Review of Data Sources, QSARs and Integrated Testing Strategies for Skin Sensitisation

Grace Patlewicz and Andrew Worth
The mission of the IHCP is to provide scientific support to the development and implementation of EU policies related to health and consumer protection.

The IHCP carries out research to improve the understanding of potential health risks posed by chemical, physical and biological agents from various sources to which consumers are exposed.

European Commission
Joint Research Centre
Institute for Health and Consumer Protection

Contact information
Address: Toxicology & Chemical Substances Unit, TP 582
E-mail: andrew.worth@ec.europa.eu
Tel.: +39 0332 789566
Fax: +39 0332 786717

http://ecb.jrc.it/QSAR
http://www.jrc.cec.eu.int

Legal Notice
Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server
http://europa.eu/

JRC 43068

EUR 23225 EN
ISSN 1018-5593

Luxembourg: Office for Official Publications of the European Communities

© European Communities, 2008
Reproduction is authorised provided the source is acknowledged

Printed in Italy
Quality control insert

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Prepared by:</td>
<td>Andrew Worth</td>
<td></td>
<td>25/01/08</td>
</tr>
<tr>
<td>Reviewed by:</td>
<td>Manuela Pavan</td>
<td></td>
<td>29/01/08</td>
</tr>
<tr>
<td>(Scientific level)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved by:</td>
<td>Steven Eisenreich</td>
<td></td>
<td>30/01/08</td>
</tr>
<tr>
<td>(Head of Unit)</td>
<td>p.o. Ana Paya Perez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final approval:</td>
<td>Elke Anklam</td>
<td></td>
<td>04/02/08</td>
</tr>
<tr>
<td>(IHCP Director)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This review collects information on sources of skin sensitisation data and computational tools for the estimation of skin sensitisation potential, such as expert systems and (quantitative) structure-activity relationship (QSAR) models. The review also captures current thinking of what constitutes an integrated testing strategy (ITS) for this endpoint. The emphasis of the review is on the usefulness of the models for the regulatory assessment of chemicals, particularly for the purposes of the new European legislation for the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), which entered into force on 1 June 2007. Since there are no specific databases for skin sensitisation currently available, a description of experimental data found in various literature sources is provided. General (global) models, models for specific chemical classes and mechanisms of action and expert systems are summarised. This review was prepared as a contribution to the EU funded Integrated Project, OSIRIS.
LIST OF ABBREVIATIONS

CEFIC European Chemical Industry Council
DC Dendritic Cells
EC3 Concentration (weight percent) giving a stimulation index value of 3 in the LLNA
EC European Commission
ECB European Chemicals Bureau
ECETOC European Centre for Ecotoxicology and Toxicology of Chemicals
ECVAM European Centre for Validation of Alternative Methods
ELUMO Energy of the Lowest Unoccupied Molecular Orbital
EPA Environmental Protection Agency
ESIS European chemical Substances Information System (ECB)
EU European Union
F Fischer Statistic
FCA Freunds Complete Adjuvant
GPMT Guinea Pig Maximisation Test
HMT Human Maximisation Test
HOMO Highest occupied molecular orbital
HPV High Production Volume
ICCA International Council of Chemical Associations
ICCVAM Interagency Coordinating Committee on the Validation of Alternative Methods
ITS Integrated (Intelligent) Testing Strategy
JRC Joint Research Centre
k Rate constant
Ka Acid Dissociation Constant
LC Langerhans Cells
LLNA Local lymph node assay
LUMO Lowest unoccupied molecular orbital
MLR Multiple Linear Regression
MO Molecular Orbital
MSIAT Modified Single Injection Adjuvant Test
MW Molecular Weight
OECD Organisation for Economic Co-operation and Development
PCA Principal Components Analysis
pEC3 Negative logarithm of EC3 on a molar basis. Calculated as log [(molecular weight)/EC3]
Q² Predictive ability of a model
QMM Quantitative Mechanistic Model
QMRF (Q)SAR Model Reporting Format
QSAR Quantitative Structure-Activity Relationship
R² Goodness of fit
RAI Relative Alkylation Index
REACH Registration Evaluation and Authorisation of CHemicals
RIP REACH Implementation Project
SAR Structure-Activity Relationship
SB Schiff Base
SI Stimulation index
σ*: sigma* Taft substituent constant
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMILES</td>
<td>Simplified Molecular Line Entry system</td>
</tr>
<tr>
<td>S_N^2</td>
<td>Substitution reaction, nucleophilic, bimolecular</td>
</tr>
<tr>
<td>S_N^{Ar}</td>
<td>Substitution reaction, nucleophilic, aromatic</td>
</tr>
<tr>
<td>TG</td>
<td>Test Guideline</td>
</tr>
<tr>
<td>TIMES-SS</td>
<td>TIssue MEtabolism Simulator for Skin Sensitisation</td>
</tr>
</tbody>
</table>
CONTENTS

1. Introduction... 1
 1.1 REACH conditions regarding the use of (Q)SARs .. 2
 1.2 REACH information requirements for skin sensitisation................................. 3
 1.3 Test methods for skin sensitisation... 3
2. Sources of test data on skin sensitisation.. 5
3. (Q)SARs for skin sensitisation... 7
 3.1 SARs for skin sensitisation... 7
 3.2 Statistical QSARs for skin sensitisation... 9
 3.3 Local QSARs... 25
 3.4 Quantitative Mechanistic Models (QMM).. 34
4. Expert systems .. 38
 4.1 Knowledge-based systems... 38
 4.2 Statistical Expert Systems.. 39
 4.3 Hybrid Expert Systems... 43
5. Integrated testing strategies.. 46
6. Conclusions... 53
7. References... 56
1. Introduction

Allergic contact dermatitis is a significant environmental and occupational health concern. Workers and consumers being sensitised are a major problem for individuals, for employers and for marketing certain products. Consequently there exists an important need to identify chemicals that have the potential to cause skin sensitisation accurately (Steiling et al., 2001; Kimber et al., 2002; Kimber and Dearman, 2003). This review focuses on the available approaches for estimating skin sensitisation potential and where possible relative skin sensitising potency.

On 18 December 2006, the European Council and European Parliament adopted legislation (EC 2006a, EC 2006b) for a new chemical management system called REACH (Registration, Evaluation, Authorisation and Restriction of CHemicals). The purpose of REACH is to ensure a higher level of protection for human health and the environment, including the promotion of alternative (non-animal) methods for assessment of hazards of substances, amongst others. Non-testing methods such as structure-activity relationships (SARs) and quantitative structure-activity relationships (QSARs), collectively referred to as (Q)SARs, are expected to be most useful for substances most lacking in experimental data, such as those manufactured and imported in low tonnages (e.g. between 1 and 10 tonnes per year). The (Q)SAR, chemical category and read-across approaches are referred to in several places in the REACH annexes, including Annex III (Criteria for substances registered in quantities between 1 and 10 tonnes), Annex VI (Information requirements referred to in Article 10), Annexes VII–X (Standard information requirements for substances manufactured or imported in quantities of 1 tonne or more, of 10 tonnes or more, of 100 tonnes or more, and of 1000 tonnes or more, respectively). The key message in the annexes, including Annex VI, is that all available data shall be assessed first before new tests are carried out. Annex XI introduces general rules for adaptation of the standard testing regime set out in Annexes VII to X, including (Q)SARs, grouping of substances and read-across.

This review summarises different sources of skin sensitisation data, models and approaches described in the literature that are available (free or commercial) for the evaluation of skin sensitisation potential of chemical substances. This review builds
on previous work by Patlewicz et al. (2007a) and Tier, (2007). The use of such approaches will facilitate the collection of non-testing information for REACH and its application in Integrated Testing Strategies (ITS) for skin sensitisation is anticipated to contribute to a lowering of the number of tests that need to be performed for regulatory purposes.

1.1 REACH conditions regarding the use of (Q)SARs

(Q)SARs for human health endpoints such as skin sensitisation have scarcely been used in the regulatory assessment of chemicals within the EU. Work has been done by the HSE and the BfR to develop and propose modifications to the structural alerts contained in the expert system Derek for Windows (DfW) (Payne and Walsh, 1994; Gerner et al., 2004).

Under REACH, the use of (Q)SARs is expected to be more frequent and consistent. Annex XI of the REACH proposal states that results obtained from valid (Q)SARs may indicate the presence or absence of a certain dangerous property. Results of (Q)SARs may be used instead of testing when the following conditions are met:

- results are derived from a (Q)SAR model whose scientific validity has been established;
- the substance falls within the applicability domain of the (Q)SAR model;
- results are adequate for the purpose of classification and labelling and risk assessment;
- adequate and reliable documentation of the method is provided.

With regard to validity, the OECD Principles for (Q)SAR validation (OECD, 2004) are applicable. According to the OECD definition: “to facilitate the consideration of a (Q)SAR model for regulatory purposes, it should be associated with the following information: 1) a defined endpoint; 2) an unambiguous algorithm; 3) a defined domain of applicability; 4) appropriate measures of goodness-of-fit, robustness and predictivity; 5) a mechanistic interpretation, if possible.”

The principles for (Q)SAR validation identify the types of information that are considered useful for the regulatory review of (Q)SARs under REACH. Guidance on the practical interpretation of the OECD principles has been published by the ECB (Worth et al., 2005) and the OECD (OECD, 2007). The REACH framework for using
(Q)SAR, grouping and read-across is described in Worth et al. (2007). The requirement for adequate and reliable documentation on (Q)SARs prompted the development of (Q)SAR Model Reporting Formats (QMRFs). For further information, the reader is directed to the website of the European Chemicals Bureau: http://ecb.jrc.it/qsar/qsar-tools.

1.2 REACH information requirements for skin sensitisation

In REACH, sensitising potential needs to be assessed for chemicals above the 1 tonne threshold according to Annex VII (EC, 2006a).

Bearing in mind the REACH provisions, and especially Annex XI, which calls for gathering of all existing available test data on a substance as well as collecting all other available and relevant information (including information from (Q)SARs and read-across), it seems that the in silico methods will play an important role for indicating presence or absence of a hazardous property, which in certain cases will be able to replace the results of animal tests for both hazard and risk assessment.

1.3 Test methods for skin sensitisation

Information on skin sensitisation may be acquired from studies performed according to existing national and international guidelines, such as the EU testing methods and OECD test guidelines (TGs) which refer to internationally agreed testing methods. The complete list of OECD Guidelines for the Testing of Chemicals can be found on the OECD website (http://www.oecd.org). For many years, guinea pigs were the species of choice for predictive sensitisation tests. Two types of tests were developed; adjuvant tests in which sensitisation is potentiated by the injection of Freund’s Complete Adjuvant (FCA) and non adjuvant tests. OECD Test Guideline 406 (OECD, 1992) describes these tests as the Guinea Pig Maximisation Test (GPMT) and the Buehler test respectively. In the GPMT, a test substance is regarded as a sensitiser when at least 30% of the animals show a positive response (EC, 1996). In the Buehler test, a test substance is regarded as a sensitiser when at least 15% of the animals show a positive response (EEC, 1996).
The test of first choice under REACH for skin sensitisation is the Local Lymph Node Assay (LLNA) as described in OECD Test guideline No. 429 (OECD, 2002). The LLNA is based upon the characteristics of induced proliferative responses in draining lymph nodes following topical exposure of chemicals to mice. The endpoint is the stimulation index (SI), which gives a ratio of thymidine incorporation in lymph nodes from dosed animals compared to the incorporation in lymph nodes from vehicle-treated control animals. The test is positive when the stimulation index (SI) is greater than 3 for any of the dose concentrations. The EC3 value, interpolated from the dose response curve, is the effective concentration of the test substance required to produce a threefold increase in the stimulation index compared to vehicle-treated controls. It can be used as a quantitative measure of the relative sensitising potency. Further information describing the derivation and the use of the EC3 in risk assessment can be found elsewhere (Basketter et al., 1996; Basketter et al., 1999; Basketter et al., 2000; Basketter et al., 2002; Gerberick et al., 2000; Kimber et al., 2003; Basketter et al., 2003).
2. Sources of test data on skin sensitisation

Systematic development of comprehensive databases designed to assist in the detection or prediction of skin sensitisisation potential of chemicals was first started over 30 years ago. Notable amongst the early efforts were those by Ziegler (INPRET – Information on Predictive Tests) (Ziegler et al., 1989) and CSC Associated (CADES – Contact Allergens Database Evaluation Systems) (Sigman et al., 1994). Other datasets include Cronin and Basketter, (1994) who published the results of over 270 in vivo skin sensitisation tests obtained in the same laboratory (mainly from the guinea pig maximisation test). A compilation of summary (animal and human) data for a range of chemicals was included in Smith and Hotchkiss, (2001). A larger database of animal and human studies for 1034 compounds has been described by Graham et al., (1996) though the dataset is not present in this manuscript. The BgVV list of 264 chemicals was compiled and evaluated by a group of experts including dermatologists from universities and representatives of the chemical industry and from regulatory authorities that was established by the German Federal Institute for Health Protection of Consumers and Veterinary Medicine (BgVV) in 1985 (Schlede et al., 2003; Kayser and Schlede, 2001). Data from the literature on substances with documented contact allergenic properties in humans (from clinical data and experimental studies) and from animal experiments were evaluated resulting in a publication where chemicals were listed as belonging to one of 3 categories (A-C) where category A represented significant contact allergens, B a solid based indication for contact allergic potential and C insignificant or questionable contact allergenic potential.

