U — 2 - =
— e - " — e

e e

e e — T e

H N |

——— %

JRC TEUC

CAL REPORTS

An overview of hydraulic fracturing and
other formation stimulation technologies
for shale gas production

Luca Gandossi

2013

Report EUR 26347 EN

Joint
Research

Centre




European Commission

Joint Research Centre

Institute for Energy and Transport

Contact information

Luca Gandossi

Address: Joint Research Centre, Westerduinweg 3, 1755 LE, Petten, The Netherlands

E-mail: luca.gandossi@ec.europa.eu
Tel.: +31 224565250

http://iet.jrc.ec.europa.eu/
http://iet.jrc.ec.europa.eu/energy-security

This publication is a Scientific and Policy Report by the Joint Research Centre of the European Commission.
This study has been undertaken by the Joint Research Centre, the European Commission's in-house science
service, to provide evidence-based scientific support to the European policy-making process. The scientific
output expressed does not imply a policy position of the European Commission.

Legal Notice

Neither the European Commission nor any person acting on behalf of the Commission

is responsible for the use which might be made of this publication.

Europe Direct is a service to help you find answers to your questions about the European Union

Freephone number (*): 00 8006 7 8 9 10 11

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet.
It can be accessed through the Europa server http://europa.eu].

JRC86065

EUR 26347 EN

ISBN 978-92-79-34729-0 (pdf)

ISSN 1831-9424 (online)

doi: 10.2790/99937

Luxembourg: Publications Office of the European Union, 2013

© European Union, 2013

Reproduction is authorised provided the source is acknowledged.


http://iet.jrc.ec.europa.eu/
http://iet.jrc.ec.europa.eu/energy-security

TABLE OF CONTENTS

1 INTRODUCTION woiuiuresesasasssssssassssssssssssssssssssssssssssssssssssssssssasasasasasasssasssssssss s s snsssnn s s snsnsnsnsasasasananas 3
1.1 5 72 ol €4 (0 000 Lo NPT 3
1.2 Scope and ODJECHIVE ... 4
1.3 Method and lIMItatioNs ... ssssssssssssssees 4
1.4 REPOTt SEFUCLUTE. ...t s 4

2 HYDRAULIC FRACTURING serusussssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssasssssans 7
2.1 Hydraulic fracturing of Shales........cneneneenenneseseese s 8
2.2 Water-based hydraulic fracturing........onnrsssesssessessens 10

2.2.1 /A1 0] 015 0 0 = (01101 0o ¥ o 12
2.2.2 Cavitation Hydrovibration fraCturing.........oeneenneenesneenesseenssseesssseeseens 12
2.2.3 Hydra-jet fracturing......o s ssssseens 13
2.2.4 Exothermic hydraulic fracturing .......oonncnncensnceneeneeseseeseeseesesseesesseesesseeseens 13
2.2.5 Hydraulic fracturing enhanced by water pressure blasting. .......cc.ccovuunenn. 13
2.3 Foam-based fluids ... sesssssssssssens 14
2.4 (001 o 1Yo I8 4 Lo PP 16
241 ) S TP 16
2.5 W2 Xod 1o B o Y=o I i 0§ a3 TP 19
2.6 Alcohol-based flUidS......coureriresr s 19
2.7 Emulsion-based fluids......cunesse s sssssssssssssens 21
2.8 (08 0723 0L (o i 10 (6 (TP 23
2.8.1 LAQUIA CO2uuetreeeeeeeeeeseessesssesssesssesssesssesssess st sesssesssesssesssessse s s ssse s sssesssesssesssesssesans 23
2.8.2 Liquid Nitro@en (IN2) . ecercereereereeeereeseesemseessssesssssesssssssssssssssssssssssssssssssssssssssssssssssssesns 26
2.8.3 I T0 L LT I8 5 =3 D100 o L TPV 27
2.8.4 Other cryogenic fluids......o s 29
2.9 Potential new deVelOPMENTES ... ssssesssssssssssssans 30

3  PNEUMATIC FRACTURING tuesssssssssasssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssassnsssss 31

4 FRACTURING WITH DYNAMIC LOADING tvarsusssssssssssssssssssssssssssssssssssssasssssssssssassssssssssssssssssssssnssasas 33
4.1 135°40) (XA T2 = Lot w0 1y o ¥ 33
4.2 DA U=Totm o Tl =T 10 oV PSPPSR 37

421 Pulsed Arc Electrohydraulic Discharges (PAED) ... 37
4.2.2 Plasma Stimulation & Fracturing Technology (PSF) ... 38



5 OTHER METHODS t1tuetsssssrasassssssssassssssssssasasssssnssassssassnssssnsssssnssasnssasanssasssssssnssssnssasanssasasssssnnsssnsnsse 41

5.1 Thermal (cryogenic) fracturing......cumrennemssssesssssssssssesssseens 41
5.2 Mechanical cutting of the shale formation........ccoorneineneessensenseseneeseeseeens 42
5.3 Enhanced bacterial methanogenesis........onnnnenneneseneseseseesesseeneens 44
5.4 Heating of the rock mMass.......ounsss s 46
6 SUMMARY AND CONCLUSIONS cuetususassssssssssssssssssssssssssssssssssssssssssssssssssssasasssasassssssssssssssssssssssssssnnnns 49
7 ACKNOWLEDGEMENTS .uttustssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssassssssssassassnsnans 54
7 REFERENCES uisusussssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssassnsnans 54
LIST OF TABLES
Table 1.  Different fluids used for hydraulic fracturing..........ccuernrnseinneesensessenesnsens 9
Table 2.  Increased recovery of gas and oil from shales driven by the
development and application of technologies.........ccurmenrerernseninsesnerssnnsenns 11
Table 3.  Types of foams used as fracturing fluids. ... 15

Table 4. Summary of potential advantages and disadvantages for identified
fracturing teChNIQUES ... s 50



1 Introduction
1.1 Background

The technology of hydraulic fracturing for hydrocarbon well stimulation is not new, with the
first experiments done in 1947, and the first industrial use in 1949. It has been used since
then for reservoir stimulation (in Europe as well) and enhanced hydrocarbon recovery.

Hydraulic fracturing has become a very common and widespread technique, especially in
North America, due to technological advances that have allowed extracting natural gas from
so-called unconventional reservoirs (tight sands, coal beds and shale formations). The so-
called high volume hydraulic fracturing (with treatments typically an order of magnitude
larger than the conventional fracturing procedures) began in 1968. This was complemented
by horizontal drilling since the late 1980s, and the use of chemicals (known as "slickwater
fracturing") since 1997.

The conjunction of these techniques (directional drilling, high volume fracturing, fracture
divergence systems, slickwater) with the development of multi-well pads has been
especially successful in North America in the last years in their application to shales, making
gas production from shales technically and economically feasible. Shale gas development is
considered “unconventional” when contrasted with “conventional” subterranean natural
gas reservoirs.

|II

In Europe, experience to date has been focused on low volume hydraulic fracturing in some
conventional and tight gas reservoirs, mostly in vertical wells, and constituted only a small
part of past EU oil and gas operations. The scale, frequency and complexity of the fracking
technique necessary for shale gas extraction differ from past EU experiences, and the
potential application of this technology has therefore led to both great worries and high
expectations: worries regarding the alleged magnitude of the environmental impact, and
expectations about production of indigenous hydrocarbons.

Other methods for fracturing (or, more broadly, formation stimulation) exist that do not
make use of water-based fluids (for instance, explosive fracturing, dynamic loading, etc.), or
that make use of fluids other than water. These are not extensively applied due to
performance considerations.

Foam technologies, thus more expensive than water based stimulations do offer an
alternative to reduce the amount of water used in shale gas stimulation. These are available
across the industry.

The deployment of high-volume hydraulic fracturing could entail some risks to the
environment. Among the concerns raised the following can be mentioned: high usage of
water, methane infiltration in aquifers, aquifer contamination, extended surface footprint,
induced local seismicity, etc.



New technologies could help addressing these concerns (for instance by using non-toxic
chemicals, by reducing or eliminating altogether the usage of water, by considerably
reducing the surface footprint of a well, etc.), but it is noted that hydraulic fracturing is still
the preferred method by the industry (OGP 2013).

1.2 Scope and objective

This paper reviews hydraulic fracturing and alternative fracturing technologies, by searching
the open literature, patent databases and commercial websites (mainly in the English
language).

For each identified technique, an overview is given. The technique is then briefly explained,
and its rationale (reasons for use) is identified. Potential advantages and disadvantages are
identified, and some considerations on costs are given. Finally, the status of the technique
(for instance, commercially applied, being developed, concept, etc.) is given for its
application to shale gas production.

1.3 Method and limitations

This report was compiled by and large by accessing available literature (relevant journal and
conference papers, patent databases and commercial websites), sometimes authored by
individuals or organisations wishing to promote a certain technology.

The report does not include full life cycle analysis of cost or environmental impacts, nor any
other measure of quantification of advantages or disadvantages of the specific technologies
at hand. Thus, the inclusion of positive or negative aspects of a certain technology
(economic, environmental, or otherwise) does not constitute an endorsement of the net
benefits and/or costs and disadvantages of that stimulation method in comparison with
other methods.

Advantages and disadvantages of any applied technology are in most cases dependent on
the specific situation under which formation stimulation is performed (location, formation
characteristics, etc.). In this report, no objective criteria were developed and applied to
identify potential advantages and disadvantages of each technique. As an example, when it
is noted that a certain technology leads to "reduced water usage", this is not a judgment to
whether there is an environmental, economic or otherwise need to reduce water
consumption, and whether the alternative is overall a better choice. Such a choice would
typically depend on the specific condition for a given situation.

1.4 Report structure

The paper is structured as follows. The technologies are divided in four main chapters:

- Hydraulic Fracturing chapter 2
- Pneumatic Fracturing chapter 3
- Fracturing with Dynamic Loading chapter 4
- Other Methods chapter 5



Hydraulic Fracturing is herein defined as the technique that makes use of a liquid fluid to
fracture the reservoir rocks. The following techniques are identified and discussed:

- Water-based fluids section 2.2
- Foam-based fluids section 2.3
- Oil-based fluids section 2.4
- Acid-based fluids section 2.5
- Alcohol-based fluids section 2.6
- Emulsion-based fluids section 2.7
- Cryogenic fluids (CO,, N,, He, etc.) section 2.8

Pneumatic Fracturing is the technique that makes use of a gas (typically air or nitrogen) to
fracture the reservoir rock. It is a technique normally used in shallow formations.

In Fracturing with Dynamic Loading fluids are not used. The following techniques are
identified and discussed:

- Explosive fracturing section 4.1

- Electric fracturing section 4.2

Under Other Methods we review all remaining fracturing techniques that do not readily fall
in one of the previous categories. The following techniques are identified and discussed:

- Thermal (cryogenic) fracturing section 5.1
- Mechanical cutting of the shale formation section 5.2
- Enhanced bacterial methanogenesis section 5.3
- Heating of the rock mass section 5.4

Summary and conclusions are given in Chapter 6.
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2 Hydraulic fracturing

The technique of hydraulic fracturing makes use of a liquid to fracture the reservoir rocks. A
hydraulic fracture is formed by pumping the fracturing fluid into the wellbore at a rate
sufficient to increase pressure downhole to exceed the strength of the rock.

The term “hydraulic fracturing” is nowadays widely used to mean the process of fracturing
rock formations with water-based fluids. In general terms, hydraulics is a topic in applied
science and engineering dealing with the mechanical properties of liquids (not just water).
Though a matter of definitions, in this note we choose to categorize under “hydraulic
fracturing” all techniques that make use of liquids (including foams and emulsions) as the
fracturing agent.

Indeed, using water as base fluid for hydraulic fracturing is a more recent development.
(Montgomery and Smith 2010) give a good account of the history of hydraulic fracturing.
The first fracture treatments were initially performed with gelled crude and later with gelled
kerosene. By the end of 1952, many fracturing treatments were performed with refined and
crude oils. These fluids were inexpensive, permitting greater volumes at lower cost. In 1953
water started to be used as a fracturing fluid, and a number of gelling agents was
developed. Surfactants were added to minimize emulsions with the formation fluid. Later,
other clay-stabilizing agents were developed, permitting the use of water in a greater
number of formations.

Other innovations, such as foams and the addition of alcohol, have also enhanced the use of
water in more formations. Aqueous fluids such as acid, water, and brines are used now as
the base fluid in approximately 96% of all fracturing treatments employing a propping
agent. In the early 1970s, a major innovation in fracturing fluids was the use of metal-based
crosslinking agents to enhance the viscosity of gelled water-based fracturing fluids for
higher-temperature wells.

As more and more fracturing treatments have involved high-temperature wells, gel
stabilizers have been developed, the first of which was the use of approximately 5%
methanol. Later, chemical stabilizers were developed that could be used alone or with the
methanol. Improvements in crosslinkers and gelling agents have resulted in systems that
permit the fluid to reach the bottom of the hole in high-temperature wells prior to
crosslinking, thus minimizing the effects of high shear (Montgomery and Smith 2010).

The fracturing fluid used is a crucial component of hydraulic fracturing, not only concerning
the technical characteristics (rheology’, formation compatibility, etc.) but its environmental
impact. Indeed, several among the main environmental concerns associated with shale gas
fracturing today are due to the usage of water: the high volumes of water used and lost
underground, the need to process flowbacks, the potential contamination of aquifers by
leaks of chemicals employed in the fracturing fluids, etc.

1 Rheology is the branch of physics concerned with the study of the deformation and flow of matter.



2.1 Hydraulic fracturing of shales

Shale formations present a great variability, and for this reason no single technique for
hydraulic fracturing has universally worked. Each shale play has unique properties that need
to be addressed through fracture treatment and fluid design. For example, numerous
fracture technologies have been applied in the Appalachian basin alone, including the use of
CO,, N, and CO, foam, and slickwater fracturing. The composition of fracturing fluids must
be altered to meet specific reservoir and operational conditions. Slickwater hydraulic
fracturing, which is used extensively in Canadian and U.S. shale basins, is suited for complex
reservoirs that are brittle and naturally fractured and are tolerant of large volumes of water.

Ductile reservoirs require more effective proppant placement to achieve the desired
permeability. Other fracture techniques, including CO, polymer and N, foams, are
occasionally used in ductile rock (for instance, in the Montney Shale in Canada). As
discussed below in Sections 2.3 and 2.8.1, CO, fluids eliminate the need of water while
providing extra energy from the gas expansion to shorten the flowback time.

In general, a fracturing fluid can be thought as the sum of three main components:
Fracturing Fluid = Base Fluid + Additives + Proppant

A fracturing fluid can be “energized” with the addition of compressed gas (usually either CO,
or N,). This practice provide a substantial portion of the energy required to recover the fluid
and places much less water on water-sensitive formations, but has the disadvantage that it
reduces the amount of proppant that is possible to deposit in the fracture.

Typically, water-based fluids are the simplest and most cost-effective solution to fracture a
rock formation. However, alternatives to water-based fluids have significantly outperformed
water treatments in many reservoirs. For instance, foams have been extensively used in the
seventies in depleted conventional reservoirs in which water fractures were not effective.
More recently, the development of some unconventional reservoirs (tight gas, shale gas,
coal bed methane) has prompted the industry to reconsider "waterless" fracturing
treatments as viable alternatives to water-based fracturing fluids. In these reservoirs, the
interactions between the rock formation and the fracturing fluids may be detrimental to
hydrocarbon production. (Ribeiro and Sharma 2013). There are several reasons to consider
fluids that contain little or no water, namely:

1. Water sensitivity of the formation. The base mineral composition of a given rock
formation impacts the recovery process of water, gas, and oil. For example, oil-based fluids,
LPG, CO, and high-quality foams are recommended in water-sensitive formations to prevent
excessive fines migration and clay swelling. In many shales, proppant conductivity drops
considerably in the presence of water because the rock-fluid interactions soften the rock
leading to proppant embedment.

2. Water blocking. In under-saturated gas formations, the invasion of water from the
fracturing fluid can be very detrimental to gas productivity as any additional water remains
trapped because of capillary retention. The increase in water saturation (referred to as



water blocking or water trapping)) significantly reduces the relative permeability to gas,
sometimes by orders of magnitude (Parekh and Sharma 2004).

3. Proppant placement. Foams and other gelled non-aqueous fluids can transport proppant
much more effectively than slickwater fluids. At high foam qualities (gas volume fraction
typically higher than 0.5), the interactions between gas bubbles cause a large energy
dissipation that results in a high effective viscosity. At low foam qualities (less than 0.5) the
interactions between bubbles are minimal so the fluid viscosity resembles that of the base
fluid (which is typically gelled).

