Event-specific Method for the Quantification of Soybean Line MON 89788 Using Real-time PCR v. 1.01

Validation Report and Validated Method

Chrystele Delobel
Alessia Bogni
Gregor Pinski
Marco Mazzara
Guy Van den Eede

2013
European Commission
Joint Research Centre
Institute for Health and Consumer Protection

Contact information
Molecular Biology and Genomics Unit
Address: Joint Research Centre, Via Enrico Fermi 2749, TP 201, 21027 Ispra (VA), Italy
E-mail: eurl-gmff@jrc.ec.europa.eu
Tel.: +39 0332 78 5165
Fax: +39 0332 78 9333

http://ihcp.jrc.ec.europa.eu/
http://www.jrc.ec.europa.eu/

Legal Notice
Neither the European Commission nor any person acting on behalf of the Commission
is responsible for the use which might be made of this publication.

Europe Direct is a service to help you find answers to your questions about the European Union
Freephone number (*): 00 800 6 7 8 9 10 11
(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet.
It can be accessed through the Europa server http://europa.eu.

The corrections made in the new document are:
Validation Report:
Page 8 §5 : lec changed by Le1

Validated Method:
Page 4, 6, 7, 8, 9, 10 : lec changed by Le1

Note:
Since 01/12/2009 the term "Community Reference Laboratory (CRL)" is changed into "European Union Reference Laboratory (EURL)".
Since 01/03/2009 the JRC-unit that hosts the EU-RL GMFF is named "Unit for Molecular Biology and Genomics" instead of "Biotechnology and GMO Unit".

JRCB4189

EUR 26153 EN

ISSN 1831-9424

doi: 10.2788/20464

© European Union, 2013

Printed in Italy
Event-specific Method for the Quantification of Soybean Line MON 89788 Using Real-time PCR

Validation Report
18 February 2008
Corrected version 1 - 28/08/2013 (see page 2)

Joint Research Centre
Institute for Health and Consumer Protection
Unit for Molecular Biology and Genomics

Executive Summary

The JRC as European Union Reference Laboratory for GM Food and Feed (EURL GMFF), established by Regulation (EC) No 1829/2003, in collaboration with the European Network of GMO Laboratories (ENGL), has carried out a collaborative study to assess the performance of a quantitative event-specific method to detect and quantify the MON89788 transformation event in soybean DNA (unique identifier MON-89788-1). The collaborative trial was conducted according to internationally accepted guidelines (1, 2).

In accordance with Regulation (EC) No 1829/2003 of 22 September 2003 on genetically modified food and feed and with Regulation (EC) No 641/2004 of 6 April 2004 on detailed rules for the implementation of Regulation (EC) No 1829/2003, Monsanto provided the detection method and the samples (soybean seeds containing the transformation event and conventional soybean seeds). The JRC prepared the validation samples (calibration samples and blind samples at unknown GM percentage [DNA/DNA]). The collaborative trial involved twelve laboratories from eight European countries.

The results of the international collaborative trial met the ENGL performance requirements. The method is therefore considered applicable to the control samples provided, in accordance with the requirements of Annex 1-2.C.2 to Commission Regulation (EC) No 641/2004.

The results of the collaborative study are made publicly available at http://gmo-crl.jrc.it/.
Quality assurance

The EURL GMFF is ISO 17025:2005 accredited [certificate number: ACCREDIA 1172, (Flexible Scope for DNA extraction and qualitative/quantitative PCR) - Accredited tests are available at http://www.accredi.ia.it/accredia_labsearch.jsp?ID_LINK=293&area=7].

The original version of the document containing evidence of internal checks and authorisation for publication is archived within the EURL GMFF quality system.

The EURL GMFF is also ISO 17043:2010 accredited (Proficiency test provider) and apply the corresponding procedures and processes for the management of ring trials during the method validation.

The EURL GMFF conducts its activities under the certification ISO 9001:2008 of the IHCP Institute provided by CERMET

Correction from the previous version:

Corrected version 1 - 28/08/2013

Page 8 §5 :
leu changed by Le1

Address of contact laboratory:
European Commission, Joint Research Centre (JRC)
Institute for Health and Consumer Protection (IHCP)
Unit for Molecular Biology and Genomics
European Union Reference Laboratory for GM Food and Feed
Via E. Fermi 2749, 21027 Ispra (VA) – Italy
Functional mailbox: EURL GMFF@jrc.ec.europa.eu
Report on Steps 1-3 of the Validation Process

Monsanto submitted the detection method and control samples for soybean event MON 89788 (unique identifier MON-89788-1) under Article 5 and 17 of Regulation (EC) No 1829/2003 of the European Parliament and of the Council “on genetically modified food and feed”.

The European Union Reference Laboratory for GM Food and Feed (EURL GMFF), following reception of the documentation and material, including control samples, (step 1 of the validation process) carried out the scientific assessment of documentation and data (step 2) in accordance with Commission Regulation (EC) No 641/2004 “on detailed rules for the implementation of Regulation (EC) No 1829/2003 of the European Parliament and of the Council as regards the application for the authorisation of new genetically modified food and feed, the notification of existing products and adventitious or technically unavoidable presence of genetically modified material which has benefited from a favourable risk evaluation” and according to its operational procedures (“Description of the EURL GMFF Validation Process”, http://gmo-crl.jrc.it/guidancedocs.htm).

The scientific assessment focused on the method performance characteristics assessed against the method acceptance criteria set out by the European Network of GMO Laboratories and listed in the “Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing” (http://gmo-crl.jrc.it/guidancedocs.htm) (see Annex 1 for a summary of method acceptance criteria and method performance requirements). During step 2, three scientific assessments were performed and requests of complementary information addressed to the applicant. Upon reception of complementary information, the scientific evaluation of the detection method for event MON 89788 was positively concluded in May 2007.

Between June 2007 and July 2007, the EURL GMFF verified experimentally the method characteristics (step 3, experimental testing of samples and methods) by quantifying five blind GM-levels within the range 0.1%-8% on a copy number basis. The experiments were performed in repeatability conditions and demonstrated that the PCR efficiency, linearity, trueness and precision of the quantifications were within the limits established by the ENGL. The DNA extraction module of the method was tested on samples of food and feed.