A large number of data have been published for the local lymph node assay including full test results for 106 chemicals by Ashby et al., (1995), data for 41 chemicals (Gerberick et al., 2004a), EC3 values for 93 chemicals (Estrada et al., 2003) and full data for 211 chemicals (Gerberick et al., 2005).

Some skin sensitisation information may also be found in general databases such as e.g. ESIS, OECD HPV database. However the type of information available tends to be summary information or classification criteria such as the EU risk phrases. For skin
sensitisation this is designated by the R phrase R43. ESIS is hosted by the ECB. The OECD HPV database was compiled in the framework of the OECD HPV Chemicals programme.

Links to some of these databases are provided in Table 1.

Table 1. Databases that may contain information on the skin sensitisation of chemicals

<table>
<thead>
<tr>
<th>Database and Provider</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>European chemical Substances Information System (ESIS) EC-JRC-ECB</td>
<td>http://ecb.jrc.it/esis/</td>
</tr>
<tr>
<td>OECD HPV database</td>
<td>http://cs3-hq.oecd.org/scripts/hpv/</td>
</tr>
<tr>
<td>OECD</td>
<td></td>
</tr>
<tr>
<td>N-class database</td>
<td>http://apps.kemi.se/nclass/</td>
</tr>
<tr>
<td>KemI, Sweden</td>
<td></td>
</tr>
<tr>
<td>Riskline</td>
<td>http://apps.kemi.se/riskline/</td>
</tr>
<tr>
<td>KemI, Sweden</td>
<td></td>
</tr>
</tbody>
</table>
3. (Q)SARs for skin sensitisation

A number of different approaches and philosophies are used to develop (Q)SAR models and expert systems. In the area of skin sensitisation, available published (Q)SAR models fall into one of two main categories; either they are chemical class based/mechanism-based (local models) or they are derived empirically using statistical approaches (global models). Some of the available SARs are chemical class based whereas others are mechanistically based and some of these have been encoded into expert systems (Payne and Walsh, 1994; Barratt et al., 1994a; Barratt et al., 1994b). Expert systems will be discussed in more detail in the next chapter.

3.1 SARs for skin sensitisation

2200 test results were extracted from Contact Dermatitis and used to derive and encode 63 structural alerts for skin sensitisation in the Structure-Activity tree (SAT) as developed by Benezra et al., (1985). Despite much internet searching, no further information as to the current existence of SAT or its associated database PROPHET (Rindone and Kush, 1980) has been found.

A number of simple correlative studies relating sensitising potency to chemical properties (e.g. chain length, substitution position, reactivity) for a range of chemical series have been undertaken by Hausen and co-workers. Examples studied included gallates (Hausen and Beyer, 1992), coumarins (Hausen and Beyer, 1989), sesquiterpene lactones (Hausen and Schmalle, 1985), benzoquinones (Cremer et al., 1987), naphthoquinones (Schulz et al., 1977), Primin (2-methoxy-6-pentyl-1,4-benzoquinone) analogues (Hausen et al., 1995) and nonterpenoid and diterpenoid phenanthrenequinones (PACs) (Hausen et al., 2003).

Rao et al., (1981) evaluated various chemical groups for their skin sensitisation potential in the guinea pig. Chemicals with a proven capability to cause skin sensitisation included sulphur containing compounds: thienyl iodonium salts, sulphones, thiomethane sulphonates, nitrogen containing compounds: amines, acetanilides, diisocyanate, pyridines and piperidine derivatives. Positive responses also occurred with benzyl chlorides, some halo-methyl and hydroxyl-methyl
diphenyloxides, some phosphoric acid derivatives and some epoxide containing structures. Some of the structural features mimic those present in DfW.

A set of structural alerts based on the structural requirements for reactivity with skin proteins assessed from existing experimental skin sensitisation data were defined by Payne and Walsh, (1994). The alerts were classified as far as possible according to anticipated reaction mechanism and included: alkylating agents (haloalkanes activated towards nucleophilic reactions by conjugation with unsaturated groups. Other examples included dialkyl sulphonates, dialkyl sulphates and epoxides); arylating agents (nucleophilic substitution at an appropriately activated aromatic centres); acylating/sulphonating agents (e.g. phenyl esters); Michael addition electrophiles and precursors, thiol exchange compounds, free radical generators and metabolism to reactive electrophiles. The structural alerts devised were then tested using a set of 93 chemicals with published skin sensitisation taken from the European Community’s New Substances Regulations. The insights and findings were incorporated into the expert system DfW (LHASA Ltd, Leeds, UK) where possible.

Ashby et al., (1995) suggested broad structural activity relationships (SARs) for 106 chemicals tested in the LLNA. The 73 sensitisers were grouped into six main classes – potential electrophiles after metabolism (e.g. epoxide formers and aromatic nitro/amino compounds), electrophiles, Michael reactive agents (e.g. alpha,beta-unsaturated esters, amides and aldehydes), benzylation agents (e.g. benzoyl chloride and phthalic anhydrides, phenyl esters and phenyl benzoates), ionic chemicals (e.g. acid groups such as carboxylic or sulphonic acids) and miscellaneous agents. The electrophiles were further segregated into eight major subgroups – alkyl halides, sulphonates, sulphates, nitrosoamides and nitrosoguanidines, aromatic alkyl halides, aromatic alkylating agents, acylating agents, miscellaneous including isothiocyanate groups and strained lactones. Miscellaneous agents included compounds containing a sulphur atom that might participate in a disulphide bond formation with sulphhydryl (-SH groups). Whilst Ashby et al., (1995) went some way toward a mechanism-based classification, their groupings were part based on structural criteria, and part based on reaction mechanistic domains. A re-evaluation (Roberts et al., 2007a) has subsequently been conducted with respect to reaction mechanisms as defined in Aptula et al., (2005a).
Zinke et al., (2002) evaluated the 40 original DfW structural alerts published in Barratt et al., (1994a) against the database developed in the German Federal Institute for Health Protection of Consumers and Veterinary Medicine (BgVV). The evaluation revealed eight could be used without any further refinement whereas ten of the alerts were thought to need further specifications or refinements in order to avoid false positive predictions. There were insufficient substances to evaluate a further 10 of the alerts and for the remaining 12 structural alerts no comparative result could be obtained as these rules did not fire for any of the examined chemicals.

Gerner et al., (2004) derived two sets of new structural alerts using a regulatory database (unavailable) of sensitisers; 15 rules for directly acting sensitisers and 3 rules for chemicals that were sensitisers following metabolic activation. The alerts are extensively documented and proposed as being suitable for regulatory use. The predictivity rates of the rules were found to be reasonably high and the rules were substantiated with examples from the BgVV list now held at the BfR. The rules developed include those for hydrazines, hydrazonium salts and precursors, acid halides, aromatic sulphonic acids, acid anhydrides whereas the rules developed for the pro-haptens included catechols, resorcinols and hydroquinones, their precursors and diamines.

These efforts served to define the types of functional groups that were predictive of skin sensitization. In certain cases, they were incorporated into the expert system, DfW as alerts. Such structural alerts may be helpful in identifying potential sensitisers as a first step in an integrated testing strategy (ITS). They may also facilitate the discovery of similar analogues that could be used in a read-across evaluation.

3.2 Statistical QSARs for skin sensitisation

Statistical QSAR models are those developed empirically by application of various statistical methods to sets of biological data and structural, topological and/or geometrical information descriptors. Often known as global QSARs, they are purported to be able to make predictions for a wide range of chemicals, covering a
wide range of different mechanisms of action. A number have been reported in the recent literature of which some have been analysed in more detail in accordance with the OECD principles (see Roberts et al., (2007b) as an example).

Probably the first global models for sensitisation were those developed by Magee and Hostynek, (1994, 1997). They investigated the feasibility of deriving models for fragrance allergens using classification and ranking approaches. They developed a statistical discriminant QSAR model based on a dataset of 72 chemicals – comprising 36 sensitisers and 36 non-sensitisers. The model was based on a combination of continuous transport/binding descriptors and dichotomous descriptors reflecting protein reactivity by a count of toxophores. Molar refraction (MR), polarisable molecular volume were used to model transport whereas London forces in non-specific binding, PL, the lipophilic contribution of Log P (which models the interaction of compounds with proteins and membranes) were continuous descriptors used to model binding properties. In addition, the number of Hydrogen Bond Acceptors (HBA) and Hydrogen Bond Donors (HBD) as well as a number of substructures; $ICOOR$ (simple aliphatic esters and models esterase degradation), $ICONJ$ (conjugated olefins activated by groups that cause Michael addition of SH and NH$_2$), IX (reactive aliphatic or aromatic halides), $IArOH$ (easily metabolised phenols to reactive quinines), $IArNH$_2$ (easily metabolised anilines to reactive quinines), IOH (easily oxidised primary alcohols to reactive aldehydes), $IUNIQ$ (strong nucleophiles or unusual reactive electrophiles), $IPOS$ (Michael reactants, Reactive Nucleophiles and Electrophiles) were all used to model protein reactivity. In these discriminant models, predicted sensitisers were those scoring a value greater than 0.5, non-sensitisers scored below 0.5, and values between 0.4-0.6 were designated as indeterminate (i.e. no prediction was possible). Early evaluation studies found the discriminating power to be of the order of 79-88% correct classification where non-sensitisers were predicted somewhat better than sensitisers. The resulting model took the form (Equation (1)):

\[
\text{Classification score} = 0.0116MR-0.161PL+0.0498HBA-0.129HBD-0.284ICOOR+0.57ICONJ+0.16IX+0.596IArOH+0.503IArNH$_2$+0.207IOH+0.512IUNIQ+0.118
\]

\[
N = 70 \; (2 \; \text{outliers}) \; R^2 = 0.75 \; s = 0.275 \; F = 15.81
\]
The classification model was unable to predict 12 chemicals (i.e. indeterminate), for the 62 remaining chemicals, the model predicted 57 correctly (92% concordance). The model overall performed better on non-sensitisers (12/12, 100% specificity) than on sensitisers (45/50, 90% sensitivity).

The second of these discriminant models was a rank model based on a set of 89 chemicals using largely the same descriptors. The method of ranking was based on non, weak, moderate and strong responses where a numerical scale corresponded to the classification of potency scores. The scale was a modification of the Magnusson-Kligman scale (1969). The specificity was 60% (9/15) and sensitivity 95% (56/59) with an overall 88% (65/74) model performance. The final model (Equation (2)) is given below.

\[
\text{Ranking score} = 0.0294MR - 0.281PL - 0.0960HBA - 0.207HBD - 0.409ICOOR + 0.547IOH + 0.519IX + 1.375IPOS + 1.39IQUIN + 1.7
\]

\[N = 29 \text{ (non), } N = 18 \text{ (weak), } N = 15 \text{ (moderate), } N = 26 \text{ (strong)}\]

\[N = 88 \quad R^2 = 0.726 \quad s = 0.68 \quad F = 23\]

The models’ applicability domain was not systematically defined, aside from the fact that the models were trained on fragrance allergens. It is felt by the authors that these models might show promise in screening out sensitisers as part of an ITS.

Cronin and Basketter, (1994) used stepwise discriminant analysis on a set of 259 chemicals (mostly tested in the GPMT in the spirit of the OECD guidelines) to produce a 14 parameter model for the prediction of sensitisation. 12 of the 14 descriptors in the final model were structural features associated with reactivity. The other two descriptors were the Shannon index (Dearden et al., 1988) which considers a measure of molecule size (and in turn is probably related to penetration) and the difference in HOMO and LUMO energies, thought to be related to reactivity (a large difference between HOMO and LUMO energies implies high stability and thus low reactivity (Zhou and Parr, 1990) – the sensitisers in this dataset did indeed have lower energy differences). The model predicted 82.6% of compounds correctly after cross-validation but had a tendency to predict non-sensitisers better than sensitisers (88% correctly predicted c.f. 76%). Phenols and acetate derivatives were predicted poorly in...
particular. The concluding remarks of the authors was that structural alerts might have been a better means of identifying potential sensitisation hazard as the statistical model was poor at discriminating between the two classes. Whilst the compiled dataset included potency classifications (Barratt et al., 1994a) for the GPMT, the statistical model was only trained to discriminate between presence and absence of sensitisation hazard.