4. Water availability and cost. Operators are limited by the equipment and the fluids readily
available on site. In areas prone to drought fresh water can become difficult to obtain. In
some regions, the local legislation even limits water usage, which has prompted some
operators to use waterless fracturing treatments. Alternatively, the supply and the cost of
Liquefied Petroleum Gas (LPG), CO, and N, are strongly site-specific. Much of the cost
savings depend on the availability of the fluid. The use of large quantities of gases requires
the deployment of many trucks, pressurized storage units, and specific pumping equipment.
In addition, handling of LPG will require additional safety measures

Table 1 broadly summarizes the different fluids that are used for hydraulic fracturing (EPA
2004; PetroWiki - Society of Petroleum Engineers 2013).

Table 1. Different fluids used for hydraulic fracturing (adapted and expanded from (EPA 2004),
Appendix A and (PetroWiki - Society of Petroleum Engineers 2013)

Base Fluid Fluid type Main Composition Section

Slickwater Water + sand (+ chemical additives)
Linear fluids Gelled water, GUAR<HPG, HEC, CMHPG

Water Based Cross-linked fluid Crosslinker + GUAR, HPG, CMHPG, CMHEC 2.2
Viscoelastic Electrolite+surfactant
surfactant gel fluids
Water based foam Water and Foamer + N, or CO,

Foam Based ﬁlc;:hb;ss:s:jam Acid and Foamer + N, 23

Methanol and Foamer +N,

foam
Linear fluids Oil, Gelled Qil

Oil Based Cross-linked fluid Phosphate Ester Gels 2.4
Water Emulsion Water + Oil + Emulsifiers
Linear -

Acid based Cross-linked - 2.5
Oil Emulsion -
Methanol/water

Alcohol based mixes or 100% Methanol + water 2.6
methanol
Water.-0|l Water + Qil

. emulsions

Emulsion based CO,-methanol CO, + water + methanol 2.7
Others -
Liquid CO, co, 2.8.1

. Liquid nitrogen N, 2.8.2

Other fluids Liquid helium He 283

Liquid natural gas LPG (butane and/or propane) 2.8.4




2.2 Water-based hydraulic fracturing

Table 2, adapted from (King 2012), demonstrates how unconventional gas production is
driven by the development and application of technologies, by showing the increased
recovery of gas and oil from the shales. An essential element, not only from a technological
point of view but also from an environmental one, is the type of fluid used to perform the
fracturing of the formation. This will dictate the type of required chemical additives, the
need for flowback treatment, etc.

The predominant fluids currently being used for fracture treatments in the gas shale plays

are water-based fracturing fluids mixed with friction-reducing additives (called slickwater).
Many other water-based fluids are used, broadly speaking: linear fluids, cross-linked fluids,
and viscoelastic surfactant fluids. These are discussed in the following.

Slickwater fracturing is probably the most basic and most common form of well stimulation
in unconventional gas. The fracturing fluid is composed primarily of water and sand (> 98%).
Additional chemicals are added to reduce friction, corrosion, bacterial-growth, and provide
other benefits during the stimulation process. Low viscosity slick-water fluids generate
fractures of lesser width and therefore greater fracture length, theoretically increasing the
complexity of the created fracture network for better reservoir-to-wellbore connectivity.

Unfortunately, slickwater fluid is an inherently poor proppant carrier, necessitating high
pump rates to achieve flow velocities sufficient to overcome the tendency of the proppants
to settle. Proppant settling within surface equipment or long horizontal laterals can result in
premature treatment termination and poor productivity. Linear gel and crosslinked systems
have been used to mitigate the proppant settling and placement concerns, but the high
viscosity that accomplishes this objective may significantly reduce the desired fracture
complexity. Also, the long fracture closure times and the lack of efficient gel delayed
breakers makes the proppant placement advantage of gel systems very limited as proppant
settles while gel is breaking up and fracture has not yet closed.

More than 30% of stimulation treatments in 2004 in North America have been slickwater
fracturing (Schein, 2005). The most important benefits of slickwater fracturing are reduced
gel damage, cost containment, higher stimulated reservoir volume, and better fracture
containment. But there are concerns such as poor proppant transport, excessive usage of
water, and narrower fracture widths .(Kishore K. Mohanty 2012).

Some fracturing treatments require a higher viscosity fluid, such as linear fracturing fluids.
These are formulated by adding a wide array of different polymers to water. Such polymers
are dry powders that swell when mixed with an agueous solution and form a viscous gel.
The gel-like fluid is then more able to transport the proppant than would a normal low-
viscous (slickwater) fluid. Common polymer sources used with the linear gels are guar,
Hydroxypropyl Guar (HPG), Hydroxyethyl Cellulose (HEC), Carboxymethyl hydroxypropyl
guar (CMHPG), and Carboxymethyl Hydroxyethyl cellulose (CMHEC) (EPA 2004). In low-
permeability formations, linear gels control fluid loss very well, whereas in higher-
permeability formations fluid loss can be excessive. Linear gels tend to form thick filter
cakes on the face of lower-permeability formations, which can adversely affect fracture
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conductivity. The performance of linear gels in higher-permeability formations is just the
opposite, since it forms no filter cake on the formation wall. Much higher volumes of fluid
are lost due to viscous invasion of the gel into the formation.

Table 2 Increased recovery of gas and oil from shales driven by the development and application
of technologies (adapted from (King 2012))

. . (o)
Year Technologies Applied % Recovery of Shale Play
Original Gas in Place
1980’s Vertical wells, low rate gel in fracs 1% Devonian
1990’s Foam fracs 1st slickwater in shale 1.5t0 2% Devonian
2001 High rate slickwater fracs 2t04% Barnett
2004 Horizontal well dominant, 2 to 4 fracs 5to 8% Barnett
2006 Horiz, 6 tc? 8 fracs, stimul fracs, water 8 t0 12% Barnett
recycle trial
" -
5008 '16 fracs per well, Petrophysics 12 to 30% Barnett
increases
5010 Technolqu to flatten decline curve, 30 to 40% Haynesville
feeling pinch for frac water
2011 Pad dev-eloprrjent drains 5000 acres, salt 45%+ Horn River
water displacing fresh for fracs
Future Green chemicals, salt water fracs, low
disposal volume, reduced truck traffic, 45 - 55% Numerous
developments . o
pad drilling, electric rigs and pumps

Crosslinked fluids were developed in order to improve the performance of gelling polymers
without increasing their concentration. Borate crosslinked gel fracturing fluids utilize borate
ions to crosslink the hydrated polymers and provide increased viscosity. The polymers most
often used in these fluids are guar and HPG. The crosslink obtained by using borate is
reversible and is triggered by altering the pH of the fluid system. The reversible
characteristic of the crosslink in borate fluids helps them clean up more effectively, resulting
in good regained permeability and conductivity.

Borate crosslinked fluids have proved to be highly effective in both low and high
permeability formations. They offer good proppant transport, a stable fluid rheology at
temperatures as high as 300°F, low fluid loss and good cleanup properties (Haliburton
2011). Organometallic crosslinked fluids are also a very popular class of fracturing fluids.
Primary fluids that are widely used are zirconate and titanate complexes of Guar,
Hydroxypropyl Guar (HPG) and Carboxymethyl-Hydroxypropyl Guar (CMHPG).
Organometallic crosslinked fluids are routinely used to transport the proppant for
treatments in tight gas sand formations that require extended fracture lengths. They
provides advantages in terms of stability at high temperatures and proppant transport
capabilities. According to Halliburton, they provides excellent stability at high temperatures
and proppant transport capabilities and offer more predictable rheological properties
(Halliburton 2011a).
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Viscoelastic surfactant gel fluids (VES) have been described in the patent literature for
friction reduction and as well treatment fluids since the early 80s, but their use as fracturing
fluids is relatively a new phenomenon. Principally, these fluids use surfactants in
combination with inorganic salts to create ordered structures, which result in increased
viscosity and elasticity. These fluids have very high zero-shear viscosity and can transport
proppant with lower loading and without the comparable viscosity requirements of
conventional fluids (Satya Gupta in (EPA 2011).

The technology of VES systems can be broken down into several categories based on the
structure the system creates: worm-like micelles, lamellar structures or vesicles. As the
concentration of surfactant increases in water, micelles start to form and start interacting
with each other. These interactions are based on ionic forces and can be amplified by
adding electrolytes (salts) or other ionic surfactants. These fluids are operationally simple:
only one or two additives are added without any need to hydrate polymers. They do not
require any biocides because they do not contain any biopolymers. They do not require
additional flowback surfactants because they have inherently low surface and interfacial
tension. No additional clay control additives are needed.

Some interesting technologies have been recently developed. These are reviewed in the
following.

2.2.1 Zipper fracturing

Zipper fracturing involves simultaneous stimulation of two parallel horizontal wells. In this
technique, created fractures in each cluster propagate toward each other so that the
induced stresses near the tips force fracture propagation to a direction perpendicular to the
main fracture (Rafiee, Soliman et al. 2012). This technique typically makes use of slick-water
as fracturing fluid, and it is applied to shale formations (Yu and Sepehrnoori 2013).

2.2.2 Cavitation Hydrovibration fracturing

Cavitation Hydrovibration is a proprietary technique developed at the Institute of Technical
Mechanics in Dnipropetrovsk, Ukraine, and it is designed to fracture rock using a pressurized
water pulse action. No literature sources or patent applications were found to confirm the
technical details of the status of application of the system, except for an online article
authored by blogger Walter Derzko (Derzko 2008).

The technique is described as a green technology that operates using pure water, without
the use of any chemical. The cavitation hydrovibrator is mounted in a drilling line and
inserted into a vertical or horizontal borehole at the appropriate stratum level. Pressured
water is fed to the cavitation hydrovibrator inlet through the drilling line using a drill pump.
Then the water passes through the hydrovibrator flow passage and enters the borehole
where the gas-saturated stratum is located. Due to the pressure differential across the
hydrovibrator, the regime of periodically detached cavitation is set up in its flow passage. In
this regime, the steady water flow is transformed into a high-frequency pulsating flow. The
pulse-repetition frequency can be varied from 100 to several thousand Hertz. The water
pressure pulse acts on the gas-bearing formation and it increases its degree of fracturing.
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(Derzko 2008) reports that this method has been tested and used in the Novojarovskoje
sulfur deposit (in the Lviv Region of Ukraine) and that the method performed well in the
recovery of old water wells in the Moscow region and in the Pskov region (Russian
Federation). It appears that the technology has not been tested yet to enhance gas recovery
in conventional reservoirs, nor for shale gas production.

2.2.3 Hydra-jet fracturing

Hydrajet fracturing combines hydrajetting with hydraulic fracturing. This process involves
running a specialized jetting tool on conventional or coiled tubing. To initiate the hydraulic
fracture, dynamic fluid energy jets form tunnels in the reservoir rock at precise locations.
The hydraulic fracture is then extended from that point outward. By repeating the process,
one can create multiple hydraulic fractures along the horizontal wellbore (Loyd E. East,
Grieser et al. 2004; Mcdaniel and Surjaatmadja 2009; Gokdemir, Liu et al. 2013).

This technique is applied on unconventional reservoirs, including shales (McKeon 2011). It
appears to offer improvements on how the fractures are initiated, but it does not offer
substantial advantages regarding the usage of water and chemical additives in the fracturing
fluid.

2.2.4 Exothermic hydraulic fracturing

(Al-ajwad, Abass et al. 2013) describe the idea of injecting chemicals during the hydraulic
fracturing treatment that — upon reaction — generate heat and gas. The temperature and
gas increase then create localized pressure that results in thermal and mechanical
fracturing.

This idea was tested in laboratory specimen (cores) collected from tight reservoirs in Saudi
Arabia. The permeability of tested cores showed significant increase after applying the new
treatment technique. Enhanced communication between micro and macro pores was also
found.

A likely shortcoming of this technique is the localized effect. Unconventional gas reservoirs,
being so tight, require stimulation that reaches far into the reservoir. As shown in thermal
heavy oil recovery projects, it takes substantial energy (or well count) to cover a large
extension of the reservoir with relevant temperature changes.

2.2.5 Hydraulic fracturing enhanced by water pressure blasting.

(Huang, Liu et al. 2011) describe the idea of enhancing the effectiveness of hydraulic
fracturing by using water blasting for fracturing coal seams.

Water pressure blasting is a method that combines the use of water with that of explosives
(note that explosive fracturing is discussed in details in section 4.1). In this technology,
water is used as a coupling medium to transfer the generated explosion pressure and
energy as to break the rock.

13



According to (Huang, Liu et al. 2011), traditional hydraulic fracturing techniques generally
form main hydraulic cracks and airfoil branch fissures, with the former relatively fewer in
number. These authors state that experimental tests prove that the method is an effective
way to increase the number and range of hydraulic cracks, as well as for improving the
permeability of coal seams.

The working principles of the method are described in the following. A hole is drilled in the
coal seam and is injected with a gel explosive. Water is injected into the hole to seal it (at
low enough pressure to prevent cracks from forming).Water pressure blasting is carried out
by detonating the explosive. The water shock waves and bubble pulsations produced by the
explosion cause a high strain rate in the rock wall surrounding the hole. The rock breaks and
numerous circumferential and radial fractures propagate outward. Finally, conventional
hydraulic fracturing is performed. The fissures open by the detonation are further expand.

This technique has been proposed very recently (2011) and it appears an experimental idea.
It has been suggested for low-permeability coal-seam gas extraction, but it is judged that it
could potentially be applied to shale formations. It appears to offer improvements on how
the fractures are initiated, and could potentially reduce the quantity of water required for
the hydraulic fracturing stage. Without any reports on depth of stimulation away from the
well, this technique does not appear to be economical.

2.3 Foam-based fluids

Overview

For water-sensitive formations and environments where water is scarce, foams have long
been considered as one of the best fracturing fluids (Neill, Dobbs et al. 1964; Komar, Yost Il
et al. 1979; Gupta 2009). In particular, foams are believed to be an appropriate means for
fracturing shale gas reservoirs. They require lower (or no) water consumption, cause less
damage in water sensitive formations and there is less liquid to recover and handle after the
fracturing process. Expansion of the gas phase after the treatment also helps recover the
liquid phase introduced into the formation with foams (Edrisi and Kam 2012).

Foams are being used in a number of petroleum industry applications that exploit their high
viscosity and low liquid content. Some of the earliest applications for foam dealt with its use
as a displacing agent in porous media and as a drilling fluid. In the mid-1970's, N,-based
foams became popular for both hydraulic fracturing and fracture acidizing stimulation
treatments.

Most recently, CO, foams have been found to exhibit their usefulness in hydraulic fracturing
stimulation. Different foam-based fluids can be used, as summarized in the table below
(adapted from (EPA 2004). The liquid CO,-based fluid consists of a foam of N, gas in liquid
CO2 as the external phase stabilized by a special foamer soluble in liquid or supercritical CO,
(Gupta 2003). The main advantage of this fluid is the additional viscosity gained by the foam
over liquid CO,. The use of 75% volume of N, makes the fluid very cost-effective. The fluid
has also found niche application in coalbed fracturing in Canada on dry coalbeds where any
water introduced into the formation damages the cleats (Gupta in (EPA 2004)). Table 3 gives
a broad summary of the types of foams used as fracturing fluids.
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Table 3 Types of foams used as fracturing fluids.

Type of foam Main composition
Water-based foams Water and Foamer + N, or CO,
Acid-based foams Acid and Foamer + N,
Alcohol-based foams Methanol and Foamer +N,
CO,-based foams Liquid CO,+N,

Description

A foam is used as the fracturing fluid. Foams are structured, two-phase fluids that are
formed when a large internal phase volume (typically 55 to 95%) is dispersed as small
discrete entities through a continuous liquid phase (Reidenbach, Harris et al. 1986).

Foams are very unique and versatile because of low-density and high-viscosity
characteristics. Previous studies show that foam viscosity strongly depends on foam quality
(the gas fraction in the total gas and liquid mixture) and foam texture (the number of
bubbles in unit mixture volume) (Edrisi and Kam 2012).

Rationale

It is claimed (Edrisi and Kam 2012) that for shale gas development in environmentally
sensitive regions, foam fracturing appears to be advantageous over the conventional water-
based hydraulic fracturing because less amount of water usage can be translated into fewer
amounts of health-hazardous chemical additives in fracturing liquid. Expansion of the gas
phase after the treatment also helps recover the liquid phase introduced into the formation
with foams.

The most common application for high-quality foams is in water-sensitive gas-bearing
formations, typically an under-saturated gas reservoir where water blockage is a major
concern. Foams are beneficial when used for liquids-rich gas wells, such as in the Alberta
Deep Basin and work in certain oil-bearing formations, such as the Cardium. Lastly, in areas
where water is in short supply or hard to source, foams can present a very obvious
advantage.

Potential advantages and disadvantages

Potential advantages
- Water usage reduced (or completely eliminated in case of CO,-based foams).

- Reduced amount of chemical additives.
- Reduction of formation damage.
- Better cleanup of the residual fluid.

Potential disadvantages
- Low proppant concentration in fluid, hence decreased fracture conductivity.

