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Abstract
The paper presents the results of a case study on "Investigation of component age dependent
reliability models" implemented by INPE and JRC IE in the frame of EC JRC Ageing PSA
Network Task 4 activities. Several cases of Generalized Linear Model were applied and
investigated for the cases of continues and discrete data. The Fisher Chi-2 minimization
approach was used for goodness of fit test and parameters elaboration. Finally, uncertainty
analysis was done for parameters estimation and model extrapolations. The results were
analyzed and compared with other approaches.

1. Task specification

The goal of the study is a demonstration of methods to build up and assess the component age-
dependent reliability models.
The following tasks were performed :
- verification of models validity,
- parameters estimation,
- characterisation of uncertainties of estimated parameters and hole model,
- assessment on possible extrapolation and uncertainties of extrapolation.

2. Initial data sets

To demonstrate the method applicability and compare the results with other case studies JRC
proposes to use two data sets :

•  Data set 1, is a binned data on failure rates estimated at the bins. These data
characterise component failure modes as fail to function, fail to run etc. The data
correspond to the continuously distributed times to failure,

•  Data set 2, is the failures and demands data, which represent failures on demand.
From this data set, the binned data on failure probability on demand per bin could be
derived.

All data in the data sets are "virtual". However, the statistic, which is provided for the case
study is quite close to the real operating experience data collected on the French or German
NPPs. In particular, data include large samples that represent of components from the same
technological group.

Binned data (data set 1).
The failure rates were calculated on equal one-year intervals, sequence of which represents
the time in operation or age of the component. This data has two particularities :

•  there are some intervals without failures, consequently, failure rates are estimated as
equal to 0,

•  the cumulated operating time is different from one interval to another, this leads to
the differences in confidence intervals for failure rates.

These particularities were taken into account during data analysis.

Failure on demand data (data set 2).
The data are censored by interval, e.g. the times in operation are truncated by right and by
left ends.
For these data time in operation means number of demands, i.e. it is supposed to be known the
number of demands before failure, number of demands on the beginning and on the end of
observation (left and right censoring).



The components in the sample haven't the same date of putting in service, and as a
consequence haven't the same age on the date of the beginning and of the end of observation.
In addition, components installed in different systems at the same unit type could have a
different number of demands per year.
The data were regrouped and processed to obtain binned data sets similar to data set 1. In this
case the estimated parameter is failure probability per demand.

3. Models and approach.

3.1 Models applied in case of data set 1.

For continuous time to failure (failure rate) variable it was proposed to apply following
statistical models :

1. Constant failure rate : ( );tϕ θ
r

=Const;

2. Linear failure rate : ( ) 1 2;t tϕ θ θ θ= +
r

;

3. Log-linear or exponential failure rate : ( ) 1 2ln ;t tϕ θ θ θ= +
r

;

Nota : for this model all calculations were done supposing ( ) ( )1 2ln ; lnt tϕ θ θ θ= +
r

. Estimated

interception parameter “a” presented in the results, corresponds to θ1 and not to 1
*
1 lnθθ = .

In these terms failure rate function is ( );tϕ θ
r

 = θ1 exp (θ2 t).

4. Power-low (Weibull) failure rate model : ( ) 2
1;t tθϕ θ θ=

r

For models 2-4 the fact that parameter θ2 > 0 means positive trend in time, i.e. component
failure rate increases with age of the component.

3.2 Models applied in case of data set 2

For discrete failures per demand the following models were applied :

1. Constant: ( );tϕ θ
r

=Const;

2. Logit: ( ) ( )
( )
1 2

1 2

exp
;

1 exp
t

t
t

θ θ
ϕ θ

θ θ
+

=
+ +

r
;

3. Probit: ( ) ( )1 2;t tϕ θ θ θ= Φ +
r

;

4. Exponential: ( ) ( )1 2; expt tϕ θ θ θ= +
r

,

Here ( )
21 exp

22

x ux du
π −∞

 
Φ = − 

 
∫ - is a normal distribution function ( )0;1N .

3.3 Proposed approach

The applied approach is the same for continuously and discreetly distributed data. The
difference is only with interpretation of “time” which is a time in operation for continuous
functions and number of demands for discrete functions.



To choose the model, which better fits with observed data, first, the goodness of fit test was

performed using Fisher statistic, then confidence limits for model parameters ( )1 2;θ θ θ=
r

 and

for resulting function ( );tϕ θ
r

 were constructed.

3.4 Goodness of fit test and parameters estimation

The hypothesis of a parametric model form describing the behaviour of a failure rate

parameter in time t  is tested with the help of Fisher’s criterion 2χ , the statistic of which is:

( ) ( ) ( )
( )

2

2

1

;

;

s i i i

i i i

t T

t T

ν ϕ θ
χ θ

ϕ θ=

 ∆ − =∑
r

r
r , (1)

where ( );tϕ θ
r

is one of the four functions proposed to describe the failure rate ( )tλ .