Devillers (2000) used the dataset of (Cronin and Basketter, 1994) to derive a neural network model relating the same 14 descriptors to sensitisation outcome. A three-layer feed forward neural network trained by the back-propagation algorithm previously described (Devillers, 1996; Rumelhart et al., 1986) was used on a training set of 242 chemicals and a test set of 17 chemicals. After more than 200 trials, the optimal architecture and parameters of the ANN were determined. The total percentage of correct classifications was 89.19% (cf. 82.6% in Cronin and Basketter, 1994). This model does appear to be better in terms of its predictive performance though there are notable tradeoffs - greater complexity in terms of the modelling approach used; non-linear v.s. linear and a lack of transferability. These tradeoffs are not insurmountable in terms of demonstrating scientific validity as evidenced in Vracko et al., (2006) but since Devillers’ (2000) primary aim was to demonstrate the utility of the neural network approach in discriminating between sensitisers and non-sensitisers rather than trying to predict sensitisation potential or its underlying mechanism, the performance statistics alone would perhaps be insufficient to select this model over another simpler one.

Federowicz et al., (2004) developed a logistic regression model that related \(nDB \) (number of double bonds), \(C-003 \) (number of CHR3 molecular subfragments), \(GATS6M \) (autocorrelation coefficient) and \(HATS6m \) (GETAWAY descriptor) to LLNA data (comprising 25 sensitisers and 29 non-sensitisers taken from (Ashby et al., 1995; Haneke et al., 2001). The Dragon software (Talete srl, Milan, Italy) was used to calculate 1024 descriptors. The statistical analysis was carried out using SAS 8.2 statistical package. Overall, 420 out of the 1024 descriptors were found to be statistically significant at the \(p \)-level of 0.05. Four main classes of descriptors were chosen; Radial Distribution Function descriptors which are based on the distance distribution in the geometrical representation of the molecule, topological descriptors
which are based on molecular graphs as a source of different probability distributions to which information theory definitions are applied, GETAWAY class descriptors (Todeschini and Consonni, 2000) which try to match the three dimensional molecular geometry provided by the molecular influence matrix and atom relatedness by molecular topology with chemical information by using different atomic weight schemes and BCUT, a class of molecular descriptors defined as eigenvalues of a modified connectivity matrix (Burden, 1989; Burden, 1997). The descriptors were chosen to have an association with sensitisation activity but the relevance of these descriptors to mechanism was not explained in the article. The QSAR predicted 83% of the responses correctly based on the training set of compounds and 79% in a cross validated test set. A characterisation of this model with respect to the OECD principles is described in Roberts et al., (2007b) where the lack of plausible mechanistic rationale was scrutinised in particular.

Using an augmented dataset of chemicals tested in the LLNA taken from the ICCVAM dataset (Haneke et al., 2001) of 209 chemicals, Fedorowicz et al., (2005) then developed logistic regression models using a subset of 178 organic chemicals. Three organic chemicals (sodium lauryl sulphate, benzalkonium chloride and streptozotocin) were removed from the dataset citing possible interference between skin sensitisation and skin irritation responses. The resulting dataset comprised 132 sensitisers and 46 non-sensitisers. Of the same dataset, 105 chemicals had guinea pig data, 82 sensitisers and 23 non-sensitisers. 262 descriptors were calculated using Cerius 2 software (Accelrys Inc, San Diego, CA, USA), 1204 descriptors were calculated with Dragon 2.1 software (Talete srl, Milan, Italy) and a further 747 with MolconnZ software (eduSoft, LC, Ashland, VA, USA). After removal of repeated and constant variables, 1777 descriptors were left. Stepwise logistic regression was used to select descriptors from the set of 1777 descriptors generated. The following models based on LLNA and GPMT datasets respectively were derived (Equations (3) and (4)):

\[
\text{Logistic regression model outcome (Guinea pig) = } 9.53 - 2.01Hmax - 19.9(R3e+) - 15.8(R3u+) - 12.9HATS1u
\] (3)

13
Logistic regression model outcome (LLNA) = 15.2 – 0.345\(Hy\) + 0.351\(Gmin\) - 7.76\(RARS\) - 4.09\(BELe1\) - 0.259\(Dipole\)

The molecular descriptors were not interpreted at a molecular structure level but their definitions were: \(Hmax\) maximum H electrotopological state; \(R3e+\) maximal autocorrelation of Lag3/weighted y atomic Sanderson electronegativities; \(R3u+\) maximal autocorrelation of lag 3/unweighted; \(HATS1u\) leverage weighted autocorrelation of lag 1/unweighted; \(Hy\) hydrophilic factor; \(Gmin\) minimum E state; \(RAR\) R matrix average row sum; \(BELe1\) lowest eigenvalue, no. of Burden matrix/weighted by atomic Sanderson electronegativities; \(Dipole\) dipole moment.

The descriptors underpinning the guinea pig model suggested polarity and hydrogen bonding were important factors in skin sensitisation whereas polarity, charge distribution and lipophilicity were associated with the LLNA model.

Both models produced correct responses of greater than 80%. Their sensitivity values were greater than 94% though their specificities were very low. This was attributed to the unbalanced datasets, in that there was a 3:1 ratio of sensitisers to non-sensitisers in the LLNA dataset and a 4:1 ratio in the guinea pig dataset. If the cutoffs in the specificity and sensitivity curves were changed, a better classification performance was feasible. This in itself showed how sensitive the logistic modelling approach was to the size and structure of the dataset.

The model performances were additionally compared with DfW (Version 6, LHASA Ltd, Leeds, UK) and Topkat (Version 6.2, Accelrys Inc, San Diego, CA, USA). The first QSAR model based on guinea pig data only was compared with DfW and Topkat. The second model based on LLNA data only was compared with DfW (since Topkat is based entirely on guinea pig data).

The logistic regression models were shown to perform better (in terms of their correct classification) than the two expert systems, DfW and Topkat. The performances were 73.3% for Topkat, 82.9% for DfW and 87.6% (guinea pig data logistic regression model). The LLNA logistic regression model gave a correct classification of 83.2% compared with 73% for DfW.
As a followup to publications by Federowicz et al., (2004) and Federowicz et al., (2005), Li et al., (2005) used random forest and classification tree modelling methods to develop models to predict skin sensitisation activity. The same dataset of 178 organic chemicals taken from the ICCVAM report (Haneke et al., 2001) was used as the training set. This dataset comprised 131 sensitisers and 47 non-sensitisers. 262 molecular descriptors were then calculated using Cerius 2 (Accelrys Inc, San Diego, CA, USA), 1204 Dragon (Talete srl, Milan, Italy) descriptors were calculated as well as 747 descriptors using MolConnZ (eduSoft, LC, Ashland, VA, USA). After removal of duplicates and constants, 1380 descriptors remained. A random forest technique and a standard classification technique were then used to develop models. A classification tree with 4 descriptors was developed with a very high sensitivity of 99.2% but a very low specificity of 34%. The descriptors in this model were \(A_{type} C3\) (count of atom types CHR3), \(nsssCH\) (count of atom types), \(SsssCH\) (sum of atom type E-state), \(Hy\) (Hydrophilic factor).

A random forest approach was then deployed firstly using all available 1380 descriptors, before half of those descriptors with the lowest importance were dropped from the model. The remaining descriptors were used as the input set for the formation of a new random forest and so on until only a few descriptors remained in the model. This could be further fine tuned using a backward elimination procedure using the penultimate random forest such that a minimum of two descriptors remained in the final model. Models were created with 10, 7 and 5 descriptors. The sorts of descriptors found in these models included minimum E state (\(Gmin\)), \(H_{maxpos}\) (maximum H E-state), \(R4e^+\), R maximal autocorrelation of Lag 4/weighted by Sanderson electronegativities, sum of delta-I values (\(sumdell\)), \(SEigp\) (eigenvalue sum from polarisability weighted distance matrix. The best model reported was the random forest with 10 descriptors. At a threshold of 0.7, the specificity was 83% and the sensitivity was 84%.

In addition to classifying chemicals as active or inactive, the random forest approach was also exploited to provide a proximity measure defined as “the probability of assigning two chemicals to the same node”. A hierarchical clustering was performed to group chemicals according to this index. This was applied to the 10-descriptor
Random forest model to give some insights into how the random forests combined structurally similar chemicals and how these shared similar molecular patterns were associated with skin sensitisation activity. A number of groups emerged from the clustering routine including halogeno derivatives, simple phenyl derivatives, structurally diverse surfactant like chemicals, alkyl and aliphatic acid halides and polycyclic aromatic hydrocarbons, aldehydes, ether, methylene and peroxide or lactone groups, aliphatic halides, catechols, low weight highly hydrophobic chemicals with 4-8 carbon atoms in their structures, surfactants with long hydrophobic aliphatic chain of 18-19 carbon atoms etc. A detailed interpretation of each of these groups was not performed by the authors. However, the random forest approach had largely separated sensitisers from non-sensitisers and each group was made up of structurally similar chemicals.

These three models are limited in their scope in that they only predict the absence and presence of sensitisation based on a limited and unbalanced dataset. No mechanistic interpretation for the final descriptors in the models is provided and from the large initial pool of descriptors, it is questionable that the choice of final descriptors is meaningful or statistically sound given the high probability of chance correlations. The final model in the series (Li et al., 2005) aims solely to compare the performance of a random forest approach against a standard classification approach using statistical performance as a criterion. The models have been characterised to an extent but have questionable robustness (e.g. low specificities) suggesting that they could play no meaningful role within a risk assessment context but might be useful as crude screening tools for compound discovery scenarios instead.

Estrada et al., (2003) performed a linear discriminant analysis relating topological descriptors to skin sensitisation data as measured in the LLNA. The topological descriptors are so-called TOPS-MODE descriptors or topological substructural molecular design. These descriptors are spectral moments of a bond matrix weighted for different physicochemical properties and raised to different power (in this case, the bond matrix was raised to an order of 15). The 6 weighting properties were lipophilicity, polarisability, polar surface area, molar refractivity, atomic charges and
van der Waals radii. A set of 93 diverse chemicals and their associated LLNA EC3 values were collated. The EC3 values were categorised into bands of potency (Basketter et al., 2002). A chemical with an EC3 value less than 1% was defined as strong sensitiser, one with an EC3 between 1 and 10%, moderate, 10-30% weak, 30-50% extremely weak and greater than 50% non-sensitising. These classifications were further amalgamated into two groups. The 93 compounds were divided at random into a test set (15 compounds) and training set (78 compounds). A two model classification system was then developed; the first model discriminated strong/moderate sensitisers (EC3<10%) (class 1) from all other chemicals. The second model differentiated weak sensitisers (10%<EC3<30%) (class 2) from non-sensitising/extremely weak sensitisers (EC3>30%) (class 3). Model 1 was able to correctly classify 80% of the 75 compounds in class 1. Thirty-one of the 39 strong/moderate sensitisers were correctly predicted. Eight compounds were predicted to be false negatives. Three compounds were found to be statistical outliers and one compound from class 2/3 could not be classified by Model 1 (Equation (5)). This resulted in a 80% (28/35) correct classification.

\[
\text{Class1 model } = (1.331*\mu_1H) - (0.00598*\mu_4H) + (0.0078*\mu_2PS) - (0.00021366*\mu_3PS) + (0.0755*\mu_1MR) + (0.0319*\mu_2MR) - (0.0011133*\mu_5Pol) - (2.3797*\mu_1Ch) + (0.1547*\mu_3Ch) + (0.00425*\mu_6Ch) + (2.0932*\mu_1vDW) - (0.8683*\mu_2vDW) + 0.7954
\]

\[
\text{Wilks - lambda } = 0.61 \quad F = 3.39 \quad D2 = 2.52 \quad p<0.0007
\]

36 compounds were used to develop Model 2. 80.5% of the training set compounds in Model 2 (Equation (6)) were predicted correctly: 29 were classified correctly and the other seven were false positives. The overall correct classification of this model was 80.26%.

\[
\text{Class2 model } = (0.946*\mu_1H) - (0.00468*\mu_7H) - (0.894*\mu_1PS) + (0.1004*\mu_2PS) - (0.0024*\mu_3PS) + (0.0057*\mu_3Pol) - (1.429*\mu_1Ch) + (0.0053*\mu_8Ch) - (0.00111*\mu_9Ch) - 5.309
\]

\[
\text{Wilks - lambda } = 0.38 \quad F = 4.63 \quad D2 = 8.76 \quad p<0.001
\]
A dataset of 15 compounds unseen by the model and with available skin sensitisation data were taken from other available existing public sources formed the basis of the external validation set to test the robustness and predictivity of model 1. Owing to the inavailability of further data, an external validation was carried out only for Model 1. All but one of the strong/moderate sensitisers were classified correctly. Since the validation set was not designed rigorously, this good performance might well have been on the basis of chance. No assessment of the representativeness of the external test set relative to the training set was conducted at the time. The importance of representativeness of test sets relative to training sets is linked to the issues of applicability domain that are described within the OECD principles (OECD, 2004; OECD, 2007). This has been the subject of much debate (Netzeva et al., 2005; Jaworska et al., 2005) and scientific research has been undertaken to develop such approaches (see Dimitrov et al., 2005a; Nikolova-Jeliazkova and Jaworska, 2005).

