
Repair Same as New or Same as Old:  Practical Issues in Choosing the Appropriate 

Stochastic Process to Model Failure 
Dana L. Kelly 

Dana.L.Kelly@gmail.com 

 

A fundamental assumption of a renewal process is that repair restores a failed component 

to the state it was in when it was new.  This is called repair same as new.
1
  Times 

between failures under this assumption are treated as statistically independent 

observations from a stationary process.  The distribution of the times between failures is 

called the renewal distribution.  If the failure rate is constant over either operating time or 

time in standby, depending on which is being modeled, then the renewal distribution is an 

exponential distribution.  A Weibull or gamma distribution allows for monotonically 

increasing or decreasing failure rates, depending on whether the shape parameter is > 1 or 

< 1, respectively (when the shape parameter equals 1, both distributions reduce to the 

exponential).  Another popular renewal distribution is the lognormal distribution.  The 

lognormal distribution does not have a shape parameter, and its failure rate increases 

quickly, and then decreases monotonically with operating or standby time.  It can be 

useful when early failures dominate, causing an initially increasing failure rate. 

 

With a renewal process, the failure rate does not change with calendar time, as pointed 

out above, only with operating time or time in standby, according to the variable being 

considered.  Likewise, cumulative times to failure are not the inputs to a statistical 

analysis; it is the times between failures that are treated as a random sample from the 

renewal distribution.  Furthermore, because a renewal process is stationary, a plot of 

cumulative number of failures versus cumulative failure time will be approximately a 

straight line, so a cumulative failure plot is not useful in deciding how the failure rate is 

changing with time.  The figures below illustrate this plot for three cases of simulated 

failure times:  constant failure rate, increasing failure rate, and decreasing failure rate.  

The times in the constant case are simulated from an exponential distribution with mean 

time to failure of 350 arbitrary time units.  The increasing and decreasing cases were 

simulated with Weibull distributions with shape parameters of 2 and 0.5, respectively, 

and a scale parameter of 350 arbitrary time units.  Note the linearity displayed in all three 

cases, illustrating the behavior typical of the cumulative failure plot when the times 

between failures are generated by a renewal (i.e., repair same as new) process. 

 

                                                 
1
 Note that other terms are used in the literature, such as good as new.  We use same as new, because the 

new state may have a higher failure rate than the state the component was in when failure occurred. 
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Figure 1  Cumulative failure plot for 25 times between failures from exponential distribution (constant 

failure rate) 

 

 
Figure 2  Cumulative failure plot for 25 times between failures for renewal distribution with increasing 

failure rate 
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Figure 3  Cumulative failure plot for 25 times between failures for renewal distribution with decreasing 

failure rate 

 

The plots below show cumulative failures versus cumulative time for 1,000 simulated 

failure times from two different renewal processes, one in which failure rate is decreasing 

with increasing operating time, the other where failure rate is increasing with operating 

time.  Note in both cases that the cumulative failure plot produces a straight line, 

reinforcing the conclusion that this plot cannot detect a time-dependent failure rate under 

the same-as-new repair assumption. 

 

 
Figure 4  Cumulative failure plot for 1,000 simulated failure times from renewal process with decreasing 

failure rate 
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Figure 5  Cumulative failure plot for 1,000 simulated failure times from renewal process with increasing 

failure rate 

 

 

A plot that is useful for the renewal process is a cumulative hazard plot or one of its close 

relatives (e.g., Nelson-Aalen plot).  If the failure rate is constant in a renewal process, 

then the times between failures are exponentially distributed.  If one plots the ranked 

times between failures on the x-axis, and 1/nt on the y-axis, where nt is the number of 

components still operating at time t, the result should be approximately a straight line if 

the failure rate is constant (i.e., the renewal distribution is exponential).  If the slope is 

increasing (decreasing) with time, this suggests a renewal process whose failure rate is 

likewise increasing (decreasing) with time.  The figures below illustrate this plot for the 

three cases of simulated failure times described above. 
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Figure 6  Cumulative hazard plot for 25 times between failures from exponential distribution (constant 

failure rate) 

 

 
Figure 7  Cumulative hazard plot for 25 times between failures for renewal distribution with increasing 

failure rate 
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Figure 8  Cumulative hazard plot for 25 times between failures for renewal distribution with decreasing 

failure rate 

 

As stated above, if repair is same as old and there is an increasing or decreasing trend in 

the rate of occurrence of failure (ROCOF) over calendar time, then the times between 

failures will not be independently and identically distributed, and one cannot simply fit a 

Weibull, gamma, etc. distribution to the cumulative failure times or the times between 

failures.  There is a non-parametric statistical test that can be helpful in distinguishing 

between a renewal process (same-as-new repair) and a nonhomogeneous Poisson process 

