipts of royalty and license fees from abroad per capita (to reflect the 
stock of successful innovations of the past that are still useful and hence have market value).  

(b) Diffusion of recent innovations. This diffusion is measured by two sub-indicators: diffusion 
of the Internet (indispensable to participation), and by exports of high-and medium-
technology products as a share of all exports. 

(c) Diffusion of old innovations. Two sub-indicators are included here, telephones and 
electricity, which are especially important because they are needed to use newer technologies 
and are also pervasive inputs to a multitude of human activities. Both indicators are expressed 
as logarithms, as they are important at the earlier stages of technological advance but not at 
the most advanced stages. Expressing the measure in logarithms ensures that as the level 
increases, it contributes less to the technology achievement. 

(d) Human skills. A critical mass of skills is indispensable to technological dynamism. The 
foundations of such ability are basic education to develop cognitive skills and skills in 
science and mathematics. Two sub-indicators are used to reflect the human skills needed to 
create and absorb innovations: mean years of schooling and gross enrolment ratio of tertiary 
students enrolled in science, mathematics and engineering.  

 
Table A.2 in the Appendix shows the raw data for the eight sub-indicators for a set of 72 
countries (original). However the original data set contains a large number of missing values, 
mainly due to missing data in Patents and Royalties. Therefore in the section 4 on imputation, the 
entire dataset will be used for the estimation of the missing values. For explanatory purposes a set 
of the 23 countries (from Finland to Slovenia) will be used throughout this document for the 
presentation of the different methodologies for the analysis and construction of a composite 
indicator.  
 
Table A.1. List of sub-indicators of the Technology Achievement Index 
Indicator Unit Definition 
Creation of technology 
PATENTS Patents granted 

per 1,000,000 
people 

Number of patents granted to residents, so as to reflect 
the current level of invention activities (1998) 

ROYALTIES US $ per 1,000 
people 

Receipts of royalty and license fees from abroad per 
capita, so as to reflect the stock of successful innovations 
of the past that are still useful and hence have market 
value (1999) 

Diffusion of recent innovations 
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INTERNET Internet hosts per 
1,000 people 

Diffusion of the Internet, which is indispensable to 
participation in the network age (2000) 

EXPORTS %  Exports of high and medium technology products as a 
share of total goods exports (1999) 

Diffusion of old innovations 
TELEPHONES Telephone lines 

per 1,000 people  
(log) 

Number of telephone lines (mainline and cellular), which 
represents old innovation needed to use newer 
technologies and is also pervasive input to a multitude of 
human activities (1999) 

ELECTRICITY kWh per capita 
(log) 

Electricity consumption, which represents old innovation 
needed to use newer technologies and is also pervasive 
input to a multitude of human activities (1998) 

Human skills 
SCHOOLING years Mean years of schooling (age 15 and above), which 

represents the basic education needed to develop 
cognitive skills (2000) 

ENROLMENT % Gross enrolment ratio of tertiary students enrolled in 
science, mathematics and engineering, which reflects the 
human skills needed to create and absorb innovations 
(1995-1997) 
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Table A.2. Raw data for the sub-indicators of the Technology Achievement Index. The first 23 
countries are used as case study in the document. Units are given in Table A.1. 
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1 Finland 187 125.6 200.2 50.7 3.08 4.15 10 27.4
2 United States 289 130 179.1 66.2 3.00 4.07 12 13.9
3 Sweden 271 156.6 125.8 59.7 3.10 4.14 11.4 15.3
4 Japan 994 64.6 49 80.8 3.00 3.86 9.5 10
5 Korea, Rep. of 779 9.8 4.8 66.7 2.97 3.65 10.8 23.2
6 Netherlands 189 151.2 136 50.9 3.02 3.77 9.4 9.5
7 United Kingdom 82 134 57.4 61.9 3.02 3.73 9.4 14.9
8 Canada 31 38.6 108 48.7 2.94 4.18 11.6 14.2
9 Australia 75 18.2 125.9 16.2 2.94 3.94 10.9 25.3