A Technical Report summarising the results of tests carried out by the EURL GMFF (step 3) is available on request.
Content

1. INTRODUCTION .. 5
2. LIST OF PARTICIPATING LABORATORIES ... 6
3. MATERIALS ... 7
4. EXPERIMENTAL DESIGN ... 7
5. METHOD .. 8
 DESCRIPTION OF OPERATIONAL STEPS FOLLOWED ... 8
6. DEVIATIONS REPORTED ... 9
7. SUMMARY OF RESULTS .. 10
 PCR EFFICIENCY AND LINEARITY .. 10
 GMO QUANTIFICATION .. 11
8. METHOD PERFORMANCE REQUIREMENTS ... 12
9. CONCLUSIONS .. 14
10. QUALITY ASSURANCE ... 14
11. REFERENCES ... 14
12. ANNEX 1: METHOD ACCEPTANCE CRITERIA AND METHOD PERFORMANCE
 REQUIREMENTS AS SET BY THE EUROPEAN NETWORK OF GMO LABORATORIES
 (ENGL) .. 15
1. Introduction

Monsanto submitted the detection method and control samples for soybean event MON 89788 (unique identifier MON-89788-1) under Article 5 and 17 of Regulation (EC) No 1829/2003 of the European Parliament and of the Council “on genetically modified food and feed”.

The Joint Research Centre (JRC, Biotechnology and GMOs Unit of the Institute for Health and Consumer Protection) as European Union Reference Laboratory for GM Food and Feed (see Regulation EC No 1829/2003) organised the international collaborative study for the method of detection and quantification of MON 89788 soybean. The study involved twelve laboratories from eight European countries, as listed in Annex II (“National reference laboratories assisting the EURL for testing and validation of methods for detection”) of Commission Regulation (EC) No 1981/2006 of 22 December 2006.

Upon reception of method, samples and related data (step 1), the JRC carried out the assessment of the documentation (step 2) and the in-house evaluation of the method (step 3) according to the requirements of Regulation (EC) No 641/2004 and following its operational procedures.

The internal in-house experimental evaluation of the method was carried out between June 2007 and July 2007.

Following the evaluation of the data and the results of the in-house laboratory tests, the international collaborative study was organised (step 4) and took place in September 2007.

A method for DNA extraction from soybean seeds, submitted by the applicant, was evaluated by the EURL GMFF; laboratory testing of the method was carried out in June-July 2007 in order to confirm its performance characteristics. The protocol for DNA extraction and a report on method testing is available at http://gmo-crl.jrc.it/.

The operational procedure of the collaborative study included the following module:

- Quantitative real-time PCR (Polymerase Chain Reaction). The methodology is an event-specific real-time quantitative TaqMan® PCR procedure for the determination of the relative content of event MON 89788 DNA to total soybean DNA. The procedure is a simplex system, in which a soybean *Le1 (lectin) endogenous assay* (reference gene) and the target assay (MON 89788) are performed in separate wells.

The international collaborative study was carried out in accordance with the following internationally accepted guidelines:

- The IUPAC “Protocol for the design, conduct and interpretation of method-performance studies” (Horwitz, 1995).
2. **Selection of participating laboratories**

As part of the international collaborative study the method was tested in twelve laboratories to determine its performance.

On 10th August 2007 the EURL GMFF invited all National Reference Laboratories nominated under Commission Regulation (EC) No 1981/2006 of 22 December 2006 and listed in Annex II ("National reference laboratories assisting the EURL for testing and validation of methods for detection") of that Regulation to express the availability to participate in the validation study of the quantitative real-time PCR method for the detection and quantification of soybean GM event MON 89788.

Thirty-three laboratories expressed in writing their willingness to participate, three declined the invitation, while thirty-seven did not answer. The EURL GMFF performed a random selection of twelve laboratories out of those that responded positively to the invitation, making use of a validated software application.

Clear guidance was given to the selected laboratories with regards to the standard operational procedures to follow for the execution of the protocol. The participating laboratories are listed in Table 1.

Table 1. Laboratories participating in the validation of the detection method for soybean line MON 89788.

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute for national investigation for the health and veterinarian nature Saxonia</td>
<td>DE</td>
</tr>
<tr>
<td>Veterinary Public Health Institute for Lazio and Toscana Regions; National Reference Centre for GMO Analysis</td>
<td>IT</td>
</tr>
<tr>
<td>Danish Plant Directorate, Laboratory for Diagnostics in Plants, Seed, and Feed</td>
<td>DK</td>
</tr>
<tr>
<td>Institute of Chemical Technology Prague</td>
<td>CZ</td>
</tr>
<tr>
<td>Crop Research Institute - Reference Laboratory for GMO Detection and DNA fingerprinting</td>
<td>CZ</td>
</tr>
<tr>
<td>Institute for Agricultural and Fisheries Research (ILVO)</td>
<td>BE</td>
</tr>
<tr>
<td>Walloon Agricultural Research Centre (CRA-W) - Department Quality of Agricultural Products</td>
<td>BE</td>
</tr>
<tr>
<td>Finnish Customs Laboratory</td>
<td>FI</td>
</tr>
<tr>
<td>State Office for Agriculture, Food Safety and Fisheries - Mecklenburg Western Pomerania</td>
<td>DE</td>
</tr>
<tr>
<td>Hessian State Laboratory</td>
<td>DE</td>
</tr>
<tr>
<td>Institute of Biochemistry and Biophysics Polish Academy of Sciences, Genetic Modifications Analysis Laboratory</td>
<td>PL</td>
</tr>
<tr>
<td>Central Agricultural Office, Directorate Food and Feed Safety, Central Feed Investigation Laboratory - National Reference Laboratory</td>
<td>HU</td>
</tr>
</tbody>
</table>
3. **Materials**

For the validation of the quantitative event-specific method, genomic DNA was extracted from samples consisting of:

1) seeds of soybean harbouring the MON 89788 event (Line MON 89788, Lot number GLP-0504-16045-S) and;

2) seeds of conventional soybean (Line A3244, lot number GLP-0506-16372-S)

Samples were provided by the applicant in accordance to the provisions of Regulation (EC) No 1829/2003, Art 2.11 ["control sample defined as the GMO or its genetic material (positive sample) and the parental organism or its genetic material that has been used for the purpose of the genetic modification (negative sample)].

Samples containing mixtures of 100% MON 89788 soybean and non-GM soybean genomic DNA at different GMO concentrations were prepared by the EURL-GMFF, using the control samples provided, in a constant amount of total soybean DNA.