The descriptors in these two models do appear quite complex although a mechanistic interpretation is possible for each of the descriptors in turn. Factors such as lipophilicity, polar surface area, van der Waals radii may model partition related effects in skin sensitisation whereas as the parameters such as charges and polarisability may relate to the reactivity or electrophilicity of the chemicals. Subsequent work in (Roberts et al., 2007b) has re-evaluated the extent to which descriptors such as charges and polarisability are able to model electrophilicity per se. Modelling reactivity remains a challenge (Schultz et al., 2006) as is discussed in more detail later.

The unique feature of the TOPS-MODE descriptors is that in addition to using the whole descriptors for QSAR modelling, local spectral moments for each of the bonds could also be calculated. These enabled features which contribute positively or negatively to skin sensitisation to be identified, leading to structural rules or alerts that could be later embedded into expert systems such as DfW. Examples of structural rules derived in this way are discussed in both Estrada et al., (2003) and Estrada et al., (2004). In Roberts et al., (2007b) these insights were thoroughly assessed (e.g. Alkyl halides, Alkyl alkane sulphonates, Aromatic nitro compounds, 3-Methyl-1,2,5-thiadiazole-1,1-dioxide (MPT), Hydroxylamines, Clotrimazole) and some of the proposed insights were thought to be based on erroneous arguments. An evaluation
was additionally performed in Patlewicz et al. (2007b) which found the model to be less predictive than originally thought. In light of these issues, this model is not thought to be appropriate for use in a risk assessment context.

Miller et al., (2005) collected a set of 87 LLNA data and after removal of 20 outliers (the basis for removal being the poor fit between calculated and experimental EC3 values) 67 chemicals were analysed: 50 as a training set and 17 as a test set. EC3 values as w/v percent concentrations were used as the dependent variable. Several hundred descriptors were calculated using CODESSA (Comprehensive Descriptors for Structural and Statistical Analysis (Codessa), Semichem, Inc.: Shawnee Mission, KS, USA). These descriptors may be categorised as being topological, constitutional, geometric, electrostatic, thermodynamic and quantum chemical in nature. A heuristic algorithm (not further described in the paper) was used to derive several correlations from these descriptors. The best model was selected based on the statistical parameters (R^2, adjusted R^2, F test etc) as well as on whether there was a “chemical sense of the descriptors for the understood mechanism of sensitisation”. The aim of the QSAR developed was that it should cover a broad range of structures, including halogenated and aromatic compounds, alcohols, aldehydes and ketones. Compounds “with iodine, sulphur and anhydride rings, adjacent ketones and alkene aldehydes which are not Michael reactants” were cited as being outside the scope the QSAR. These 20 compounds were removed from the training set on the basis of a poor fit between calculated and experimental values. The resulting QSAR (Equation (7)) derived was:

$$EC3 = 9.16 \text{FPSA2ESP} + 4.29 \text{EHOMO-LUMO} - 45.89 \quad (7)$$

$$N = 50 \quad R^2 = 0.773 \quad R^2 \text{adj} = 0.763 \quad R_{CV} = 0.738 \quad F = 79.9$$

where

- FPSA2ESP – fractional positively charged surface area descriptor based on electrostatic potential charge (though to be related to partition)
- EHOMO-LUMO – is the energy gap between Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) (thought to be associated with reactivity)
The performance for the test set of 17 chemicals was expressed in terms of R^2 ($R^2 = 0.877$ where 14 chemicals out of the 17 chemicals were correctly predicted). On account of biological variability of the EC3 values, “a bin selection method” was then used to classify compounds into one of three categories; strong, moderate and weak. These were defined as: Strong, EC3 < 6 %; moderate 6 % < EC3 < 13 %; weak EC3 >13 %. These cutoffs were chosen to balance the number of chemicals that fell into the strong and moderate categories. The bin selection method was found to predict 44 out of 50 training set chemicals correctly. Use of the EC3 (as a weight percentage) rather than a molar basis EC3 appears to be a flawed choice. It disguises the fact that the model is poor at discriminating within a given category. For example with N-Methyl-N’-nitrosourea, the literature value is 0.05 and the predicted value is 3.27, a residual of 3.22 which appears to be a reasonable agreement. A comparison on the basis of molar EC3 reveals the prediction to be underestimating the potency by a factor of 65. In addition, had the proposed category boundaries for the LLNA been used as defined in (Kimber et al., 2003), than the QSAR model would have been shown to perform much less favourably. Further evaluation of this model has been described extensively in Roberts et al. (2007b).

Owing to the poor performance, the unsound statistics in starting with such a large pool of descriptors (Topliss and Edwards, 1979), the use of the percentage EC3 amongst other things, it is suggested that this model would be of no value in evaluating sensitisation robustly.

A support vector machine (SVM) (Benables and Smith, 2003) was used to develop a nonlinear binary classification model for skin sensitisation for a diverse set of 131 organic compounds tested in the LLNA. Six descriptors were selected by stepwise forward discriminant analysis (LDA) from a starting set of 282 CODESSA molecular descriptors. These six descriptors were thought to reflect the mechanistic relevance to skin sensitisation (though this was not explained in the paper) and were used as inputs of the SVM model. The descriptors were Relative number of Nitrogen atoms, Gravitation index, Kier and Hall index, YZ Shadow, Maximum partial charge for a C atom, Maximum 1-electron reactivity index for a C atom. The nonlinear model developed from SVM (89.77% correct classification) algorithm outperformed the LDA (correct classification 79.55%) (Ren et al., 2006).
This exercise aimed to compare the utility of one statistical technique over a second to judge whether the statistical performance was enhanced. No effort was made to fully characterise this model in the paper. The legitimacy of using such a high number of starting descriptors (282) for the number of observations (131) is also an issue.

The feasibility of using 4D fingerprints derived from a methodology called 4D molecular fingerprint similarity analysis was investigated to develop QSAR models for skin sensitisation (Li et al., 2007a). An early version of the LLNA dataset published in Gerberick et al., (2005) comprising data on 219 chemicals was sorted into 3 categories; non + weak sensitisers (101 chemicals), moderate sensitisers (72 chemicals) and strong + extreme sensitisers (46 chemicals). The moderate sensitisers were removed to create a separation gap and the other two classes were retained to develop a model to discriminate between them. Ten non-weak and 5 strong-extreme sensitisers were randomly chosen to be the test set. The remaining training set comprised 91 non-weak chemicals and 41 strong-extreme sensitisers. Models were initially investigated using discriminant analysis and partial least square discriminant analysis techniques but the performance of these models were as low as 67% accuracy. Two other statistical techniques namely logistic regression and partial least square coupled with logistic regression were then applied to generate categorical models to differentiate between sensitisers and non-sensitisers.

The 4D fingerprints are eigenvalues of molecular similarity eigenvectors determined for a molecule from its set of absolute molecular similarity main distance dependent matrices. The descriptors aim to encode information about the composition of a chemical, its size, shape and conformational flexibility. 720 descriptors were calculated in total. Two QSARs both composed of nine 4D-fingerprints were built using stepwise linear logistic regression on both standardised and unstandardised descriptors. The model (Equation (8)) using standardised descriptors is given below.

\[
\text{Logit}(P) = -1.745 + 1.119 \epsilon_{3(\text{hbd}, \text{aro})} + 2.686 \epsilon_{12(\text{hs}, \text{aro})} - 0.9722 \epsilon_{18(\text{all}, \text{all})} + 1.654 \epsilon_{2(\text{np}, \text{p})-0.9936} \epsilon_{2(\text{all}, \text{all})} - 0.8841 \epsilon_{1(\text{p}, \text{hbd})} - 3.966 \epsilon_{19(\text{hs}, \text{all})} + 1.466 \epsilon_{54(\text{all}, \text{all})} + 1.388 \epsilon_{39(\text{all}, \text{all})} \tag{8}
\]
The performance scores were invariant to the standardisation state of the descriptors. The performance scores ranged from 79.5-85.6% accuracy, 68.3-78% sensitivity and 80.2-93.4% specificity for the training sets depending on the classification cut offs. Cross validation accuracies varied between 77.3%-78%.

A stepwise logistic regression was then performed where 266 significant descriptors were picked from the original 720 descriptors resulting in Equation (9). Here the performance scores were similar with accuracy varying between 79.5-88.6%, sensitivity at 80.5% and specificity between 79.1-92.3% again depending on the classification cut off used. Cross validation accuracies varied between 75.8%-80.3%.

\[
\text{Logit}(P) = -1.576 + 2.877\ell_3(\text{hbd},\text{aro}) + 1.387\ell_12(\text{hs},\text{aro}) - 4.911\ell_18(\text{all,all}) + 1.017\ell_2(\text{np,p-}) - 0.7601\ell_2(\text{all,all}) - 0.9919\ell_12(\text{hs,hs}) + 4.589\ell_15(\text{np,np}) - 1.890\ell_2(\text{np,hbd}) + 0.8954\ell_2(\text{hs,p+}) + 0.6735\ell_3(\text{np,hba}) \quad (9)
\]

Although the classification accuracies of equations (9) and equation (8) were similar, the latter QSAR model was deemed to be a better model by virtue of its more favourable goodness of fit statistics and because it had fewer descriptors (9 vs. 10).

An interpretation of the descriptors used in equation (8) was conducted to rationalise what role they played in sensitisation mechanism. $\ell_2(\text{np,p-})$, $\ell_3(\text{hbd},\text{aro})$, $\ell_12(\text{hs,aro})$ all with positive regression coefficients suggested that non-polar and aromatic atoms of a molecule would increase the lipophilicity and hence promote absorption into the skin thus modelling the “penetration” hurdle in skin sensitisation. The covalent interaction between chemical and protein was thought to be encapsulated in fingerprints $\ell_2(\text{np,p-})$ and $\ell_3(\text{hbd,aro})$ since atom types p- and hbd are indicative of the polarity and hydrogen extraction behaviour of the molecule. The positive regression coefficients of np and p- descriptors may indicate that an increase in a molecular polarity corresponded to an increase in reactivity and the probability that the molecule may be a strong-extreme skin sensitisier. The $\ell_1(\text{p-,hbd})$ descriptor may indicate a need for a particular spatial distribution p- and hbd atom types over a molecule in the process of sensitisation. Since this descriptor had the smallest regression coefficient, it was thought that it might actually be a correction term. The significant 4D fingerprints in equation (8) including $\ell_2(\text{all,all})$, $\ell_18(\text{all,all})$ and the
correction terms $\varepsilon_{39}(all, all)$, $\varepsilon_{54}(all, all)$ and $\varepsilon_{19}(hs, all)$ were thought to capture the important role that molecular shape, size and steric interactions play in skin sensitisation. It was further postulated that since the regression coefficients of $\varepsilon_{2}(all, all)$ and $\varepsilon_{18}(all, all)$ were negative whereas $\varepsilon_{39}(all, all)$ and $\varepsilon_{54}(all, all)$ were positive, a medium sized molecule might have the highest probability of being a non-weak sensitiser whereas a large molecule with 54 or more atoms was most likely to be a strong-extreme sensitiser.

A model was also developed using partial least square coupled with logistic regression. The best model (Equation (10)) derived was as follows

$$\text{Logit}(P) = -3.564 + 0.498x_{\text{scr4}} + 0.407x_{\text{scr4}} + 0.636x_{\text{scr5}} + 0.513x_{\text{scr8}} + 0.415x_{\text{scr10}} + 0.7x_{\text{scr13}} + 0.882x_{\text{scr20}}$$ (10)

Where $x_{\text{scr}i}$ denoted the i^{th} PLS component extracted from the 720 non-scaled 4D fingerprints. The performance scores for equation (10) were actually more impressive than for equation (8) (Accuracy 90.2-97% vs. 79.5-85.6%, Sensitivity 85.4-95.1% vs. 68.3-78%, Specificity 90.2%-97.8% vs. 80.2-93.4% and Cross validated accuracies between 87.1-89.4% vs. 77.3-78%. Equation (10) also had a higher goodness of fit, predictive power and contained fewer descriptors. Equation (8) was thought to be more stable to variations in cut off classifications and its descriptors could be more readily interpreted. No mechanistic insights were offered by the authors for equation (10) since the PLS component factors being linear combinations of the original 4D fingerprints were more difficult to interpret.

Three and four state categorical quantitative structure-activity relationship (QSAR) models for skin sensitisation were constructed using data from the murine Local Lymph Node Assay studies using the dataset from (Li et al., 2007a) and the same 4D-fingerprint descriptors. Logistic regression, and partial least square coupled logistic regression were used to build models. The three-state QSAR model gave a classification accuracy of 73.4% for the training set and 63.6% for the test set, whilst the random average value of classification accuracy for any three-state data set was...
The two-2-state [four categories in total] QSAR model gave a classification accuracy of 83.2% for the training set and 54.6% for the test set, whilst the random average value of classification accuracy for any two-2-state data set was 25%. An analysis of the skin-sensitisation models developed in this study, as well as the two-state QSAR models developed previously, suggested that the "moderate" sensitisers were the main source of limited model accuracy. The 4D-fingerprints were thought not to be adequate in describing the chemical reactivity events in skin sensitisation and in particular unable to capture all of the molecular features which make a compound more than a "weak" sensitiser, but less than a "strong" sensitiser (Li et al., 2007b).

