In-house validation of an Event-specific Method for the Quantification of Oliseed Rape Topas 19/2 using Real-time PCR

Validation Report

M. Mazzara, E. Luque-Perez, A. Bevilacqua, G. Van den Eede
The mission of the JRC-IHCP is to protect the interests and health of the consumer in the framework of EU legislation on chemicals, food, and consumer products by providing scientific and technical support including risk-benefit assessment and analysis of traceability.
In-house Validation of an Event-specific Method for the Quantification of Oilseed Rape Topas 19/2 Using Real-time PCR

Validation Report

Joint Research Centre
Institute for Health and Consumer Protection
Molecular Biology and Genomics Unit

7 July 2011

Executive Summary

The European Union Reference Laboratory for GM Food and Feed (EURL-GMFF), established by Regulation (EC) No 1829/2003, has carried out an in-house validation study to assess the performance of a quantitative, event-specific method for oilseed rape event Topas 19/2 (unique identifier ACS-BN∅∅7-1). The study was conducted according to internationally accepted guidelines (1, 2).

In accordance with Regulation (EC) No 1829/2003 of 22 September 2003 on genetically modified food and feed and with Regulation (EC) No 641/2004 of 6 April 2004 on detailed rules for the implementation of Regulation (EC) No 1829/2003, Bayer CropScience provided the detection method and the control samples (genomic DNA extracted from leaves of wild-type plants and from leaves of plants harbouring the Topas 19/2 event). The EURL-GMFF prepared the in-house validation samples (calibration samples and blind samples at unknown GM percentage).

The results of the in-house validation study were evaluated with reference to European Network of GMO Laboratories (ENGL) method performance requirements (http://gmo-crl.jrc.ec.europa.eu/guidancedocs.htm).

The results of this EURL-GMFF in-house validation study are made publicly available at http://gmo-crl.jrc.ec.europa.eu/statusofdoss.htm.
Drafted by
M. Mazzara (scientific officer)

Report review
1) L. Bonfini

2) M. Querci

Scientific and technical approval
M. Mazzara (scientific officer)

Compliance with EURL Quality System
S. Cordell (quality manager)

Authorisation to publish
G. Van den Eede (head of MBG Unit)

Address of contact laboratory:
European Commission, Joint Research Centre (JRC)
Institute for Health and Consumer Protection (IHCP)
Molecular Biology and Genomics Unit
European Union Reference Laboratory for GM Food and Feed
Via E. Fermi 2749, I-21027 Ispra (VA) - Italy
Bayer CropScience provided the detection method and the control samples for oilseed rape event Topas 19/2 (unique identifier ACS-BN∅∅7-1) according to Articles 5 and 17 of Regulation (EC) No 1829/2003 of the European Parliament and of the Council “on genetically modified food and feed”.

The European Union Reference Laboratory for GM Food and Feed (EURL-GMFF), following reception of the documentation and material, including control samples, (step 1 of the validation process) carried out the scientific assessment of documentation and data (step 2) in accordance with Commission Regulation (EC) No 641/2004 “on detailed rules for the implementation of Regulation (EC) No 1829/2003 of the European Parliament and of the Council as regards the application for the authorisation of new genetically modified food and feed, the notification of existing products and adventitious or technically unavoidable presence of genetically modified material which has benefited from a favourable risk evaluation” and according to its operational procedures (“Description of the EURL-GMFF Validation Process”, http://gmo-crl.jrc.ec.europa.eu/guidancedocs.htm).

The scientific assessment focused on the method performance characteristics assessed against the method acceptance criteria set out by the European Network of GMO Laboratories (ENGL) and listed in the “Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing” (http://gmo-crl.jrc.ec.europa.eu/doc/Method%20requirements.pdf) (see Annex 1 for a summary of method acceptance criteria and method performance requirements). During step 2, four scientific assessments were performed and requests of complementary information were addressed to the applicant. Upon reception of complementary information, the scientific evaluation of the detection method for event Topas 19/2 was positively concluded in September 2005.