Participants received the following materials:

- Five calibration samples (150 µl of DNA solution each) for the preparation of the standard curve, labelled from S1 to S5.
- Twenty unknown DNA samples (80 µl of DNA solution each), labelled from U1 to U20.
- Reaction reagents:
 - Universal PCR Master Mix 2X, 3 vials: 5 ml each
 - Sterile distilled water: 13 ml
- Primers and probes (1 tube each) as follows:
 - **Le1 reference system**
 - Le1 primer forward (10 µM): 240 µl
 - Le1 primer reverse (10 µM): 240 µl
 - Le1 TaqMan® probe (5 µM): 160 µl
 - **MON89788 system**
 - MON89788 primer forward (10 µM): 240 µl
 - MON89788 primer reverse (10 µM): 240 µl
 - MON89788 TaqMan® probe (5 µM): 160 µl

4. **Experimental design**

Twenty unknown samples (labelled from U1 to U20), representing five GM levels, were used in the validation study (Table 2). On each PCR plate, the samples were analysed either for the MON 89788 specific system or the Le1 specific system. In total, two plates were run per participating laboratory and four replicates for each GM level were analysed. PCR analysis was performed in triplicate for all samples. Participating laboratories carried out the
determination of the GM% according to the instructions provided in the protocol and using the electronic tool provided (Excel spreadsheet).

Table 2. MON 89788 GM contents

| MON 89788 GM % (GM copy number/soybean genome copy number *100) | 0.1 | 0.4 | 0.9 | 4.0 | 8.0 |

5. Method

Description of operational steps followed

For the specific detection of event MON89788 DNA, a 139-bp fragment of the integration region of the construct inserted into the plant genome (5’ insert-to-plant junction) is amplified using two specific primers. PCR products are measured at each cycle (real-time) by means of a target-specific oligonucleotide probe labelled with FAM dye and TAMRA as quencher dye.

For the relative quantification of event MON 89788 DNA, a soybean-specific reference system amplifies a 74-bp fragment of the soybean endogenous gene Le1 (lectin, accession number K00821), using a pair of Le1 gene-specific primers and a Le1 gene-specific probe labelled with FAM and TAMRA.

Standard curves are generated for both the MON 89788 and the Le1 specific systems by plotting the Ct values measured for the calibration points against the logarithm of the DNA copy numbers and by fitting a regression line into these data. Thereafter, the standard curves are used to estimate the copy numbers in the unknown sample DNA by interpolation from the standard curves.

For relative quantification of event MON 89788 DNA in a test sample, the MON 89788 copy number is divided by the copy number of the soybean reference gene (Le1) and multiplied by 100 to obtain the percentage value (GM% = MON 89788 / Le1 * 100).

Calibration sample S1 was prepared by mixing the appropriate amount of MON 89788 DNA in control non-GM soybean DNA to obtain a 10% GM MON 89788 in a total of 200 ng soybean DNA. Samples S2 and S3 were prepared by 1:4 serial dilutions from the S1 sample and samples S4 and S5 were prepared by 1:3 serial dilutions from the S3 sample.

The absolute copy numbers in the calibration curve samples are determined by dividing the sample DNA weight (nanograms) by the published average 1C value for soybean genome (1.13) \(^3\). The copy number values used in the quantification, the GM contents of the
calibration samples and total DNA quantity used in PCR are provided in Table 3 (% GM calculated considering the 1C value for soybean genome as 1.13 pg) (3).

Table 3. % GM values of the standard curve samples.

<table>
<thead>
<tr>
<th>Sample code</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total amount of DNA in reaction (ng/4 µl)</td>
<td>200</td>
<td>50</td>
<td>12.5</td>
<td>4.2</td>
<td>1.4</td>
</tr>
<tr>
<td>Soybean genome copies</td>
<td>17699</td>
<td>44248</td>
<td>11062</td>
<td>3687</td>
<td>1229</td>
</tr>
<tr>
<td>MON89788 soybean copies</td>
<td>17699</td>
<td>4425</td>
<td>1106</td>
<td>369</td>
<td>123</td>
</tr>
</tbody>
</table>

6. **Deviations reported**

Ten laboratories reported no deviations from the protocol.

One laboratory observed a contamination of the second Amplification Reagent Control for the reference gene system in both runs.

One laboratory did not centrifuge plates before placing them into the instrument.
7. Summary of results

PCR efficiency and linearity

The values of the slopes [from which the PCR efficiency is calculated using the formula \(((10^{(-1/slope)}-1)\times100\) of the reference curve and of the \(R^2\) (expressing the linearity of the regression) reported by participating laboratories for the MON 89788 system and the Le1 reference system are summarised in Table 4.

<table>
<thead>
<tr>
<th>LAB</th>
<th>MON 89788</th>
<th></th>
<th>Le1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td>PCR Efficiency (%)</td>
<td>Linearity (R^2)</td>
<td>Slope</td>
</tr>
<tr>
<td>1</td>
<td>-3.28</td>
<td>102</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>-3.33</td>
<td>100</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>-3.35</td>
<td>99</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>-3.36</td>
<td>98</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>-3.39</td>
<td>97</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>-3.35</td>
<td>99</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>-3.44</td>
<td>95</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>-3.45</td>
<td>95</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>-3.41</td>
<td>97</td>
<td>1.00</td>
</tr>
<tr>
<td>6</td>
<td>-3.38</td>
<td>98</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>-3.45</td>
<td>95</td>
<td>1.00</td>
</tr>
<tr>
<td>7</td>
<td>-3.23</td>
<td>104</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>-3.27</td>
<td>102</td>
<td>1.00</td>
</tr>
<tr>
<td>8</td>
<td>-3.29</td>
<td>102</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>-3.32</td>
<td>100</td>
<td>1.00</td>
</tr>
<tr>
<td>9</td>
<td>-3.30</td>
<td>101</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>-3.32</td>
<td>100</td>
<td>0.99</td>
</tr>
<tr>
<td>10</td>
<td>-3.62</td>
<td>89</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>-3.34</td>
<td>99</td>
<td>1.00</td>
</tr>
<tr>
<td>11</td>
<td>-3.30</td>
<td>100</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>-3.45</td>
<td>95</td>
<td>1.00</td>
</tr>
<tr>
<td>12</td>
<td>-3.42</td>
<td>96</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>-3.43</td>
<td>96</td>
<td>1.00</td>
</tr>
<tr>
<td>Mean</td>
<td>-3.37</td>
<td>98</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The mean PCR efficiency was 100% for the Le1 reference system and 98% for the MON 89788 system. The linearity of the method was on average 1.00 for both systems. Data reported confirm the appropriate performance characteristics of the method tested in terms of efficiency and linearity.
GMO quantification

Table 5 shows the mean values of the four replicates for each GM level as provided by all laboratories. Each mean value is the average of three PCR repetitions.

Table 5. GM% mean values determined by laboratories for unknown samples.