The models developed appeared to be able to differentiate between non-weak chemicals and strong-extreme sensitisers reasonably well but either no prediction (Li et al., 2007a) or a poor prediction of potential moderate sensitisers (Li et al., 2007b) could be made. The fingerprint descriptors used lack physical meaning and are extremely difficult to interpret in terms of skin sensitisation mechanism. In Li et al. (2007b) the descriptors were thought to be inadequate in describing reactivity events in sensitisation. For these reasons, it is thought that these models can not be reliably used in regulatory skin sensitisation risk assessment (e.g. under REACH).

Statistical QSARs covering several mechanistic domains have become a growth area recently. Some have apparent high predictive rates, but typically lack any sound mechanistic basis and are usually only able to model a secondary endpoint of skin sensitisation presence or absence or else a crude potency classification (Miller et al., 2004; Fedorowicz et al., 2005). The majority of these QSARs use selections from the same set of published LLNA data (Gerberick et al., 2005) suggesting an over emphasis on applying new statistical techniques or descriptors rather than trying to rationalise the underlying skin sensitisation mechanism. As a consequence, it is suggested that these models may serve, at best, in a restricted capacity as screening tools within an ITS.
3.3 Local QSARs

Roberts and Williams, (1982) developed the first mathematical model of the in vivo alkylation process, known as the Relative Alkylation Index (RAI) model which quantified the degree of carrier alkylation with sensitisation potential. The model can be summarised as follows:

- The carrier protein is in a lipid environment (e.g. cell membrane) which is washed by a polar fluid (e.g. lymph or blood)
- Alkylation kinetics are first order.

Based on these assumptions, rate equations were set up for alkylation and disappearance of the test compound from the system (by alkylation and partition into the polar fluid) and from these the RAI was derived.

\[
RAI = \log(kD/P + P^2) \tag{11}
\]

where \(k\) is the alkylation rate constant measured against a standard nucleophile, \(D\) is the molar dose and \(P\) is the partition coefficient measured between a standard polar/non polar solvent e.g. log \(P\). In its most general form the RAI, an index of the relative degree of carrier protein haptenation, is expressed as:

\[
RAI = \log D + a \log k + b \log P \tag{12}
\]

Thus the degree of haptenation increases with increasing dose \(D\) of sensitiser, with increasing reactivity (as quantified by the rate constant or relative rate constant \(k\) for the reaction of the sensitiser with a model nucleophile) and with increasing hydrophobicity.

The RAI model has been used to evaluate a wide range of different datasets of skin sensitising chemicals. It has in particular served well for the development of QSARs for small sets of structurally similar chemicals – i.e. local models which are chemical class specific. Examples include primary alkyl bromides (Basketter et al., 1992), sultones (Roberts and Williams, 1982), acrylates (Roberts, 1987), sulfonate esters (Roberts and Basketter, 2000), urushiol analogues (Roberts and Benezra, 1993), aldehydes and diketones (Roberts et al., 1999; Patlewicz et al., 2001; Roberts and
Patlewicz, 2002) amongst others. A selection of these examples are described in more detail.

The RAI approach has withstood the test of time and evolved in light of greater understanding of the chemical processes and mechanisms underpinning skin sensitisation and now the modelling approach has found itself to be applicable to groups of chemicals that are related by virtue of their similarity to chemical mechanism rather than merely just their structural similarity.

In Basketter et al., (1992), LLNA pEC3 values (the log of the molar EC3 concentration) were found to correlate with a quadratic function of log P, for a series of linear primary alkyl bromides from C4 up until C18. Log P values were calculated by the computerised Hansch and Leo method (1979), Clog P (CLOGP™ program version 4.0, Biobyte Corp., 201 West 4th St. Suite 204, Claremont, USA). The correlation equation was obtained by multiple linear regression of pEC3 against log P and \((\log P)^2\). EC3 values are usually determined from dose response plots though the exact details of how the EC3 values were obtained were not described. Two compounds, 1-bromobutane and 1-bromohexane, classed as non-sensitisers, were not included in the regression. The regression equation (13) reported was:

\[
pEC3 = 1.61 \log P - 0.09 (\log P)^2 - 7.4
\]

\(N = 9 \quad R = 0.97 \quad s = 0.11 \quad F = 50.0\)

In this set, the longest chain lengths demonstrated decreased sensitisation activity rather in the manner of what is termed an overload effect. The dose response data for the individual bromoalkanes showed that in each case (except for C4) the sensitising activity increased with concentration. This supported the argument that none of the bromoalkanes were in fact in the overload region where activity would be inversely related to dose but that skin penetration was becoming rate-determining. A reanalysis has been conducted by Aptula and Roberts (unpublished, 2006) where it was proposed that it would have been better to have treated C4 and C6 as negative outliers (rationalisable in terms of penetration becoming a sensitisation-determining factor) and to do the regression for the remaining compounds using only the log P descriptor.
In Roberts and Basketter, (1990), hybrid dose-response/QSAR regression analyses were performed for guinea pig sensitisation and cross-challenge data on a series of alkyl alkanesulphonates and alkenesulphonates. Sensitisation responses were correlated with RAIi and RAIc, these being the Relative Alkylation Indices corresponding to induction and challenge respectively. In Roberts and Basketter, (1997) further sensitisation and cross-challenge data were compared against predictions from the equations developed in Roberts and Basketter, (1990). The TES value was obtained by summing the erythema scores for each animal. RAI values were calculated from the dose D (ppm units divided by MW), calculated (manually by the Hansch and Leo method (1979)) log P values and log k values which are taken as 1.48 for methyl alkanesulphonates and 0 for higher alkyl alkanesulphonates, by the formula:

\[
\text{RAI} = \log k + \log D + 0.48\log P
\] \hspace{1cm} (14)

Where RAI values model the degree of covalent binding of the sensitiser to carrier protein.

The dataset on which the quantitative analyses were based consisted of compounds of general formula RSO3R’ where the Rs are alkyl or alkenyl.

The equation given in the paper was:

\[
PR = 2.24 \text{RAIi} - 0.36\text{RAIi}^2 + 0.54\text{RAIc} + 2.23
\] \hspace{1cm} (15)

\[N = 27 \quad R^2 = 0.81 \quad s = 0.48 \quad F = 33.1\]

PR is the probit value corresponding to TES.

The negative RAIi² term models the overload effect.

Whilst a regression, this was not a “pure” QSAR as 27 data points come from 6 compounds. In the external validation presented in Roberts and Basketter, (1997), extra chemicals were tested and cross-challenges were performed. Results of these cross-challenges, in which animals sensitised to one compound were challenged with a different compound were presented. No statistical measurements were given, but
predicted values were compared against the observed values. The results were quite good, particularly when log P values of the two compounds involved in cross-challenges were similar. Where there were large differences, the sensitisation responses were overpredicted.

In Roberts and Basketter, (2000), a 20-point hybrid dose-response/QSAR regression analysis was performed for LLNA data on a series of six alkyl alkanesulphonates and alkenesulphonates. Sensitisation responses were correlated with the RAI, corresponding to the single dose used in the LLNA. EC20 was deemed a more appropriate basis for the potency index than EC3 because of the potential large extrapolation errors with the latter. Using pEC20 as the dependent variable, regression analysis against RAI gave a six-point QSAR. RAI values were calculated with a negative log P coefficient, based on the concept that, for the compounds studied, stratum corneum penetration was negatively correlated with log P and was sensitisation determining. The SI value was obtained by the standard protocol, and its use to estimate EC20 values was clearly explained. RAI values were calculated from the dose D (ppm units divided by MW), calculated (manually by the Hansch and Leo method (1979)) log P values and log krel values which are taken as 1.48 for methyl alkanesulphonates and 0 for higher alkyl alkanesulphonates, by the formula:

\[\text{RAI} = \log C + 2 \log krel - 0.5 \log P \] \hspace{1cm} (16)

where C is the concentration, in ppm moles, applied topically. RAI values model the degree of covalent binding of the sensitiser to carrier protein. This is different from the RAI formula used in the guinea pig study for the same compounds (in Roberts and Basketter, 1990; 1997), where the log P coefficient was positive. RSP (relative sensitisation parameter) was calculated in the same way as RAI and used as the independent variable for the regression.

The dataset on which the quantitative analyses were based consisted of compounds of general formula RSO3R’ where the Rs are alkyl or alkenyl.

The hybrid dose-response/QSAR equation was:
log SI = 0.39 (±0.05) RAI + 0.69 (±0.08)
\[N = 20 \ R^2 = 0.930 \ s = 0.15 \ F = 240 \]

note: ± figures are 95% confidence limits, based on 2 standard deviations

The “pure QSAR” equation was:

\[\text{pEC20} = 0.74 (±0.06) \ RSP - 0.61 (±0.14) \]
\[N = 6 \ R^2 = 0.994 \ s = 0.10 \ F = 702 \]

note: ± figures are 95% confidence limits, based on 2 standard deviations

No external validation was performed owing to lack of suitable test data.

20 \text{SNAr} electrophiles, whose GP skin sensitisation test results were reported by Landsteiner and Jacobs (1936) on a +/- basis, were analysed using calculated reactivity descriptors to discriminate between positive and negatives. In the original paper by Landsteiner and Jacobs, (1936) used an experimental reactivity descriptor, namely observation or not of reaction with aniline under defined experimental conditions.

In Roberts, (1995) the calculated descriptors were based on Hammett and Taft substituent constants (Perrin et al., 1981); in Mekenyan et al., (1997) they were based on molecular orbital (MO) parameters. The resulting Discriminant Analysis (DA) equation was used to predict sensitisation potential of a further set of seven \text{SNAr} electrophiles. The analyses undertaken in these papers gave very good internal performance in terms of discriminating 100% between active and inactive chemicals.

In Roberts, (1995) seven chemicals were all predicted correctly and Mekenyan et al., (1997) the six additional compounds were all predicted correctly.

A set of 4 alpha, beta-diketones were tested in the murine local lymph node assay (LLNA) and a RAI QSAR developed using Taft substituent constants for the reactive carbonyl group as the electrophilicity parameter. Whilst there was only 4 compounds, a QSAR/dose response relationship could be derived. The equation was
\[
\text{Log}(T/C) = 0.5\text{RAI} + 0.24 \quad (19)
\]
\[
N = 11 \quad R^2 = 0.963 \quad s = 0.09 \quad F = 235
\]

where RAI values were calculated using the relationship \(\text{RAI} = \log D + \text{RP} + 0.5 \log P \)

Here \(D \) is the % concentration applied divided by the molecular weight, \(\log P \) is the partition coefficient and \(\text{RP} \) is the reactivity parameter. The \(\text{RP} \) was defined as the sum of the Taft \(\sigma^* \) constants for the 2 groups attached to the most electron deficient carbonyl group (Roberts et al., 1999).

Patlewicz et al., (2001) evaluated a selection of 17 aldehydes (13 sensitising and 4 non-sensitising) all of which possessed a benzene ring. The sensitising compounds were classified as strong, moderate and weak on the basis of \textit{in vivo} data (GPMT and LLNA). Based on a detailed consideration of the mechanistic chemistry, it was found possible to classify each of the aldehydes in accordance with the reactivity of their carbonyl groups. The four subcategories were termed aryl-substituted aliphatic, aryl, aryl with special features that could undergo metabolism and alpha, beta-unsaturated aldehydes. Aryl substituted aldehydes were those likely to undergo a Schiff base formation with a primary amine. Aryl aldehydes comprised those compounds where the aldehyde functionality was directly attached the benzene ring. Aryl aldehydes with special features included vanillin and ethyl vanillin where the presence of the additional features enhanced the sensitisation potency. Alpha,beta-unsaturated aldehydes were thought to all be able to utilise the conjugated double bond to act via Michael addition.

Using the LLNA data available for the 5 alpha, beta-unsaturated aldehydes, a RAI QSAR was developed relating the log of the molar EC3 value (pEC3) to the Taft \(\sigma^* \) substituent of the alkyl group on the \(\alpha \) carbon which modelled reactivity. The following equation was derived using linear regression.

\[
p\text{EC3} = 0.99\sigma^* + 1.50 \quad (19)
\]
\[
N = 5 \quad R^2 = 0.998 \quad s = 0.018 \quad F = 1181
\]
The good correlation derived reaffirmed the belief of the authors that consideration of probable reaction mechanisms was a necessary requirement when attempting to relate chemical structure to skin sensitisation rather than merely exploring structural similarity.