- Higher costs.
- Difficult rheological characterization of foams, i.e. flow behaviour difficult to predict.
- Higher surface pumping pressure required.
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Status of technique application for unconventional reservoirs

Foams are commercially used to fracture shale formations. For instance, (Rowan 2009)
reports the use of foams to stimulate gas wells in the Lower Huron Shale in the Appalachian
Basin. (Brannon, Kendrick et al. 2009) discuss the application of foams in the Big Sandy (a
productive field of more than 25,000 wells, located in the eastern USA), characterized by
ultra-low permeability, the Berea tight gas sands and Devonian Ohio shales such as the
Huron formation.

2.4 Oil-based fluids

Oil-based fracturing fluids were the first high-viscosity fluids used in hydraulic fracturing
operations. A major advantage to this type of fluid is its compatibility with almost any
formation type. Disadvantages are associated with potential high costs and greater concerns
regarding personnel safety and environmental impact as compared to most water-based
fluids. There are several oil-based fluids, for instance based on diesel, but a promising
technique, which has been developed especially for shale gas production, makes use of
liquefied petroleum gas (LPG?). This is analyzed in details in the following section.

2.4.1 LPG
Overview

Liquefied petroleum gas has been used as stimulation fluid for fifty years. It was developed
for conventional reservoirs before being adapted to unconventional reservoirs. For instance,
it was used to stimulate (or re-stimulate) oil wells. It has also been used to stimulate tight
sands because of recovery improvements in reservoirs exhibiting high capillary pressures by
eliminating phase trapping.

In 2007, the Canadian company GasFrac, based in Calgary (Alberta), started to use LPG gel
to stimulate shale rocks. Since then, over 1500 operations of stimulation have been
performed using this gellified propane technique both in Canada and United-States. The LPG
used in the closed GASFRAC system is primarily propane (CsHg) (GasFrac 2013).

The technology is also developed by ecorpStim, based in Houston (Texas). In 2012,
ecorpStim was at the origin of several technological developments: (1) removal of
chemicals, by developing a new formula for the stimulation fluid (now composed exclusively
of pure propane and sand, with no chemicals additives) and (2) reduced volumes of propane
to meet stricter safety requirements. Pure propane is used (with the possibility of using
butane and/or pentane for some rock types) (ecorpStim 2013a).

Z Liquefied petroleum gas (LPG) is a flammable mixture of hydrocarbon gases normally used as a fuel in
heating appliances and vehicles. Varieties of commercial LPG include mixes that are primarily propane
(C3Hsg), primarily butane (C4H1o) or mixtures including both propane and butane.
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Description of the technique

LPG is used as the fracturing fluid (Taylor, Lestz et al. 2006; Lestz, Wilson et al. 2007). In the
GasFrac system, LPG is gelled before the fracturing to allow better transport of proppant
into the fracture. In the ecorpStim system, LPG is not gelled. Buoyant proppants such as fine
sand and carbon fullerenes are used, but it still needs to be proven that they are strong
enough for widespread application.

When fracturing, the LPG remains liquid, but after completing the process it goes into
solution with the reservoir gas.

Rationale

Liquid propane is particularly suitable for use as fracturing fluid because it is less viscous
than water. Many shale formations are water-sensitive, and using LPG would avoid this
problem.

The GasFrac LPG gel properties include: low surface tension, low viscosity, low density, and
solubility within naturally occurring reservoir hydrocarbons. These properties are suggested
to lead to more effective fracture lengths are created and thus enable higher production of
the well. Another reported advantage is the ability to evenly distribute proppant. The
fracturing fluids are totally recovered within days of stimulation, creating economic and
environmental advantages by reducing clean-up, waste disposal and post-job truck traffic
(GasFrac 2013).

The ecorpStim system completely avoids the use of chemical additives. The company
reports that, while in hydraulic fracturing 30-80% of water is recovered, propane stimulation
allows a recovery of 95-100% of injected gas . The recovered propane can be sold as such
(i.e. directly inserted in the pipelines) or used for another stimulation operation. The seismic
risk related to the injection of waste water in the subsoil is suppressed as well (ecorpStim
2013a).

When gelled, LPG provides a consistent viscosity, does not require the costly use of CO, or
N,, nor does it require any special cool down or venting of equipment. LPG is an abundant
by-product of the natural gas industry and is stored at ambient temperature. Using LPG also
reduces the need to flare production to clean up the traditional fracturing fluids, reducing
CO, emissions. Because propane liquid is half the specific gravity of water, there is reduced
trucking to the site and no trucking to transport post stimulation - which can reduce truck
traffic by up to 90%.

The main drawback of this technology is that it involves the manipulation of large amounts
(several hundred tons) of flammable propane (and the associated risks/safety hazards). It is
therefore a more suitable solution in environments with low population density, provided of
course that the workers safety can be strictly guaranteed.
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Potential advantages and disadvantages

Potential advantages
- Water usage much reduced or completely eliminated.

- Fewer (or no) chemical additives are required.

- Flaring reduced.

- Truck traffic reduced.

- Abundant by-product of the natural gas industry.

- Increased the productivity of the well.

- Lower viscosity, density and surface tension of the fluid, which results in lower
energy consumption during fracturing.

- Full fluid compatibility with shale reservoirs (phase trapping virtually eliminated).

- No fluid loss. Recovery rates (up to 100%) possible.

- Very rapid clean up (often within 24 hours).

Potential disadvantages
- Involves the manipulation of large amounts of flammable propane, hence potentially

riskier than other fluids and more suitable in environments with low population
density.

- Higher investment costs.

- Success relies on the formation ability to return most of the propane back to surface
to reduce the overall cost.

Costs

Investment costs are estimated to be higher than for hydraulic fracturing, because LPG is
pumped into well at a very high pressure, and after each fracturing it has to be liquefied
again (Rogala, Krzysiek et al. 2013). In addition, propane costs more than water both initially
and as an ongoing cost, to make up for the portion that is not returned to the surface after
each operation.

Status of technique application

The techniques reviewed (GasFrac and ecorpStim) are both commercially applied in
unconventional reservoirs in North America. (Lenoir and Bataille 2013) report that between
2008 and 2013, 2000 fracturing operations were carried out by the GasFrac company in
North America (primarily in Canada and, since 2010, in Texas). In 2013 ecorpStim
announced the successful field application of the technique employing pure liquid propane,
by stimulating the Eagle Ford Shale at a depth of 5950 feet. The test took place in Frio
County, Texas, and was completed in late December 2012. No chemical additives of any kind
were used.

In 2013 EcorpStim also developed a new technological concept, based on the use of a

fluorinated form of propane (heptafluoropropane) as a stimulation fluid in order to
completely eliminate the risk associated with the flammability of regular propane
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(ecorpStim 2013b). However, heptafluoropropane is a very stable hydrocarbon, and as such
presents a global warming potential.

2.5 Acid-based fluids

Overview

The main difference between acid fracturing and proppant fracturing is the way fracture
conductivity is created. In proppant fracturing, a propping agent is used to prop open the
fracture after the treatment is completed. In acid fracturing, acid is used to “etch” channels
in the rock that comprise the walls of the fracture. Thus, the rock must be partially soluble
in acid so that channels can be etched in the fracture walls.

In shale formations, although many have a significant amount of dissolvable carbonate and
limestone, the content in the rock is not a continuous phase. Hence, it is difficult to use acid-
based fluids even in the few high carbonate reservoirs such as the Eagle Ford in the USA.
Without a continuous carbonate/limestone phase it is very difficult to etch the required
“continuous” channel. Also, flow-back needs to manage the disposal of significant calcium
carbonate/limestone volumes that come dissolved in the spent acid. Long etched fractures
are difficult to obtain, because of high leakoff and rapid acid reaction with the formation
(PetroWiki - Society of Petroleum Engineers 2012). However, (Burgos, Buijse et al. 2005)
have recently reported on how better acid fracturing mixtures have improved penetration
even at higher temperatures.

Status of technique application

For the reasons highlighted above, the application of acid fracturing is confined to
carbonate reservoirs and is never used to stimulate sandstone, shale, or coal-seam
reservoirs.

2.6 Alcohol-based fluids

Overview

In the 1990s and up until 2001, some companies (for instance BJ Services, now part of
Barker Hughes) used methanol as a base fluid in fracturing applications in Canada and
Argentina (Antoci, Briggiler et al. 2001). In those cases, the fractured formations either had
low permeability with high clay content, low bottom-hole pressure, and/or minimal load
fluid recovery.

However, a recent report prepared for Methanol Institute in 2012 (“White Paper - Methanol
Use in Hydraulic Fracturing Fluids”) reviewed the literature and concluded that methanol
was used infrequently as a base fluid (Saba, Mohsen et al. 2012). The main reason given was
the problem of safe handling issues and additional expenses to ensure that all personnel
involved with methanol treatments are thoroughly trained in the proper procedures for
handling flammable materials. This study also concluded that, compared to water-based
fracture fluids, methanol-based fluids are 3 to 4 times as expensive. In summary, concerns
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about safety and associated costs to use methanol has led to shifting away from methanol
as a base fluid and limiting its use to being only an additive.

Nonetheless, in formations with severe liquid (aqueous and hydrocarbon) trapping
problems, non-aqueous methanol fluids may be a solution (Gupta 2010). Over the years,
several authors have identified the advantages of alcohol-based fluids, including low
freezing point, low surface tension, high water solubility, high vapor pressure and formation
compatibility. Methanol is also the fluid of choice for formations with irreducible water
and/or hydrocarbon saturation (Bennion, Thomas et al. 1996; Bennion, Thomas et al. 2000).

Methanol-based fluids have been used on low permeability reservoirs, but it is not clear if
their application has been extended to shales.

Description of the technique
A methanol-based fluid is used as the fracturing fluid.

Several methods to increasing the viscosity of methanol have been described in the
literature, ranging from foaming methanol to gelling it with synthetic polymers and guar.
Attempts have also been made to crosslink gelled methanol with metal crosslinkers. The
most recent development (Gupta, Pierce et al. 1997) describes a modified guar dissolved in
anhydrous methanol crosslinked and has been successfully used in the field. In
underpressured wells, it has been energized with N,. Methanol-based fluids can also be
energized with CO, for formations with severely under-pressured wells.

These fluids should be selectively used with special safety considerations due to the
flammability of methanol. The flash point (i.e. the lowest temperature at which it can
vaporize to form an ignitable mixture in air.) of methanol is 53°F (11.6°C) and its density is
greater than that of air, which presents a safety hazard to field personnel. Oxygen contact
must be avoided and therefore a “blanket” of CO2 vapor is used to separate methanol vapor
from any oxygen source. Personnel must wear fire-resistant coveralls.

Rationale

For formations with severe liquid trapping problems or irreducible water and/or
hydrocarbon saturation, non-aqueous methanol fracturing fluids may be the best (or the
only viable) a solution.

Methanol has excellent properties such as high solubility in water, low surface tension and
high vapor pressure. These are favorable for the recovery of the fracture and formation
fluids, hence increasing the permeability of the gas in the treated zone (Hernandez,
Fernandez et al. 1994).

Potential advantages and disadvantages

Potential advantages
- Water usage much reduced or completely eliminated.

- Methanol is not persistent in the environment (biodegrades readily and quickly
under both anaerobic and aerobic conditions and photo-degrades relatively quickly).
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- Excellent fluid properties: high solubility in water, low surface tension and high vapor
pressure.
- Very good fluid for water-sensitive formations.

Potential disadvantages
- Methanol is a dangerous substance to handle:

a. Low flash point, hence easier to ignite.
b. Large range of explosive limits.

c. High vapor density.

d. Invisibility of the flame.

Costs

(Saba, Mohsen et al. 2012) indicate that, because of its low viscosity compared to water,
methanol reduces the pumping pressure required to deliver the fracturing fluids to the
formation. Because lower piping friction requires less hydraulic power, this can have a
significant impact on reducing costs.

(Antoci, Briggiler et al. 2001) describe a study where more than 200 hydraulic fracturing jobs
using crosslinked anhydrous methanol as fracture fluid were performed in Argentina. These
treatments were carried out in conventional (sandstone) reservoirs. The introduction of
crosslinked methanol was aimed at reducing treatment cost while maintaining better
stimulation results associated with CO, foam. This was accomplished: crosslinked methanol
cost was less than 50% compared to using CO, foam. Other cost-reducing advantages were
given by the nature of the completion procedure, for instance by allowing fracturing in as
many intervals as considered necessary without killing the well or without having to invade
the zones with water base completion fluids.

Status of technique application

Methanol-based fluids have been used on low permeability reservoirs, but it is not clear if
their application has been extended to shales.

Methanol as an additive is widely used in hydraulic fracturing, for instance as a corrosion or
scale inhibitor, friction reducer, formation water flowback enhancer and fracturing fluid
flowback enhancer (Saba, Mohsen et al. 2012).

2.7 Emulsion-based fluids
Overview

There are many different emulsion-based fluids that have been developed and used as
fracturing fluids. Many of such fluids use emulsions of oil and water, and could therefore be
classified under the oil-based fluids (section 2.4). A comprehensive review of these fluids is
beyond the scope of this review. Broadly speaking, emulsion-based fluids reduce or
completely eliminate the use of water.
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A high-quality emulsion of C0, in aqueous alcohol-based gel was used in the western
Canadian sedimentary basin as a fracturing fluid in 1981. Since then, the use of such fluid
has been very successful, particularly in low-pressure, tight gas applications. The fluid has
the same advantages as conventional high-quality CO, foams, with the added advantage of
minimizing the amount of water introduced into the well (Gupta, Hlidek et al. 2007).

Description of the technique

An emulsion, i.e. a mixture of two or more liquids that are normally immiscible (i.e. non-
mixable), is used as the fracturing fluid.

Rationale

Certain formations have potential to retain even the small amounts of water contained in
foams. These fluids may damage these sensitive formations because of irreducible water
saturation and liquid trapping. In these formations, replacing 40% of the water phase used
in conventional CO, foams with methanol can minimize the amount of water. (Gupta, Hlidek
et al. 2007) showed that a 40% methanol aqueous system yielded gave very good
production results in several Canadian gas formations (Gupta et al., 2007).

Potential advantages and disadvantages

Potential advantages
- Depending on the type of components used to formulate the emulsion, these fluids

can have potential advantages such as:
a. Water usage much reduced or completely eliminated.
b. Fewer (or no) chemical additives are required.
- Increased the productivity of the well.
- Better rheological properties.
- Fluid compatibility with shale reservoirs.

Potential disadvantages
- Potentially higher costs.

Costs

Costs could potentially be higher when compared to water-based hydraulic fracturing,
depending on the type of emulsion formulation.

Status of technique application
Emulsion-based fluids have been used on several unconventional (low permeability)

formations, but no direct usage for shale gas stimulation could be found as a part of the
present study.
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2.8 Cryogenic fluids

2.8.1 Liquid CO:

Overview

It appears that CO, is (or can be) used in different ways:

- Liquid CO;, for hydraulically fracturing the reservoir (commercially used).
- Super-critical CO, for hydraulically fracturing the reservoir (concept stage).
- €O, foams. These are described more in detail in section 2.3.

- CO, thermal hydraulic fracturing, a method that combines conventional hydraulic

fracturing with fractures caused by the thermal stresses that are generated when
the cold fluid enters the hotter reservoir). This method is described more in detail in
section 5.1 (concept stage).

Description of the technique

Liquid (or super-critical) CO, is used instead of water as the fracturing fluid. The family of
these fluids consists of pure liquid CO, and a binary fluid consisting of a mixture of liquid CO,
and N, to reduce costs. ). In these systems, the proppant is placed in the formation without
causing damage of any kind, and without adding any other carrier fluid, viscosifier or other
chemicals.

Liquid CO; has been used in fracture operation since the early 1960's. In the beginning it
was used as an additive to hydraulic fracturing and acid treatments to improve recovery of
treating fluid. (Mueller, Amro et al. 2012). The concept of fracturing with 100% CO, as the
sole carrying fluid was first introduced in 1981.(Sinal and Lancaster 1987)

The use of supercritical CO, for fracturing has been recently suggested ((Gupta, Gupta et al.
2005; Gupta 2006), (Al-Adwani, Langlinais et al. 2008)).

The physical properties of liquid CO, make it a unique fluid. CO; is relatively inert compound
that, depending on the temperature and pressure, exists as a solid, liquid, gas or super
critical fluid. Above the critical point, it is considered to be a super critical fluid. In field
operations, liquid CO, is at 2.0 MPa and -35°C in the storage vessel. After the addition of
proppants, high pressure pumps increase the pressure (example 35 to 40 MPa). As the fluid
enters the formation, the temperature increases toward bottom-hole temperature. During
flow back, the pressure decreases and CO, comes to the surface as a gas.