<table>
<thead>
<tr>
<th>Sample GMO content</th>
<th>LAB</th>
<th>0.1</th>
<th>0.4</th>
<th>0.9</th>
<th>4.0</th>
<th>8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.08</td>
<td>0.08</td>
<td>0.09</td>
<td>0.12</td>
<td>0.44</td>
<td>0.29</td>
</tr>
<tr>
<td>2</td>
<td>0.10</td>
<td>0.14</td>
<td>0.17</td>
<td>0.22</td>
<td>0.63</td>
<td>0.38</td>
</tr>
<tr>
<td>3</td>
<td>0.09</td>
<td>0.08</td>
<td>0.08</td>
<td>0.09</td>
<td>0.34</td>
<td>0.32</td>
</tr>
<tr>
<td>4</td>
<td>0.11</td>
<td>0.10</td>
<td>0.08</td>
<td>0.08</td>
<td>0.32</td>
<td>0.33</td>
</tr>
<tr>
<td>5</td>
<td>0.08</td>
<td>0.07</td>
<td>0.11</td>
<td>0.10</td>
<td>0.36</td>
<td>0.35</td>
</tr>
<tr>
<td>6</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
<td>0.08</td>
<td>0.38</td>
<td>0.33</td>
</tr>
<tr>
<td>7</td>
<td>0.09</td>
<td>0.09</td>
<td>0.13</td>
<td>0.28</td>
<td>0.69</td>
<td>0.34</td>
</tr>
<tr>
<td>8</td>
<td>0.08</td>
<td>0.08</td>
<td>0.09</td>
<td>0.13</td>
<td>0.46</td>
<td>0.40</td>
</tr>
<tr>
<td>9</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.08</td>
<td>0.34</td>
<td>0.29</td>
</tr>
<tr>
<td>10</td>
<td>0.08</td>
<td>0.07</td>
<td>0.21</td>
<td>0.20</td>
<td>0.78</td>
<td>0.32</td>
</tr>
<tr>
<td>11</td>
<td>0.08</td>
<td>0.08</td>
<td>0.06</td>
<td>0.05</td>
<td>0.23</td>
<td>0.39</td>
</tr>
<tr>
<td>12</td>
<td>0.08</td>
<td>0.08</td>
<td>0.10</td>
<td>0.09</td>
<td>0.40</td>
<td>0.35</td>
</tr>
</tbody>
</table>

In Figure 1 the relative deviation from the true value for each GM level tested is shown for each laboratory. The coloured bars represent the relative GM quantification obtained by the participating laboratories as well as the mean value (represented by the yellow bar).

As observed in Figure 1, relative deviations from the true values are mainly negative for GM levels of 0.1% and 0.4%, meaning that the GM content of unknown samples tends to be underestimated at these GM levels.

The average bias generated by all laboratories at GM level 0.9 % is virtually null, being equal to -0.9 %.

The relative deviations from the true values at GM levels 4 % and 8 are mainly positive, meaning that the GM content of unknown samples tends to be overestimated at these GM levels.

Overall, the bias % was below 15 % at all GM levels tested, indicating a very satisfactory trueness of the method.
8. Method performance requirements

Among the performance criteria established by the ENGL and adopted by the EURL GMFF (http://gmo-crl.jrc.it/guidancedocs.htm, see also Annex 1), repeatability and reproducibility are assessed through an international collaborative trial, carried out with the support of twelve European laboratories (see Table 1). Table 6 illustrates the estimation of repeatability and reproducibility at various GM levels, according to the range of GM percentages tested during the collaborative trial.

The relative reproducibility standard deviation (RSD_R), that describes the inter-laboratory variation, should be below 33% over the majority of the dynamic range, while it should be below 50% at the lower end of the dynamic range.

As it can be observed in Table 6, the method fully satisfies this requirement at all GM levels tested. In fact, the highest value of RSD_R (%) is 24.5% at the 0.4% GM level.
Table 6. Summary of MON 89788 validation results.

<table>
<thead>
<tr>
<th>Unknown sample GM%</th>
<th>Expected value (GMO %)</th>
<th>0.1</th>
<th>0.4</th>
<th>0.9</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratories having returned results</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Samples per laboratory</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Number of outliers</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Reason for exclusion</td>
<td>2 C. test</td>
<td>1 C. test</td>
<td>1 C. test</td>
<td>1 C. test</td>
<td>1 C. test</td>
<td></td>
</tr>
<tr>
<td>Mean value</td>
<td>0.09</td>
<td>0.38</td>
<td>0.89</td>
<td>4.42</td>
<td>8.22</td>
<td></td>
</tr>
<tr>
<td>Relative repeatability standard deviation, RSD, (%)</td>
<td>16.2</td>
<td>21.7</td>
<td>14.9</td>
<td>12.9</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>Repeatability standard deviation</td>
<td>0.01</td>
<td>0.08</td>
<td>0.13</td>
<td>0.57</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>Relative reproducibility standard deviation, RSDr (%)</td>
<td>19.5</td>
<td>24.5</td>
<td>17.6</td>
<td>16.4</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>Reproducibility standard deviation</td>
<td>0.02</td>
<td>0.09</td>
<td>0.16</td>
<td>0.72</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>Bias (absolute value)</td>
<td>-0.01</td>
<td>-0.02</td>
<td>-0.01</td>
<td>0.42</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Bias (%)</td>
<td>-14.1</td>
<td>-5.0</td>
<td>-0.9</td>
<td>10.5</td>
<td>2.8</td>
<td></td>
</tr>
</tbody>
</table>

C = Cochran’s test; G = Grubbs’ test; identification and removal of outliers through Cochran and Grubbs tests, according to ISO 5725-2.

Bias is estimated according to ISO 5725 data analysis protocol.

Table 6 further documents the relative repeatability standard deviation (RSDr), as estimated for each GM level. In order to accept methods for collaborative study evaluation, the EURL GMFF requires that RSDr value is below 25%, as indicated by ENGL (Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing” (http://gmo-crl.jrc.it/guidancedocs.htm).

As can be observed from the values reported in Table 6, the method demonstrates a relative repeatability standard deviation below 25% over the dynamic range with a maximum of 21.7% at 0.4%.

The trueness of the method is estimated using the measures of the method bias for each GM level. According to ENGL method performance requirements, trueness should be ± 25% across the entire dynamic range. In this case the method fully satisfies this requirement across the entire dynamic range tested; in fact, the highest value of bias (%) is 14.1% at the 0.1% level, well within the acceptance criterion.
9. Conclusions

The overall method performance has been evaluated with respect to the method acceptance criteria and method performance requirements recommended by the ENGL (as detailed under http://gmo-crl.jrc.it/guidancedocs.htm). The method acceptance criteria were reported by the applicant and used to evaluate the method prior to the international collaborative study (see Annex 1 for a summary of method acceptance criteria and method performance requirements).