Following the withdrawal from the market of Topas 19/2 (ACS-BN∅∅7-1) oilseed rape and its derived products (Commission Decision 2007/307/EC of 25 April 2007), the event-specific method for the quantification of oilseed rape Topas 19/2 event did not undergo a full validation process. However, in order to enforce Article 2 of the above Commission Decision, the EURL-GMFF performed an in-house validation of the detection method to verify that it is fit for the purpose.

In November 2008, the EURL-GMFF carried out the in-house validation of the method by quantifying five blind GM levels within the range 0.15%-3.3% on a DNA copy number basis. The experiments were performed under repeatability conditions in two different PCR (Polymerase Chain Reaction) platforms, and demonstrated that the PCR efficiency, linearity, accuracy and precision of the quantifications were within the limits established by the ENGL.

A Technical Report summarising the results of tests carried out by the EURL-GMFF (step 3) is available on request.
Content

1. **INTRODUCTION** .. 5
2. **MATERIALS** .. 6
3. **EXPERIMENTAL DESIGN** ... 6
4. **METHOD** ... 6
5. **DEVIATIONS REPORTED** .. 7
6. **RESULTS** .. 7
 PCR EFFICIENCY AND LINEARITY .. 7
7. **METHOD PERFORMANCE REQUIREMENTS** .. 9
8. **CONCLUSIONS** ... 10
9. **QUALITY ASSURANCE** .. 10
10. **REFERENCES** .. 10
11. **ANNEX 1: METHOD ACCEPTANCE CRITERIA AND METHOD PERFORMANCE REQUIREMENTS AS SET BY THE EUROPEAN NETWORK OF GMO LABORATORIES (ENGL)** .. 11
1. Introduction

Bayer CropScience provided the detection method and the control samples for the oilseed rape event Topas 19/2 (unique identifier ACS-BN∅∅7-1) according to Articles 5 and 17 of Regulation (EC) No 1829/2003 of the European Parliament and of the Council "on genetically modified food and feed".

The European Union Reference Laboratory for GM Food and Feed (EURL-GMFF), established by Regulation (EC) No 1829/2003 carried out an in-house validation of the event-specific method for the detection and quantification of Topas 19/2 oilseed rape.

Upon reception of methods, samples and related data (step 1), the EURL-GMFF carried out the assessment of the documentation (step 2) and the in-house validation of the method, according to the requirements of Regulation (EC) No 641/2004. The in-house method validation was performed in November 2008.

The in-house validation aimed at assessing the performance of a quantitative real-time PCR (Polymerase Chain Reaction) method. The method is an event-specific real-time quantitative TaqMan® PCR procedure for the determination of the relative content of event Topas 19/2 DNA to total oilseed rape DNA. The procedure is a simplex system, in which an oilseed rape (OSR) cruA (cruciferin A) endogenous assay (reference gene) and a target assay (Topas 19/2) are performed in separate wells.

The study was carried out in accordance with the following internationally accepted guidelines:

- The IUPAC “Protocol for the design, conduct and interpretation of method-performance studies” (Horwitz, 1995)(2).
2. Materials

For the validation of the quantitative event-specific method, control samples consisting of a DNA stock solution (Lot number 32RRMM00018-1) extracted from leaves of plants harbouring the Topas 19/2 event in homozygous state, and genomic DNA (Lot number 32RRMM0102) from leaves of wild-type plants genetically similar to the GM-line were provided by the applicant in accordance to the provisions of Regulation (EC) No 1829/2003, Art 2.11 ["control sample defined as the GMO or its genetic material (positive sample) and the parental organism or its genetic material that has been used for the purpose of the genetic modification (negative sample)"].

Samples containing mixtures of Topas 19/2 and non GM oilseed rape genomic DNA at different GMO content were prepared by the EURL-GMFF, using the control samples provided, in a constant amount of total oilseed rape DNA.

Table 1 show the five samples used in the in-house validation of the Topas 19/2 method.

<table>
<thead>
<tr>
<th>Topas 19/2 GM %</th>
<th>(GM copy number/oilseed rape genome copy number *100)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
</tr>
</tbody>
</table>

3. Experimental design

Eight runs were carried out for the in-house validation of the method. In each run, samples were analysed in parallel with both the GM-specific system and the *cruA* reference system. Five GM levels per run were examined and two replicates for each GM level were analysed. PCR analysis was performed in triplicate for all samples. On the whole, quantification of the five GM levels was performed as an average of sixteen replicate samples per GM level.