Here

1 2, ,..., s∆ ∆ ∆ is the selected X-axis division,

( )iν ∆ is the number of failures per interval i∆ ,

iT  is the cumulated operating time of all components been in operation within the interval i∆ .
The  hypothesis to be tested is presented as follows :

( )0 : : ;i iH tθ λ ϕ θ∃ =
r r

, (2)

where iλ is the averaged failure rate per interval i∆ .

To calculate the statistic, an unknown value ofθ
r

  is substituted by an estimate θ
)r

 obtained

using the method of minimum 2χ :

( )2arg min
θ

θ χ θ=
r

)r r
.                  (3)

The criterion for testing a hypothesis of conformity is a simple comparison of p - value and a
chosen confidence level value α . A p - value is calculated from:

( )2
s r

z

p f t dtχ −

∞

= ∫ , (4)

where

( )2z χ θ=
)r

;

( )2
s r

f t
χ −

 is the density of distribution 2χ with s r−  degrees of freedom,

s is the number of group intervals i∆  (where ( )iν ∆ should differ from 0),

r is the number of parameters estimated. For constant failure rate model (model 1 in 3.1 and
3.2) 1r = , for other proposed models (2 – 4 in 3.1 and 3.2) 2r = .
The hypothesis (2) is accepted in case, if p α> , otherwise it is rejected. Besides, if the
hypothesis (2) is accepted for several models, preference is to be given to the model with a
greater p - value.
The method is described in various statistical books, for example in references [2-5].
The detailed procedure of parameters estimation and model verification by using EXEL
software is developed.



3.5 Parameters uncertainties

In case of two parameters model (models 2-4 in 3.1 and 3.2) the task of definition of
confidence intervals for each of parameter is transformed in a task of definition of confidence
areas.
When constructing the confidence areas the following statistic is used :

( ) ( ) ( )
( )
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;

;

s i i i

i i i

t T
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ν ϕ θ
χ θ

ϕ θ=
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⋅

∑
r

r
r .

Let 1 ε−  be the confidence level of a confidence area.  Solving the equation

( )2
s

f t dt
ε

χ
µ

ε
∞

= ∫
with a given ε  value, determined is the parameter εµ .
Then a transcendental inequality is solved by numerical methods:
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To construct the ellipsoids of concentration (confidence areas for θ
r

), Compaq Visual Fortran
Professional with a Graphor graphic package, or MatLab can be applied. Isolines are easily
plotted in these packages.

3.6 Model uncertainties and extrapolations

The following approach is applied to construct the confidence interval for a trend line. To
construct the upper limit at moment t  the extreme problem is solved

( ); maxt
θ

ϕ θ → r

r
, (6)

with the restriction ( )
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To construct the lower limit at time t  the extreme problem is solved

( ); mint
θ

ϕ θ → r

r
, (7)

with the restriction ( )
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As ( );tϕ θ
r

 have no local extreme points,  restrictions of the inequality type can be substituted

by the following equality :



( )
( ) ( )

( )

2

2

1

;

;

i
is

i
i

i i

t
T

T
t ε

ν
ϕ θ

χ θ µ
ϕ θ=

∆ 
− 

 = =∑

r

r
r ,

since the solution will be inside of confidence ellipse area.

4. Results of calculations

4.1 Presentation of the results

Data set 1.

In case of continuous distributions the results of goodness-of-fit test (fitted model parameters

( )1 2;θ θ θ=
r

 and p-values) are presented in a Table 1.

Example of graphical interpretation of fitted models and data uncertainties are provided at
Figures 1-3.

Table 1. Summary of parameters estimation for data set 1.

ModelsComponent
group Parameters

Constant Linear Log-linear Weibull
Comments

θ1 0.030 0.012 0.015 0.013
θ2 0.0017 0.0637 0.0017#3

p-value 0.002 0.006 0.006 0.003

No model fit
with the

data

θ1 0.023 0.014 0.013 0.014
θ2 0.0010 0.0539 0.2179#6

p-value 0 0 0 0

No model fit
with the

data

θ1 0.029 0.017 0.018 0.016
θ2 0.0011 0.0415 0.2697#6.1

p-value 0.006 0.014 0.015 0.012
?

θ1 0.019 0.010 0.011 0.009
θ2 0.0010 0.0546 0.3414#7

p-value 0.019 0.542 0.567 0.360

Log-linear
fits the best
(slow ageing)

θ1 0.019 0.004 0.007 0.003
θ2 0.0012 0.0792 0.7255#7.1

p-value 0.041 0.429 0.492 0.365

Log-linear
fits the best
(slow ageing)

θ1 0.015 0.011 0.012 0.007
θ2 0.0004 0.0161 0.3073#8.1

p-value 0.057 0.051 0.046 0.100
?