(NHPP) representing same-as-old repair.  It is very similar to the so-called Laplace test, 

and it is simple to implement in a spreadsheet or other software.  It uses the cumulative 

times to failure.  The formula depends on whether the observation period is for a fixed 

period of time, or terminates at the time of the last failure.  If it is for a fixed period of 

time, τ, and there are n observed failure times, one first computes the Laplace statistic, U, 

according to the following formula: 
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If the observation period is only up until the last observed cumulative failure time, tn, U is 

computed by 
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This statistic quickly approaches a standard normal distribution under the null hypothesis 

of a homogeneous Poisson process.  If the process is actually NHPP with increasing 

ROCOF, too many of the failures will occur after the midpoint of the observation period, 

and U will be too large.  Conversely, if the process is NHPP with decreasing ROCOF, too 

many failures will occur before the midpoint of the observation period, and U will be too 

small.  At a 5% significance level, we reject the null hypothesis if U is larger than 2 or 

smaller than -2. 

 

As pointed out above, the null hypothesis for the Laplace test is a homogeneous Poisson 

process.  A slight modification to this test allows for a null hypothesis of a renewal 

process with any renewal distribution, not just the exponential distribution that is the null 

hypothesis for the Laplace test.  We divide U by the estimated coefficient of variation of 

the times between failures (ratio of sample standard deviation to sample mean).  

Asymptotically, if the renewal distribution is exponential, this new statistic will equal U.  

Again, this statistic quickly approaches a standard normal distribution under the null 

hypothesis of a renewal process. 

 

Applying this test to the simulated data shown in Figures 1-3, we obtain the following 

values of the modified Laplace statistic.  The two-sided p-values are shown in 

parentheses.  As expected, we cannot reject the null hypothesis of a renewal process at 

any reasonable significance level. 

 

Constant failure rate:  -0.78 (0.43) 

Increasing failure rate:  0.71 (0.48) 

Decreasing failure rate:  -0.10 (0.92) 

 

There is also a qualitative check for an increasing or decreasing trend in the ROCOF 

under the same-as-old repair assumption, meaning that our stochastic process for failure 

is an NHPP.  We plot the cumulative number of failures versus the cumulative time to 

failure.  The slope of this plot is an estimate of the ROCOF, so an increasing slope 

corresponds to aging and vice versa.  The figures below show these plots for simulated 

data from a power-law NHPP with increasing and decreasing ROCOF. 
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Figure 9  Cumulative failure plot for simulated data from power-law NHPP with increasing ROCOF 

 

 
Figure 10  Cumulative failure plot for simulated data from power-law NHPP with decreasing ROCOF 

 

The values of the statistic from our nonparametric test (Laplace U divided by estimated 

coefficient of variation) are shown below, with the two-sided p-values in parentheses.  

The null hypothesis of a renewal process would just be rejected at a 0.05 significance 

level in both of these cases. 

 

Increasing ROCOF:  1.99 (0.046) 

Decreasing ROCOF:  -1.99 (0.046) 

 

The assumption made regarding repair (same as old versus same as new) is crucial to the 

analysis.  Consider times to failure being produced by a process with increasing ROCOF, 
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corresponding to aging with repair same as old.  As time progresses, times between 

failure will tend to decrease, and there will be a preponderance of short times between 

failures in a sample.  If the process is assumed to be a renewal process, with times 

between failures described by, for example, a Weibull distribution, the preponderance of 

short times between failures will cause the estimate of the Weibull shape parameter to be 

less than one, corresponding to an apparent decreasing failure rate, the opposite of what 

is actually happening. Unfortunately, Bayesian posterior predictive checks may not help 

much in deciding which model is better, because both models can replicate the observed 

data quite well. 

This can be illustrated by simulation.  We generated 1,000 cumulative failure times for a 

system whose repair is same-as-old, described by a power-law process with shape 

parameter of 2 and scale parameter of 350.  The cumulative failure plot below shows the 

increasing trend in ROCOF with time. 

 

Figure 11  Cumulative failure plot for 1,000 times simulated from power-law process with shape 

parameter of 2, illustrating increasing ROCOF 

 

The histogram below of the times between failures shows the preponderance of short 

times between failures caused by the increasing ROCOF. 
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Figure 12  Histogram of times between failures for simulated failure times from power-law process with 

increasing ROCOF 

 

Assuming the repair is same-as-new instead of same-as-old and fitting a Weibull 

distribution to these times between failures, one estimates a Weibull shape parameter of 

about 0.8, which would incorrectly suggest a failure rate that is decreasing with time. 

 

If the repair is same-as-new, and the failure rate increases with operating time or time in 

standby (whichever is being modeled), an assumption of same-as-old repair will, as 

suggested by Figure 4, lead to an estimate near one for the shape parameter of the power-

law process.  In this case, the Bayesian posterior predictive check can be helpful, as a 

power-law process with shape parameter near one cannot replicate data from a renewal 

process with increasing failure rate very well. 

 

 