The results obtained during the collaborative study indicate that the analytical module of the method submitted by the applicant complies with ENGL performance criteria. The method is therefore applicable to the control samples provided (see paragraph 3 "Materials"), in accordance with the requirements of Annex I-2.C.2 to Commission Regulation (EC) No 641/2004.

10. Quality assurance

The EURL GMFF carries out all operations according to ISO 9001:2000 (certificate number: CH-32232) and ISO 17025:2005 (certificate number: DAC-PL-0459-06-00) [DNA extraction, qualitative and quantitative PCR in the area of Biology (DNA extraction and PCR method validation for the detection and identification of GMOs in food and feed materials)]

11. References

12. Annex 1: method acceptance criteria and method performance requirements as set by the European Network of GMO Laboratories (ENGL)

Method Acceptance Criteria should be fulfilled at the moment of submission of a method (Phase 1: acceptance for the collaborative study).

Method Performance Requirements should be fulfilled in a collaborative study in order to consider the method as fit for its purpose (Phase 2: evaluation of the collaborative study results).

Method Acceptance Criteria

Applicability

Definition: The description of analytes, matrices, and concentrations to which a method can be applied.

Acceptance Criterion: The applicability statement should provide information on the scope of the method and include data for the indices listed below for the product/s for which the application is submitted. The description should also include warnings to known interferences by other analytes, or inapplicability to certain matrices and situations.

Practicability

Definition: The ease of operations, the feasibility and efficiency of implementation, the associated unitary costs (e.g. Euro/sample) of the method.

Acceptance Criterion: The practicability statement should provide indication on the required equipment for the application of the method with regards to the analysis *per se* and the sample preparation. An indication of costs, timing, practical difficulties and any other factor that could be of importance for the operators should be indicated.

Specificity

Definition: Property of a method to respond exclusively to the characteristic or analyte of interest.

Acceptance Criterion: The method should be event-specific and be functional only with the GMO or GM based product for which it was developed. This should be demonstrated by empirical results from testing the method with non-target transgenic events and non-transgenic material. This testing should include closely related events and cases where the limit of the detection is tested.

Dynamic Range

Definition: The range of concentrations over which the method performs in a linear manner with an acceptable level of accuracy and precision.

Acceptance Criterion: The dynamic range of the method should include the 1/10 and at least 5 times the target concentration. Target concentration is intended as the threshold relevant for legislative
requirements. The acceptable level of accuracy and precision are described below. The range of the standard curve(s) should allow testing of blind samples throughout the entire dynamic range, including the lower (10%) and upper (500%) end.

Accuracy

Definition: The closeness of agreement between a test result and the accepted reference value.

Acceptance Criterion: The accuracy should be within ±25% of the accepted reference value over the whole dynamic range.

Amplification Efficiency

Definition: The rate of amplification that leads to a theoretical slope of −3.32 with an efficiency of 100% in each cycle. The efficiency of the reaction can be calculated by the following equation: Efficiency = \[10^{\frac{1}{1/\text{slope}}} - 1\]

Acceptance Criterion: The average value of the slope of the standard curve should be in the range of (-3.1 ≥ slope ≥ -3.6)

R² Coefficient

Definition: The R² coefficient is the correlation coefficient of a standard curve obtained by linear regression analysis.

Acceptance Criterion: The average value of R² should be ≥ 0.98.

Repeatability Standard Deviation (RSDₚ)

Definition: The standard deviation of test results obtained under repeatability conditions. Repeatability conditions are conditions where test results are obtained with the same method, on identical test items, in the same laboratory, by the same operator, using the same equipment within short intervals of time.

Acceptance Criterion: The relative repeatability standard deviation should be below 25% over the whole dynamic range of the method.

Note: Estimates of repeatability submitted by the applicant should be obtained on a sufficient number of test results, at least 15, as indicated in ISO 5725-3 (1994).

Limit of Quantitation (LOQ)

Definition: The limit of quantitation is the lowest amount or concentration of analyte in a sample that can be reliably quantified with an acceptable level of precision and accuracy.

Acceptance Criterion: LOQ should be less than 1/10th of the value of the target concentration with an RSDₚ ≤ 25%. Target concentration should be intended as the threshold relevant for legislative requirements. The acceptable level of accuracy and precision are described below.

Limit of Detection (LOD)

Definition: The limit of detection is the lowest amount or concentration of analyte in a sample, which can be reliably detected, but not necessarily quantified, as demonstrated by single laboratory validation.
Acceptance Criterion: LOD should be less than $1/20^{th}$ of the target concentration. Experimentally, quantitative methods should detect the presence of the analyte at least 95% of the time at the LOD, ensuring $\leq 5\%$ false negative results. Target concentration should be intended as the threshold relevant for legislative requirements.

Robustness

Definition: The robustness of a method is a measure of its capacity to remain unaffected by small, but deliberate deviations from the experimental conditions described in the procedure.

Acceptance Criterion: The response of an assay with respect to these small variations should not deviate more than $\pm 30\%$. Examples of factors that a robustness test could address are: use of different instrument type, operator, brand of reagents, concentration of reagents, and temperature of reaction.

Method Performance Requirements

Dynamic Range

Definition: In the collaborative trial the dynamic range is the range of concentrations over which the reproducibility and the trueness of the method are evaluated with respect to the requirements specified below.

Acceptance Criterion: The dynamic range of the method should include the $1/10$ and at least five times the target concentration. Target concentration should be intended as the threshold relevant for legislative requirements.

Reproducibility Standard Deviation (RSD_e)

Definition: The standard deviation of test results obtained under reproducibility conditions. Reproducibility conditions are conditions where test results are obtained with the same method, on identical test items, in different laboratories, with different operators, using different equipment. Reproducibility standard deviation describes the inter-laboratory variation.

Acceptance Criterion: The relative reproducibility standard deviation should be below 35% at the target concentration and over the entire dynamic range. An $RSD_e < 50\%$ is acceptable for concentrations below 0.2%.

Trueness

Definition: The closeness of agreement between the average value obtained from a large series of test results and an accepted reference value. The measure of trueness is usually expressed in terms of bias.

Acceptance Criterion: The trueness should be within $\pm 25\%$ of the accepted reference value over the whole dynamic range.
Event-specific Method for the Quantification of Soybean Line MON 89788 Using Real-time PCR

Validated Method
18 February 2008
Corrected version 1 - 28/08/2013 (see page 2)

Joint Research Centre
Institute for Health and Consumer Protection
Unit for Molecular Biology and Genomics

Method development:
Monsanto Company

Collaborative trial:
European Union Reference Laboratory for GM Food and Feed (EURL-GMFF)
Unit for Molecular Biology and Genomics
Quality assurance

The EURL GMFF is ISO 17025:2005 accredited [certificate number: ACCREDIA 1172, (Flexible Scope for DNA extraction and qualitative/quantitative PCR) - Accredited tests are available at [http://www.accredia.it/accredia_labsearch.jsp?ID_LINK=293&area=7].