θ1 0.021 0.009 0.012 0.006
θ2 0.0012 0.0503 0.5482#11.1

p-value 0.203 0.278 0.271 0.303

Weibull fits
the best

(slow ageing)

θ1 0.003 0.001 0.002 0.001
θ2 0.0002 0.0426 0.4667#13.3

p-value 0.748 0.762 0.728 0.793

All models
fit the data,
(slow ageing)

θ1 0.00028 0.00035 0.00034 0.00028
θ2 -0.00001 -0.02360 0.00001#14.1

p-value 0.967 0.938 0.934 0.926

All models
fit the data
(no ageing)

#16.2 θ1 0,000 0,000 0,000 0,001 All models

fit the data

(no ageing)



ModelsComponent
group Parameters

Constant Linear Log-linear Weibull
Commentsθ2 0,0000 -0,0670 -0,3802 Comments

p-value 0,923 0,995 0,987 0,948

Comments

θ1 0.002 0.003 0.003 0.003
θ2 -0.0001 -0.0880 -0.3929#17.1

p-value 0.912 0.976 0.962 0.920

All models
fit the data
(no ageing)

θ1 0.039 0.061 0.071 0.081
θ2 -0.0030 -0.0914 -0.4775#19.1

p-value 0.493 0.669 0.704 0.873

Weibull fits
the best (no

ageing)

θ1 0.045 0.073 0.158 0.311
θ2 -0.0023 -0.0992 -0.7772#30.1

p-value 0.023 0.102 0.108 0.045
?

θ1 0.005 0.004 0.004 0.004
θ2 0.0002 0.0333 0.1223

#32.2
p-value 0.543 0.534 0.532 0.489

All models
fit the data,
but const.

fits the best
(?)

θ1 0,025 0,021 0,020 0,022
θ2 0,0003 0,0148 0,0379#34.1

p-value 0,807 0,773 0,778 0,758
θ1 0,055 0,024 0,024 0,024
θ2 0,0027 0,0704 0,3551#35.1

p-value 0,008 0,079 0,148 0,028
θ1 0,094 0,122 0,121 0,120
θ2 -0,0023 -0,0213 -0,1020#36.2

p-value 0,229 0,242 0,232 0,194
θ1 0,006 0,003 0,003 0,003
θ2 0,0002 0,0487 0,2676#38.1

p-value 0,437 0,495 0,519 0,424
θ1 0,067 0,006 0,013 0,005
θ2 0,0045 0,1099 0,9965#39.1

p-value 0,001 0,023 0,071 0,021
θ1 0,020 0,009 0,010 0,008
θ2 0,0013 0,0761 0,4249#43.1@

p-value 0,893 0,906 0,911 0,890
θ1 0,001 0,002 0,002 0,002
θ2 -0,0001 -0,1251 -0,4689#44.1

p-value 0,298 0,761 0,663 0,360
θ1 0,008 0,011 0,013 0,017
θ2 -0,0003 -0,0522 -0,4009#45@

p-value 0,862 0,923 0,946 0,954



ModelsComponent
group Parameters

Constant Linear Log-linear Weibull
Comments

θ1 0,006 0,003 0,002 0,004
θ2 0,0003 0,0817 0,2051#47.1

p-value 0,112 0,150 0,214 0,085
θ1 0,001 0,001 0,001 0,003
θ2 0,0000 -0,0433 -0,5343#48.2

p-value 0,189 0,112 0,184 0,362
θ1 0,001 0,002 0,002 0,004
θ2 -0,0001 -0,0716 -0,6499#48.3

p-value 0,045 0,074 0,116 0,543
θ1 0,001 0,001 0,001 0,001
θ2 0,0000 -0,0176 0,0592#49.5

p-value 0,810 0,728 0,721 0,714

θ1 0,011 0,010 0,010 0,010
θ2 0,0001 0,0125 0,0693#50

p-value 0,828 0,727 0,727 0,725
θ1 0,005 0,006 0,006 0,004
θ2 -0,0001 -0,0073 0,1833#55

p-value 0,422 0,294 0,293 0,305
θ1 0,021 0,029 0,026 0,015
θ2 -0,0007 -0,0164 0,1504#56

p-value 0,176 0,137 0,131 0,130
θ1 0,021 0,022 0,022 0,022
θ2 -0,0001 -0,0058 -0,0206#56.1

p-value 0,889 0,853 0,853 0,851
θ1 0,029 0,026 0,026 0,030
θ2 0,0002 0,0087 -0,0167#57