The method was tested in two different real-time PCR platforms: ABI Prism® 7700 and ABI 7900HT.

For the ABI 7900HT system, only seven runs were carried out; therefore the quantification of the five GM levels was performed as an average of fourteen replicate samples per GM level.

4. Method

For the detection of event Topas 19/2 genomic DNA, a 95-bp fragment of the region spanning the 3’ insert-to-plant junction is amplified using specific primers. PCR products are measured at
each cycle (real-time) by means of a target-specific oligonucleotide probe labelled with two fluorescent dyes: FAM (6-carboxyfluorescein) as reporter dye at its 5’ end and TAMRA (6-carboxytetramethylrhodamine) as a quencher dye at its 3’ end.

For relative quantification of event Topas 19/2 DNA, an OSR-specific reference system amplifies a 101-bp fragment of the cruA (cruciferin A) oilseed rape endogenous gene (GenBank X14555), using cruA specific primers and a cruA specific probe labelled with VIC and TAMRA.

For relative quantification of event Topas 19/2 DNA in a test sample, the normalised ΔCt values of the calibration samples are used to calculate, by linear regression, a standard curve (plotting ΔCt values against the logarithm of the amount of Topas 19/2 event DNA). The normalised ΔCt values of the unknown samples are measured and, by means of the regression formula, the relative amount of Topas 19/2 event DNA is estimated.

Calibration samples for the standard curve, denominated from S1 to S5, were prepared by mixing the appropriate amount of Topas 19/2 DNA with non-GM control oilseed rape DNA to obtain the following relative contents of Topas 19/2: 3.60%, 1.80%, 0.90%, 0.45% and 0.09%. The total DNA amount of the calibration samples was 200 ng, when 5 µL per reaction were used (40 ng/µL).

The GM contents of the calibration samples and the total DNA quantity used in PCR are indicated in Table 2.

<table>
<thead>
<tr>
<th>Sample code</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total amount of DNA in reaction (ng/5 µl)</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>% GM (DNA/DNA)</td>
<td>3.6</td>
<td>1.8</td>
<td>0.9</td>
<td>0.45</td>
<td>0.09</td>
</tr>
</tbody>
</table>

5. Deviations reported

The oilseed rape endogenous gene cruciferin A (cruA) (GenBank X14555) was used as a taxon-specific target instead of the Brassica napus cruciferin (GenBank X59294) as reported by the applicant.

6. Results

PCR efficiency and linearity

The values of the slope of the ΔCt-curve [from which the PCR efficiency is calculated using the formula $((10^{(1/slope)} - 1) \times 100)$ and of the R^2 (expressing the linearity of the regression) for the
eight runs in both real-time PCR platforms (ABI Prism® 7700 and ABI 7900HT), are summarised in Tables 3 and 4.

Table 3. Values of slope, PCR efficiency and R^2 obtained with the ABI Prism® 7700

<table>
<thead>
<tr>
<th>Run</th>
<th>Slope</th>
<th>PCR Efficiency (%)</th>
<th>Linearity (R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-3.14</td>
<td>108</td>
<td>0.99</td>
</tr>
<tr>
<td>2</td>
<td>-3.19</td>
<td>106</td>
<td>0.99</td>
</tr>
<tr>
<td>3</td>
<td>-3.24</td>
<td>104</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>-3.31</td>
<td>100</td>
<td>0.99</td>
</tr>
<tr>
<td>5</td>
<td>-3.24</td>
<td>104</td>
<td>0.99</td>
</tr>
<tr>
<td>6</td>
<td>-3.23</td>
<td>104</td>
<td>1.00</td>
</tr>
<tr>
<td>7</td>
<td>-3.15</td>
<td>108</td>
<td>0.99</td>
</tr>
<tr>
<td>8</td>
<td>-3.32</td>
<td>100</td>
<td>1.00</td>
</tr>
<tr>
<td>Mean</td>
<td>-3.23</td>
<td>104</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Table 4. Values of slope, PCR efficiency and R^2 obtained with the ABI 7900HT

<table>
<thead>
<tr>
<th>Run</th>
<th>Slope</th>
<th>PCR Efficiency (%)</th>
<th>Linearity (R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-3.23</td>
<td>104</td>
<td>0.99</td>
</tr>
<tr>
<td>2</td>
<td>-3.20</td>
<td>106</td>
<td>0.99</td>
</tr>
<tr>
<td>3</td>
<td>-3.17</td>
<td>107</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>-3.12</td>
<td>109</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>-3.20</td>
<td>106</td>
<td>1.00</td>
</tr>
<tr>
<td>6</td>
<td>-3.21</td>
<td>105</td>
<td>1.00</td>
</tr>
<tr>
<td>7</td>
<td>-3.17</td>
<td>107</td>
<td>1.00</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mean</td>
<td>-3.18</td>
<td>106</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The mean slopes obtained on the two platforms are within the range of -3.1 and -3.6, with very similar values for both systems (-3.23 and -3.18). The mean PCR efficiencies are slightly above 100%, with a lower value observed for the ABI Prism® 7700 system (104% vs. 106% for the ABI 7900HT). The R^2 value are 0.99 and 1.00 for the ABI Prism® 7700 and the ABI 7900HT, respectively.

These results confirm the appropriate performance characteristics of the method tested on two real-time PCR platforms.
7. Method performance requirements

The results of the in-house validation study for the oilseed rape Topas 19/2 method, assessed on two real-time PCR platforms, are reported in Tables 5 and 6. They are evaluated with respect to the method acceptance criteria, as established by European Network of GMO Laboratories (ENGL) and adopted by the EURL-GMFF (http://gmo-crl.jrc.ec.europa.eu/doc/Method%20requirements.pdf, see also Annex 1). Further, Tables 5 and 6 report estimates of accuracy and precision for each GM level on the two PCR platforms.

Table 5. Accuracy and precision of the detection method for Topas 19/2 on ABI Prism® 7700.

<table>
<thead>
<tr>
<th>Unknown sample GM%</th>
<th>Expected value (GMO %)</th>
<th>0.15</th>
<th>0.45</th>
<th>0.90</th>
<th>2.0</th>
<th>3.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td></td>
<td>0.15</td>
<td>0.52</td>
<td>1.10</td>
<td>1.99</td>
<td>3.29</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>0.02</td>
<td>0.04</td>
<td>0.11</td>
<td>0.23</td>
<td>0.40</td>
</tr>
<tr>
<td>RSDr (%)</td>
<td></td>
<td>13</td>
<td>8.5</td>
<td>10</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Bias%</td>
<td></td>
<td>-0.4</td>
<td>15</td>
<td>22</td>
<td>-0.7</td>
<td>-0.2</td>
</tr>
</tbody>
</table>

Table 6. Accuracy and precision of the detection method for Topas 19/2 on ABI 7900HT

<table>
<thead>
<tr>
<th>Unknown sample GM%</th>
<th>Expected value (GMO %)</th>
<th>0.15</th>
<th>0.45</th>
<th>0.90</th>
<th>2.0</th>
<th>3.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td></td>
<td>0.14</td>
<td>0.48</td>
<td>0.94</td>
<td>1.73</td>
<td>2.82</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
<td>0.07</td>
<td>0.14</td>
<td>0.16</td>
</tr>
<tr>
<td>RSDr (%)</td>
<td></td>
<td>8.1</td>
<td>6.8</td>
<td>7.9</td>
<td>8.3</td>
<td>5.7</td>
</tr>
<tr>
<td>Bias (%)</td>
<td></td>
<td>-7.2</td>
<td>7.3</td>
<td>4.6</td>
<td>-13</td>
<td>-14</td>
</tr>
</tbody>
</table>

The trueness of the method is estimated using the measures of the method bias for each GM level. According to the ENGL acceptance criteria and method performance requirements, the accuracy of the quantification, measured as bias from the accepted value, should be ± 25% across the entire dynamic range. As shown in Tables 5 and 6, the bias values for the two real-time PCR platforms varies between -0.7% and 22% (ABI Prism® 7700) and between -14% and 7.3% (ABI 7900HT). Therefore, the method satisfies the requirement throughout its dynamic range.

Tables 5 and 6 also report the relative repeatability standard deviation (RSDr) estimated for each GM level. In order to accept methods for evaluation, the EURL-GMFF requires that RSDr values are below 25%, as indicated by the ENGL (Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing” [http://gmo-crl.jrc.ec.europa.eu/doc/Method%20requirements.pdf]); the RSDr varies from 8.5% to 13% (ABI Prism® 7700) and from 5.7% to 8.3% (ABI 7900HT). Therefore, the method satisfies the precision requirement across the entire dynamic range.
8. Conclusions

The performance of the event-specific method for the quantitative detection of oilseed rape event Topas 19/2 event was evaluated with respect to the method acceptance criteria and method performance requirements recommended by the ENGL (as detailed under http://gmo-crl.jrc.ec.europa.eu/guidancedocs.htm). Its applicability to different real-time PCR instruments was also tested.

The results obtained indicate that the method submitted by the applicant complies with the ENGL performance criteria. The method is therefore applicable to the control samples provided (see paragraph 3 “Materials”), in accordance with the requirements of Annex I-2.C.2 to Commission Regulation (EC) No 641/2004.

9. Quality assurance

The EURL-GMFF operates according to ISO 9001:2000 (certificate number: CH-32232) and ISO 17025:2005 (certificate number: DAC-PL-0459-06-00) [DNA extraction, qualitative and quantitative PCR in the area of Biology (DNA extraction and PCR method validation for the detection and identification of GMOs in food and feed materials)].

10. References

11. Annex 1: method acceptance criteria and method performance requirements as set by the European Network of GMO Laboratories (ENGL)

Method Acceptance Criteria should be fulfilled at the moment of submission of a method (Phase 1: acceptance for the collaborative study).

Method Performance Requirements should be fulfilled in a collaborative study in order to consider the method as fit for its purpose (Phase 2: evaluation of the collaborative study results).

Method Acceptance Criteria

Applicability

Definition: The description of analytes, matrices, and concentrations to which a method can be applied.

Acceptance Criterion: The applicability statement should provide information on the scope of the method and include data for the indices listed below for the product/s for which the application is submitted. The description should also include warnings to known interferences by other analytes, or inapplicability to certain matrices and situations.

Practicability

Definition: The ease of operations, the feasibility and efficiency of implementation, the associated unitary costs (e.g. Euro/sample) of the method.

Acceptance Criterion: The practicability statement should provide indication on the required equipment for the application of the method with regards to the analysis per se and the sample preparation. An indication of costs, timing, practical difficulties and any other factor that could be of importance for the operators should be indicated.

Specificity

Definition: Property of a method to respond exclusively to the characteristic or analyte of interest.

Acceptance Criterion: The method should be event-specific and be functional only with the GMO or GM based product for which it was developed. This should be demonstrated by empirical results from testing the method with non-target transgenic events and non-transgenic material. This testing should include closely related events and cases where the limit of the detection is tested.

Dynamic Range

Definition: The range of concentrations over which the method performs in a linear manner with an acceptable level of accuracy and precision.
Acceptance Criterion: The dynamic range of the method should include the 1/10 and at least 5 times the target concentration. Target concentration is intended as the threshold relevant for legislative requirements. The acceptable level of accuracy and precision are described below. The range of the standard curve(s) should allow testing of blind samples throughout the entire dynamic range, including the lower (10%) and upper (500%) end.

Accuracy

Definition: The closeness of agreement between a test result and the accepted reference value.

Acceptance Criterion: The accuracy should be within ± 25% of the accepted reference value over the whole dynamic range.

Amplification Efficiency

Definition: The rate of amplification that leads to a theoretical slope of –3.32 with an efficiency of 100% in each cycle. The efficiency of the reaction can be calculated by the following equation: Efficiency = \[10^{\frac{-1}{\text{slope}}}] - 1\]

Acceptance Criterion: The average value of the slope of the standard curve should be in the range of (-3.1 ≥ slope ≥ -3.6)

R² Coefficient

Definition: The R² coefficient is the correlation coefficient of a standard curve obtained by linear regression analysis.

Acceptance Criterion: The average value of R² should be ≥ 0.98.

Repeatability Standard Deviation (RSDr)

Definition: The standard deviation of test results obtained under repeatability conditions. Repeatability conditions are conditions where test results are obtained with the same method, on identical test items, in the same laboratory, by the same operator, using the same equipment within short intervals of time.

Acceptance Criterion: The relative repeatability standard deviation should be below 25% over the whole dynamic range of the method.

Note: Estimates of repeatability submitted by the applicant should be obtained on a sufficient number of test results, at least 15, as indicated in ISO 5725-3 (1994).

Limit of Quantification (LOQ)

Definition: The limit of quantitation is the lowest amount or concentration of analyte in a sample that can be reliably quantified with an acceptable level of precision and accuracy.

Acceptance Criterion: LOQ should be less than 1/10th of the value of the target concentration with an RSD, ≤ 25%. Target concentration should be intended as the threshold relevant for legislative requirements. The acceptable level of accuracy and precision are described below.
Limit of Detection (LOD)

Definition: The limit of detection is the lowest amount or concentration of analyte in a sample, which can be reliably detected, but not necessarily quantified, as demonstrated by single laboratory validation.

Acceptance Criterion: LOD should be less than $1/20^{th}$ of the target concentration. Experimentally, quantitative methods should detect the presence of the analyte at least 95% of the time at the LOD, ensuring $\leq 5\%$ false negative results. Target concentration should be intended as the threshold relevant for legislative requirements.

Robustness

Definition: The robustness of a method is a measure of its capacity to remain unaffected by small, but deliberate deviations from the experimental conditions described in the procedure.

Acceptance Criterion: The response of an assay with respect to these small variations should not deviate more than $\pm 30\%$. Examples of factors that a robustness test could address are: use of different instrument type, operator, brand of reagents, concentration of reagents, and temperature of reaction.

Method Performance Requirements

Dynamic Range

Definition: In the collaborative trial the dynamic range is the range of concentrations over which the reproducibility and the trueness of the method are evaluated with respect to the requirements specified below.

Acceptance Criterion: The dynamic range of the method should include the $1/10$ and at least five times the target concentration. Target concentration should be intended as the threshold relevant for legislative requirements.

Reproducibility Standard Deviation (RSD$_r$)

Definition: The standard deviation of test results obtained under reproducibility conditions. Reproducibility conditions are conditions where test results are obtained with the same method, on identical test items, in different laboratories, with different operators, using different equipment. Reproducibility standard deviation describes the inter-laboratory variation.

Acceptance Criterion: The relative reproducibility standard deviation should be below 35% at the target concentration and over the entire dynamic range. An RSD$_r < 50 \%$ is acceptable for concentrations below 0.2%.

Trueness

Definition: The closeness of agreement between the average value obtained from a large series of test results and an accepted reference value. The measure of trueness is usually expressed in terms of bias.

Acceptance Criterion: The trueness should be within $\pm 25\%$ of the accepted reference value over the whole dynamic range.
Abstract
The European Union Reference Laboratory for GM Food and Feed (EU-RL GMFF), established by Regulation (EC) No 1829/2003, has carried out a validation study to assess the performance of a quantitative event-specific method on the soybean event CV127 (unique identifier BPS-CV127-9). The collaborative trial was conducted according to internationally accepted guidelines. In accordance to Regulation (EC) No 1829/2003 of 22 September 2003 on genetically modified food and feed and to Regulation (EC) No 641/2004 of 6 April 2004 on detailed rules for the implementation of Regulation (EC) No 1829/2003, BASF Plant Science provided the detection method and the control samples. The EU-RL GMFF prepared the validation samples [calibration samples and blind samples at unknown GM percentages (DNA/DNA)]. The results of the international collaborative trial met the European Network of GMO Laboratories (ENGL) method performance requirements (http://gmocrl.jrc.ec.europa.eu/guidancedocs.htm). The method is therefore considered applicable to the control samples provided, in accordance with the requirements of Annex I – 2.C.2 to Regulation (EC) No 641/2004.
The mission of the JRC is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of EU policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, whether private or national.