The ideas and insights derived in Patlewicz et al., (2001) became the starting point for further work in Patlewicz et al., (2002). Here the reaction chemistry principles were evaluated further by development of QSARs specific for Michael addition and Schiff base fragrance aldehydes. The following regression equations were developed:

\[
p\text{EC}_3 = 0.536 + 0.168\log P + 0.488R\sigma^* + 1.313R'\sigma^* \quad (20)
\]

\[
N = 9, \ R^2 = 0.741 \ \text{s} = 0.184 \ F = 4.77
\]

\[
p\text{EC}_3 = 0.245 + 0.278\log P + 0.862R\sigma^* \quad (21)
\]

\[
N = 12, \ R^2 = 0.825 \ \text{s} = 0.712 \ F = 21.26
\]

The \(\sigma^*\) values taken from Perrin et al., (1981) were used to model the electrophilic reactivity of the carbonyl group. Here \(R'\sigma^*\) and \(R\sigma^*\) reflect the Taft constants for the substituents on the alpha and beta carbons.

Patlewicz et al., (2003) continued with the theme of reaction chemistry and sought to investigate the extent of applicability of the Schiff base QSAR developed in Patlewicz et al., (2002) and whether it could be applied for the diketones evaluated in Roberts et al., (1999). The study was prompted since one of the aldehydes tested in Patlewicz et al., (2002), glyoxal (a 1,2-dial) was found to fit the QSAR model well. This also suggested that the site of attack, i.e. the electrophilic centre for the diketones tested in Roberts et al., (1999) was contrary to what had been previously proposed. Accordingly the QSAR was modified to the following:

\[
\log (T/C) = 0.60\text{RAI} + 0.23 \quad (23)
\]

\[
N = 11 \ R^2 = 0.944 \ s = 0.11 \ F = 152.1
\]
This modified QSAR equation was then used to calculate the pEC3 for four 1,4-diketones, whereupon a good agreement was found. These findings inferred that both aldehydes and 1,2-diketones sensitise via the same rate determining step forming Schiff bases. A new regression equation was developed for the combined set of compounds which took the form of:

\[
pEC3 = 0.16 + 0.32 \log P + 0.96\sigma^* \tag{24}
\]

\[N = 16 \quad R^2 = 0.873 \quad s = 0.18 \quad F = 44.5\]

The final paper in this series of work was an evaluation of the predictive power of the QSARs developed in Patlewicz et al., (2002) with an additional set of compounds. LLNA data was generated on 10 newly selected compounds that contained a carbonyl group. The data demonstrated that the existing QSARs were fairly accurate but still required improvement. The new data was used to form two new equations.

The new QSAR for Michael addition aldehydes was:

\[
pEC3 = 0.55 + 0.14\log P + 0.51R\sigma^*(\beta) + 1.07R'\sigma^*(\alpha) \tag{25}
\]

\[N = 13 \quad R^2 = 0.73 \quad R^2 adj = 0.64 \quad s = 0.2695 \quad F = 8.16\]

For the Michael addition QSAR, agreement was fair. Where there discrepancies e.g. trans-2-methyl-2-butenal [497-03-0], 5-methyl-2-phenyl-2-hexenal [21834-92-4] and \(\beta\)-phenyl cinnamic aldehyde [13702-35-7] being overpredicted; plausible rationalisations in terms of reaction chemistry were proposed.

The agreement for the newly tested Schiff base compounds appeared poorer. The two 1,2-diketones tested were poorly estimated by the model but this was rationalised on account of the resonance effects of the benzene rings. Two aromatic aldehydes with strong withdrawing groups were poorly predicted but the finding helped to refine the scope of the “aryl aldehyde” group as defined in Patlewicz et al., (2001); thus not even a p-NO2 group diminished the resonance effect sufficiently to lead to significant sensitisation potential. In contrast, hexanal [66-25-1] and methyl pyruvate [600-22-6] were well predicted, the latter supporting the premise that other carbonyl-containing
compounds in addition to aldehydes reacted in the same way and hence the QSAR model was applicable for these types of chemicals also. The pEC3 values of these two compounds were then combined into a new QSAR which took the form of.

\[
p_{EC3} = 0.17 + 0.93\sigma^* + 0.30\log P
\]

(26)

\[
N=14 \quad R^2 = 0.87 \quad R^2_{adj}= 0.85 \quad s = 0.165 \quad F = 37.7
\]

The knowledge generated from this work and previous publications was subsequently incorporated as refined rules in DfW (Langton et al., 2006).
3.4 Quantitative Mechanistic Models (QMM)

Up until recently RAI skin sensitisation QSARs, had only been developed for closely related sets of chemicals (e.g. sulphonate esters, saturated sultones) and it had been considered that the RAI model was only applicable for such closely related data sets. This view started to change following work on aldehydes and ketones but the term “reaction chemistry domains” or “mechanistic applicability domains” was not described until Aptula et al., (2005a). Here a data set of 41 LLNA EC3 values for a diverse range of compounds, which had been selected for internal consistency (Gerberick et al., 2004a) were analysed. Compounds had been classified (Gerberick et al., 2004a) according to chemical class, e.g. ketone, aliphatic aldehyde, halogenated compound etc., with no clear relationship between structure and sensitisation potential. The work here re-classified the compounds into reaction mechanistic applicability domains, i.e. grouping according to the mechanisms whereby the compounds could react with nucleophiles. Each domain contained a diversity of structures, related by their common reaction chemistry rather than by common structural features. Within the domains it was also possible to rank the compounds in order of reactivity, applying established mechanistic organic chemistry principles, and in this way find clear trends within each domain of sensitisation potential increasing with increasing reactivity. The major reaction mechanistic applicability domains identified were: Michael-type addition domain; SN2 domain; SNAr domain; acylation domain; Schiff-base domain. Included in the Michael-type domain were pro-Michael acceptors, these being compounds which are not themselves Michael-reactive but are easily converted (e.g. by \textit{in vitro} or \textit{in vivo} oxidation to Michael acceptors). There was also an “unreactive” domain; compounds in this domain are expected to be non-sensitisers. Whilst these are not the only mechanistic applicability domains, they did provide a foundation to underpin skin sensitisation with sound reaction chemistry principles.

The conceptual framework in the area of reactive toxicity came about during the 1st Knoxville workshop, organised by Schultz and Veith in May 2005, (Schultz et al., 2006). The framework, which is described in detail in Schultz et al., (2006) outlined a number of sequential events – starting from the chemical to metabolism to an array of
so-called molecular initiating events through to biological effects and final adverse outcomes. Chemical reactivity was thought to be the key molecular initiating event. From this starting point, it was clear that the mechanistic ability of chemicals to initiate these events was linked to the similar mechanism of action and this became the central reference when looking at similar chemicals thus many effects could be attributed to reactive toxicity. Approaches to encode reactivity such as using heats of reaction (Magee, 2000), an activation index (Aptula et al., 2005b), Taft coefficients (Perrin, 1981)) or experimental measures of reactivity of chemicals with model nucleophiles could be then used as correlates to a variety of toxic effects including skin sensitisation.

The insights derived in Aptula et al., (2005a) and the discussions from Knoxville (Schultz et al., 2006) were subsequently generalised in Aptula and Roberts, (2006) culminating in a set of rules based on organic reaction mechanistic principles with particular emphasis on reactive toxicity. The rules were exemplified using the protein binding reaction mechanisms associated with skin sensitisation, in part to provide a set of guidelines for the domain classification of reactive toxicants as well as to outline an *in chemico* approach for determining the relevant chemical properties required for toxicity. The rules themselves have subsequently been used to help evaluate the dataset (Ashby et al., 1995) in Roberts et al., (2007a). Early efforts in realising the *in chemico* approach came from investigating the correlation between thiol reactivity and LLNA for a set of Michael acceptors (Aptula et al., 2006). The thiol reactivity index was based on glutathione (GSH), pEC(50) thiol (EC(50) being defined as the concentration of the test substance which gave a 50% depletion of free thiol under standard conditions) in combination with a measure of cytotoxicity (pIGC(50)) to *Tetrahymena pyriformis* (TETRATOX). Thiol reactivity was found to discriminate sensitisers from non-sensitisers according to the rule: pEC(50) thiol>-0.55 indicating that the compound would be a skin sensitiser. However, because of metabolic activation a pEC(50) thiol<-0.55 does not necessarily mean that the compound will be a non-sensitiser. Excess toxicity to *T. pyriformis* (i.e. the extent of toxic potency over that expected by non-polar narcosis) was determined in order to assess biological reactivity. The best discrimination based on excess toxicity in the TETRATOX assay was given by the "rule": excess toxicity>0.50 indicating that the compound would be a skin sensitiser. These approaches became more powerful (23 of
the 24 compounds were predicted correctly) when used in combination. The approach was promising but not the definitive answer since thiol reactivity is only one measure of the ability of chemicals to form adducts with proteins. Efforts in measuring protein reactivity \textit{in vitro} is a field rapidly gaining momentum, other groups (such as Gerberick et al., 2004b) have been investigating approaches using a glutathione tripeptide or three synthetic peptides containing cysteine, lysine or histidine residues. In Gerberick et al., (2004b), the reactivity of 38 chemicals with varying skin sensitising potencies were investigated. The results revealed a correlation between skin sensitising potency and depletion of glutathione and binding with the lysine and cysteine synthetic peptides. Further work by Gerberick et al. has since been undertaken (2007).

A number of publications on the skin sensitisation of aldehydes and ketones have already been presented. The work described in Roberts et al., (2006) reanalysed the data from Patlewicz et al., (2004) with the aim of developing a new mechanistic QMM for Schiff bases. A QSAR was derived relating reactivity and hydrophobicity to the log of the molar EC3 \((\text{pEC3})\) where reactivity was modelled by \(\Sigma\sigma^*\), the sum of the Taft \(\sigma^*\) substituent constants for the two groups attached to the carbonyl group.

A final QSAR based on 16 compounds (11 aliphatic aldehydes, 1 \(\alpha\)-ketoester and 4 \(\alpha,\beta\)-diketones) was developed.

\[
p\text{EC3} = 1.12(\pm0.07) \Sigma\sigma^* + 0.42(\pm0.04) \log P - 0.62(\pm0.13)
\]

\[(27)\]

\[
N = 16 \ R^2 = 0.952 \ R^2_{\text{adj}} = 0.945 \ s = 0.12 \ F = 129.6
\]

The predictive performance of this QSAR was then explored across the wider Schiff Base mechanistic applicability domain, using further LLNA data for 1,3-dicarbonyl compounds taken from (Gerberick et al., 2005b).

Two of the 1,3-dicarbonyl compounds of the further test set were classed as non-sensitisers (EC3 not reached at 40%). One of these was calculated to have EC3 = 59%; the other was calculated to have an EC3 = 39%. For the remaining seven 1,3-dicarbonyl compounds, the agreement between calculated and observed pEC3 values was good.
The RAI models have been shown to be robust, well characterised and mechanistically interpretable thus could play a strong role in the assessment of skin sensitisation potential and potency in both a standalone mode under REACH or as part of an Integrated Testing Strategy. They are however limited in terms of their coverage. Considerable efforts would need to be invested in generating a database of reactivity data which would enable the rules in Aptula and Roberts, (2006) to be refined and for new QMM models covering the remaining domains to be developed.
4. **Expert systems**

According to the definition proposed in Dearden et al., (1997), "An expert system for predicting toxicity is considered to be any formalised system, not necessarily computer-based, which enables a user to obtain rational predictions about the toxicity of chemicals. All expert systems for the prediction of chemical toxicity are built upon experimental data representing one or more toxic manifestations of chemicals in biological systems (the database), and/or rules derived from such data (the rulebase)."

Expert systems can also be characterised according to the nature of the rules in their rulebase. The systems that are available for the prediction of skin sensitisation comprise knowledge-based systems (e.g. Derek for Windows (DfW)), statistical systems (e.g. TopKat, MCASE) and hybrid of the two (e.g. Tissue Metabolism Simulator (TIMES)). A comprehensive review of such expert systems is available from ECETOC (2003). This review is intended to develop awareness that expert systems exist and might be used to derive QSAR predictions for skin sensitisation.

4.1 **Knowledge-based systems**

Derek for Windows (DfW) is a knowledge-based expert system created with knowledge of structure-toxicity relationships and an emphasis on the need to understand mechanisms of action and metabolism (Sanderson and Earnshaw, 1991). It is marketed and developed by LHASA Ltd (Leeds, UK) a not-for-profit company and educational charity (http://www.lhasalimited.org/index.php).

Within DfW, there are 361 alerts covering a wide range of toxicological endpoints. An alert consists of a toxicophore, a substructure known or thought to be responsible for the toxicity alongside associated literature references, comments and examples.