p-value 0,902 0,864 0,865 0,861
θ1 0,017 0,025 0,027 0,031
θ2 -0,0007 -0,0499 -0,3202#58

p-value 0,666 0,694 0,702 0,723
θ1 0,057 0,012 0,017 0,008
θ2 0,0030 0,0782 0,7312#59.1

p-value 0,257 0,482 0,561 0,438
θ1 0,151 0,059 0,066 0,039
θ2 0,0068 0,0575 0,5348#59.1@WR

p-value 0,031 0,138 0,187 0,113

mailto:#59.1@WR


ModelsComponent
group Parameters

Constant Linear Log-linear Weibull
Comments

θ1 0,052 0,037 0,037 0,034
θ2 0,0015 0,0326 0,1923#62.2

p-value 0,854 0,859 0,864 0,844
θ1 0,002 0,003 0,003 0,004
θ2 -0,0001 -0,0479 -0,3450#63.1

p-value 0,778 0,742 0,741 0,759

θ1 0.046 0.075 0.104 0.116
θ2 -0.0027 -0.0830 -0.4365#65

p-value 0.005 0.458 0.539 0.073

Log-linear
fits the best
(no ageing)
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Figure 1. Component group #3. Fitted failure rates (1/y), as the functions of time in operation
(y).
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Figure 2. Component group #7. Fitted failure rates (1/y), as the functions of time in operation
(y).
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Figure 3. Component group #65. Fitted failure rates (1/y), as the functions of time in operation
(y).



Data set 2.

For the discrete data the results of parameters estimation and goodness-of-fit test are
presented in a Table 2. The graphical interpretation of uncertainties is given in Annex 6.
The presented cases are those where initial data contains more then 10 failures per component
group.

Table 2. Summary of parameters estimation for data set 2.

ModelsComponent
group Parameters

Constant Logit Probit Exponential
Comments

θ1 0.003 -5.63 -2.69 -5.63
θ2 -5.16E-04 -1.71E-04 -5.13E-04U_C

p-value 0.26 0.15 0.15 0.15

Constant
model fits
the best

θ1 0.004 -3.88 -2.08 -3.88
θ2 -8.11E-03 -2.78E-03 -8.11E-03U_D

p-value 0.09 0.67 0.68 0.67

Decreasing
trend (no
ageing)

θ1 0.0018 -5.50 -2.66 -5.50
θ2 -1.19E-03 -3.60E-04 -1.19E-03U_F

p-value 0.57 0.89 0.88 0.89

Decreasing
trend (no
ageing)

θ1 1.46E-05 -11.01 -4.15 -11.00
θ2 -2.38E-05 -5.30E-06 -2.38E-05ABC

p-value 0.03 0.05 0.05 0.05

No model
fits with the

data

θ1 0.00013 -8.54 -3.55 -8.54
θ2 -0.00084 -0.00021 -0.00084DEF

p-value 0.53 0.86 0.86 0.86

Decreasing
trend (no
ageing)

4.2. Results analysis and interpretation

4.2.1. Identification of component susceptible to ageing

Analysis of results could be performed in three stages :
•  on the first stage, the component groups for which one or more proposed models fit

well with the data could be selected. It was decided to consider all models where p-
value is more then 0,1.

•  secondly, component groups for which best fitted model shows negative “ageing”
parameter (θ2 < 0) could be ignored for following assessment,

•  then, component groups with positive ageing trends could be identified by comparing
the “ageing” parameter (θ2) and its confidence intervals with zero. In case if the lower
bound of 90% confidence interval for “ageing” parameter θ2 is above 0, the ageing
trend could be assumed.

The following paragraphs present the results of such screening.

Data set 1.

The results of the screening show that from 37 component groups from Data Set 1 the positive
ageing trend could be assumed for 10 component groups listed below :

•  #7 (best fitted model is log-linear with θ2 = 0.055),
•  #7.1 (best fitted model is log-linear with θ2 = 0.079),
•  #8.1 (best fitted model is Weibull, p = 0.1, with θ2 = 0.31),
•  #11.1 (best fitted model is Weibull with θ2 = 0.55),
•  #13.3 (best fitted model is Weibull with θ2 = 0.47),
•  #35.1 (best fitted model is log-linear, p=0.15, with θ2 = 0.07),



•  #38.1 (best fitted model is log-linear with θ2 = 0.049),
•  #47.1 (best fitted model is log-linear with θ2 = 0.082),
•  #59.1 (best fitted model is log-linear with θ2 = 0.078),
•  #59.1@WR (best fitted model is log-linear with θ2 = 0.057).