Supercritical CO; is a fluid state where CO, is held at or above its critical temperature
(31.1°C) and critical pressure (72.9 atm or 7.39 MPa). Owing to its unique physical and
chemical properties, supercritical CO, can obtain a higher penetration rate in shale
formation and adds no damage to the reservoir.
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Rationale

According to D.V. Satya Gupta (quoted in (EPA 2011), fluids based on liquid CO, are at the
technological cutting edge. These fluids have been very successfully used in tight gas
applications in Canada and several US formations.

During hydraulic stimulation using conventional fracturing fluid, water-based fracturing
fluids can get trapped as liquid phase in rock pores next to the fractures due to very low
permeability in tight gas and shale formations. This phenomenon is called water-phase
trapping and can significantly damage the region near the wellbore. Water blocking may
plague the success of hydraulic fracturing in low permeability gas reservoirs, and resulted
significant loss of relative permeability due to the capillary effects between the treatment
fluid and reservoir fluids. Another problem could be the swelling of clays which reduce the
permeability as well. The injected fluid during hydraulic fracturing should be compatible
with the formations to avoid swelling. CO, has the necessary properties that may support
such requirements (Mueller, Amro et al. 2012).

An important feature is the fact that the CO, adsorption capacity with shale is stronger than
that of methane (CHy). Thus, it can replace CH, in the shale formation, enhancing gas
production and at the same time remaining locked underground. At reservoir conditions,
CO, adsorption exceeded CH4 adsorption by a factor of five, suggesting that CO, enhanced
gas recovery from shale could serve as a promising mean to reduce life cycle CO2 emission
for shale gas. On a strictly volumetric basis, gas shales have the potential to sequester large
amounts of CO,, provided that CO, can diffuse deep into the matrix (Nuttall, Eble et al.
2005).

When taken into fracturing, it can cause much more complicated fractures for its lower
viscosity property, which has a benefit to shale gas exploitation (Al-Adwani et al., 2008;
Wang, 2008; Gupta et al., 2005).

After the treatment, the evaluation of a fractured zone can take place almost immediately
because of rapid clean-up. The energy provided by CO, results in the elimination of all
residual liquid left in the formation from the fracturing fluid. The gaseous CO, also aids in
lifting formation fluids that are produced back during the clean-up operation.

The biggest advantage is that the CO, adds no pollution to the environment, and it can have
a positive net effect when considering the greenhouse gas emissions issue. An article in New
Scientist has recently discussed the possibility that fracturing with CO, could spur the
development of large-scale carbon sequestration (McKenna 2012).

Potential advantages and disadvantages

Potential advantages
- Potential environmental advantages:

a. Water usage much reduced or completely eliminated.
b. Few or no chemical additives are required.
c. Some level of CO, sequestration achieved.
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- Reduction of formation damage (reduction of permeability and capillary pressure
damage by reverting to a gaseous phase; no swelling induced).

- Form more complex micro-fractures, which can connect many more natural
fractures greatly, increasing maximally the fractures conductivity. (Wang, Li et al.
2012).

- Enhance gas recovery by displacing the methane adsorbed in the shale formations
(Wang, Li et al. 2012 ).

- Evaluation of a fracture zone is almost immediate because of rapid clean-up. The
energy provided by CO, results in the elimination of all residual liquid left in the
formation from the fracturing fluid.

- Better cleanup of the residual fluid, so smaller mesh proppant can be used and
supply adequate fracture conductivity in low permeability formations.

- The use of low viscosity fluid results in more controlled proppant placement and
higher proppant placement within the created fracture width.

Potential disadvantages
- The main disadvantages follow from the fluids’ low viscosity. Proppant concentration

must necessarily be lower and proppant sizes smaller, hence decreased fracture
conductivity.

- CO, must be transported and stored under pressure (typically 2 MPa, -30°C).

- Corrosive nature of CO, in presence of H,0.

- Unclear (potentially high) treatment costs.

Costs

Some sources indicate that one of the major limitations of this technology has been their
high treatment cost. Although stimulation treatments using the low-viscosity liquid CO,
system have been successful, the high pumping rates required to place these jobs and the
associated frictional losses raised horsepower requirements. [D.V. Satya Gupta, quoted in
(EPA 2011)]

Other authors state that fracturing with CO, can be economical. For instance, Sinal and
Lancaster 1987) state that the costs for fracturing fluid clean-up and associated rig time are
considerably less than with conventional fracturing fluids. These advantages are reported:
swabbing of the well is completely eliminated as a post-fracturing treatment; no disposal of
recovered fracturing fluid is required; and evaluation of the well takes less time.

(Wang, Li et al. 2012 ) state that fracturing with supercritical CO, can offer a reduction of
costs, mainly because of an enhancement of gas.

Status of technique application

Liquid CO; as fracturing fluid is already commercially used in many unconventional
applications (most notably, tight gas) in Canada and the US (EPA 2011). (Yost II, Mazza et al.
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1993) reports that wells in Devonian shale formations (Kentucky, USA) were stimulated with
liguid CO, and sand as early as 1993.

Super-critical CO, use appears to be at the concept stage. Studies have analysed its
potential use to fracturing shale formation, with positive conclusions. (Ishida, Niwa et al.
2012; Wang, Li et al. 2012 ). According to (Ishida, Niwa et al. 2012), “combining the
characteristics of SC-CO; fluid and shale gas reservoir exploitation, the feasibility of shale gas
exploitation with SC-CO; is demonstrated in detail”.

2.8.2 Liquid Nitrogen (Nz)

Overview

Generally, fracturing using nitrogen tend to use the gas mixed with other fluids: mists
(mixtures composed of over 95% nitrogen carrying a liquid phase), foams (mixture
composed of approximately 50% to 95% of nitrogen formed within a continuous liquid
phase), or energized fluids (mixtures composed of approximately 5% to 50% nitrogen).

Liquid nitrogen used as a hydraulic fracturing fluid is a technology that is still fairly new, but
it has been applied for fracturing shale formations (Grundmann, Rodvelt et al. 1998; Rowan
2009).

The extremely low temperature of the fluid (-184°C to -195°C) will induce thermal tensile
stresses in the fracture face. These stresses exceed the tensile strength of the rock, causing
the fracture face to fragment. Theoretically, self-propping fractures can be created by the
thermal shock of an extremely cold liquid contacting a warm formation. As the fluid warms
to reservoir temperature, its expansion from a liquid to a gas results in an approximate
eightfold flow-rate increase (Grundmann, Rodvelt et al. 1998).

Description of the technique

Liquid nitrogen is used as the fracturing fluid.

For nitrogen to be pumped safely into a well, the entire surface manifold and wellhead must
be made of stainless steel. In some cases, operators may use special fiberglass tubing to
protect the casing from the extremely low temperatures.

Rationale

The two main reasons for using pure nitrogen as fracturing fluid in shale formations are (1)
when the formation is under pressured and (2) because shale can be sensitive to fluids. The
nitrogen helps fluid recovery by adding energy to help push any fluid from the fracturing
process or the reservoir out of the wellbore. These fluids can accumulate and create enough
hydrostatic pressure that the reservoir cannot overcome.
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Potential advantages and disadvantages

Potential advantages
- Potential environmental advantages:

a. Water usage completely eliminated.
b. No chemical additives are required.
- Reduction of formation damage.
- Self-propping fractures can be created by the thermal shock, hence need for
proppant reduced or eliminated.

Potential disadvantages
- Special equipment required to safely handle liquid N,, due to the very low

temperature of the fluid.

- Higher costs.

- Difficult to implement as liquid nitrogen travelling down the well will heat up and
become a gas thus not able to transport proppant. Even if well temperature
insulation is applied successfully, the nitrogen will become a gas very soon after
entering the formation thus losing all ability to place proppant.

Costs

Nitrogen is a very common component of the atmosphere (~¥78% in volume) so it is assessed
that liquid nitrogen can be manufactured anywhere and will still be relatively cheap. The
need to use special pumping and handling equipment will increase costs.

Status of technique application

Using nitrogen as a component (in mists, foams or other energised fluids) of the fracturing
medium is very common in the petroleum industry. The use of gaseous nitrogen in
pneumatic fracturing is discussed in Chapter 3. On the other hand, the use of liquid nitrogen
is less typical. The technique is commercially available, and it has been applied for fracturing
shale formations (Grundmann, Rodvelt et al. 1998), but its usage appears to be limited. This
is probably due to its higher costs.

2.8.3 Liquid Helium

Overview

The use of liquid helium as fracturing fluid is mentioned in very few sources, notably in a
study prepared for the Parliamentary Office for the Evaluation of Scientific and
Technological Choices of the French republic3 (Lenoir and Bataille 2013). No further details
or references are given therein, except for a passing mention.

3 Office parlementaire d’évaluation des choix scientifiques et technologiques (OPECST).
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Chimera Enery Corp announced in 2012 the development of a fracturing technique that
makes use of liquid helium®. This is described below. No literature sources or patent
applications were found to confirm the technical details of the status of application of the
system.

Description of the technique

According to Chimera Energy Corp (reported in (BusinessWire 2012)) a technique is being
developed that “does not use steam, LPG gel, natural gas or the pumping of anything hot
into the well being used. The central operation in the process uses only inert elements. These
elements are non-toxic or caustic in any way”.

Further, “First, the horizontal well casing is perforated pneumatically. This allows the
extraction process to reach the target area surrounding the casing. Depending on the size of
the casing in the well, moveable pressure plugs are placed at optimum distances to segment
the horizontal section and allow for engineered pressures.

Then Helium, beginning in its liquid state, is used to create the pressures needed to open up
existing fractures and form new ones. Under exothermic control, Helium will increase in
volume 757 times in transitioning from a liquid to gaseous form. With plentiful pressure
available, engineering the segmenting distances multiply the effect.”

Rationale

Helium’s diffusion rate through solids is extremely high, negating the need for solvents in
the process. Neither water nor other chemical additives would be required.

Helium is the second most abundant element in the known universe, after hydrogen, but in
the atmosphere is present only at 5.25 parts per million at sea level and is only the 71* most
abundant element in the Earth's crust (8 parts per billion). At standard conditions it is non-
toxic and plays no biological role.

Potential advantages and disadvantages

Potential advantages
- Potential environmental advantages:

a. Water usage much reduced or completely eliminated.
b. No chemical additives are required.
- No formation damage.

40n 25 October 2012, Chimera Energy Corporation was suspended from trading by the US Securities and
Exchange Commission because of questions regarding the accuracy of its statements in press releases to
investors concerning, among other things, the company's business prospects and agreements. Its website
(http://www.chimeraenergyusa.com/) does not appear to be working. Therefore, the information
presented in this section must be taken with due care.
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Potential disadvantages
- Could be expensive.

- Problems with procurement.
- Does not allow the use of proppants, hence decreased fracture conductivity.

Costs

Experts forecast that the consumption of helium is set to continue growing on a global scale.
This trend would force helium prices upwards.

Status of technique application

It is unclear what the status of the technique is. Chimera Enery Corp has portrayed the
technique as a game changer, but very little information is available to assess such claim.
Please also read footnote 4 (page 28).

2.8.4 Other cryogenic fluids

Overview

Other cryogenic fluids can be used. For instance, Expansion Energy has patented a
technique that makes use of cryogenically processed natural gas extracted from nearby
wells or from the targeted hydrocarbon formation itself (Vandor 2012; Expansion Energy
2013). According to the developers, this technique has been developed especially to target
shale formations. The invention is called VRGE™ (also called "dry fracturing", US Patent N.
8342246).

VRGE™ creates cold compressed natural gas (CCNG) at the well site. This fluid is then
pumped to high pressure before expanding it and blending it with a proprietary, foam-based
proppant delivery system. This "gas-energized" fluid is then sent down-hole where it
fractures the formation and holds open the fissures in the formation with proppant
delivered by the foam system.

Expansion Energy claims that VRGE virtually eliminates the use of chemical additives
because VRGE uses little or no water. Further, natural gas used by VRGE for fracturing
eventually resurfaces and can be sold to the market or used for additional VRGE fracturing.
As a result, there is no economic loss from using natural gas as the fracturing medium. After
fracturing is complete, the CCNG plant can either be moved to the next well site for
fracturing or it can remain at the original well site to produce LNG for the market.

Status of technique application

According to the developers, the method is “available for license”. It is not clear if it has
been already commercially deployed.

29



2.9 Potential new developments

Gupta (in (EPA 2011) suggests the following potential new developments in the area of
unconventional fluids:

- High-temperature viscoelastic fluids;

- Polymers that associate with surfactants that can be used as straight fluid or foams
(Gupta and Carman 2011);

- Fluids based on produced water (also based on associative polymers).
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3 Pneumatic fracturing

Overview

Pneumatic fractures can be generated in geologic formations when air or any other gas is
injected at a pressure that exceeds the natural strength as well as the in situ stresses
present in the formation (Suthersan 1999 ). It is a technique normally used in shallow
formations, and it has emerged as one of the most cost effective methods for enhanced
remediation of contaminated soil and groundwater.

Nitrogen gas fracturing is used primarily for water-sensitive, brittle, and shallow
unconventional oil and gas formations. The use of nitrogen prevents clay swelling that
would otherwise be caused by slickwater. Pure gaseous nitrogen produces best results in
brittle formations that have natural fractures and stay self-propped once pressure pumping
is completed. This is because nitrogen is an inert and compressible gas with low viscosity,
which makes it a poor proppant carrier. In addition, due to the low density of gaseous
nitrogen, the main applications for nitrogen gas fracturing are shallow unconventional plays,
namely coal bed methane, tight sands, and shale formations up to 5000 ft (1524 meters) in
depth. Formations best suited for nitrogen gas fracturing also tend to have low permeability
(less than 0.1 md) and low porosity (less than 4%) (Air Products 2013).

Description of the technique

In pneumatic fracturing, a gas (air, nitrogen, etc.) is injected into the subsurface at pressures
exceeding the natural in-situ pressures present in the formation interface and at flow
volumes exceeding the natural permeability of the rock.

The pneumatic fracturing procedure typically does not include the intentional deposition of
foreign propping agents to maintain fracture stability. The created fractures are thought to
be self-propping, a circumstance which is attributed to both the asperities present along the
fracture plane as well as the block shifting which takes place during injection.

There is no theoretical maximum depth limit for initiating a fracture in a geologic formation
as long as sufficient pressure and flow can be delivered to the fracture zone. In pneumatic
fracturing the injection pressure required to lift the formation is typically two to three times
higher than for hydraulic fracturing on account of gas compressibility effects in the system.

To date, the target depths of most pneumatic fracturing projects have ranged from 3 to 15
meters. The deepest applications of pneumatic fracturing for site remediation purposes

have been 60 meters. For fracturing applications below a depth of around 25 to 30 meters,
it may be advisable to use proppants since elevated overburden pressures can inhibit self-

propping.

Rationale

Without the carrier fluids used in hydraulic fracturing, there are no concerns with fluid
breakdown characteristics for pneumatic fracturing. There is also the potential for higher
permeabilities within the fractures formed pneumatically, in comparison to hydraulic
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fractures, as these are essentially air space and are devoid of propping agents. The open,
self-propped fractures resulting from pneumatic fracturing are capable of transmitting
significant amounts of fluid flow. Pneumatic fractures, in particular, may propagate along
existing fracture patterns. Hydraulic fractures have been found to be less influenced by
existing fractures.

Gaseous nitrogen is widely available and non-expensive. It is an inert gas and hence does
not damage rock formation. The gas can be removed easily after the treatment and hence
the clean-up process is fast (Rogala, Krzysiek et al. 2013).

(Rogala, Krzysiek et al. 2013) conclude that the many advantages offered by nitrogen would
suggest nitrogen fracturing as a very good technical solution. However, they also conclude
that placing the proppant in high velocity gas stream is problematic, as well as resulting in
erosion, and that the technology is limited to shallow wells or geologies that can fail the
rock in a self-propping manner. It is nonetheless questionable if such geologies are
widespread.

Potential advantages and disadvantages

Potential advantages
- Potential environmental advantages:

a. Water usage completely eliminated.
b. No chemical additives are required.
- Potential for higher permeabilities due to open, self-propped fractures that are
capable of transmitting significant amounts of fluid flow.

Potential disadvantages
- Limited possibility to operate at depth.

- Limited capability to transport proppants.

Status of technique application

Shallow shale formations have been fractured with pneumatic fracturing (EPA 1993) with
the purpose of facilitating the removal of volatile organic contaminants.

Pneumatic fracturing with gaseous nitrogen is applied to shale gas production (Rogala,
Krzysiek et al. 2013). (Gottschling and Royce 1985) report that as early as 1985 a technology
was developed, using nitrogen for the extraction of gas from Devonian shale formations in
Ohio (USA). In this system, gaseous nitrogen was injected at a pressure of 24 MPa in shallow
wells. Approximately 60% of the volume used was a pure nitrogen gas without proppant,
designed to produce fractures in the stimulated formation. The remaining 40% carried sand.