The skin sensitisation knowledge base in DfW was initially developed in collaboration with Unilever in 1993 using its historical database of guinea pig maximisation test (GPMT) data for 294 chemicals (Barratt et al., 1994a; Barratt et al., 1994b). Common reaction mechanisms (e.g. acylating agents, alkylating agents, Michael electrophiles, aldehydes etc) were identified following grouping the chemicals in potency categories – strong sensitisers (70% - 100%), moderate
sensitisers (30-70%), weak sensitisers (up to 30%), and non sensitisers 0%. For the purposes of deriving structural alerts, chemicals were grouped on the basis of these reaction mechanisms or by empirical derivation. Forty structural alerts were extracted from the groups including acid halides, acid azides, sulphonyl halides, phenyl esters, isocyanates, epoxides. Payne and Walsh, (1994) also identified reaction mechanisms to propose a set of alerts that could be incorporated into DfW which they evaluated using a set of 93 chemicals. The DfW knowledge base is under constant development as new chemical insights and data become available. In Barratt and Langowski, (1999) the predictive ability of the sensitisation rules were assessed by processing 84 chemicals in the list of contact allergens issued by the German Federal Institute for Health Protection of Consumers (BgVV). The exercise helped to identify refinements and new rules (organic hydroperoxides, hydroxylamine and precursors, photoallergens) for incorporation into DfW. Suggestions for improvements have also come from work by Zinke et al., (2002), Gerner et al., (2004) and Langton et al., (2006). The current version (version 9.0.0) contains sixty-four alerts for skin sensitisation. Whilst DfW is an extremely valuable tool, the training datasets used to derive the structural alerts are hidden from the end-user. The applicability domain is also insufficiently characterized. This means that the performance from any evaluation exercise using published data (as shown in Patlewicz et al., 2007b) is likely to be inflated. It is worth noting that the system is only able to flag the potential for sensitisation, not the absence of sensitisation, which limits its practical utility as a stand-alone tool. Since the alert is derived on the basis of a combination of different data sources, it is not possible to relate a given alert to a defined test protocol. DfW is of value in the assessment of skin sensitisation but only as part of an ITS framework.

4.2 Statistical Expert Systems

Toxicity Prediction by Komputer Assisted Technology (TOPKAT) (http://www.accelrys.com/products/topkat/) marketed by Accelrys Inc (San Diego,
USA) comprises two sets of sensitisation models that were developed originally by Enslein et al., (1997). Guinea pig maximisation data for 315 chemicals was assembled from published collections in Contact Dermatitis and from the dataset published by Cronin and Basketter, (1994). The data was then scaled according to classes defined by Barratt et al., (1994b). Two sets of models were developed: one for aromatics (excluding chemicals with one-benzene ring) and the other for aliphatics and chemicals with one-benzene ring. A variety of descriptors (Enslein et al., 1994; Gombar and Enslein, 1995) were computed for the chemicals selected, and stepwise two-group discriminant analysis was used to identify relevant descriptors to build the models. The descriptors consisted of electronic attributes as embodied in electrotopological state values (Hall et al., 1991) on 1 and 2-atom fragments; transport attributes represented by the counts of the 1 and 2-atom fragments, topological kappa descriptors (Gombar and Jain, 1987; Kier, 1986) and molecular symmetry indices (Gomber and Jain, 1987), bulk attributes as calculated from molecular weight and atom size-corrected E values. The first set of models discriminated between non-sensitisers and sensitisers, the second set of models resolved the potency: weak/moderate vs. strong. In the first set of models, a computed probability greater than 0.7 indicated that a chemical was a predicted sensitisier whereas a probability below 0.30 signified a chemical to be a predicted non-sensitiser. In the weak/moderate vs. strong sensitisier model, a probability of 0.7 or more indicated a predicted strong sensitisier whereas a probability below 0.30 indicated a predicted weak or moderate sensitisier. For both models, probability values between 0.30 and 0.70 referred to an indeterminate region where a prediction was not reliable. An optimum prediction space (OPS) algorithm was also incorporated into the model to ensure predictions were made only for chemicals within the model domain. This domain check comprised two steps, whether the chemical belonged to the structural fragment and descriptor space of the model as well as a similarity analysis to extract to compare similar compounds by reference to the QSTR similarity distance and their associated predicted and experimental GPMT data. The present version of TOPKAT (Version
6.2) has been supplemented with data for a 20 chemicals (Accelrys, 2002). The training set of TOPKAT is partly accessible and the domain is defined using the patented Optimal Prediction Space (OPS). A similarity function to identify analogues with associated data is also embedded into TOPKAT which is useful for verifying the robustness of a given prediction. The lack of a defined unambiguous algorithm and explanation of the descriptors lower the practical usability of the tool. The performance has found to be variable (Patlewicz et al., 2007b) but nonetheless the model may be of some value in providing, through the similarity function, supporting information within an ITS.

CASE methodology and all its variants (e.g. MCASE, CASETOX) were developed by Klopman and Rosenkranz (Klopman, 1984; Klopman, 1992; Rosenkranz and Klopman, 1995). There are more than 180 modules covering various areas of toxicology and pharmacology endpoints including skin sensitisation currently marketed by MultiCASE Inc. (Cleveland, Ohio, US). The CASE approach uses a probability assessment to determine whether a structural fragment is associated with toxicity. To achieve this, molecules are split into structural fragments up to a certain path length. Probability assessments determine whether fragments significantly promote or inhibit toxicity. To create models, structural fragments are incorporated into a regression analysis. The MCASE modules available for skin sensitisation are described further in primary articles (Graham et al., 1996; Gealy et al., 1996; Johnson et al., 1997).

The original model developed was that by Graham et al., (1996) who applied the MultiCASE approach to a large database of chemicals causing allergic contact dermatitis (ACD) compiled from reports of animal and human studies. These reports were identified through a search on Medline from 1966-1994 and included primary articles and monographs prepared by RIFM and information from Aron Products Inc Chemicals so long as the certain criteria was met namely: an epicutaneous exposure to the chemical was used during the challenge phase of test and an in vivo dermal reaction was observed e.g. erythema, the dose used for challenge was non-irritating,
the purity of the chemical was known, control animals were used in the study and found to be unresponsive to the challenge dose, in human testing at least 3 cases had to have been cited. In addition, the chemical tested had to have a carbon chain length of greater than one and all chemicals had to be non-metals. The total database consisted of a total of 1024 chemicals of which 317 were classified as sensitisers, 22 had marginal activity and 695 were inactive. MCASE identified 49 biophores consisting of nitrogen double bonded to a carbon or nitrogen, substituted aromatic structures, thiol and disulfide containing fragments and electrophilic moieties. Modulators of each biophore which either augmented or decreased potency included additional structural fragments, 2D distance descriptors as well as physicochemical parameters (HOMO, LUMO, MW and Log P). Internal evaluation of the database revealed a sensitivity of 99.6% and specificity of 99.4%.

Further work was undertaken by Gealy et al., (1996), though the primary purpose of this study was to evaluate the utility of clinical case report data. The original database (from Graham et al., 1996) was supplemented with additional case report studies to result in a total of 1170 chemicals – 447 actives, 28 marginal and 695 inactives. An additional condition to those stipulated in the previous study was that for a chemical to be classified as a non-sensitiser, it had to have been tested in either a human or guinea pig maximisation test and yield no response in at least 10 guinea pigs or 20 human subjects. A series of different MultiCASE models were developed using subsets (learning sets) of the database as training sets with differing stringency requirements as far as how much or how little clinical case report data was included. In the most stringent subset, all clinical case report data was excluded. The model performances were then compared in order to assess the value of including case report data. The predictive ability of the models was similar for all models regardless of the learning subsets. The predictions remained fairly constant for all learning sets producing a mean sensitivity of approximately 64% and mean specificity of 92%. However the specificity of the learning set model which included only one or two case reports did have a lower mean specificity (85%) when compared with the other learning sets suggesting that it is best to exclude isolated clinical case reports when modelling ACD.
In Johnson et al., (1999), human activity data compiled from the literature on 458 compounds was used to develop CASE/MCASE models. Chemicals were selected if standard human maximisation tests (HMT) had been performed or if three or more case reports of positive patch tests were cited. The dataset was split equally between 229 sensitisers and 229 non-sensitisers. In reality there were a total of 695 inactives. Three test models were created first with different non-overlapping subsets of 229 chemicals and the resulting structural alerts identified were the same in each case. One model was then selected at random to continue the evaluation. Each chemical in this model was assigned a potency based on the concentration of chemical used for the challenge dose and in HMTs, on the sensitisation rate. This was then used to predict the likelihood of 238 gas phase air pollutants compounds to be sensitisers. 21 of the 238 chemicals were predicted to be contact allergens with potencies ranging from mild to very strong. The compounds came from chemical classes including chlorinated aromatics and chlorinated hydrocarbons, N-containing compounds, phenols and alkenes. The emission rates or measured airborne concentrations as an indication of extent of use together with the predicted sensitising potencies provided an efficient means of prioritising which organic compounds detected as gas phase air pollutants merited experimental sensitisation testing.

The (Q)SAR estimates for the MCASE skin sensitisation model are included in the Danish Environmental Protection Agency (EPA)’s (Q)SAR Database which is hosted on the European Chemicals Bureau (ECB) website http://ecb.jrc.it/QSAR/.

Like the other expert systems already described, the training set is hidden and the algorithm is not fully defined suggesting this tool might at best offer some insights for a weight of evidence skin sensitisation assessment.

4.3 Hybrid Expert Systems

The TIMEs MEtabolism Simulator platform used for predicting Skin Sensitisation (TIMES-SS) is a hybrid expert system that was developed by the Laboratory of Mathematical Chemistry (University of Bourgas, Bulgaria) using funding and data from a Consortium comprising Industry (ExxonMobil, Procter and Gamble, Unilever) and a Regulatory Agency (Danish Environmental Protection Agency). TIMES-SS aims to encode structure toxicity and structure metabolism relationships through a
number of transformations simulating skin metabolism and interaction of the
generated reactive metabolites with skin proteins. The skin metabolism simulator
mimics metabolism using 2D structural information. Metabolic pathways are
generated based on a set of 236 hierarchically ordered principal transformations
including spontaneous reactions and enzyme catalysed reactions (phase I and II). The
covalent reactions with proteins are described by 47 alerting groups. The associated
mechanisms are in accordance with the existing knowledge on electrophilic
interaction mechanisms of various structural functionalities. The integral model is
essentially based on a set of submodels, associated with each of the reactive groups.
Some of these reactions are additionally underpinned by mechanistically based 3D-
QSARs to predict the intrinsic reactivity of compounds that have substructural
features associated with reactivity. These 3D-QSAR models depend on both the
structural alert and the rate of skin sensitisation. Steric effects around the active site,
molecular size, shape, solubility, lipophilicity and electronic properties are all taken
into account. These models may involve combinations of molecular descriptors which
trigger the alerting group (Dimitrov et al., 2005a; Dimitrov et al., 2005b). Recently an
external validation activity was undertaken whereby data were generated for 40 new
chemicals in the Local Lymph Node Assay (LLNA) and then compared with
predictions made by TIMES-SS. The results were promising with an overall good
concordance (83%) between experimental and predicted values (Patlewicz et al.,
2007c; Roberts et al., 2007c). The tool shows promise but more efforts are required to
refine some of the rules, in particular to improve the predictions of weak sensitisers.
In addition, since the training set is a mix of 3 different datasets; the translation
required to relate the unified modelled endpoint to one used in regulatory practice is
not altogether straightforward. For this reason, TIMES-SS is thought to be best
applied in the context of an ITS.

The OECD has started the development of a (Q)SAR Application Toolbox as a means
of making QSAR technology readily accessible. The Toolbox is developed in two
phases. The first phase, developed by the LMC, Bulgaria, emphasises technological
proof-of-concept. The Toolbox currently contains several databases (also for aquatic
toxicity), includes tools to assist the user in the formation of chemical categories and
filling of data gaps by read across, and provides possibility for using a library of
(Q)SAR models (this functionality will be extensively developed in the second phase,
together with refinement of grouping schemes). The input is available in several formats, including SMILES and drawing structure. Searching facility is also available. For information, visit http://www.oecd.org, (Q)SARs Project). The “proof-of-concept” version of the Toolbox will be publicly available in March 2008.