Figure 4 and 5 present the areas of uncertainties for estimated model parameters in cases of
component groups #7.1 and #11.1.
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Figure 4. Component group #7.1, log-linear model parameters uncertainties (90, 95 and 99%
confidence areas). “a” = θ1

∗  = ln 0.007 = -4.96, ”b” = θ2 = 0.79.
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 Figure 5. Component group #11.1, Weibull model parameters uncertainties (90, 95 and 99%
confidence areas). “a” = θ1 = 0.006, ”b” = θ2 = 0.55.



For 2 component groups log-liner model with positive ageing parameter was identified as well
fitted, but the value of 90% low bound of “ageing” parameter is below zero.

•  #43.1 (best fitted model is log-linear with θ2 = 0.076),
•  #62.2 (best fitted model is log-linear with θ2 = 0.033).

For following 10 component groups the best fitted model is constant : #14.1, #32.2, #34.1,
#49.5, #50, #55, #56, #56.1, #57, #63.1.

For the rest 16 component groups the situations are as following : even no model fits with the
data, i.e. p-value is very small (for example, component groups #3, #6, #6.1, etc.), or negative
“ageing” parameter are obtained (see for example, #17.1, #19.1, #30.1, etc.).

For better understanding of obtained results and importance of ageing trends, relative
increasing in failure rate in time with regard to constant failure rate are presented in Table 3.

Table 3. Failure rate increasing.

Component
group

Best
fitted
model

Parameters :
θ1

θ2

 ϕ=c ϕ (θ, 10) / ϕ=c ϕ (θ, 20) / ϕ=c ϕ (θ, 30) / ϕ=c

0.011#7 log-
linear 0.0546

0.019 0.58 1.73 2.98

0.007#7.1 log-
linear 0.0792

0.019 0.37 1.80 3.96

0.007#8.1 Weibull
0.3073 0.015 0.95 1.17 1.33

0.006#11.1 Weibull
0.5482

0.021 1.01 1.48 1.84

0.001#13.3 Weibull
0.4667

0.003 0.98 1.35 1.63

0.024#35.1 log-
linear 0.0704

0.055 0.44 1.78 3.61

0.066#59.1@ log-
linear 0.0575

0.151 0.44 1.38 2.45

These figures show that application of constant failure rate model could provide
underestimated unavailability values in case of aged NPPs. The interception point of constant
and time-dependent failure rates corresponds to the plant ages between 10 and 20 years.
Taking into account the delay between data collection, parameters estimation and PSA update
it could lead to underestimation in final PSA results.
In presented data examples the data collection covers the ages window between 0 and 20 years
in operation. Now, if 10 years periodicity of PSA update will be assumed and for the 30-years
examination this data set will be applied, the underestimate of failure rates could rise up to
the factor 4 (see ϕ (θ, 30) / ϕ=c for component group #7.1, for example).
Of course, it’s true in case if the trend will continue in time.

Data set 2.
There are no component groups in this data set which show increasing trend of failure rate.
The following analysis does not include the examples from data set 2, but the main conclusions
of the analysis provided in chapter 4.2.7 could be valid for discrete data as well.

4.2.2. Comparison with results of non-parametric inversion test



A non-parametric inversion test was performed for most of component groups. As a result
increasing failure rates were identified for component groups : #3, #6, #6.1, #7, #11.1, #39.1,
#43.1, #45, #47.1, #50.1, #56, #58, #62.2.
For component groups #7, #7.1, #11.1, #43.1, #47.1 and #62.2 conclusions of inversion test
were confirmed by parametrical modeling. The results of goodness of fit test for component
groups #3, #6, #6.1 and #39.1 show that no model fit with the data. For the rest cases
parametrical models do not confirm the ageing trend.

From the other hand, inversion test does not identify ageing trends in case of #8.1, #13.3,
#35.1, #38.1, #59.1 and #59.1@. This again shows the weakness of non-parametrical tests and
the necessity to apply different methods for ageing detection.

4.2.3. Impact of burn-in failures

Visual examination of data permits to suppose existence of burn-in failures for certain
component groups, for example : #3, #6, #6.1, #7.1, #32.2, #35.1, #38.1, 39.1, #45@, #48.2,
#48.3. Figures 6 and 7 presents the examples of graphs used for visual examination in cases of
components #3 and #7.1.
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Figure 6. Component group #3. Failure rate distribution in time bins.
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Figure 7. Component group #7.1. Failure rate distribution in time bins.

Additional examination was done for these component groups by excluding first intervals from
data sets.
The results for groups #3, #6, #6.1 show an increase of “ageing” parameter, but p-value still
resides very low.
Results of calculation for other component groups are presented in Table 4.

Table 4. Impact of burn-in failures.