The Canadian company Canyon has patented a process called Grand Canyon™. This uses a
high-pressure pumping unit that accurately meters a proprietary light-weight proppant into
a stream of pure nitrogen. This allows creating a very thin fracture held open by a partial
monolayer (i.e. a proppant pack that is literally “one particle thick”). Canyon reports that
the technique has been used to perform thousands of fracturing jobs (delivering hundreds
of successful wells) in water-sensitive Cretaceous shales and silts. Their proprietary
proppant is being tested for deeper applications, specifically in the Montney and Cardium
plays (Canyon 2013).
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4 Fracturing with dynamic loading

In this section we review fracturing techniques that do not make use of fluids, but rather by
inducing a dynamic loading by detonating explosives placed at the bottom of the well or by
applying electrical impulses.

4.1 Explosive fracturing
Overview

Using explosives to fracture rock formations and hence stimulate production is a very old
technique. From the 1860s until the late 1940s, explosives were commonly used in wells to
increase production (“well shooting”). Liquid nitroglycerin in a tin cylinder was lowered
down the well and detonated. The technique was both effective and dangerous (Hyne
2001).

In the late 1960s nuclear devices were tested as a mean to fracture rock formations in order
to enhance the recovery of natural gas. In the United States, Project Gasbuggy (Lemon and
Patel 1972; American Oil & Gas Historical Society 2012) tested a 29-kiloton nuclear device
lowered at a depth of 1288 meters underground. The detonation created a molten glass-
lined cavern about 160 feet in diameter and 333 feet tall, which collapsed within seconds.
Subsequent measurements indicated that fractures extended more than 200 feet in all
directions — and significantly increased natural gas production. Two further nuclear
explosions (Project Rulison and Project Rio Blanco) were also carried out in Colorado. The
natural gas proved to be too radioactive to be commercially viable. It is also reported that
similar test where conducted in Russia to fracture oil and gas wells. The Soviet Union had a
similar program: “Peaceful Nuclear Explosions for the National Economy", also referred to
as "Program 7," involved testing of industrial nuclear charges for use in peaceful activities.
(Nordyke 2000) reports that nuclear detonations were conducted with the stated purpose
of searching for useful mineral resources with reflection seismology, breaking up ore bodies,
stimulating the production of oil and gas, and forming underground cavities for storing the
recovered oil and gas. All together, the Program 7 conducted 115 nuclear explosions, among
them 12 explosions for oil stimulation and 9 explosions for gas stimulation (Nordyke 2000).

In the 1970s many different explosive-based fracturing techniques were studied, for
instance: (1) displacing and detonating nitro-glycerine in natural or hydraulically induced
fracture systems, (2) displacing and detonating nitro-glycerine in induced fractures followed
by wellbore shots using pelletized TNT, and (3) detonating wellbore charges using pelletized
TNT. These techniques were for instance applied to oil shale formations. (Miller and
Johansen 1976 ).

Problems of wellbore damage, safety hazards, and unpredictable results reduced the
relative number of wells stimulated by high-strength explosives. More recently, studies have
shown that propellants have strong advantages over explosives. Propellants are substances
which deflagrate rather than detonate. (Schmidt, Warpinski et al. 1980). The propellant
techniques seem to offer a potential use for shale gas extraction and are reviewed more in
details in the following. They are known by several generic names, such as Dynamic Gas
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Pulse Loading (Servo-Dynamics), High Energy Gas Frac (Sandia National Laboratories),
Controlled Pulse Fracturing (Mobil Research and Development Corporation), and others.

Description of the technique

Substances (solid propellants) are deflagrated at appropriate locations in the rock
formation. These generate high pressure gases at a rate that creates a fracturing behavior
dramatically different from either hydraulic fracturing or explosives.

The time to peak pressure is approximately 10,000 times slower than explosives and 10,000
times faster than hydraulic fracturing. Unlike explosives, the burn front in these materials
travels slower than the speed of sound. The pressure-time behavior of propellants differs
from explosives in that peak pressures are lower, and burn times are longer.

The solid propellant does not detonate, but deflagrates. Deflagration is a burning process
that takes place without any outside source of oxygen. Gas pressures in the range of 20,000
psi are produced that last approximately 10 milliseconds. No shock wave is produced, the
rock is split rather than compacted, and multiple fractures are created (GasGun 2013).

Depending on the tools used, the reservoir lithology and the depth, propellant fracture
lengths are generally in the range from a few feet to a maximum, under the very best of
conditions, of a few tens of feet (Schatz 2012).

Different commercial techniques have been identified. Some may simply be the same
technique with a different company name.

A significant disadvantage to propellant fracturing is that it does not carry proppant into the
fracture. Instead, propellant fracturing relies upon shear slippage to prevent the fracture
from fully closing back on itself, leaving a conductive path back to the wellbore. (Page and
Miskimins 2009)

GasGun

The Gas Gun uses solid propellant to generate high pressure gas at a rapid rate. The rate is
tailored to the formation characteristics to be rapid enough to create multiple fractures
radiating 10 to 50 feet from the wellbore, but not so rapid as to pulverize and compact the
rock as is experienced with classic high explosives such as nitroglycerine. The star-shaped
pattern of multiple fractures removes wellbore damage or blockage and increases the
formation permeability near the wellbore (GasGun 2013).

High Energy Gas Fracturing

This technology (Servo-Dynamics 2013) consists of a perforating with propellants, which are
transported to the area of interest by wireline, coiled tubing or tubing. The propellant is an
oxidizing agent consisting of potassium perchlorate particles and epoxy resin. Once ignited
the propellant deflagrates, releasing gas (contained in a column of fluid in the face of the
well), which in tum produces the pressure pulse and by the expansion is responsible for
generating multiple fractures of short length (up to 50 feet in shale), in all radial directions
in the well where the perforating was oriented. Successful stimulations are reported to have
been achieved in many lithologies, including shale (Plata, Castillo et al. 2012).
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Dynamic Gas Pulse Loading

Dynamic Gas Pulse Loading (DGPL) is a the commercial name of a technique for inducing
multiple, radial fractures in a wellbore, using rapid gas-pressure loading of the rock during
the deflagration (burning) of downhole gas generators (Servo-Dynamics 1998). By
controlling the energy release during this process, the in situ stresses can be exceeded by a
substantial amount while pressures remain significantly below the level which deforms and
crushes the rock.

StimGun

StimGun is a propellant-assisted perforating system, developed by a group of industries that
includes among others Marathon Qil Company and Weatherford. The propellant releases a
controlled-dynamic pulse of high-pressure gas at the time of perforating. The tool
simultaneously perforates and stimulates the well. A cylindrical sleeve of propellant is
placed over a specially configured perforating carrier. The pressure wave generated by the
perforating charge ignites the propellant. Gas from the propellant enters the newly created
perforations, breaking them down and stimulating the formation (StimGun 2012).

Dry Fracturing EPS

This technique is at the concept stage, and is being developed by Prof. J. Krzysiek of Gdansk
University of Technology to target the fracturing of shale formations. It is designed to
combine feature from StimGun and GasGun. StimGun is classic perforator with external
sleeve as elastic propellant in combined perforation and stimulation. GasGun has two type
propellant loaded with staged ignition system used for stimulation of already perforated
intervals. Dry Fracturing EPS intends to extend the traditionally limited perforation range of
propellant fracturing systems and to offer controllable fracturing geometry, regardless of
formation stress direction and shale water sensitivity. Both the energy of perforation and
stimulation are concentrated in perforation tunnels for optimal fracture propagation
(Krzysiek 2013; Rogala, Krzysiek et al. 2013).

Rationale

The use of propellants and other so-called tailored-pulse techniques depend on a controlled
pressure-time behavior to minimize wellbore damage and maximize fracture growth by gas
penetration.

High explosives, such as nitroglycerine or gelatin, detonate and create a shock wave.
Pressures created are extremely high but last only a few microseconds. Extensive research
has shown that the pressure pulse created by high explosives enlarges the wellbore by
crushing and compacting the rock. The enlarged wellbore is left with a zone of residual
compressive stress. These residual stresses and compacted rock can actually reduce
permeability near the wellbore. Extensive cavings often fill the wellbore with debris that
require days, even weeks, to clean up (GasGun 2013).

The problems commonly associated with hydraulic fracturing are avoided. No water is used

(and hence no chemical additives). The energy released underground, albeit relatively low,
could potentially induce seismic events.
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Potential advantages and disadvantages

Potential advantages

Potential environmental advantages:

a. Water usage completely eliminated.

b. No chemical additives are required.
Minimal vertical growth outside the producing formation.
Multiple fractures.
Selected zones stimulated without the need to activate packerss.
Minimal formation damage from incompatible fluids.
Homogeneous permeability for injection wells.
Minimal on-site equipment needed.
Lower cost when compared to hydraulic fracturing.
Can be used as a pre-fracturing treatment (to reduce pressure losses by friction in
the near wellbore).

Potential disadvantages

Costs

Can replace hydraulic fracturing only for small to medium treatments, i.e. the
fracture penetration is somewhat limited.

Proppant is not carried into the fracture. Instead, propellant fracturing relies upon
shear slippage to prevent the fracture from fully closing back on itself.

The GasGun website explicitly admits that “the GasGun will never replace hydraulic
fracturing. Large hydraulic fracture treatments can create a fracture hundreds, if not
thousands, of feet in length. But many small pay zones in marginal wells cannot
justify the expense of these treatments”. (GasGun 2013)

The energy released underground, albeit relatively low, could potentially induce
seismic events.

Costs are impossible to assess given the scarce experience.

Status of technique application

Techniques based on explosive fracturing seem to have been largely superseded. On the
other hand, techniques based on propellant fracturing are commercially available, have
been used on shale formations and they appear to be a potential alternative to high-volume
hydraulic fracturing in some situations.

Laboratory and field experiments were conducted to compare hydraulic and propellant
fracturing techniques in the Mancos Shale in Colorado (a Cretaceous shale approximately
2,000 feet thick) (Page and Miskimins 2009). This study concluded that both propellant and

5 Packers are special equipment which is used to isolate zones of the well where hydraulic fracturing is
carried out.
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hydraulic fracturing can provide stimulation benefits, but only when applied in appropriate
situations.

Dry Fracturing EPS is at the concept stage, but it is reported that a pilot study will be
conducted in the near future on wells operated by PGNiG in Poland (Krzysiek 2013).

4.2 Electric fracturing
Overview

In electric fracturing, electricity is used to induce mechanical loads into the rock. If high
enough, this loading will fracture the rock.

Laboratory studies to evaluate the use of electricity for fracturing various grades of
Colorado oil shale were started in 1964, the rationale being that it was necessary to develop
techniques to increase the permeability of the oil shale formation in order to carry out an
in-situ retorting® process. (MELTON and CROSS 1968)

A technique that could be especially applied for shale gas stimulation is being developed
and tested at the University of Pau and Pays de I'Adour (Chen 2012; Martin, Reess et al.
2012a; Martin, Reess et al. 2012b). This makes use of pulsed arc electrohydraulic discharges,
and it is described in Section 4.2.1.Error! Reference source not found.

Another experimental technique has been identified, called Plasma Stimulation & Fracturing
(Awal 2013). This is described in Section 4.2.2.

4.2.1 Pulsed Arc Electrohydraulic Discharges (PAED)
Description of the technique

The method proposed by the researchers at the University of Pau and Pays de I'Adour is
based on generating a pressure wave by an electrical discharge between two electrodes
placed in a wellbore filled with water. The amplitude of this wave of pressure can reach up
to 200 MPa (2000 times the atmospheric pressure) while its duration is around one
hundredth of microsecond. This pressure wave is transmitted to the rock by the fluid inside
the wellbore, and will create micro-cracks of decreasing density, according to the distance
from the well (Chen 2012; Martin, Reess et al. 2012a; Martin, Reess et al. 2012b).

Rationale

This technique would allow fracturing of the rock without any use of fracturing fluids (and
hence no chemical additives).

6 Retorting is the oldest and the most common extraction method for oil shale. In this process oil shale is
heated in the absence of oxygen (pyrolysis) until its kerogen decomposes into condensable shale oil
vapors and non-condensable combustible oil shale gas. Oil vapors and oil shale gas are then collected and
cooled, causing the shale oil to condense.
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(Kalaydjian and Goffé 2012) report that in 2011 Total commissioned research on this
technique, and concluded that the technology is not a currently viable alternative to
hydraulic fracturing. One major problem seems to be that rock permeability is increased
only up to several meters from the wellbore, but no further. The authors also conclude that
the technique would require management of electrical installations on the surface and that
the environmental consequences of this remain to be studied.

Potential advantages and disadvantages

Potential advantages
- Potential environmental advantages:

a. Water usage much reduced or completely eliminated.
b. Few or no chemical additives are required.

Potential disadvantages
- Limited capability of increase rock permeability away from the wellbore.

- Proppant not carried into the fracture.
- Can only replace hydraulic fracturing only for small to medium treatments, i.e. the
fracture penetration is somewhat limited.

Costs
Costs are impossible to assess given the current knowledge.
Status of technique application

The technique is at the concept stage, and it is being developed as a potential alternative to
hydraulic fracturing.

One journal article (Chen, Maurel et al. 2012), two patents applications (Martin, Reess et al.
2012a; Martin, Reess et al. 2012b) and two doctoral theses (Chen 2012; Martin 2013)
documenting the ongoing research at the University of Pau and Pays de I'Adour were found.
The authors have announced that the main results of their research will be published in the
near future in different international journals (Reess 2013).

4.2.2 Plasma Stimulation & Fracturing Technology (PSF)
Description of the technique

The method has been recently proposed by Dr. M. R. Awal at the Texas Tech University
(Department of Petroleum Engineering). Development was started in February 2010 (Awal
2013).

According to the inventor, PSF creates multiple radial fractures of self-propped type
fractures by fast-expanding plasma generated using a proprietary, high-energy pulsed-
power electrical discharge technique. While the plasma tool alone can create 5-20 ft (1.5-6
meters) long multiple radial fractures of self-propped type, the implementation of the pulse
stepping algorithm can extend these fractures over 50 ft (15.2 meters).
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PSF employs multiple cycles of extremely fast (in the micro-second range) dynamic
pressurization in the wellbore. The multiple radial fractures created by PSF are self-propped
because of shear displacement. This phenomenon occurs by virtue of emergence of shear
stresses along the newly created fracture planes aligned in the directions of non-principal
in-situ stresses. Hydraulic fracturing never generates such shear stresses along the bi-wing
fractures, which are aligned in the direction of principal stress.

Rationale

This technique would allow fracturing of the rock without any use of fracturing fluids (and
hence no chemical additives).

According to the inventor, “PAED’ employs a 1st generation, very low efficiency (~10%)
electric-to-shockwave conversion (ESC) process, compared to Texas Tech’s 3rd generation
highly energy efficient (70-80%) process. Besides, PFS continues its lead by growing into a
full scale prototype for field demonstration” (Awal 2013).

Potential advantages and disadvantages

Potential advantages
- Potentially more environmentally friendly than high-volume water fracturing:

a. Water usage much reduced or completely eliminated.

b. Few or no chemical additives are required.

c. Technique deployable with a very limited number of trucks, hence much
reduced traffic.

Potential disadvantages
- Limited capability of increase rock permeability away from the wellbore.

- Proppant is not carried into the fracture.
Costs

Costs are impossible to assess given the current knowledge. The inventor claims that “the
estimated revenue from PSF job is approx. 51,000 per foot of depth” (Awal 2013).

Status of technique application

According to the inventor, PSF can be custom-designed for use in both conventional and
unconventional oil and gas reservoirs (Awal 2013).

The technique appears to be at the concept stage, but the inventor reports that the design
parameters for an up-scaled field prototype have been established, and hence that a pilot
project can be undertaken. The pilot would entail fabricating the PSF hardware for
demonstration in a 10,000 ft vertical or horizontal well.

7 See Section 4.2.1.
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5 Other methods

In this section we review some other formation stimulation techniques that do not fall
directly under the previous categories.

5.1 Thermal (cryogenic) fracturing
Overview

Fracturing can be achieved by using a fluid colder than the reservoir. This will create thermal
stresses that could fracture the rock. Even if a fluid is used this is not strictly speaking
hydraulic fracturing in the traditional sense, because it is not the elevated pressure of the
fluid and high injection rates that breaks the rock.

Several authors (Svendson, Wright et al. 1991; Charlez, Lemonnier et al. 1996) have shown
that thermally induced fractures may take place in oil and gas reservoir stimulation
applications. They investigated different cases where cold water was injected into deep hot
reservoirs with a constant injection rate (below the formation collapse pressure). After a
certain time a sharp increase in injectivity was observed, as if the formation were fractured.

Very recently an interesting fracturing technique has been proposed, based on the injection
of large quantities of cold CO, to create thermal stresses that lead to fractures in significant
magnitude. (Mueller, Amro et al. 2012). This technique, discussed more in details below, is

at the concept stage and it has been proposed for tight reservoirs.