The original version of the document containing evidence of internal checks and authorisation for publication is archived within the EURL GMFF quality system.

The EURL GMFF is also ISO 17043:2010 accredited (Proficiency test provider) and apply the corresponding procedures and processes for the management of ring trials during the method validation.

The EURL GMFF conducts its activities under the certification ISO 9001:2008 of the IHCP Institute provided by CERMET

Correction from the previous version:

Corrected version 1 - 28/08/2013
Page 1 and 2: new layout
Page 4, 6, 7, 8, 9, 10:
lec changed by Le1

Address of contact laboratory:
European Commission, Joint Research Centre (JRC)
Institute for Health and Consumer Protection (IHCP)
Unit for Molecular Biology and Genomics
European Union Reference Laboratory for GM Food and Feed
Via E. Fermi 2749, 21027 Ispra (VA) – Italy
Functional mailbox: eurl-gmff@jrc.ec.europa.eu
Content

1. GENERAL INFORMATION AND SUMMARY OF THE METHODOLOGY 4
2. VALIDATION STATUS AND PERFORMANCE CHARACTERISTICS 4
 2.1 GENERAL ... 4
 2.2 COLLABORATIVE TRIAL .. 5
 2.3 LIMIT OF DETECTION (LOD) ... 5
 2.4 LIMIT OF QUANTIFICATION (LOQ) ... 5
 2.5 MOLECULAR SPECIFICITY .. 5
3. PROCEDURE .. 6
 3.1 GENERAL INSTRUCTIONS AND PRECAUTIONS 6
 3.2 REAL-TIME PCR FOR QUANTITATIVE ANALYSIS OF SOYBEAN EVENT MON 89788 .. 7
 3.2.1 General .. 7
 3.2.2 Calibration .. 7
 3.2.3 Real-time PCR set-up .. 7
 3.3 DATA ANALYSIS ... 9
 3.4 CALCULATION OF RESULTS ... 9
4. MATERIALS ... 10
 4.1 EQUIPMENT .. 10
 4.2 REAGENTS .. 10
 4.3 PRIMERS AND PROBES .. 10
1. General information and summary of the methodology

This protocol describes an event-specific real-time quantitative TaqMan® PCR procedure for the determination of the relative content of soybean event MON 89788 DNA to total soybean DNA in a sample.

The PCR assay was optimised for use in real-time PCR instruments for plastic reaction vessels. Glass capillaries are not recommended for the buffer composition described in this method.

Template DNA extracted by means of suitable methods should be tested for quality and quantity prior to use in PCR assay. Tests for the presence of PCR inhibitors (e.g. monitor run of diluted series, use of DNA spikes) are recommended.

For the specific detection of soybean event MON 89788 DNA, a 139-bp fragment of the integration region of the construct inserted into the plant genome (5’ insert-to-plant junction) is amplified using two specific primers. PCR products are measured at each cycle (real-time) by means of a target-specific oligonucleotide probe labelled with FAM dye and TAMRA as quencher dye.

For the relative quantification of soybean event MON 89788 DNA, a soybean-specific reference system amplifies a 74-bp fragment of the soybean endogenous lectin gene (LeI), using a pair of specific primers and a LeI gene-specific probe labelled with FAM and TAMRA as described above.

The measured fluorescence signal passes a threshold value after a certain number of cycles. This threshold cycle is called the “Ct” value. For quantification of the amount of event MON 89788 DNA in a test sample, MON89788 and LeI Ct values are determined for the sample. Standard curves are then used to estimate the relative amount of soybean event MON89788 DNA to total soybean DNA.

2. Validation status and performance characteristics

2.1 General

The method was optimised for suitable DNA extracted from soybean seeds and grains containing mixtures of genetically modified and conventional soybean.

The reproducibility and trueness of the method were tested through an international collaborative ring trial using DNA samples at different GMO contents.
2.2 Collaborative trial

The method was validated in a collaborative study by the Joint Research Centre (JRC) of the European Commission. The study was undertaken with twelve participating laboratories in August 2007.

Each participant received twenty blind samples containing MON 89788 genomic DNA at five GM contents, ranging from 0.10 % to 8.0 %.

Each test sample was analysed by PCR in three repetitions. The study was designed as a blind quadruplicate collaborative trial; each laboratory received each level of GM MON 89788 in four unknown samples. Four replicates of each GM level were analysed on the same PCR plate.

A detailed validation report can be found at http://gmo-crl.jrc.it/statusofdoss.htm

2.3 Limit of detection (LOD)

According to the applicant, the relative LOD of the method is at least 0.045% in 200 ng of total soybean DNA. The relative LOD was not assessed in a collaborative study.

2.4 Limit of quantification (LOQ)

According to the applicant, the relative LOQ of the method is at least 0.09% in 200 ng of total soybean DNA. The lowest relative GM content of the target sequence included in collaborative trial was 0.10 %.

2.5 Molecular specificity

According to the applicant, the method exploits a unique DNA sequence in the region of recombination between the insert and the plant genome; the sequence is specific to soybean event MON 89788 and thus imparts event-specificity to the method.

The specificity of event-specific assay was experimentally tested by the applicant in real-time PCR against DNA extracted from plant materials containing the specific targets of soybean MON 89788, Roundup Ready® Canola (RT200), Roundup Ready® Canola (RT73), Conventional Canola, Roundup Ready® Corn (GA21), Roundup Ready® Corn (NK603), YieldGard® Corn Borer Corn (MON810), YieldGard® Rootworm/Roundup Ready® Corn (MON88017), YieldGard® Rootworm corn (MON863), Lysine Maize (LY038), Conventional Corn, Roundup Ready® Cotton (MON1445), Bollgard® Cotton (MON531), Bollgard® Cotton (MON757), BollgardII® Cotton (MON15985), Cotton MON88913, Conventional Cotton, Roundup Ready® soybean 40-3-2, Conventional Soybean, Roundup Ready® Wheat (MON71800), Conventional Wheat, Lentil, Sunflower nuts, Rye berries, Peanuts (shelled), Pinenuts, Quinoa, Millet.