Component
group

Best
fitted
model

Parameters
:
θ1

θ2
p-value

 ϕ=c ϕ (θ, 10) / ϕ=c ϕ (θ, 20) / ϕ=c ϕ (θ, 30) / ϕ=c

0.007
0.0792#7.1

log-
linear

0.49
0.019 0.81 1.80 3.96

0.0014
0.0015

#7.1 /burn-
in failures
excluded

linear
0.47

0.019 0.86 1.65 2.44

0.005
#32.2 const

0.54
0.005 1 1 1

0.0018
0.49

#32.2
/burn-in
failures

excluded

Weibull
0.65

0.005 1.11 1.56 1.91

0.024
0.0704#35.1

log-
linear

0.15
0.055 0.88 1.78 3.61

0.015
0.1

#35.1/burn-
in failures
excluded

log-
linear

0.35
0.054 0.76 2.05 5.58



0.0032
0.049#38.1 log-

linear
0.52

0.006 0.53 1.42 2.32

0.00024
1.22

#38.1/burn-
in failures
excluded

Weibull
0.58

0.006 0.66 1.55 2.54

0.013
0.11#39.1

log-
linear

0.07
0.067 0.58 1.75 5.26

0.0032
0.18

#39.1/burn-
in failures
excluded

Log-
linear

0.14
0.075 0.26 1.56 9.45

0.017
-0.40#45.@

Weibull

0.954
0.078 0.87 0.66 0.56

0.00031
2.97E-04

#45@/burn-
in failures
excluded

Log-
linear

0.999
0.0048 0.68 1.30 1.92

0.017
-0.40#48.2 Weibull
0.36

0.078 0.87 0.66 0.56

0.00068#48.2/burn-
in failures
excluded

Const
0.56

0.00068 1 1 1

0.0035
-0.65

#48.3 Weibull

0.54
0.0011 0.72 0.46 0.35

0.00021
0.081

#48.3/burn-
in failures
excluded

Log-
liner

0.997
0.00064 0.74 1.66 3.74

Consideration of burn-in failures could improve the result of goodness of fit test, as for
example in case of group #39.1 which was initially excluded from the screening because of very
small p-value. Results of additional examination permits to conclude about the existence of
ageing trend for this component group.
Consideration of burn-in failures (excluding them from data) could change the conclusion about
existence or absence of ageing trend, as for example in case of groups #32.2, #45@, #48.2 and
#48.3. Three of these groups (#32.2, #45@, #48.3) could be added to the list of components
with identified ageing trend.
For group #32.2 the conclusion of first calculation was that failure rate is constant with
significance level 0.54 but all others models also fitted quite well. Neglecting of burn-in
failures leads to the conclusion that Weibull model fits the best (p-value = 0.64) but the
constant failure rate still fits good with p-value = 0.51. Choice of constant failure rate model
could lead to underestimation of unavailability for 30-years aged component by factor 1,9
(ϕ (θ, 30) / ϕ=const.) in comparison with Weibull model.
In case of component group #48.3 where conclusion from the first examination is an existence
of decreasing trend (i.e. reliability of component is increasing with time), the consideration of
burn-in failures changed the conclusion to opposite one : i.e. existence of increasing trend.
In some cases the burn-in failures do not impact a lot to the time-dependent models
extrapolations, so the calculated failure rate values are close to each other.
An example is the group #38.1. Here, analysis of complete data set provides best fitted log-
linear model with significance level 0.52. Excluding burn-in failures from the analysis gives a
conclusion that Weibull fits the best with significance level 0.58. Comparison of failure rate
extrapolations up to the age of 30 years for both of these models with constant failure rate



(which is the same in both of the cases) provides about the same level of underestimation :
2.32 in case of complete sample and 2.54 in case where the burn-in failures neglected.
In one case, group #39.1, the excluding of burn-in failures has led to increasing in failure rate
by order of magnitude in comparison with constant failure rate value.
All those examples show the importance of consideration of burn-in failures in the ageing
assessment.

4.2.4. Comparison with other parametrical methods

The results of the calculations were compared with estimations by other parametrical methods
in the frame of Ageing PSA Task Group 4 activities.
As the alternative methods the Bayesian analysis with non informative priors and Stochastic
Expectation Maximization were chosen.

In case of Bayesian analysis the same sets of binned data were analyzed.
To check the validity of the model, it was used the posterior predictive distribution for the
number of failures in each bin to compare observed and replicated chi-square statistics.  The
overlap probability, is referred to here as a Bayesian p-value.
Analysis was done by free-available software WinBUGS.
The calculations were performed for two component groups #3 and #7.1. The results of
calculation are presented in Table 5.

Table 5. Comparative parameters estimation (frequentist vs Bayesian).