Description of the technique

(Mueller, Amro et al. 2012) have proposed a technique called “CO, thermal hydraulic
fracturing”. It combines conventional hydraulic fracturing and fractures which are caused by
thermal stresses, due to the injection of cold CO,.

To create thermal stresses that lead to fractures in significant magnitude, a large quantity of
liquid CO, is needed to be injected. During high pressure injection the CO, will stay in liquid
state. Due to its low temperature and the high quantity of CO, a large area around the
wellbore will cool down. Depending on the injection rate a temperature reduction of
50-100°C might be achieved in this way. This effect should lead to large thermal stresses in
the ground which cause fracturing along with the hydraulic pressure of the injection pump.

According to (Mueller, Amro et al. 2012), the temperature reduction would not be high
enough to achieve the necessary thermal stresses to induce fractures in the first months of
the process. During this initial period, the injection would take place in the so-called “frac”
regime, i.e. injection at high pressure. CO, injection would continue for several years, and
gas production would only start after two years from the beginning of the treatment.
Through the continuous injection, the temperature front propagates, inducing an ongoing
fracturing process in reservoir regions farther away from the well. The cap rock above the
formation should guarantee the sealing of the reservoir and prevent seismic impact on the
overburden layers.
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Rationale
As discussed in Section 2.8.1 (page 23), using CO, as fracturing fluid offers many advantages.

Large quantities of liquid CO, would be needed for injection. One promising sources could
be power plants which have a CO, emission up to 1 million tons/ year. Transport could be
realized by pipelines from the plant site to the injection site.

Potential advantages and disadvantages

Potential advantages
- Potentially more environmentally friendly than high-volume water fracturing:

a. Water usage much reduced or completely eliminated.
b. No chemical additives are required.
- Could be used in conjunction with CO, sequestration schemes.
- Reduction of formation damage (reduction of permeability and capillary pressure
damage by reverting to a gaseous phase; no swelling induced).
- Enhance gas recovery by displacing the methane adsorbed in the shale formations
(Wang, Li et al. 2012 ).

Potential disadvantages
- Large quantities of liquid CO, would be needed.

- Long times required: CO; injection would need to occur for several years, and gas
production would only start after 2 years from the beginning of the treatment.

Costs

Costs associated with this technique are impossible to evaluate with the current status of
knowledge.

Status of technique application

The concept idea has been proposed for tight formations (Mueller, Amro et al. 2012). No
specific information relating to its application to shales could be found.

5.2 Mechanical cutting of the shale formation

Overview

A patent from 2010 (Coleman and Hester 2010) presented a method to remove mass from a
formation between two connected wellbores using a flexible cutting cable. According to this
idea, two wellbores are drilled and connected; a cutting cable is inserted into the first well
and fished out from the second; finally, the cable is repeatedly pulled back and forth. This
sawing action removes formation material between the wellbores to form an opening in the
shape of a plane. Earlier patents were filed proposing methods to remove minerals such as
coal from seams using a chain cutter that is pulled through the seam, for instance from a
tunnel drilled in a U shape (Hurd 1980; Farrar, Mayercheck et al. 1991). Other patents
presenting similar ideas can be found, for instance (Carter 2009).

42



Drawing on these ideas, an interesting project (“Novel Concepts for Unconventional Gas
Development in Shales, Tight Sands and Coalbeds”) was launched and funded by the
National Energy Technology Laboratory (NETL)® and performed by Carter Technologies
between 2008 and 2009 (Carter 2009).

The project objective was to develop an alternative method of stimulation to increase the
net production of gas from shale while reducing the amount of water required. Over a
dozen new concepts (from rotating mills to high-pressure water jets) were evaluated
including one promising method (called Slot Drill) that appears to be able to cut 100 foot
deep slots all along a 2500 foot long horizontal well. According to the project’s final report
(Carter 2009), the method appears to have a low capital cost and be sufficiently robust to
withstand the rigors of the down hole drilling environment.

Description of the technique

The Slot-Drill is an advanced cable saw method that operates like a down-hole hacksaw, and
it is hence mechanically simple. A well is drilled to depth in the target formation and a
casing cemented. The hole is then directionally drilled to curve back upward in the shape of
a “J)” within the producing formation. The drill string is retrieved back to the surface and an
abrasive cable is attached to the tip of the drill pipe. A winch on the rig holds a specific
tension on the cable as the pipe is lowered back into the hole under its own weight. Such
tension causes the cable to hug the inside radius of the curved hole. The cable is moved
back and forth, and this motion cuts a pathway upward from the hole on each downward
stroke. The cutting force at any point is a function of local cable tension and radius of
curvature so the shape of the cut may be tailored to some extent. The cut is nominally
upward along a vertical path but can also be made to turn horizontally.

An operation may last for 2 to 5 days, depending on the desired depth of cut and the
hardness of the rock. Drilling fluid is circulated through the drill pipe to flush the cuttings
back to the surface. The abraded cuttings are very small particles and circulate out easily. A
special tool is also used to allow a standard blow out preventer to seal on the cable and drill

pipe.

The system should be able to cut a 100 foot deep vertical slot upward from the horizontal
lateral in a shale formation, and the cut length could exceed 2500 feet. This system would
operate in a blind hole from a conventional drilling rig and is powered by the drilling rig. The
only special equipment required is a constant tension winch and a downhole tool that
connect the abrasive cable to the drill pipe.

Rationale
Successful development of the proposed Slot Drill concept could provide an alternative

stimulation method comparable to high-volume hydraulic fracturing but at a lower cost and
without the very high water resource requirements.

8 NETL is part of the U.S. Department of Energy (DOE) national laboratory system. NETL supports DOE'’s
mission is to advance the national, economic, and energy security of the United States.
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Fully developed Slot-Drilled wells could result in much greater total recovery from a given
lease acreage, thus increasing the total proven reserves. These slots may also reduce
production decline, reduce the effects of formation damage, and allow a larger percentage
of the in-place gas to be recovered.

According to the project results, reservoir simulations indicated that the slot alone may
increase well flow rates significantly compared to current state of the art fracturing
treatments. Unlike hydraulic fracturing, the location of a slot can be selected and precisely
placed, is much thicker, and has near unlimited conductivity (Carter 2009).

Potential advantages and disadvantages

Potential advantages
- Potentially more environmentally friendly than high-volume water fracturing:

a. Water usage much reduced or completely eliminated.
b. No chemical additives are required.
- Possibly enhanced recovery of total gas in place, accelerated rates of unconventional
gas production, and development of reserves in fields that would not otherwise be
produced.

Potential disadvantages
- None identified.

Costs

The primary costs of the method are the rig time, the winch, and the consumable abrasive
cable materials. The total cost for comparable stimulation benefit is estimated to be less
than half the cost of current fracturing technology.

Status of technique application

This is a technique specifically developed for shale formations. The technique is at the
concept stage, and the project was currently awaiting funding to perform a demonstration
in a test well in 2009 (Carter 2009).

5.3 Enhanced bacterial methanogenesis

Overview

A significant part of organic-rich shales have not undergone a sufficient burial to generate
the pressure and temperature conditions necessary for the complete transformation of the
organic matter into oil or coal. These immature source rocks may represent a huge fossil
carbon resource.

Microbiologically assisted methanization of the organic matter is a promising technologies
being considered. Methanization is known to occur in shales from field data showing the
natural accumulation of biogenic methane in several sedimentary basins (Meslé, Charlotte
Périot et al. 2012).
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Research projects have been carried out very recently, in both the Antrim shale formation in
the Michigan Basin and in the western Canadian sedimentary basin.

RPSEA conducted a seed study on Antrim Shale (Michigan) and the Forest City Basin
(Kansas) formations (Martini, Nisslein et al. 2004). The results of this project indicated that
microbial methane generation in sedimentary basins is an active process, with a high
potential for stimulation. The project’s final report concluded that the research may
contribute towards development of technologies to enhance methane production in shale
gas plays, and thus to help secure natural gas resources from the extensive occurrence of
fractured black shales and coal beds found throughout the USA (Salehi and RPSEA 2012).

Schlumberger-Doll Research funded a project (“Toward microbially-enhanced shale gas
production.”) to genetically profile the bacterial communities present in formation water of
three gas-producing Antrim shale wells. Incubation experiments were established by adding
different substrates to aliquots of these waters in an effort to stimulate the microbial
methane generation. Increases in direct methane production were obtained. (Coolen 2013;
Wuchter, Banning et al. 2013).

(Cokar, Ford et al. 2013) reported a study conducted on shales from the Abbey Field in
Western Canada, in which the reaction rate kinetics for methane production were
determined from experimental data using produced water and core samples from a shallow
shale gas reservoir. The results showed that biogenic shale gas generation accounted for
about 12% of the total gas produced. According to the authors, this is a significant
percentage of the total gas production and hence there is great potential to enhance
methanogenesis within these reservoirs.

Description of the technique

Naturally-occurring microorganisms (methanogens) are stimulated within the shale
formations to enhance the production of methane as by-product of their normal metabolic
processes.

Rationale

It is reported that shallow biogenic shale gas reservoirs generate gas by microbial activity,
implying that current production to the surface consists of ancient adsorbed gas as well as
recent biogenerated gas. Approximately 20% of all of the methane generated is generally
thought to be of microbial origin. Most shallow shale gas reservoirs are at temperatures of
less than 80 °C, and given the supply of carbon, water, and minerals, they can be thought of
as multi-kilometer-scale bioreactors. (Cokar, Ford et al. 2013)

Enhanced bacterial methanogenesis may have a large impact, especially in shallow
reservoirs. Methanogens can produce a significant amount of methane without any
stimulation. As shown in preliminary modelling by (Cokar, Ford et al. 2013), microbial
methane generation can account for 12% of the total gas production.

45



Potential advantages and disadvantages

Potential advantages
- Potential to tap into hydrocarbon resources of immature source rock (which would

otherwise be unusable).
- Potential environmental advantages: no usage of water nor chemical additives, etc.

Potential disadvantages
- None identified.

Costs
Costs are impossible to assess given the current knowledge.
Status of technique application

Enhanced bacterial methanogenesis appears to be at the concept stage for what it concerns
in-situ application. The technique has been successfully applied in laboratory. Further work
is required to determine how to stimulate the microorganisms within the reservoir to
consume more of the organic carbon and thus increase gas production rates.

5.4 Heating of the rock mass
Overview

Technologies based on heating the underground formations exist and have been used by
the oil industry for many applications, in particular to increase the recovery of oil or to
increase the thermal maturity of organic material. These processes can for instance use
steam (without fracturing) in porous rocks or electric heaters.

A very interesting discussion on the possibilities of this technology and its application to
unconventional hydrocarbon production is given in (Kalaydjian and Goffé 2012).

Description of the technique

The rock is heated, for instance by injecting steam or by other suitable methods. This
enhances the permeability of the reservoir and/or increase the thermal maturity of the
organic matter (kerogen) in the formation, as discussed in the next section.

Rationale

(Kalaydjian and Goffé 2012) identify three principal mechanisms by which the effects of
heating the rock mass could have beneficial effects:

- Mineralogical changes;
- Changes in the chemical decomposition of kerogen;
- Evolution of the carbon structure of kerogen.
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The first possible beneficial effect of heat is to induce mineralogical changes. A relevant
effect when considering rock types containing clay (such as shales) is dehydration. (Vidal
and Dubacq 2009) demonstrated that dehydration may indeed produce up to 150 liters of
water per cubic meter of clay in place. The space vacated by removing water increases the
porosity and therefore the permeability. Also, the thermal expansion of the rock can result
in beneficial changes in permeability.

The second desired effect of heating is the chemical decomposition of kerogen heavy
hydrocarbons to light hydrocarbons. The increase in temperature makes it possible to
degrade certain kerogen molecules (in the case of incomplete maturation), and to promote
the conversion of heavier hydrocarbons to lighter compounds. These techniques are
especially applicable in the case of oil shales. Fluids and gases increase local pressures and
either allow the use of existing microcracks or create new ones (Kobchenko, Panahi et al.
2011). The increase in permeability is achieved by induced microcracks in the rock.

The third effect is the possible evolution of the carbon structure of kerogen. The increased
temperature may have the effect to open up porosity of micro-scale and nano-scale carbon
structures in the kerogen.

These effects, combined, could have the effect to significantly enhancing the permeability of
the shale formations, without the need to perform any hydraulic fracturing.

Potential advantages and disadvantages

Potential advantages
- Water usage much reduced.

- No chemical additives are required.

Potential disadvantages
- None identified.

Costs

(Kalaydjian and Goffé 2012) argue that one of the main challenges of this technology (if
using electrical heating) would be its economic profitability, which in turn would be strongly
dependent on the cost of electricity consumed and the efficiency of the gas production.

Status of technique application

The technique is applied for producing oil shale. It is at the concept stage concerning
application for other unconventional hydrocarbons such as shale gas.

(Kalaydjian and Goffé 2012) present a very good discussion on the possibilities and
challenges offered by the technique.
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6 Summary and conclusions

In this paper we reviewed hydraulic fracturing and other formation stimulation
technologies, by searching the open literature, patent databases and commercial websites
(mainly in the English language).

Many promising techniques were identified. Some are already commercially available,
whilst other are currently being developed or are at the concept stage.

Table 4, below, present an overall summary of the information gathered, showing in

particular some of the potential advantages and disadvantages that each technique could
offer.
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Table 4 Summary of potential advantages and disadvantages for identified fracturing techniques
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Table 4 (cont.) Summary of potential advantages and disadvantages for identified fracturing

techniques

‘payiwul| ‘pajeulwid
steadde agesn S)1Jnq suoneuLIoj 410 pasnpaJ pchQOLQ 10} p93u aduay J_uocm jewJsayl
areys Surinyoely 1oy parjdde a1 Aq paieausd aq ued saunyoedy Suiddoud-y9s -
u99( SeY pue d[qe[leAe A[[eld.Iowwod '$1502 Jay3IH ‘o8ewep uoewJoy JO UoNINPaY -
st anbruya) ay, [eardfy ‘pIN|} 9Y3 Jo aunjesadwal mo| AJaa ayl 01 anp ‘N ‘padinbau ZN pmbry
sso[ st uadoatu pinbiy jo asn ay, pinbi| 9|puey Ajajes 03 pasinbau Juawdinba |epads 9Je SAAINPPE [ed1Wayd (ou J0) Jama4  'q
“uowrwod St wnipaw w:_ﬁﬁum.c o3 ‘pajeulwi|e
Jo (spiny pasidiaus 1830 10 sweoy Aj219|dwod 4o padnpas yonw a8esn Jalep\ e
‘sastwt ug) Juauodwiod e se uago.nIN :s98ejueApe |BIUBWUOIIAUD [B13US10d -
‘Y1pIM 24n3oely o
pa1easd 9yl ulyum uswsade|d ueddoud Jaysiy <
pue juawade|d Jueddoud pa[|0J1U0 IO "Pasn %
23e1s 3deouod ay3 e oq 9q ued Jueddoud ysaw Jajjews os ‘pinj} |enpisal m.
03 sxeadde a3esn 2g) [eontIo-1adng 9y1 jo dn-uea|d Jo119g "dn-uea|d pides Jo asnedaq m
'$1500 jJuawiealy (Y3iy Ajjennualod) Jespun =
€661 SE {O%H 40 95U8531d U1 103 JO BINEU AISOLIOY 91eIpawiw| HmoE._m S| 9UOZ 94N1JkJy B JO Uollen|eA] - W
AJ1es se zQ) pmbi| yum paje[nuns (2.,0€- ‘edIN T AjjeaidAy) suollewJoy s|eys ayi ul pagiospe
u9aq aaey (ysn) Aomuay] | ainssaid Japun paJols pue papodsuell ag Isnw Q) duewpaw a3 Buloeidsip Aq A1an0da. ses soueyus - ‘0D
. *s24n3oeJy-0J01w xa|dwod aiow wio{ -| pmbry
Ul SUO[JBULIOJ 9[BYS URIUOAI( 'S[] *A1IAIONPUOD B4N1ok .
a3 pue epeue) ul (sed y3n ‘A|[qerou paseaJsdap 2duay ‘Jsjjews sazis ueddoud pue . mmemw HoReLLo) jo co_yu:.vmm_ i
1sow) suonedijdde [euonuaauodUN JaMo| 3q AjlJeSS2I3U ISnw uolleJ3uaduod Jueddold PaABIYOE UORESANDAS 10D 4O [2A3] BWOS 2
ul pasn AJ[e10IaWod ‘paJInbal
s1 piny SuLmyoely se 27 pmbry 9JE SDAIMPPE [E2IWAYD (OU JO) JaMd{
‘pareulw|d
Aj919|dwo3 40 paonpaJ yonw adesn Jo1ep) e
:S98eJUBAPE |EIUSWIUOIIAUD [B1IUY0d -
*SJIOAJ9S3U 3|eYsS Yyum Ayljiqredwod pinjy
{(4noineyaq moy} 191194 "9°1) sandadoud |eaidojoays
‘Apnys juasaad ayy jo 191139 ‘||am ay1 jo Auanonpoud ay) paseaJdu| -
1Ied e se punoj aq p[nod uonemuns ‘paJinbau
.wmw 9[eys .10 a3esn 10a11p 51502 10431y A|[enua10g - 9JE SDAINPPE [E2IWAYD (OU JO) Jamd{ spingj paseq
ou Inq ‘suoneuwrio} (Liqeawiad ‘paleuiwi|d -uorsfnuy
MO[) [BUOTIUDAUOIUN UO Pash Aj919]dwod 40 padnpas yonw adesn Jajep\ ‘e
u9aq dARY SpINJj paseq-uois[nuy :se yans sadejuenpe |eipuajod
9ABY UBD SPIN| 9S9Y] ‘UOIS|NWS dY3 91B|NWLIOY
03 pasn sjuauodwod jo adAy ay3 uo Suipuadaqg -
uononpo.d seg J[eys .10jJ
sagejueApesip [erjualod sadejueApe [enjualod anbruyday,