Overall there are reasonable prospects for the development and improvement of expert systems such as DfW, TIMES-SS but further refinement of their underlying rules is still required (Patlewicz et al., 2007b, c). Owing to the limited accessibility of training datasets, applicability domains not always being well established, or mechanistic interpretability being unclear; it is proposed that whilst expert systems can play a valuable role in evaluating skin sensitisation; their use should be restricted to the provision of supporting information as part of an overall weight of evidence assessment.
5. **Integrated testing strategies**

Combes et al. (2006) outlined an overall strategy for the testing of chemicals for human hazard and risk assessment under REACH. The scheme comprised four main stages. The first step begins with a prediction of human exposure, which is then followed by a preliminary risk assessment (involving information from (Q)SAR approaches, information on metabolism and identification of the principal metabolites in humans as well as all available hazard data). The resulting information from step 2 is evaluated to determine what essential information gaps are missing that are required in order to make or improve the preliminary risk assessment. The last step involves generating the necessary information relying on non-animal methods as far as possible. The scheme also included a feedback loop so that new hazard data generated could be used to improve the predictivity of computational expert systems (Figure 1).
Grindon et al. (2006a) described a research project sponsored by Defra on the status of alternative approaches to animal testing and the development of integrated testing strategies for assessing the toxicity of chemicals under REACH (Registration, Evaluation and Authorisation of Chemicals) system for safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with the REACH system. A general ITS template was proposed (see Figure 2) which was subsequently customised for sensitisation in Grindon et al. (2006b) (Figure 3).
Where C/L = Classification and Labelling and RA = Risk Assessment

Figure 2: General template proposed by Grindon et al., 2006a (permission required by DEFRA/FRAME)

The customised ITS for sensitisation as shown in Figure 2 comprises 10 steps, two of which involve the use of animals and four of which are decision points. Prior information for step 1 could come from skin sensitisation studies and eye or skin corrosion/irritation studies. Positive data from genotoxicity studies might indicate a potential to react with a nucleophilic target, such as DNA i.e. the substance had a potential to react as an electrophiles. Occupational exposure and epidemiological studies could also provide useful information at this stage. Step 2 relies on the application of in silico tools such as QSARs or expert systems (described earlier in this report). However in silico predictions were thought not to be sufficiently adequate to obviate the need for further testing. Information from steps 3-6 would be used in a weight of evidence evaluation shown in step 7 and step 8 would be considered if making a conclusion was not possible without the need for animal testing. If the LLNA was not appropriate, a guinea pig test could be considered in exceptional circumstances. Lastly if appropriate, a skin test in human volunteers could be conducted to confirm the identification of negative sensitisers.
The REACH TGD proposes the following scheme for skin sensitisation (Figure 4). Step 1 evaluates all available information including in silico predictions. Step 2 considers the criteria annotated in column 2 of the REACH text and whether \textit{in vivo} testing can be avoided. Step 3 is a weight of evidence evaluation to determine whether a decision can be made about whether the substance is likely to be sensitiser or not. If a decision can be made, the substance is considered for C/L or RA purposes; if not

where C/L = Classification and Labelling, RA = Risk Assessment, GPMT = Guinea Pig Maximisation Test, LLNA = Local Lymph Node Assay

Figure 3: ITS for skin sensitisation proposed in Grindon et al., 2006a (modified)
testing is considered (either *in vitro* or *in vivo* testing). In view of the absence of any validated *in vitro* tests, LLNA testing would be performed in the first instance or a guinea pig test under exceptional circumstances.

Figure 4: ITS proposed as part of the REACH TGD

Jowsey et al. (2007) described an integrated platform for the identification of skin sensitisers and determination of relative skin sensitising potency. The aim of the conceptual framework was to capture the key biological and physico-chemical aspects
of skin sensitisation and consider how the different information could be used in the context of hazard identification and relative potency determination. The key properties required for successful skin sensitisation are as follows: a) the ability to gain access to the viable epidermis via the stratum corneum b) the potential to form stable conjugates with protein to create an immunogenic complex c) the characteristics to cause expression, or increased expression of skin cytokines that are known to be necessary for the induction of cutaneous T lymphocyte response and d) the degree of immunogenicity required to provoke a T lymphocyte response of sufficient magnitude for sensitisation. The various readouts within the framework could be used on one level to identify hazard. However if each readout could be quantified in relative terms then an assessment of relative sensitisation potency i.e. hazard characterisation would be possible. The conceptual framework was expanded with a scoring scheme and an example worked through to show how an index of sensitising potency (ISP) could be derived. The framework demonstrated the future potential of how alternative approaches could be combined and evaluated together rather than an ITS in the same mode as the others here described.

Roberts and Aptula (2007) describe the determinants of skin sensitisation potential from a chemical perspective arguing that the rate limiting step involves the covalent binding of a chemical electrophile to a protein nucleophile. Such electrophiles can be classified into a limited number of reaction mechanistic domains within which QMM may be derived using the the RAI approach which related reactivity and hydrophobicity to sensitisation potential. They describe a non-animal strategy which involve applying these mechanistic principles. Presented with a new compound, the first step involves classifying the compound into its reaction domain. If the domain is not obvious, then experimental work might be required to concretely determine the correct domain. Having assigned the compound to its mechanistic domain, the next step would be quantify the reactivity and hydrophobicity parameters in order that a prediction of sensitisation potency can be derived from a pre-developed QMM. In the absence of a pre-developed QMM, a mechanistic read-across could be determined relying on experimental in vivo data on similar compounds (i.e. those compounds that fall within the same mechanistic domain). The schematic in Figure 5 outlines this approach.
Figure 5: Approach as outlined in Roberts and Aptula (2007)
6. Conclusions

The purpose of this review was to collect information for sources of skin sensitisation data, recently published quantitative structure-activity relationship (QSAR) models, computational tools for estimation of skin sensitisation potential, and to capture the current understanding of what constitutes an integrated testing strategy (ITS) for this endpoint as well as for the purposes of REACH. A comprehensive review was performed covering the different types of models available and their potential utility for REACH.

With respect to data, a fair amount of test data particularly in the GPMT and LLNA has been published in the literature. The number of tested chemicals with reliable and compatible test data is a small fraction of regulatory inventories of interest. Furthermore the representativity of the available datasets compared with the regulatory inventories of interest has yet to be established. The REACH expected inventory is likely to contain some 30,000 registration chemicals, whereas the largest modelling dataset so far compiled contains 1034 (Graham et al., 1996) or 729 chemicals within TIMES-SS, (Patlewicz et al., 2007c), the largest published LLNA data contains 210 chemicals (Gerberick et al., 2005) and the largest GPMT dataset used to derive alerts for DfW (Barratt et al., 1994a) was 294 chemicals. As a conservative estimate, the experimental data used in models might cover only about 0.7% with measured LLNA data on the assumption that all tested chemicals will be potentially registered. Therefore, existing data and non-testing methods will become increasingly important.

There is a very strong mechanistic understanding of skin sensitisation, as evidenced in the following background papers (Landsteiner and Jacobs, 1936; Kimber and Dearman, 2003, Roberts and Aptula, 2007). Most published skin sensitisation QSARs have fallen into one of two main categories: either they are mechanistically model based RAI QSARs, typically of high statistical quality but applicable to a narrow range of closely related structures or they are “statistical” QSARs which aim to be global in their applicability, are variable in their successes, insufficiently characterised (as evidenced in (Roberts et al., 2007b; Patlewicz et al., 2007b) and lacking in real mechanistic insight. Whilst they have become a growth area recently, all have been
based on selections from the same limited set of published LLNA data suggesting too much focus on applying new statistical techniques or descriptors rather than understanding and rationalising the likely sensitisation potential of new compounds. Their lack of characterisation also lends themselves less useful for regulatory applications such as REACH which calls for the use of estimates from valid (Q)SARs.

Expert systems available such as DfW, TOPKAT are more promising alternatives. Their lack of full transparency and in some cases lack of established applicability domain means that their use whilst valuable is probably best limited to supporting information in a weight of evidence assessment as part of an Integrated Testing Strategy (ITS) (Patlewicz et al., 2007b). This has led to organisations such as OECD, ECB, national regulatory authorities and Industry making available both reliable and accessible tools e.g. OECD (Q)SAR Application Toolbox.

The covalent hypothesis continues to be the most promising way of developing mechanistically based robust QSARs. The reaction chemistry concepts recently outlined in Aptula and Roberts (2006) have changed the perspective regarding RAI QSARs. These QSARs are actually more widely applicable than originally thought (Roberts et al., 2006) where robust mechanistic based QSAR models (QMMs) can be developed within reaction chemistry domains. Such models where available are well characterised with respect to the OECD principles and are sufficiently robust for standalone purposes under REACH. At the current time, the most promising strategy to help predict skin sensitisation potential would encompass both \textit{in silico} and \textit{in chemico} approaches. A new compound would need to be assigned into its most appropriate mechanistic applicability domain (using the rules outlined in Aptula and Roberts (2006). If an assignment of domain was not possible from an inspection of these rules, then experimental chemistry studies would have to be undertaken in order to concretely identify the appropriate domain. An estimate of skin sensitisation potency could then be made using a specific mechanism-based (Q)SAR for that domain if available. If an QMM was not available, then a mechanistic read-across would need to be carried out. This compares information on 1 chemical (i.e. its sensitising ability) and uses it to estimate the likely sensitisation potential of another chemical (assuming they act by the same chemical mechanism). The \textit{in chemico}
approach of generating reactivity data (e.g. the approach outlined in Aptula et al., 2006) would provide the surrogate piece of information to help make that comparison and hence make an estimate of sensitising potency. This is the subject of on-going and further studies (Roberts et al., 2007d).

Routine implementation of this strategy would be greatly facilitated if there existed an adequate parameter to model reactivity in silico. Experimental work to generate the necessary reactivity data to realise this is on-going as evidenced by Aptula et al. (2006) and by others (e.g. Gerberick et al., 2007; Natsch et al., 2007), but more resources are required (Roberts et al., 2007d).

Finally, several literature-reported ITSs for skin sensitisation were reviewed. They all differ depending on the background and goals of the authors. One of the strategies focussed entirely on a non-animal testing framework exploiting QSAR approaches whereas another was more checkboxed in its approach of how to mimic and replace the LLNA whereas that developed for the purposes of the REACH guidance focussed on regulatory hazard assessment. Despite of all differences, all identified the use of QSARs and in silico methods, as an essential element of the integrated strategy.
7. References

Aptula AO, Roberts DW, Cronin MT. From experiment to theory: molecular orbital parameters to interpret the skin sensitization potential of 5-chloro-2-methylisothiazol-3-one and 2-methylisothiazol-3-one. Chemical Research in Toxicology, 2005b, 18(2): 324-329.

Combes R, Barratt M, Balls M. An overall strategy for the testing of chemicals for human hazard and risk assessment under the EU REACH system. *Alternatives to Laboratory Animals, 2006*, 34(S1): 11-15

ECETOC. (Q)SARs: Evaluation of the commercially available software for human health and environmental endpoints with respect to chemical management applications. Technical Report No. 89. European Centre for Ecotoxicology and Toxicology of Chemicals. Brussels, Belgium. **2003**.

Grindon C, Combes R, Cronin MT, Roberts DW, Garrod J. A review of the status of alternative approaches to animal testing and the development of integrated testing strategies for assessing the toxicity of chemicals under REACH – a summary of a DEFRA funded project conducted by Liverpool John Moores University and FRAME. *Alternatives to Laboratory Animals*, 2006a, 34(S1): 149-158.

Li Y, Tseng YJ, Pan D, Liu J, Kern PS, Gerberick GF, Hopfinger AJ. 4D-Fingerprin
Categorical QSAR Models for skin sensitisation based on the classification of Local
128.

Li Y, Pan D, Liu J, Kern PS, Gerberick GF, Hopfinger AJ, Tseng YJ. Categorical
QSAR Models for Skin Sensitization based upon Local Lymph Node Assay
Classification Measures Part 2: 4D-Fingerprint Three-State and Two-2-State Logistic

Magee PS, Hostynek JJ, Maibach MI. A classification model for allergic contact

Magee PS Exploring the Potential for Allergic Contact Dermatitis via Computed
Heats of Reaction of Haptens with Protein End-groups Heats of Reaction of Haptens
with Protein End-groups by Computation. *Quantitative Structure-Activity

Magnusson B, Kligman AM. The identification of contact allergens by animal assay,
the guinea pig maximisation test method *Journal of Investigative Dermatology*, 1969,
52: 268-276.

Mekenyan O, Roberts DW, Karcher W. Molecular orbital parameters as predictors of
skin sensitization potential of halo- and pseudohalobenzenes acting as SNAr

Miller MD, Yourtee DM, Glaros AG, Chappelow CC, Eick JD, Holder AJ. Quantum
Mechanical Structure-Activity Relationship Analyses for Skin Sensitisation. *Journal

Natsch A, Gfeller H., Rothaupt M, Ellis G. Utility and limitations of a peptide
reactivity assay to predict fragrance allergens in vitro. *Toxicology In Vitro* 2007, in
press

Roberts DW. Linear free energy relationships for reactions of electrophilic halo- and pseudohalobenzenes, and their application in prediction of skin sensitization potential for SNAr electrophiles Chemical Research in Toxicology, 1995, 8(4): 545-551.

Roberts DW, Patlewicz G. Mechanism based structure-activity relationships for skin sensitisation--the carbonyl group domain. SAR and QSAR in Environmental Research, 2002, 13(1): 145-152.

This review collects information on sources of skin sensitisation data and computational tools for estimation of skin sensitisation potential, such as expert systems and (quantitative) structure-activity relationship (QSAR) models. The review also captures current thinking of what constitutes an integrated testing strategy (ITS) for this endpoint. The emphasis of the review is on the usefulness of the models and for the regulatory assessment of chemicals, particularly for the purposes of the new European legislation for the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), which entered into force on 1 June 2007. Since there are no specific databases for skin sensitisation currently available, a description of experimental data found in various literature sources is provided. General (global) models as well as models for specific chemical classes and mechanisms of action are summarised. This review was prepared as a contribution to the EU funded Integrated Project, OSIRIS.
The mission of the JRC is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of EU policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, whether private or national.