ModelsComponent
group Parameters

Constant Linear Log-linear Weibull
Comments

θ1 0.030 0.012 0.015 0.013
θ2 0.0017 0.0637 0.0017#3

Chi-2 min.
p-value 0.002 0.006 0.006 0.003

No model fit
with the

data

θ1 0.023 0.007 0.01 0.007
θ2 0.002 0.07 0.62#3

Bayesian
p-value 0.004 0.01 0.01 0.007

No model fit
with the

data

θ1 0.019 0.004 0.007 0.003
θ2 0.0012 0.0792 0.7255

θ2  90% conf.
interval

(8.8E-4,
0.0017)

(0.059,
0.099)

(0.63,
0.82)

#7.1
Chi-2 min.

p-value 0.041 0.429 0.492 0.365

Log-linear
fits the best
(slow ageing)

θ1 0.017 0.004 0.007 0.003
θ2 0.001 0.079 0.814

θ2  90% conf.
interval

(7.0E-4,
0.002)

(0.04,
0.12)

(0.41,
1.27)

#7.1
Bayesian

p-value 0.046 0.41 0.47 0.33

Log-linear
fits the best
(slow ageing)

In case of component group #3 the Bayesian analysis leads to the same conclusion as a
frequentist one that no model fit with the data (for all models the p-value is very small). That
could be the reason of slight difference in parameters estimation.
Comparison of the results for group #7.1 shows that Bayesian approach with non informative
priors provides numerical results similar (or very close) to frequentist analysis : the calculated
model parameters for best fitted models (linear and non-linear) are the same and the p-values
are very close to each other. The 90% confidence interval is a little bit more tight in case of
frequentist analysis, but still comparative with figures provided by Bayesian estimation.

Stochastic Expectation Maximization (SEM) method was applied for the times to failure data,
which were used to develop initial data sets.. The SEM algorithm was realized only for Weibull



model parameters estimation and has some limits from application point of view. The
algorithm provides the point estimations only.
The comparison was done for three component groups : #8.1, #11.1 and 13.3. For these groups
the goodness of fit test identified the Weibull as best fitted model. The results of the
calculations are presented in Table 6.

Table 6. Comparative parameters estimation (Chi-2 min. vs SEM).

Component
group

Best
fitted
model

Parameters :
θ1

θ2

 ϕ=c ϕ (θ, 10) / ϕ=c ϕ (θ, 20) / ϕ=c ϕ (θ, 30) / ϕ=c

0.007#8.1
Chi-2

Weibull
0.31

0.015 0.95 1.17 1.33

0.0059#8.1
SEM

Weibull
0.43

0.015 1.06 1.43 1.70

0.006#11.1
Chi-2

Weibull
0.55

0.021 1.01 1.48 1.84

0.0023#11.1
SEM

Weibull
0.92

0.021 0.91 1.72 2.50

0.001#13.3
Chi-2

Weibull
0.47

0.003 0.98 1.35 1.63

0.00025#13.3
SEM

Weibull
1.12

0.003 1.10 2.39 3.76

In all three cases the SEM provides more conservative estimation of “ageing” parameter. As a
consequence, the extrapolated values of failure rates are much higher. For example in case of
component group #13.3, the “ageing” parameter estimated by SEM more then twice higher of
those estimated with Chi-2 minimization approach.
One possible explanation of this difference is that times to failure data are more informative
that binned one. But more detailed investigation of this issue is necessary.

4.2.5. Uncertainties of extrapolation.

To apply developed time dependent reliability models in PSA it is necessary to perform some
predictive estimation of failure rates. Uncertainties of predictive extrapolations and impact of
the choice of the model to extrapolation results were analyzed in the frame of the study. The
Annex 5 provides a graphical interpretation of parameters and models uncertainties.
Table 7 presents the results of relative increase of extrapolated failure rate with regards to
constant failure rate model.

Table 7. Failure rate extrapolations with different time dependent models.