uonedijdde jo snyeis

51



Table 4 (cont.) Summary of potential advantages and disadvantages for identified fracturing

techniques

“(Sqq SuLmnyoely ‘(240q|j9m Jeau ay3 ul uoiLy Ag $9ss0| aunssaad
£1q ‘eoueysur 10j) pado[aasp 22npaJ 01) Juswieasy Sulinioely-aud e se pasn aq ue) -
‘8uninioedy oiineJpAy 01 pasedwod Usym 1S02 JIaMOT -
3ureq Appua.ind aue sanbiuydal maN ‘SJUDA3 21WSIBS INPUI Ajje13ua10d pnod ‘Mmo) Hnyoely dlinelpAy o1 p ymi 1
‘papaau Juawdinba a1s-uo |ewIUIN -
Ajaane|as 11agje ‘punosdiapun pasesjas Aisus ayl - . =
‘9[qe[reaAe sI ) s||am uol1daful Jo) Ajigeswsad snosuadowoH - doxd <
9[edSs 93 U0 UONeULIOJUT pajiw]] A19A Jesi 'spin|} 3|qiredwodul woJj a8ewep uoljew.oy [ewluliy - (syueqrado m
: PETm uo oeq 3uisod Aj|ny wody ainidedy ayy Jusnald . pI[os &) =]
Ing ‘SuUOTIRULIOJ S[BYS UO pash uaaq sioyoed ajeannoe : =,
’ 03 98eddi|s seays uodn sajja.4 Sulunioedy juejjadoud ()
dARY pue d[qe[leAk A[[BIDIaWWO0D 01 P93U 9y} INOYUM PI1B|NWIIS SOUOZ PO1IJIAS - —
‘pealsu| "ainidedy Yyl Ojul paliied jou si jueddoud - Surmpey 9
aJe Surmjyoedj yue[jadoad uo ) 'saunyoedy ajdnnin- - aarsordxq 2
paseq sanbiuysa) ‘puey I9Y3o ay3 uQ PaALUI| 1BYMIUOS ‘uollew.oy ) =
S1 uolle3auad aunjoeuy ay) "'l ‘SUBWILAI] WNIPaW =
AlUo 3 A d 8urpnpoud ayl apISIN0 YIMOUS |BIILISA [BWIUIA - aa
‘popasiadns 01 [|ews Joj Ajuo Sulinioedy o1nelpAy aoejdas uey - \pa.INba1 318 SSAPPE [EAWBYD ON  —
Aa3.1e[ uvaq 2ARY 0} WSS FULINDEY ‘pajeuiwi|d Aj91s|dwod adesn Jorepy  —
aaiso[dxa uo paseq sanbruyod, :s98e1UBAPE [RIUSWUOIIAUD [BIIUSIO -
"9[qe[leAR SI 9[edS 33 Uo
uoneurLIojul pajyiwif ing ‘uondonpoad “MOJ PINjj 4O SUNOWE JUBdLIUSIS
sed a[eys o1 pardde s uaSonmu Sunywsuedy jo sjqeded aJe jeyy sainyoeuy paddoud = M
snoased yym Surinjoej onewnaud . , [V
S UBUILIEIU0D JIUBSIO sjueddoud yodsuesy 03 Ayjigeded paywil -| -43s ‘uado 01 anp sal eawuad Jaysiy Joy |ennuslod - (eN€) e c
’ : : - ‘paJinbaJ aJe saAlIppe |edIWaYd 0 - =
3[1e[0A JO [eAOWII A1) BUNENIoE) Hhdop 3e 21esado 03 Auidissod paiuin poroulns Asrordunts aBesn e el g m
jo asod.and a3 yum (€661 Vdd) paseul .M_w 19321 M & =
SuLinjoey onewnaud Ym paInjoey :s98e1UBAPE [EJUSWUOIIAUD [B1IUDIOd -
U99(] 9ARY SUOTIRULIOJ S[BYS MO[[RYS
9d1
'8'Z UOI103S 99§ "9[B[IBAE UOIIBULIOJUT 3[NI] AI1d
'8’z uon S olqe! n JUL S[NII[ AIBA pmbry
o
‘98ewep uollewlo) ON - m
y *AJIAI3ONPUOD B4NJel) PISEaIIDP qm
H[IqelA SI SSISSE 03 PUNoj 8q p[nod suay ‘spueddoud Jo asn ay1 Mojje 10U sa0q - "paJinbau a.e SIANIPPE [EJIWAYI ON  — &
uoneuriojul a3 A19/ 't anbruyoay 9H pInbrT | &
91]1 JO snje)s 9y} JeyM Ieapun si} AuawRIno0.d LM swalqold - pejeuiutle =
R e L i ‘9AIsUadxa aq pjno)y - Aj219|dwod 40 paonpau yonw adesn yalep — W
:s98ejueApe [eJUSWUOJIAUD [B1IU10d -
uononpoad ses afeys 1o
fanp [EYs 10 sagejueApesip [e1uU3lod sadejueApe [ennuUal0J anbruyoa ],

uonedrjdde jo snyejs

52



Table 4 (cont.) Summary of potential advantages and disadvantages for identified fracturing

techniques

"se3 a[eys Se Yons suoqed0IpAy
[euonuaAUODUN 1930 10j uonedidde
‘paJinbal aJe SaAllIppPe |eDIWAYD ON -
gururaouod adeys 1daouod ay3 e s1 1] sseuwt Y201
. ‘Paji3uspl sUON - ‘pajeulwi|d
asn 9y} JO JUSIXS 9} U0 a3 jo Suneay
. A9319]dwod 40 padnpaJ yonw s8esn Jalep\ -
uoneurIojur oN "a[eys [1o guronpoad
J10j parjdde st anbiuyoan ay ],
‘uawads A1ojeroqef ut pardde *219 ‘SOAINPPE [B2IWBYD JOU JaleMm
. sisauagoueylow
A[InJssa00ns usaq sey anbruysay ay, Jo 28esn ou :sa3ejuBApE |BJUSWUOIIAUS [B11U10d -
. ‘Paji3uspl suoN - [eLa1oeq
a8e3s 3daouood ayy Je aq 03 saeadde 3204 924N0S d4njewWW| souEyuy
SIsauagoue}oW [BLI9)JB(q padueyuy J0 S924N0SaJ U0QgJed04pAY 1SeA Ojul dey 0} [elaualod - P "
‘paosnpoud o
o3 90 9SIMJIY10 10U P|NOM 1eY1 SP|a1} Ul SOAIDSA =
90EIS J0 Juswdojansp pue ‘uoidnpoud Jo saled palesaladde uoreuLIO) o
1daouod ay3 3e st anbruyodal ay, . i
. 9oe|d uj sed |e10} Jo Aianodald paoueyua A|qissod - areys =]
PoLUSPI SUON - ‘paJinbaui aue ssAllppe [E2IWBYI ON  — ay3 jo Sumno o
'SUOI}eULIO] 3eYS 10j 3YSnoy3 : =
£ ‘paleulwl|a [esrueyoraN 1<)
[1eay1oads anbruyoay e st SIy L, S
A|919|dwod 10 paonpad yonw a8esn Jalep\ — 7
:sa8ejueApe [eJUSWUOIIAUD [B13U310d -
'SUOI1BWL.IO) 3eYS 3y Ul pagJospe
aueyiaw ay3 Suroe|dsip Aq Azanodaus sed aoueyuy -
"Juswieasy "a3ewep uol1ewIo) JO UOIDNPaY -
9y3 40 Sujuui8aq ay3 wouy sieah omy Jayje 1els Ajuo 'S9WIaYIs
*SUOTIRULIOJ HSW—U 10J Y1 4 luulsaq ayl 3} ) 1 J9}je Jels A . y w=_h=HUNv~.«
asodoad usaq sey eap1 1daou03 Ay, pinom uoidnpoud sed pue ‘siedA |BJ9ASS 10} JNIJ0 uoljeJisanbas ?0) yum uoipunfuod ul pasn aq pjno) -|  (druagohin)
P ’ 03 paau pjnom uoidaful ¢Q) :palinbaus sawiy Suoq - ‘paJinbau aJe saAlppe [eolWAYd ON  'q [ewLIdY L,
‘papaau aq pjnom ¢Q) pinbi| jo sanipuenb adie - ‘pajeulwi|d
Aj219|dwod 40 paonpals yonw adesn Jajep\ e
:s98ejueApE [BJUSWUOIIAUD [BIIUD1Od -
PIRY 8y ‘pPaMWI| 1BYyMaWos S| uoljesiauad
ul pa1sa) ulaq 10j Apea. se pariodal 24njoeJ) ay) "a°l ‘syuswieal] wnipaw o1 ‘paJlinbai aJe SIAIMPPE [EIIWBYD OU IO M3{  — — =
s1 (z'Z'¥) uonenuns ewse[d | [jews Joj Ajuo Sulinjoeuy olnespAy adejdas Ajuo uey - ‘pajeulwi|d Surijoeyy m ,m
-adess 1daouoo *a4n1oeJy ay3 olul palued jou jueddoud - Aj919|dwod 40 paonpad yonw adesn Jo1ep\ — JL129[ m. m
ayl e ale (z'z'y pue 1°Z'% Uonoas "940q||]oMm 3y3 wouy Aeme :s98ejueApE [EJUSWUOIIAUD [BI3UD1Od - o w7
99s) sardojouyoal paynuspl yiog Adlj1geswuad 204 aseasoul jo Ayjigeded paywi] -
uondnpo.ad sed afeys 10J
sagejueApesip [eUa0J soSejueApe [erjuajod anbruyoa],

uonedijdde jo snyels

53



7 Acknowledgements

The author would like to acknowledge the following contributions. Maximilian Kuhn
researched the literature and helped structuring this note. Marcelo Masera contributed by
reviewing earlier drafts and with several useful discussions. Arne Eriksson reviewed the final
draft and provided many useful insights. Members of the International Association of Qil
and Gas Producers (OGP) reviewed earlier drafts and provided relevant feedback and useful
comments.

8 References

Air Products. (2013). "Enhanced Unconventional Oil and Gas Production with Nitrogen
Fracturing." from http://www.airproducts.com/industries/energy/oilgas-
production/oilfield-services/product-
list/~/media/9546AD39B8FE4584B1F802F84D572D1B.pdf.

Al-Adwani, F. A, ]. Langlinais, et al. (2008). Modeling of an Underbalanced Drilling
Operation Utilizing Supercritical Carbon Dioxide. SPE/IADC Managed Pressure
Drilling and Underbalanced Operations Conference and Exhibition. Abu Dhabi,
UAE, SPE/IADC Managed Pressure Drilling and Underbalanced Operations
Conference and Exhibition.

Al-ajwad, H., H. Abass, et al. (2013). Unconventional Gas Stimulation by Creating
Synthetic Sweetspot. 2013 SPE Middle East Unconventional Gas Conference &
Exhibition. Muscat, Sultanate of Oman, Society of Petroleum Engineers.

American Oil & Gas Historical Society. (2012). "Project Gasbuggy tests Nuclear
Fracking." from http://aoghs.org/technolo roject-gasbu .

Antoci, J. C, N.]. Briggiler, et al. (2001). Crosslinked Methanol: Analysis of a Successful
Experience in Fracturing Gas Wells. SPE Latin American and Caribbean
Petroleum Engineering Conference. Buenos Aires, Argentina, Copyright 2001,
Society of Petroleum Engineers Inc.

Awal, M. R. (2013). "Environmentally Compliant Geoenergy: Advanced Geomechanics
Research." from http://www.depts.ttu.edu/pe/research/geoenergy/.

Bennion, D. B, F. B. Thomas, et al. (1996). Low Permeability Gas Reservoirs: Problems,
Opportunities and Solutions for Drilling, Completion, Stimulation and
Production. SPE Gas Technology Symposium. Calgary, Alberta, Canada, 1996
Copyright 1996, Society of Petroleum Engineers, Inc.

Bennion, D. B, F. B. Thomas, et al. (2000). Low Permeability Gas Reservoirs and
Formation Damage -Tricks and Traps. SPE/CERI Gas Technology Symposium.
Calgary, Alberta, Canada, Copyright 2000, Society of Petroleum Engineers Inc.

Brannon, H. D., D. E. Kendrick, et al. (2009). Multi-Stage Fracturing of Horizontal Wells
Using Ninety-Five Quality Foam Provides Improved Shale Gas Production. SPE
Eastern Regional Meeting. Charleston, West Virginia, USA, Society of Petroleum
Engineers.

Burgos, G. A, M. A. Buijse, et al. (2005). Acid Fracturing in Lake Maracaibo: How
Continuous Improvements Kept on Raising the Expectation Bar. SPE Annual
Technical Conference and Exhibition. Dallas, Texas, Society of Petroleum
Engineers.

BusinessWire. (2012). "Chemical Engineer Announces Details of Chimera Energy Corp’s
Revolutionary Non-Hydraulic Shale Oil Extraction ", from

54


http://www.airproducts.com/industries/energy/oilgas-production/oilfield-services/product-list/~/media/9546AD39B8FE4584B1F802F84D572D1B.pdf
http://www.airproducts.com/industries/energy/oilgas-production/oilfield-services/product-list/~/media/9546AD39B8FE4584B1F802F84D572D1B.pdf
http://www.airproducts.com/industries/energy/oilgas-production/oilfield-services/product-list/~/media/9546AD39B8FE4584B1F802F84D572D1B.pdf
http://aoghs.org/technology/project-gasbuggy/
http://www.depts.ttu.edu/pe/research/geoenergy/

http://www.businesswire.com/news/home/20120822005366/en/Chemical-
Engineer-Announces-Details-Chimera-Energy-Corp%E2%80%99s.

Canyon. (2013). "Grand Canyon™ Process." from http://www.canyontech.ca/Products-
and-Services/Service-Lines/Grand-Canyon-Process/default.aspx.

Carter, E. (2009). PATENT: Method and apparatus for increasing well productivity. USA.
W0/2010/074980.

Carter, E. E. (2009). Novel Concepts for Unconventional Gas Development of Gas
Resources in Gas Shales, Tight Sands and Coalbeds - Carter Technology.

Charlez, P., P. Lemonnier, et al. (1996). Thermally Induced Fracturing: Analysis of a
Field Case in North Sea. European Petroleum Conference. Milan, Italy, 1996
Copyright 1996, Society of Petroleum Engineers, Inc.

Chen, W. (2012). Fracturation électrique des géomatériaux - Etude de
I'endommagement et de la perméabilité, L'UNIVERSITE de PAU et des PAYS de
I’ADOUR.

Chen, W,, 0. Maurel, et al. (2012). "Experimental study on an alternative oil stimulation
technique for tight gas reservoirs based on dynamic shock waves generated by
Pulsed Arc Electrohydraulic Discharges." Journal of Petroleum Science and
Engineering 88-89(0): 67-74.

Cokar, M., B. Ford, et al. (2013). "Reactive Reservoir Simulation of Biogenic Shallow
Shale Gas Systems Enabled by Experimentally Determined Methane Generation
Rates." Energy Fuels 27(5): 2413-2421.

Coleman, J. K. and N. C. Hester (2010). PATENT: Drilling and opening reservoir using an
oriented fissure to enhance hydrocarbon flow and method of making USA. US
Patent # 7647967.

Coolen, M. (2013). "Toward microbially-enhanced shale gas production.” from
http://www.whoi.edu/page.do?pid=115657&tid=3622&cid=158790.