None of the GM-lines tested, except the positive control soybean line MON 89788, yielded detectable amplicons.
The specificity of the soybean reference assay Le1 was experimentally tested by the applicant against DNA extracted from plant materials containing soybean MON 89788, Roundup Ready® Canola (RT200), Roundup Ready® Canola (RT73), Conventional Canola, Roundup Ready® Corn (GA21), Roundup Ready® Corn (NK603), YieldGard® Corn Borer Corn (MON810), YieldGard® Rootworm/Roundup Ready® Corn (MON88017), YieldGard® Rootworm corn (MON863), Lysine Maize (LY038), Conventional Corn, Roundup Ready® Cotton (MON1445), Bollgard® Cotton (MON531), Bollgard® Cotton (MON757), BollgardII® Cotton (MON15985), Cotton MON88913, Conventional Cotton, Roundup Ready® soybean 40-3-2, Conventional Soybean, Roundup Ready® Wheat (MON71800), Conventional Wheat, Lentil, Sunflower nuts, Rye berries, Peanuts (shelled), Pinenuts, Quinoa, Millet. None of the samples tested, except the positive control soybean line MON 89788, the Roundup Ready® soybean 40-3-2 and conventional soybean, yielded detectable amplicons.

3. Procedure

3.1 General instructions and precautions

- The procedures require experience of working under sterile conditions.
- Laboratory organisation, e.g. “forward flow direction” during PCR-setup, should follow the guidelines given by relevant authorities, e.g. ISO 24276
- PCR-reagents should be stored and handled in a separate room where no nucleic acids (with exception of PCR primers or probes) or DNA degrading or modifying enzymes have been handled previously. All handling of PCR reagents and controls requires dedicated equipment, especially pipettes.
- All the equipment used should be sterilised prior to use and any residue of DNA has to be removed. All material used (e.g. vials, containers, pipette tips, etc.) must be suitable for PCR and molecular biology applications. They must be DNase-free, DNA-free, sterile and unable to adsorb protein or DNA.
- Filter pipette tips protected against aerosol should be used.
- Powder-free gloves should be used and changed frequently.
- Laboratory benches and equipment should be cleaned periodically with 10% sodium hypochloride solution (bleach).
- Pipettes should be checked regularly for precision and calibrated, if necessary.
- All handling steps - unless specified otherwise - should be carried out at 0 - 4°C.
- In order to avoid repeated freeze/thaw cycles aliquots should be prepared.
3.2 Real-time PCR for quantitative analysis of soybean event MON 89788

3.2.1 General
The PCR set-up for the taxon specific target sequence (LeI) and for the GMO (event MON 89788) target sequence should be carried out in separate vials. Multiplex PCR (using differential fluorescent labels for the probes) has not been tested or validated.

The use of maximum 200 ng of template DNA per reaction well is recommended. The method is developed for a total volume of 50 µl per reaction mixture with the reagents as listed in Table 1 and Table 2.

3.2.2 Calibration
The calibration curves consist of five samples. The first point of the calibration curves is a 10% MON 89788 in non-GM soybean DNA for a total of 200 ng of DNA (corresponding to 176,991 soybean genome copies with one genome assumed to correspond to 1.13 pg of haploid soybean genomic DNA) \(^{(1)}\).

A calibration curve is produced by plotting the Ct-values against the logarithm of the target copy number for the calibration points. This can be done e.g. by means of spreadsheet software, e.g. Microsoft Excel, or directly by options available with the sequence detection system software.

The copy number measured for the unknown sample DNA is obtained by interpolation from the standard curves.

The ratio of transgene copy number and reference gene copy number multiplied by 100 gives the % GM contents of the samples.

3.2.3 Real-time PCR set-up
1. Thaw, mix gently and centrifuge the required amount of components needed for the run. **Keep thawed reagents at 1-4°C on ice.**

2. In two reaction tubes (one for the MON 89788 system and one for the LeI system) on ice, add the following components (Tables 1 and 2) in the order mentioned below (except DNA) to prepare the master mixes.
Table 1. Amplification reaction mixture in the final volume/concentration per reaction well for the MON89788 specific system.

<table>
<thead>
<tr>
<th>Component</th>
<th>Final concentration</th>
<th>µl/ reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan® Universal PCR Master Mix (2x)</td>
<td>1x</td>
<td>25</td>
</tr>
<tr>
<td>MON 89788-F (10 µM)</td>
<td>150 nM</td>
<td>0.75</td>
</tr>
<tr>
<td>MON 89788-R (10 µM)</td>
<td>150 nM</td>
<td>0.75</td>
</tr>
<tr>
<td>MON 89788-P (5 µM)</td>
<td>50 nM</td>
<td>0.50</td>
</tr>
<tr>
<td>Nuclease free water</td>
<td>#</td>
<td>19</td>
</tr>
<tr>
<td>Template DNA (max 200 ng)</td>
<td>#</td>
<td>4.0</td>
</tr>
<tr>
<td>Total reaction volume:</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

Table 2. Amplification reaction mixture in the final volume/concentration per reaction well for the soybean Le1 reference system.

<table>
<thead>
<tr>
<th>Component</th>
<th>Final concentration</th>
<th>µl/ reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan® Universal PCR Master Mix (2x)</td>
<td>1x</td>
<td>25</td>
</tr>
<tr>
<td>Le1 F (10 µM)</td>
<td>150 nM</td>
<td>0.75</td>
</tr>
<tr>
<td>Le1 R (10 µM)</td>
<td>150 nM</td>
<td>0.75</td>
</tr>
<tr>
<td>Le1 P (5 µM)</td>
<td>50 nM</td>
<td>0.50</td>
</tr>
<tr>
<td>Nuclease free water</td>
<td>#</td>
<td>19</td>
</tr>
<tr>
<td>Template DNA (max 200 ng)</td>
<td>#</td>
<td>4.0</td>
</tr>
<tr>
<td>Total reaction volume:</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

3. Mix gently and centrifuge briefly.

4. Prepare two reaction tubes (one for the MON 89788 and one for the Le1 master mixes) for each DNA sample to be tested (standard curve samples, unknown samples and control samples).

5. Add to each reaction tube the correct amount of master mix (e.g. 46 x 3 = 138 µl master mix for three PCR repetitions). Add to each tube the correct amount of DNA (e.g. 4 x 3 = 12 µl DNA for three PCR repetitions). Vortex each tubes for approx. 10 sec. This step is mandatory to reduce to a minimum the variability among the repetitions of each sample to a minimum.

6. Spin down the tubes in a microcentrifuge. Aliquot 50 µl in each well. Seal the reaction plate with optical cover or optical caps. Centrifuge the plate at low speed (e.g. approximately 250 x g for 1 minute at 4 °C to room temperature) to spin down the reaction mixture.