Component
group

Fitted
model

Parameters :
θ1

θ2
p-value

 ϕ=c ϕ (θ, 10) / ϕ=c ϕ (θ, 20) / ϕ=c ϕ (θ, 30) / ϕ=c

0.004
0.0012#7.1 linear
0.43

0.019 0.84 1.47 2.11

0.007
0.0792#7.1 Log-

linear
0.49

0.019 0.37 1.80 3.96

0.003#7.1 Weibull
0.73

0.019 0.85 1.41 1.89



0.37
0.009
0.0013#43.1 linear
0.906

0.02 1.10 1.75 2.40

0.01
0.076#43.1 Log-

linear
0.911

0.02 1.07 2.29 4.89

0.008
0.43#43.1 Weibull
0.89

0.02 1.08 1.45 1.73

-0.0010
0.0005#38.1 linear
0.58

0.006 0.69 1.54 2.39

0.00150
0.092#38.1 Log-

linear
0.53

0.006 0.63 1.57 3.95

0.00024
1.22#38.1 Weibull
0.58

0.006 0.66 1.55 2.54

Comparison of results of extrapolation leads to the conclusion that in all of the cases the most
conservative estimation is provided by log-linear model.
This is an important observation. The p-values (used here as a criteria for choice of the model)
are quite close in all presented cases, but the extrapolated up to the 30-years age failure rates
are different. For example in case of component group #43.1 the difference in estimation using
log-linear and linear model is more then of factor 2. If log-linear calculation is compared with
result of Weibull model the difference rises up to the factor 2.8.
From the other side, log-linear model provides more uncertain extrapolations. This is shown in
the Figures 8 - 13.
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Figure 8. Component group #7.1 – linear extrapolation.
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Figure 9. Component group #7.1 – log-linear extrapolation.

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0 5 10 15 20 25 30

trend
Down(90%)
Down(95%)

Down(99%)
Up(90%)
Up(95%)
Up(99%)
non-parametric

Figure 10. Component group #7.1 – Weibull extrapolation.
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Figure 11. Component group #43.1 – linear extrapolation.
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Figure 12. Component group #43.1 – log-linear extrapolation.
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Figure 13. Component group #43.1 – Weibull extrapolation.

The following issues are open and have to be discussed :
•  what model to chose for extrapolation if several time-dependent models fit well with

the data,
•  how to take into account the extrapolation uncertainties when introduce parameters

into PSA model,
•  and, what are the ways to reduce the uncertainties.

 5. Conclusions and recommendations

1) Proposed approach permitted to identify the component groups with increasing failure rate
and to choose best fitted reliability model. The following  10 component groups were identified
as susceptible for ageing :

•  #7 (best fitted model is log-linear with θ2 = 0.055),
•  #7.1 (best fitted model is log-linear with θ2 = 0.079),
•  #8.1 (best fitted model is Weibull, p = 0.1, with θ2 = 0.31),
•  #11.1 (best fitted model is Weibull with θ2 = 0.55),
•  #13.3 (best fitted model is Weibull with θ2 = 0.47),
•  #35.1 (best fitted model is log-linear, p=0.15, with θ2 = 0.07),
•  #38.1 (best fitted model is log-linear with θ2 = 0.049),
•  #47.1 (best fitted model is log-linear with θ2 = 0.082),
•  #59.1 (best fitted model is log-linear with θ2 = 0.078),
•  #59.1@WR (best fitted model is log-linear with θ2 = 0.057).

2) In addition, for 2 component groups log-liner model with positive ageing parameter was
identified as well fitted, but the value of 90% low bound of “ageing” parameter is below zero :

•  #43.1 (best fitted model is log-linear with θ2 = 0.076),
•  #62.2 (best fitted model is log-linear with θ2 = 0.033).

3) Examination of the impact of burn-in failures provided fore additional groups to the list of
components susceptible for ageing :

•  #32.2 (best fitted model is Weibull with θ2 = 0.46),
•  #39.1 (best fitted model is log-linear with θ2 = 0.18),
•  #45@ (best fitted model is log-linear with θ2 = 0.0003),
•  #48.3 (best fitted model is log-linear with θ2 = 0.081).



For these gropes 90% confidence intervals for estimated parameters were not examined.

4) Consideration of burn-in failures could improve the result of goodness of fit test, as for
example in case of group #39.1, and could change the conclusion about existence or absence of
ageing trend, as for example in case of groups #32.2, #45@, #48.2 and #48.3.

5) The results of the calculations were compared with estimations by other parametrical
methods : Bayesian analysis with non informative priors and Stochastic Expectation
Maximization (SEM).
Bayesian analysis was performed with the same representation of data, i.e. binned data, when
SEM calculations were done by using times to failure type data.
Bayesian approach with non informative priors provides numerical results similar (or very
closes) to those obtained by frequentist analysis.

6) The SEM algorithm applied for times to failure type data provides more conservative
estimation of “ageing” parameter. As a consequence, the extrapolated values of failure rates
are much higher of those estimated with Chi-2 minimization approach.
One possible explanation of this difference is that times to failure data are more informative
that binned one. But more detailed investigation of this issue is necessary.

7) The impact of the choice of the model to extrapolation results were analyzed.  Comparison
of results of extrapolation leads to the conclusion that in all of the examined cases the most
conservative estimation is provided by log-linear model.
From the other side, log-linear model provides more uncertain extrapolations.

8) With regards to extrapolation of failure rate functions the following issues are open and have
to be discussed :

•  what model to chose for extrapolation if several time-dependent models fit well with
the data,

•  how to take into account the extrapolation uncertainties when introduce parameters
into PSA model,

•  and, what are the ways to reduce the uncertainties.
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