Derzko, W. (2008). "A Green Alternative to chemical-based hydraulic fracturing, or
fracking for shale gas drilling-Cavitation Hydrovibration." from
http://smarteconomy.typepad.com/smart economy/2009/12/a-green-
alternative-to-chemicalbased-hydraulic-fracturing-or-fracking-for-shale-gas-
drillingcavitati.html.

ecorpStim. (2013a). "Propane Stimulation." from http://www.ecorpstim.com/propane-
stimulation/.

ecorpStim. (2013b). "Non-Flammable Propane : Key facts." from
http://www.ecorpstim.com/propane-stimulation/nfp-stimulation/.

Edrisi, A. R. and S. I. Kam (2012). A New Foam Rheology Model for Shale-Gas Foam
Fracturing Applications. SPE Canadian Unconventional Resources Conference.
Calgary, Alberta, Canada, Society of Petroleum Engineers.

EPA, U. (1993). Accutech Pneumatic Fracturing Extraction™ and Hot Gas Injection,
Phase I Applications Analysis Report

EPA, U. (2004). Evaluation of Impacts to Underground Sources of Drinking Water by
Hydraulic Fracturing of Coalbed Methane Reservoirs.

EPA, U. (2011). Proceedings of the Technical Workshops for the Hydraulic Fracturing
Study: Chemical & Analytical Methods.

Expansion Energy (2013). "VRGE(TM)” Overview - Patented Non-Hydraulic Fracturing
Technology for Unconventional Oil & Gas Production.

Farrar, R. B.,, W. D. Mayercheck, et al. (1991). PATENT: Method of mining a mineral
deposit seam USA. US Patent # 5033795.

55


http://www.businesswire.com/news/home/20120822005366/en/Chemical-Engineer-Announces-Details-Chimera-Energy-Corp%E2%80%99s
http://www.businesswire.com/news/home/20120822005366/en/Chemical-Engineer-Announces-Details-Chimera-Energy-Corp%E2%80%99s
http://www.canyontech.ca/Products-and-Services/Service-Lines/Grand-Canyon-Process/default.aspx
http://www.canyontech.ca/Products-and-Services/Service-Lines/Grand-Canyon-Process/default.aspx
http://www.whoi.edu/page.do?pid=115657&tid=3622&cid=158790
http://smarteconomy.typepad.com/smart_economy/2009/12/a-green-alternative-to-chemicalbased-hydraulic-fracturing-or-fracking-for-shale-gas-drillingcavitati.html
http://smarteconomy.typepad.com/smart_economy/2009/12/a-green-alternative-to-chemicalbased-hydraulic-fracturing-or-fracking-for-shale-gas-drillingcavitati.html
http://smarteconomy.typepad.com/smart_economy/2009/12/a-green-alternative-to-chemicalbased-hydraulic-fracturing-or-fracking-for-shale-gas-drillingcavitati.html
http://www.ecorpstim.com/propane-stimulation/
http://www.ecorpstim.com/propane-stimulation/
http://www.ecorpstim.com/propane-stimulation/nfp-stimulation/

GasFrac. (2013). "A completely closed system with automated remote operations.” from
http://www.gasfrac.com/safer-energy-solutions.html.

GasGun. (2013). "Propellant Stimulations of Oil & Gas Wells." from
http://www.thegasgun.com/.

Gokdemir, O., Y. Liu, et al. (2013). New Technique: Multistage Hydra-jet Fracturing
Technology for Effective Stimulation on the First U-shape Well in Chinese Coal
Bed Methane and Case Study. 2013 Offshore Technology Conference. Houston,
TX, USA.

Gottschling, J. C. and T. N. Royce (1985). "Nitrogen Gas and Sand: A New Technique for
Stimulation of Devonian Shale." Journal of Petroleum Technology 37(5): 901-
907.

Grundmann, S. R, G. D. Rodvelt, et al. (1998). Cryogenic Nitrogen as a Hydraulic
Fracturing Fluid in the Devonian Shale. SPE Eastern Regional Meeting.
Pittsburgh, Pennsylvania, Society of Petroleum Engineers.

Gupta, A. (2006). Feasibility of supercritical carbon dioxide as a drilling fluid for deep
underbalanced drilling operations. Master of Science in Petroleum Engineering,
Louisiana State University and Agricultural and Mechanical College.

Gupta, A. P, A. Gupta, et al. (2005). Feasibility of Supercritical Carbon Dioxide as a
Drilling Fluid for Deep Underbalanced Drilling Operation. SPE Annual Technical
Conference and Exhibition. Dallas, Texas, Society of Petroleum Engineers.

Gupta, S. (2003). Field Application of Unconventional Foam Technology: Extension of
Liquid CO2 Technology. SPE Annual Technical Conference and Exhibition.
Denver, Colorado, Society of Petroleum Engineers.

Gupta, S. (2009). Unconventional Fracturing Fluids for Tight Gas Reservoirs. SPE
Hydraulic Fracturing Technology Conference. The Woodlands, Texas, Society of
Petroleum Engineers.

Gupta, S. (2010). Unconventional Fracturing Fluids : What, Where and Why.

Gupta, S. and P. S. Carman (2011). Associative Polymer System Extends the
Temperature Range of Surfactant Gel Frac Fluids. SPE International Symposium
on Qilfield Chemistry. The Woodlands, Texas, USA, Society of Petroleum
Engineers.

Gupta, S., B. T. Hlidek, et al. (2007). Fracturing Fluid for Low-Permeability Gas
Reservoirs: Emulsion of Carbon Dioxide With Aqueous Methanol Base Fluid:
Chemistry and Applications. SPE Hydraulic Fracturing Technology Conference.
College Station, Texas, U.S.A,, Society of Petroleum Engineers.

Gupta, S., R. G. Pierce, et al. (1997). Non-Aqueous Gelled Alcohol Fracturing Fluid.
International Symposium on Qilfield Chemistry. Houston, Texas, 1997 Copyright
1997, Society of Petroleum Engineers, Inc.

Haliburton (2011). Fracturing Fluid Systems.

Halliburton. (2011a). "Fracturing Fluid Systems." from
http://www.halliburton.com/public/pe/contents/Data Sheets/web/H/H05667.
pdf.

Hernandez, J. M., C. T. Fernandez, et al. (1994). Methanol as Fracture Fluid in Gas Wells.
SPE Latin America/Caribbean Petroleum Engineering Conference. Buenos Aires,
Argentina, 1994 Copyright 1994, Society of Petroleum Engineers, Inc.

Huang, B., C. Liu, et al. (2011). "Hydraulic fracturing after water pressure control
blasting for increased fracturing." International Journal of Rock Mechanics and
Mining Sciences 48(6): 976-983.

56


http://www.gasfrac.com/safer-energy-solutions.html
http://www.thegasgun.com/
http://www.halliburton.com/public/pe/contents/Data_Sheets/web/H/H05667.pdf
http://www.halliburton.com/public/pe/contents/Data_Sheets/web/H/H05667.pdf

Hurd, R. L. (1980). PATENT: Method and apparatus for deep mining using chain driven
in fixed direction USA. US Patent # 4232904

Hyne, N. ]J. (2001). Nontechnical Guide to Petroleum Geology, Exploration, Drilling and
Production (2nd Edition), Pennwell Books; 2 edition (December 15, 2001)

Ishida, T., T. Niwa, et al. (2012). AE Monitoring of Hydraulic Fracturing Laboratory
Experiment With Supercritical And Liquid State CO2, BeFo and International
Society for Rock Mechanics.

Kalaydjian, F. and B. Goffé (2012). Programme de recherche sur l'exploitation des
hydrocarbures de roches meres - Rapport ANCRE

King, G. E. (2012). Hydraulic Fracturing 101: What Every Representative,
Environmentalist, Regulator, Reporter, Investor, University Researcher,
Neighbor and Engineer Should Know About Estimating Frac Risk and Improving
Frac Performance in Unconventional Gas and Oil Wells. SPE Hydraulic Fracturing
Technology Conference. The Woodlands, Texas, USA, Society of Petroleum
Engineers.

Kishore K. Mohanty, A. G., Ming Gu (2012). "Improvement of Fracturing for Gas Shales."
Report for RPSEA (Research Partnership to Secure Energy for America).

Kobchenko, M., H. Panahi, et al. (2011). "Fracturing controlled primary migration of
hydrocarbon fluids during heating of organic-rich shales." Journal of Geophysical
Research.

Komar, C. A, A. B. Yost I], et al. (1979). Practical Aspects of Foam Fracturing in the
Devonian Shale. SPE Annual Technical Conference and Exhibition. Las Vegas,
Nevada, Not subject to copyright. This document was prepared by government
employees or with government funding that places it in the public domain.

Krzysiek, J. (2013). Personal communication.

Lemon, R. F. and H. . Patel (1972). "The Effect of Nuclear Stimulation on Formation
Permeability and Gas Recovery At Project Gasbuggy." Journal of Petroleum
Technology 24(10): 1199-1206.

Lenoir, J.-C. and C. Bataille (2013). Les techniques alternatives a la fracturation
hydraulique pour I'exploration et I'exploitation des hydrocarbures non
conventionnels.

Lestz, R. S., L. Wilson, et al. (2007). "Liquid Petroleum Gas Fracturing Fluids for
Unconventional Gas Reservoirs." Journal of Canadian Petroleum Technology
46(12).

Loyd E. East, J., W. Grieser, et al. (2004). Successful Application of Hydrajet Fracturing
on Horizontal Wells Completed in a Thick Shale Reservoir. SPE Eastern Regional
Meeting. Charleston, West Virginia, Society of Petroleum Engineers.

Martin, J. (2013). "THESIS - Etude et caractérisation d'onde de pression générée par une
décharge électrique dans I'eau: application a la fracturation électrique de
roches.".

Martin, J., T. Reess, et al. (2012a). PATENT: Electrical and Static fracturing of a reservoir.
W0/2012/123458

Martin, J., T. Reess, et al. (2012b). PATENT: Electrical Reservoir Fracturing.
W0/2012/123458

Martini, A. M., K. Niisslein, et al. (2004). "Enhancing Microbial Gas From Unconventional
Reservoirs: Geochemical And Microbiological Characterization Of Methane-Rich
Fractured Black Shales."

Mcdaniel, B. W. and ]. B. Surjaatmadja (2009). Hydrajetting Applications in Horizontal
Completions to Improve Hydraulic Fracturing Stimulations and Improve ROL.

57



SPE Eastern Regional Meeting. Charleston, West Virginia, USA, Society of
Petroleum Engineers.

McKenna, P. (2012). Fracking could be combined with carbon capture plans New
Scientist.

McKeon, M. (2011). "Horizontal Fracturing in Shale Plays." from
http://www.thepttc.org/workshops/eastern 062111 /eastern 062111 McKeon.
pdf.

MELTON, N. M. and T. S. CROSS (1968). Fracturing Oil Shale With Electricity.

Meslé, M., Charlotte Périot, et al. (2012). "Biostimulation to identify microbial
communities involved in methane generation in shallow, kerogen-rich shales."
Journal of Applied Microbiology 114(55--70).

Miller, ]. S. and R. T. Johansen (1976 ). Fracturing oil shale with explosives for in situ
recovery.

Montgomery, C. T. and M. B. Smith (2010). "Hydraulic fracturing: history of an enduring
technology."

Mueller, M., M. Amro, et al. (2012). Stimulation of Tight Gas Reservoir using coupled
Hydraulic and CO2 Cold-frac Technology. SPE Asia Pacific Oil and Gas Conference
and Exhibition. Perth, Australia, Society of Petroleum Engineers.

Neill, G. H., ]. B. Dobbs, et al. (1964). Field and Laboratory Results of Carbon Dioxide and
Nitrogen in Well Stimulation.

Nordyke, M. D. (2000). The Soviet Program for Peaceful Uses of Nuclear Explosions.

Nuttall, B. C,, C. F. Eble, et al. (2005). Analysis of Devonian black shales in Kentucky for
potential carbon dioxide sequestration and enhanced natural gas production.

OGP (2013). Personal communication. L. Gandossi.

Page, ]. C. and J. L. Miskimins (2009). "A Comparison of Hydraulic and Propellant
Fracture Propagation in a Shale Gas Reservoir." Journal of Canadian Petroleum
Technology 48(5): 26-30.

Parekh, B. and M. M. Sharma (2004). Cleanup of Water Blocks in Depleted Low-
Permeability Reservoirs. SPE Annual Technical Conference and Exhibition.
Houston, Texas, Society of Petroleum Engineers.

PetroWiki - Society of Petroleum Engineers. (2012). "Acid fracturing." from
http://petrowiki.org/Acid fracturing.

PetroWiki - Society of Petroleum Engineers. (2013). "Fracturing fluids and additives."
from http://petrowiki.org/Fracturing fluids and additives.

Plata, M. |, R. D. Castillo, et al. (2012). High Energy Gas Fracturing: A Technique of
Hydraulic Prefracturing To Reduce the Pressure Losses by Friction in the Near
Wellbore - A Colombian Field Application. SPE Latin America and Caribbean
Petroleum Engineering Conference. Mexico City, Mexico, Society of Petroleum
Engineers.

Rafiee, M., M. Y. Soliman, et al. (2012). Hydraulic Fracturing Design and Optimization: A
Modification to Zipper Frac. SPE Annual Technical Conference and Exhibition.
San Antonio, Texas, USA, Society of Petroleum Engineers.

Reess, T. (2013). Personal communication.

Reidenbach, V. G., P. C. Harris, et al. (1986). "Rheological Study of Foam Fracturing
Fluids Using Nitrogen and Carbon Dioxide." SPE Production Engineering 1(1):
31-41.

Ribeiro, L. and M. Sharma (2013). Fluid Selection for Energized Fracture Treatments.
2013 SPE Hydraulic Fracturing Technology Conference. The Woodlands, TX, USA,
Society of Petroleum Engineers.

58


http://www.thepttc.org/workshops/eastern_062111/eastern_062111_McKeon.pdf
http://www.thepttc.org/workshops/eastern_062111/eastern_062111_McKeon.pdf
http://petrowiki.org/Acid_fracturing
http://petrowiki.org/Fracturing_fluids_and_additives

Rogala, A, ]. Krzysiek, et al. (2013). "Non-Aqueous Fracturing Technologies For Shale
Gas Recovery." Physicochemical Problems of Mineral Processing 49(1):
313-322.

Rowan, T. (2009). Spurring the Devonian: Methods of Fracturing the Lower Huron in
Southern West Virginia and Eastern Kentucky. SPE Eastern Regional Meeting.
Charleston, West Virginia, USA, Society of Petroleum Engineers.

Saba, T., F. Mohsen, et al. (2012). White Paper: Methanol Use in Hydraulic Fracturing
Fluids.

Salehi, I. and RPSEA (2012). New Albany Shale Gas Project.

Schatz, J. (2012). Myths and misconceptions. L. John F. Schatz Research & Consulting.

Schmidt, R. A., N. R. Warpinski, et al. (1980). In situ evaluation of several tailored-pulse
well-shooting concepts. SPE Unconventional Gas Recovery Symposium.
Pittsburgh, Pennsylvania, 1980 Copyright 1980, Society of Petroleum Engineers.

Servo-Dynamics (1998). Dynamic Gas Pulse Loading® / STRESSFRAC®.

Servo-Dynamics. (2013). "High Energy Gas Fracturing (HEGF) technology." from
http://www.west.net/~servodyn/index.html.

Sinal, M. L. and G. Lancaster (1987). "Liquid CO2 Fracturing: Advantages And
Limitations." Journal of Canadian Petroleum Technology 26(5).

StimGun (2012). "StimGun® Assembly."

Suthersan, S. S. (1999 ). Hydraulic and Pneumatic Fracturing. Remediation Engineering:
Design Concepts. B. R. CRC Press LLC, FL.: 237-254.

Svendson, A. P, M. S. Wright, et al. (1991). "Thermally Induced Fracturing of Ula Water
Injectors." SPE Production Engineering 6(4): 384-390.

Taylor, R. S., R. S. Lestz, et al. (2006). Liquid Petroleum Gas Fracturing Fluids for
Unconventional Gas Reservoirs. Canadian International Petroleum Conference.
Calgary, Alberta, Petroleum Society of Canada.

Vandor, D. (2012). PATENT: Fracturing systems and methods utilyzing metacritical
phase natural gas. USA. US Patent # 8342246.

Vidal, O. and B. Dubacq (2009). "Thermodynamic modelling of clay dehydration,
stability and compositional evolution with temperature, pressure and H20
activity." Geochimica et Cosmochimica Acta 73(21): 6544-6564.

Wang, H,, G. Lj, etal. (2012 ). "A Feasibility Analysis on Shale Gas Exploitation with
Supercritical Carbon Dioxide." Energy Sources, Part A: Recovery, Utilization, and
Environmental Effects Volume 34(Issue 15).

Wuchter, C., E. Banning, et al. (2013). "Diversity and methanogenic capabilities of
Antrim Shale formation water microbial communities." Environmental
Microbiology(submitted).

YostII, A. B, R. L. Mazza, et al. (1993). CO2/Sand Fracturing in Devonian Shales. SPE
Eastern Regional Meeting. