<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Activity</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/07/2013</td>
<td>09:00</td>
<td>Welcome and introduction to the course by Ângela Guimarães Pereira</td>
<td></td>
</tr>
<tr>
<td></td>
<td>09:30</td>
<td>Why dialogue for public engagement (PE)? by Elizabeth Stevenson and Heather Rea</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:45</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11:00</td>
<td>How to nurture dialogue by Elizabeth Stevenson and Heather Rea</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12:30</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14:00</td>
<td>How to apply dialogic approaches to deliberative PE by Elizabeth Stevenson and Heather Rea</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15:30</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15:45</td>
<td>Future visioning: How you intend to use dialogic approaches in your P.E. practice by Elizabeth Stevenson and Heather Rea</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17:30</td>
<td>End of day 1</td>
<td></td>
</tr>
<tr>
<td>02/07/2013</td>
<td>09:00</td>
<td>The art of good story telling and how to write a good tale by Alun Lewis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:45</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11:00</td>
<td>Social Media: Yes or No? By Toby Murcott</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12:30</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14:00</td>
<td>Press release – getting it right. By Alun Lewis and Toby Murcott</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15:30</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15:45</td>
<td>Group work – writing exercise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17:30</td>
<td>End of day 2</td>
<td></td>
</tr>
<tr>
<td>03/07/2013</td>
<td>09:00</td>
<td>Broadcasting your message by Alun Lewis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:45</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11:00</td>
<td>Group work – radio and TV interview exercise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12:30</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14:00</td>
<td>Presentation and discussion of group work by Alun Lewis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15:30</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15:45</td>
<td>Discussion of emerging themes from course</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17:30</td>
<td>End of day 3</td>
<td></td>
</tr>
</tbody>
</table>

All lectures take place in room 12AB – Bld. 58a
INTRODUCTION

Where science is a relevant input in policy making processes, science communication becomes a primary task for those involved in promoting public engagement in those processes. Neither popularisation of science solutions nor science education approaches are appropriate, because the objective is not to educate the publics but rather to engage them in the research endeavour and its overall implications for designing relevant policies. Hence, new forms of dialogue and new mechanisms for introducing scientific issues to (most likely) non-scientific audiences call for communication strategies that deepen the interface between the scientific processes and products and the audiences; in practice this is about science communication strategies, public participation methodologies, understanding the role of traditional and emergent media, as well as development of speaking, writing and moderation skills.

This is the 7th Edition of a most famous(!) training at the Joint Research Centre.

Welcome to Ispra!

Ângela Guimarães Pereira and Alessia Ghezzi

July 2013
Elizabeth Stevenson and Heather Rea

Dialogue for science communication and public engagement

Science communication and public engagement practices now extend beyond the simple dissemination of research results, to encompass various forms of two-way interaction with relevant stakeholders and diverse publics. Whether your research work is controversial or misunderstood, remote from ‘the public’ or essential to social goals, you will need to engage with others to find out their views or concerns, explain your work, discuss implications, or share the value and excitement of your work. Increasingly we are being asked to engage in ‘dialogue’ about our research.

Formally defined, dialogue is a form of communication, which prizes mutual listening and understanding. It can be a powerful tool in any collaborative interaction, professional or personal.

Course aim

This course aims to introduce participants to the principles of dialogue, provide practical guidance in how to nurture dialogue in science communication and public engagement activities and to explore ways in which to evaluate these activities. The course will take a workshop format, using practical exercises that you can use later to develop your work in this area.

What you will learn:

The sessions will explore the ethos and practice of dialogue, you will learn what ‘dialogue’ is and what it can achieve. We will compare and contrast a dialogic approach with adversarial approaches and discuss the advantages of a dialogic approach in public engagement. You will be introduced to the principles of dialogue and then explore the principles in practice. You will learn about principles of evaluation, and process and practices of evaluation will be threaded through the day.
You will learn how to formulate guidelines (ground rules) for dialogue, learn and practise a range of tools and techniques for facilitation and participation in group discussion.

We will then address the potential application of dialogic principles and practice in the task of engaging publics in deliberative dialogue about emerging issues surrounding the products and/or processes of research, illustrating this with a case study example of an evaluated dialogic process.

The closing session will reflect on the learning from the day and revisit potential applications for dialogue in your own work.

Reading and preparation

By way of preparation for this course, we encourage you to consider the following questions in advance:
- What do you want to achieve with public engagement?
- Who are your publics/stakeholders/audiences?
- What’s in it for them?

For those not familiar with the recent broadening of science communication and public engagement, the following reading provides relevant background:

The course draws on the following two handbooks developed by the Edinburgh Beltane: Beacon for Public Engagement, currently available online. Hardcopy of the first of these will be circulated to participants on the course, but you will find it helpful to read the first section before the course and to be aware of the other topics covered so you can follow up afterwards. The second provides a rich account of dialogue theory and practice in public engagement and deliberation more generally.

(i) http://www.edinburghbeltane.net/content/dialoguehandbook

(ii) http://www.edinburghbeltane.net/content/dialoguetheory

The case study to which we refer is ‘Synthetic Biology Dialogue’

The evaluation report for ‘Synthetic Biology Dialogue’ is as follows:

Short bio: Dr. Elizabeth Stevenson has a background in chemistry with a PhD in chemistry. She combined her role as a lecturer in chemistry at the University of Edinburgh with public engagement practice and has been involved in public engagement with science for over 15 years. She now runs a Masters in Science Communication and Public Engagement for the University of Edinburgh.

Short bio: Heather Rea is the Project Lead for the Beltane Public Engagement Network a collaborative network which is supported by the four Universities in Edinburgh. She has a degree and PhD in Mechanical Engineering and have done several years research on Engineering Knowledge Management. Previously she ran two EPSRC and on RAEng Public Engagement Projects taking engineering activities to local schools and the Edinburgh International Science Festival. In 2008 she became the Deputy Director of one of the six UK Beacons for Public Engagement funded by RCUK, the UK Funding Councils and the Wellcome Trust.
ALUN LEWIS

SCIENCE FOR THE MEDIA

Communicating complex scientific ideas to the public is very hard. We all know that. To communicate successfully you have to ask yourself some big questions.

Who do you want to talk to? What do you want to say? Why are you trying to communicate your ideas to other people? Where are those people? When is the best time to reach them? Which is the best medium to use to create the most impact? From newspapers to social media the choice is wide but the results can be either good or bad.

There are many myths and misconceptions surrounding the roles, job and ambitions of the media. If you know how the news industry works you can use it to publicise the important aspects of your work. But if you are innocent of the ways of the media you can make a bad mistake.

You will learn how the media industry works; how the media differ in their approach and their requirements; how you can make your work accessible to a wider audience; how you can get your story into the public eye without *dumbing* it down.

This course gives you a chance to acquire some very useful practical presentational skills while you learn how to turn your work into an interesting subject for the non-scientifically trained. Main topics of day 2 and day 3:

- lectures on the media and how it works;
- how to prepare your story for general consumption;
- understanding the role of the press release;
- learning the art of good story telling

The course will also explore the role of the broadcast media:

- How they differ in their demands.
- How to prepare for an interview.
- How to control an interview.
- Preparing for TV...
In this focused two-days course you will be shown how to answer these questions properly and how to choose the best medium for your message.

We will cover a great deal of topics and we will be getting you to do a lot of practical work during the three days. So bring an open mind, pen and paper, and any questions that you want to put to working science journalists!

Short bio: Alun Lewis is a senior lecturer at Royal Holloway University of London. He has been a Technology journalist and a Science Journalist for BBC Radio 2,3,4, Channel 4, EBN, CNBC, World Service, BBC 2, and BBC Online, where he has been presenting, scripting, producing and editing scientific programmes and articles. Museums have employed him to advise and write exhibitions, which lead to a couple of commissions for children's science books. He has lectured extensively, and has developed and now runs his own undergraduate courses, such as Geology with Science Communication, as well as courses on Technology Language and Communication for Humanities and Arts students, and a radio drama writing module for the Drama Department at Royal Holloway.

Further reading:
 >> Although written for American audience this is a very comprehensive book for scientists and journalists alike.
 >> Concentrating on biological sciences but there are chapters such as that written by Dr Toby Murcott which are of general importance.
 >> A series of articles covering a wide range of techniques and ideas.
 >> Wide ranging chapters by international authors.
SCIENCE JOURNALISTS – PRIESTS OR CRITICS?

Much of science journalism is about reporting the latest research published in the major peer reviewed journals. The pressures of a modern news room means the journalist has just enough time to verify the basic facts of the press release and paper, and write a brief story summarising it for a lay audience. There is very little time for any proper, journalistic, enquiry into the provenance of the research, the funding or the current scientific debates within the topic, all features of what would normally be considered effective journalism. It leaves science journalists facing the accusation of being priests for science rather than the intelligent critics that journalists can and should be. In this talk science journalist Toby Murcott will explore the role of the science journalist, asking whether this accusation of priesthood is justified and whether it serves science well.

Short bio: Toby is an award winning science radio producer and journalist. He has produced and presented science programmes across all of BBC Radio and currently makes Home Planet for BBC Radio 4. He is the author of ‘The Whole Story: Alternative Medicine on Trial’. He was a regular columnist and contributor to The Times’ Body and Soul supplement and also the Science Contributing Editor of Maxim magazine. He was formerly Science Correspondent for BBC World Service radio and Editor of satellite science channel einstein.tv. He works with both scientists and journalists worldwide, encouraging them to work more closely together and is also a regular public speaker and chair of public events for organisations such as The Wellcome Trust and Diamond Light Synchrotron.

Further reading:

ANNOTATED BIBLIOGRAPHY

Source: Science Technology Human Values Summer 2000 vol. 25 no. 3 283-308

Abstract and annotation: An important aspect of any meaningful public discussion about developments in gene technology is the provision of opportunities for interested publics to engage in sociable public discourse with other lay people and with experts. This article reports on a series of peer group conversations conducted in late 1996 and early 1997 with sixteen community groups in Perth, Western Australia, interested in gene therapy technology. With the case of cystic fibrosis as a particular focus, and using background resource material as a stimulus for discussion, the participating groups explored a range of value issues arising from the new genetic medicine. This more discursive context enabled participants to express a number of background or life-world concerns about genetic medicine, concerns that are often obscured by the dominant biomedical and bioethical discourses.

Bell, Sarah 2006. Concerned scientists, pragmatic politics and Australia’s green drought

Source: Science and Public Policy, Volume 33, Number 8, 1 October 2006 , pp. 561-570(10)

Abstract and annotation: The Wentworth Group of Concerned Scientists formed in Australia in 2002 in response to calls to ‘drought-proof’ the continent. Their model of engagement between science and public policy involves: clear simple science communication, which keeps scientific uncertainty and debate out of public view; pragmatic politics, which works within rather than challenges the dominant political agenda; and a focus on providing solutions rather than describing problems. This model has been successful in achieving policy reform at the expense of more participatory and critical approaches to ecological science and politics. This paper goes beyond the “Public Understanding of Science” model of involving society in scientific debates.

Brulle, Robert J.. 2010. From Environmental Campaigns to Advancing the Public Dialog: Environmental Communication for Civic Engagement

Abstract and annotation: This essay examines the claims of environmental identity campaigns regarding the issue of climate change. Identity campaigns are based on the idea that more effective environmental messages developed through the application of cognitive science by professional communications experts can favorably influence public opinion, and thus support legislative action to remedy this issue. Based on a review of the sociological and psychological literature regarding social change and mobilization, I argue that while this approach may offer short term advantages, it is most likely incapable of developing the large scale mobilization necessary to enact the massive social and economic changes necessary to address global warming. Specifically, theoretical and empirical research on the role of the public sphere, civil society and social movements shows that democratic civic engagement is core to successful social change efforts. However, identity campaigns focus on a communications process that centers on elite led one way communications, which fails to allow for any form of civic engagement and public dialogue. This undermines the creation of a democratic
process of change and reinforces the professionalization of political discourse, leading to a weakening of the mobilization capacity over this issue of global warming. The essay concludes with the outlines of an environmental communication process that aims at enhancing civic engagement and democratic decision making.

Bucchi, Massimiano. 1996. *When scientists turn to the public: alternative routes in science communication*

Source: Public Understanding of Science October 1996 vol. 5 no. 4 375-394

Abstract and annotation: This paper argues that both the traditional normative models and the more refined (‘continuity’) models of public communication of science fail to account adequately for cases of ‘deviation’, i.e. those cases when scientists address the public directly by skipping the usual stages of scientific communication. It is hypothesized that most of such cases are related to crisis situations and to the definition of scientific boundaries. Therefore, at least two modalities of public communication of science should be distinguished: one is the routine, generally unproblematic itinerary of a scientific idea through the different levels of communication as presented by the continuity models; and the other is the dramatic (re)assessment of boundaries and professional competences in the public arena that is required by marginal situations. Continuity models need to be supplemented by a multilevel, multivariate model which enables us to explain this second modality and to understand in more detail the role that the level of public communication plays when such a modality is activated.

Carvalho, Mónica, Carvalho, Ana Sofia, Araújo, Joana, Brites, Marta. 2010. *Between scientists and public: reframing public participation in science through bioethics*

Paper available at http://iamcr.org/conference-abstracts

Abstract and annotation: Discourses and techniques about the relationship between science and the public have remarkably developed in the past four decades. Science communication has become an important issue for the scientific governance. Public confidence in science, decision-making and support to democracy have changed the predominance of a top-down communication model, from scientists to public, to a more participative one – the Public Engagement with Science (PES). The Institute of Bioethics at Portuguese Catholic University, in Oporto, is doing research in the role of science in society issues and the aim of this paper is to discuss the relevance of Bioethics to improve PES. The bioethical issues seem to draw people’ attention to certain scientific facts, confronting them with the consequences of science and improving their skills in deliberating on scientific issues. Moreover, ethics influences the way one understands public engagement, “scientific citizenship” or “science governance”. The role of ethics is not to re-edit the old fashionable deficit perspective, which usually focuses on the impact of science and technology from the perspective of non-experts. Ethics is a theoretical and practical reference for changing the science-making in the near future, and it makes us consider the public as playing a more important role than that of mere spectators with lack of scientific knowledge or with emotional concerns. The ethical reflection could redefine the non-experts place in the context of science, involving people with science, making them not simply aware of scientific issues but also involved in the process of decision-making. On the other hand, bioethics can also contribute to the participation of scientists in the ethical reflection that takes place outside the labs, broadening their role as citizen scientists.
Davies, S. R. 2008. Constructing Communication. Talking to Scientists About Talking to the Public
Source: Science Communication June 2008 vol. 29 no. 4 413-434

Abstract and annotation: Recent work has started to explore “scientific understandings of publics” alongside public understandings of science. This study builds on this work to examine the ways in which public communication is talked about by scientists and engineers. The author identifies a range of ways of talking about the purposes and content of science communication to the public, arguing that the dominant framework for these is one-way communication, and that, in addition, such communication tends to be constructed as difficult and dangerous. However, the author further identifies a range of minority discourses that understand public communication in more complex terms.

Davies, S., Ellen McCallie, and Elin Simonsson. 2009. Discussing dialogue: perspectives on the value of science dialogue events that do not inform policy
Source: Public Understanding of Science May 2009 vol. 18 no. 3 338-353

Abstract and annotation: While theoretical work and empirical research have examined science policy-informing “dialogue events,” dialogue events that do not seek to inform public policy are under-theorized and under-researched, even though they are common and growing in popularity in the UK. We describe how, from a critical perspective, it may initially appear that such events cannot be justified without returning to the deficit model. But with this paper, we seek to open up a discussion about these non-policy-informing events by arguing that there are in fact further ways to understand and frame them. We deliberately draw on different literatures and seek to make use of practitioner expertise within our discussion, in order to display several perspectives on the value of non-policy dialogue on science as sites of symmetrical individual or small-scale learning —rather than institutional learning—through social processes.

Source: Public Understanding of Science May 11, 2010

Abstract and annotation: In this paper, we present a study of Science and Technology Studies (STS) perspectives on public engagement, specifically focusing on the gap between theory and practice. In aiming to develop a conceptual map of this gap, we identify five top topics of tension. These are related to the general questions of: “Why should we do public engagement?,” “Who should be involved?,” “How should it be organised?,” “When should it be done?” and “Where should it be grounded?” We employ nanotechnology as a paradigmatic case to help us explore these tensions. In practice, the choices one makes in relation to one topic of tension may influence the choices available for others. Enhanced awareness of the presence of these tensions, as well as their interconnections, can help build reflexive capacity and make visible the various alternative routes available for STS practitioners working in the “age of engagement.”
Durant, John. 1999. Participatory technology assessment and the democratic model of the public understanding of science
Source: Science and Public Policy, Volume 26, Number 5, 1 October 1999 , pp. 313-319(7)

Abstract and annotation: It seems that the general public is somewhat disillusioned with science and technology and is demanding greater participation in important decisions as to their application in everyday life. Ideals of equality between scientists and non-scientists and of informed public debate as the preconditions for forging socially sustainable public policies need to be translated into new processes of deliberative democracy.

Abstract and annotation: This historical review surveys the evolution of the science–society relationship in post-war Britain. It observes the transformation since the 1980s of the idea of ‘public understanding of science’, in which scientists and laypeople differ by virtue of the scientific knowledge they have, into the idea of ‘public engagement which science’, in which scientists, laypeople and policy makers negotiate policy for future science and technology. We survey recent critiques of public engagement which draw attention to the ways in which it constructs particular publics, and which question its capacity to contribute to policy-making.

Source: Nature Reviews Genetics 4, 819-825 (October 2003)

Abstract and annotation: Science communication is developing a new approach that promotes dialogue between scientists and the public. A recent example is the debate on the possible introduction of genetically modified crops into the United Kingdom. As this exercise in public engagement draws to a close, we consider the context in which this debate has taken place, and the challenges of developing such interactions between science and society.

Source: Public Understanding of Science September 2010 vol. 19 no. 5 590-608

Abstract and annotation: The framing of issues in the mass media plays a crucial role in the public understanding of science and technology. This article contributes to research concerned with the analysis of media frames over time by making an analytical distinction between implicit and explicit media frames, and by introducing an automated method for the analysis of implicit frames. In particular, we apply a semantic maps method to a case study on the newspaper debate about artificial sweeteners, published in the New York Times between 1980 and 2006. Our results show that the analysis of semantic changes enables us to filter out the dynamics of implicit frames, and to detect emerging metaphors in public debates. Theoretically, we discuss the relation between implicit frames in public debates and the codification of meaning and information in scientific discourses, and suggest further avenues for research interested in the automated analysis of frame changes and trends in public debates.

Abstract and annotation: This chapter explores some different ways of thinking about science communication and risk management. In certain contexts, there has been a transition from ‘first order’ (or deficit) models of science-public relations to a greater emphasis on public engagement and dialogue (discussed here as ‘second order’ thinking); The chapter especially addresses certain problematic and challenging aspects of this partial movement between first and second order approaches. ‘Third order’ thinking about risk, science and public communication asks fundamental questions about the underlying relationship between ‘first’ and ‘second’ order approaches, the changes that have taken place (both in theory and practice) and the future direction of scientific governance and science communication; It is important to emphasise that first, second and third order thinking are not presented here as distinct historical stages nor as an inevitable sequence. This is not a story of one way of thinking inevitably giving way to the next and then the next. Instead, the situation in most national and local contexts is of these different ‘orders’ being mixed up (or churned) together. The deficit model co-exists with talk of dialogue and engagement. While some organisations and individuals look for quick and easy solutions to communication problems, others have begun to reflect upon the inherent limitations, contextualities and conditionalities of both deficit and dialogue; Importantly, not all parties will agree on any particular categorisation: what one party might view as ‘engagement’ can often be seen as top-down communication by another (especially if disappointed with the outcome). Thus, social experiments in ‘public engagement’ very often lead to accusations that the exercise was too restricted, too short and insufficiently democratic. From the perspective of this chapter, such accusations do not invalidate initiatives but can represent an essential resource within the public scrutiny of socio-technical change; This chapter presents the public communication of science and technology as more than a matter of communication style. Instead, through the device of ‘third-order thinking’, we confront basic issues of the shaping and direction of socio-technical change, the frameworks within which communication takes place, cultures of governance and control (especially relating to the institutions of science) and the choices which are available to citizens within modern democracies.

Abstract and annotation: The author argues that people's grasp of scientific debates can improve if communicators build on the fact that cultural values influence what and whom we believe. In a famous 1950s psychology experiment, researchers showed students from two Ivy League colleges a film of an American football game between their schools in which officials made a series of controversial decisions against one side. Asked to make their own assessments, students who attended the offending team's college reported seeing half as many illegal plays as did students from the opposing institution.

Abstract and annotation: “Stem cell research” has become a subject of political discussion in recent years because of its social and ethical implications. The intellectual research program, however, has a history of several decades. Therapeutic applications and patents on the basis of stem cell research became available during the 1990s. Currently, the main applications of stem cell research are found in marrow transplantation (e.g., for the treatment of leukemia). In this study, the various meanings of the term stem cell are examined in these different contexts of research, applications, and policy debates. Translation mechanisms between contexts are specified, and a quantitative indicator for the degree of codification is proposed.
Source: The Open Information Science Journal, 2008, 1, 10-14

Abstract and annotation: The article considers how discrete disciplines such as documentary research, participatory methodologies and the public communication of science can, if used synergistically, provide the necessary elements for a public debate on a scientific issue of current interest. In this instance, the debate formed part of a CNR-British Council, Rome branch and the Civil Protection Department project for the communication of science to young people, and the theme chosen for discussion was the freshwater crisis. It is important to ensure that schools offer suitable learning environments and provide innovative teaching techniques to encourage students to explore the social dimensions of the scientific issues they are dealing with.

Source: Science Communication December 2005 vol. 27 no. 2 268-291

Abstract and annotation: In this article we argue that nanotechnology represents an extraordinary opportunity to build in a robust role for the social sciences in a technology that remains at an early, and hence undetermined, stage of development. We examine policy dynamics in both the United States and United Kingdom aimed at both opening up, and closing down, the role of the social sciences in nanotechnologies. We then set out a prospective agenda for the social sciences and its potential in the future shaping of nanotechnology research and innovation processes. The emergent, undetermined nature of nanotechnologies calls for an open, experimental, and interdisciplinary model of social science research.

Source: American Journal of Botany 96: 1767-1778

Abstract and annotation: In this essay, the authors review research from the social sciences on how the public makes sense of and participates in societal decisions about science and technology. We specifically highlight the role of the media and public communication in this process, challenging the still dominant assumption that science literacy is both the problem and the solution to societal conflicts. After reviewing the cases of evolution, climate change, food biotechnology, and nanotechnology, we offer a set of detailed recommendations for improved public engagement efforts on the part of scientists and their organizations. We emphasize the need for science communication initiatives that are guided by careful formative research; that span a diversity of media platforms and audiences; and that facilitate conversations with the public that recognize, respect, and incorporate differences in knowledge, values, perspectives, and goals.

Abstract and annotation: Many ecologists are interested in communicating science to the public and addressing societal concerns about environmental issues. Individual ecologists need to consider whether, when, and how this should be done. We propose that public outreach activities can be beneficial for ecologists at all stages of their career. There are diverse opportunities for such involvement, and these can vary enormously in terms of time and expertise required. Trends within the science of ecology, especially research focused on social–ecological systems, are likely to promote increased interactions with stakeholders and policy makers. To be effective in these interactions, ecologists should consider new approaches to communication and be aware of the potential roles scientists can play in public policy debates. Professional ecologists need to engage with non-scientific audiences; a review of such activities should be included in considerations for promotion, recognition, and awards, while also acknowledging variations in the inclinations and abilities of individual scientists. There are, however, few current standards for how much time ecologists should commit to public outreach, how time allocation might change over a career, or how to evaluate the quality of such activities. We ask ecologists to consider ways to evaluate the quality of interactions with the public and how to reward these efforts appropriately.

Abstract and annotation: A study of themes arising within focus group discussions of U.S. lay publics (both student and nonstudent adults) in response to newspaper coverage of biotechnology is consistent with the assertion that media frames and reader schemas interact to produce an understanding of a newly emerging issue. Newspaper coverage heavily dominated by institutional sources and dealing with only a narrow range of issues may be limiting the terms of public debate in an unhealthy way. Readers reason by analogy with related and sometimes unrelated developments in trying to understand biotechnology, based on schemas reflecting their general understanding of science.

Abstract and annotation: Science communication is said to have changed in the past decades. It is widely assumed that science is no longer merely transported and translated by the mass media to a passive audience, but “medialized”: Many authors believe that scientific issues are discussed extensively in the mass media nowadays, that these discussions are plural in its participants and in the arguments used, and that the issues at stake are evaluated controversially. It is still unclear, however, if this change applies to all science topics or only to some. The article at hand argues that science issues from different epistemic cultures can be expected to be “medialized” to different extents, and analyzes mass media coverage on stem cell research, human genome research, and neutrino research to underline this claim. The findings show that the described change only applies to some issues, and that further differentiation of the concept of “medialization” is necessary.
Abstract

Where science is a relevant input in policy making processes, science communication becomes a primary task for those involved in promoting public engagement in those processes. Neither popularisation of science solutions nor science education approaches are appropriate, because the objective is not to educate the publics but rather to engage them in the research endeavour and its overall implications for designing relevant policies. Hence, new forms of dialogue and new mechanisms for introducing scientific issues to (most likely) non-scientific audiences call for communication strategies that deepen the interface between the scientific processes and products and the audiences; in practice this is about science communication strategies, public participation methodologies, understanding the role of traditional and emergent media, as well as development of speaking, writing and moderation skills.
As the Commission’s in-house science service, the Joint Research Centre’s mission is to provide EU policies with independent, evidence-based scientific and technical support throughout the whole policy cycle.

Working in close cooperation with policy Directorates-General, the JRC addresses key societal challenges while stimulating innovation through developing new standards, methods and tools, and sharing and transferring its know-how to the Member States and international community.

Key policy areas include: environment and climate change; energy and transport; agriculture and food security; health and consumer protection; information society and digital agenda; safety and security including nuclear; all supported through a cross-cutting and multi-disciplinary approach.