10 Singapore 8 25.5 72.3 74.9 2.95 3.83 7.1 24.2
11 Germany 235 36.8 41.2 64.2 2.94 3.75 10.2 14.4
12 Norway 103 20.2 193.6 19 3.12 4.39 11.9 11.2
13  Ireland 106 110.3 48.6 53.6 2.97 3.68 9.4 12.3
14 Belgium 72 73.9 58.9 47.6 2.91 3.86 9.3 13.6
15 New Zealand 103 13 146.7 15.4 2.86 3.91 11.7 13.1
16 Austria 165 14.8 84.2 50.3 2.99 3.79 8.4 13.6
17 France 205 33.6 36.4 58.9 2.97 3.80 7.9 12.6
18 Israel 74 43.6 43.2 45 2.96 3.74 9.6 11
19 Spain 42 8.6 21 53.4 2.86 3.62 7.3 15.6
20 Italy 13 9.8 30.4 51 3.00 3.65 7.2 13
21 Czech Republic 28 4.2 25 51.7 2.75 3.68 9.5 8.2
22 Hungary 26 6.2 21.6 63.5 2.73 3.46 9.1 7.7
23  Slovenia 105 4 20.3 49.5 2.84 3.71 7.1 10.6
24  Hong Kong, China (SAR) 6  33.6 33.6 3.08 3.72 9.4 9.8
25 Slovakia 24 2.7 10.2 48.7 2.68 3.59 9.3 9.5
26 Greece   16.4 17.9 2.92 3.57 8.7 17.2
27  Portugal 6 2.7 17.7 40.7 2.95 3.53 5.9 12
28 Bulgaria 23  3.7 30 2.60 3.50 9.5 10.3
29 Poland 30 0.6 11.4 36.2 2.56 3.39 9.8 6.6
30 Malaysia   2.4 67.4 2.53 3.41 6.8 3.3
31 Croatia 9  6.7 41.7 2.63 3.39 6.3 10.6
32 Mexico 1 0.4 9.2 66.3 2.28 3.18 7.2 5
33 Cyprus   16.9 23 2.87 3.54 9.2 4
34 Argentina 8 0.5 8.7 19 2.51 3.28 8.8 12
35 Romania 71 0.2 2.7 25.3 2.36 3.21 9.5 7.2
36 Costa Rica  0.3 4.1 52.6 2.38 3.16 6.1 5.7
37 Chile  6.6 6.2 6.1 2.55 3.32 7.6 13.2
38 Uruguay 2  19.6 13.3 2.56 3.25 7.6 7.3
39 South Africa  1.7 8.4 30.2 2.43 3.58 6.1 3.4
40 Thailand 1 0.3 1.6 48.9 2.09 3.13 6.5 4.6
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41 Trinidad and Tobago   7.7 14.2 2.39 3.54 7.8 3.3
42  Panama   1.9 5.1 2.40 3.08 8.6 8.5
43 Brazil 2 0.8 7.2 32.9 2.38 3.25 4.9 3.4
44 Philippines  0.1 0.4 32.8 1.89 2.65 8.2 5.2
45 China 1 0.1 0.1 39 2.08 2.87 6.4 3.2
46  Bolivia 1 0.2 0.3 26 2.05 2.61 5.6 7.7
47  Colombia 1 0.2 1.9 13.7 2.37 2.94 5.3 5.2
48 Peru  0.2 0.7 2.9 2.03 2.81 7.6 7.5
49  Jamaica  2.4 0.4 1.5 2.41 3.35 5.3 1.6
50 Iran, Islamic Rep. of 1   2 2.12 3.13 5.3 6.5
51 Tunisia  1.1  19.7 1.98 2.92 5 3.8
52 Paraguay  35.3 0.5 2 2.14 2.88 6.2 2.2
53 Ecuador   0.3 3.2 2.09 2.80 6.4 6
54 El Salvador  0.2 0.3 19.2 2.14 2.75 5.2 3.6
55 Dominican Republic   1.7 5.7 2.17 2.80 4.9 5.7
56 Syrian Arab Republic    1.2 2.01 2.92 5.8 4.6
57 Egypt  0.7 0.1 8.8 1.89 2.94 5.5 2.9
58 Algeria    1 1.73 2.75 5.4 6
59 Zimbabwe   0.5 12 1.56 2.95 5.4 1.6
60 Indonesia   0.2 17.9 1.60 2.51 5 3.1
61 Honduras    8.2 1.76 2.65 4.8 3
62  Sri Lanka   0.2 5.2 1.69 2.39 6.9 1.4
63 India 1  0.1 16.6 1.45 2.58 5.1 1.7
64 Nicaragua   0.4 3.6 1.59 2.45 4.6 3.8
65 Pakistan   0.1 7.9 1.38 2.53 3.9 1.4
66 Senegal   0.2 28.5 1.43 2.05 2.6 0.5
67 Ghana    4.1 1.08 2.46 3.9 0.4
68 Kenya   0.2 7.2 1.04 2.11 4.2 0.3
69 Nepal   0.1 1.9 1.08 1.67 2.4 0.7
70 Tanzania, U. Rep. of    6.7 0.78 1.73 2.7 0.2
71 Sudan    0.4 0.95 1.67 2.1 0.7
72 Mozambique    12.2 0.70 1.73 1.1 0.2
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The mission of the JRC is to provide customer-driven scientific and technical support for the 
conception, development, implementation and monitoring of EU policies. As a service of the 
European Commission, the JRC functions as a reference centre of science and technology for the 
Union. Close to the policy-making process, it serves the common interest of the Member States, 
while being independent of special interests, whether private or national. 

 
 
 