7. Place the plate into the instrument.

8. Run the PCR with cycling conditions described in Table 3:
Table 3. Cycling program for MON89788/Le1 systems

<table>
<thead>
<tr>
<th>Step</th>
<th>Stage</th>
<th>T°C</th>
<th>Time (sec)</th>
<th>Acquisition</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UNG</td>
<td>50°C</td>
<td>120</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Initial denaturation</td>
<td>95°C</td>
<td>600</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Amplification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Denaturation</td>
<td>95°C</td>
<td>15</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annealing & Extension</td>
<td>60°C</td>
<td>60</td>
<td>Yes</td>
<td>45</td>
</tr>
</tbody>
</table>

3.3 Data analysis

Subsequent to the real-time PCR, analyse the run following the procedure below:

a) **Set the threshold**: display the amplification curves of one system (e.g. MON 89788) in logarithmic mode. Locate the threshold line in the area where the amplification profiles are parallel (exponential phase of PCR) and where there is no “fork effect” between repetitions of the same sample. Press the “update” button to ensure changes affect Ct values. Switch to the linear view mode by clicking on the Y axis of the amplification plot, and check that the threshold previously set falls within the geometric phase of the curves.

b) **Set the baseline**: determine the cycle number at which the threshold line crosses the first amplification curve and set the baseline three cycles before that value (e.g. earliest Ct = 25, set the baseline crossing at Ct = 25 - 3 = 22).

c) Save the settings.

d) Repeat the procedure described in a) and b) on the amplification plots of the other system (e.g. Le1 system).

e) Save the settings and export all the data to a text file for further calculations.

3.4 Calculation of results

After having defined a threshold value within the logarithmic phase of amplification as described above, the instrument’s software calculates the Ct-values for each reaction.

The standard curves are generated both for the Le1 and the MON 89788 specific systems by plotting the Ct values measured for the calibration points against the logarithm of the DNA copy numbers and by fitting a linear regression line into these data.
Thereafter, the standard curves are used to estimate the copy numbers in the unknown sample DNA.

For the determination of the amount of event MON89788 DNA in the unknown sample, the MON89788 copy number is divided by the copy number of the soybean reference gene (le1) and multiplied by 100 to obtain the percentage value (GM% = MON 89788/Le1 * 100).

4. Materials

4.1 Equipment

- Real-time PCR instrument for plastic reaction vessels (glass capillaries are not recommended for the described buffer composition)
- Plastic reaction vessels suitable for real-time PCR instrument (enabling undisturbed fluorescence detection)
- Software for run analysis (mostly integrated in the software of the real-time PCR instrument)
- Microcentrifuge
- Micropipettes
- Vortex
- Rack for reaction tubes
- 1.5/2.0 ml reaction tubes

4.2 Reagents

- TaqMan® Universal PCR Master Mix (2X). Applied Biosystems Part No 4304437

4.3 Primers and Probes

<table>
<thead>
<tr>
<th>Name</th>
<th>Oligonucleotide DNA Sequence (5’ to 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MON 89788 target sequence</td>
</tr>
<tr>
<td>MON 89788-F</td>
<td>5’ - TCC CGC TCT AGC GCT TCA AT – 3’</td>
</tr>
<tr>
<td>MON 89788-R</td>
<td>5’ - TCG AGC AGG ACC TGC AGA A – 3’</td>
</tr>
<tr>
<td>MON 89788-P (Probe)</td>
<td>6-FAM 5’- CTG AAG GCG GGA AAC GAC AAT CTG – 3’ TAMRA</td>
</tr>
<tr>
<td></td>
<td>Reference gene le1 target sequence</td>
</tr>
<tr>
<td>Le1 F</td>
<td>5’ - CCA GCT TCG CCG CTT CCT TC – 3’</td>
</tr>
<tr>
<td>Le1 R</td>
<td>5’ - GAA GGC AAG CCC ATC TGC AAG CC – 3’</td>
</tr>
<tr>
<td>Le1 P (Probe)</td>
<td>6-FAM 5’ - CTT CAC CTT CTA TGC CCC TGA CAC – 3’ TAMRA</td>
</tr>
</tbody>
</table>
How to obtain EU publications

Our priced publications are available from EU Bookshop (http://bookshop.europa.eu), where you can place an order with the sales agent of your choice.

The Publications Office has a worldwide network of sales agents. You can obtain their contact details by sending a fax to (352) 29 29-42758.

European Commission
EUR 26153 EN – Joint Research Centre – Institute for Health and Consumer Protection

Title: Event-specific Method for the Quantification of Soybean Line MON 89788 Using Real-time PCR - Validation Report corr. version 1 and Validated Method corr. version 1

Author(s): Chrystele Delobel, Alessia Bogni, Gregor Pinski, Marco Mazzara, Guy Van den Eede

Luxembourg: Publications Office of the European Union

2013 – 32 pp. – 21.0 x 29.7 cm

EUR – Scientific and Technical Research series – ISSN 1831-9424

doi: 10.2788/20464

Abstract

The JRC as European Union Reference Laboratory for GM Food and Feed (EURL-GMFF), established by Regulation (EC) No 1829/2003, in collaboration with the European Network of GMO Laboratories (ENGL), has carried out a collaborative study to assess the performance of a quantitative event-specific method to detect and quantify the MON89788 transformation event in soybean DNA (unique identifier MON-89788-1). The collaborative trial was conducted according to internationally accepted guidelines (1, 2).

In accordance with Regulation (EC) No 1829/2003 of 22 September 2003 on genetically modified food and feed and with Regulation (EC) No 641/2004 of 6 April 2004 on detailed rules for the implementation of Regulation (EC) No 1829/2003, Monsanto provided the detection method and the samples (soybean seeds containing the transformation event and conventional soybean seeds). The JRC prepared the validation samples (calibration samples and blind samples at unknown GM percentage [DNA/DNA]). The collaborative trial involved twelve laboratories from eight European countries.

The results of the international collaborative trial met the ENGL performance requirements. The method is therefore considered applicable to the control samples provided, in accordance with the requirements of Annex I-2.C.2 to Commission Regulation (EC) No 641/2004.
As the Commission's in-house science service, the Joint Research Centre’s mission is to provide EU policies with independent, evidence-based scientific and technical support throughout the whole policy cycle.

Working in close cooperation with policy Directorates-General, the JRC addresses key societal challenges while stimulating innovation through developing new methods, tools and standards, and sharing its know-how with the Member States, the scientific community and international partners.

Key policy areas include: environment and climate change; energy and transport; agriculture and food security; health and consumer protection; information society and digital agenda; safety and security, including nuclear; all supported through a cross-cutting and multi-disciplinary approach.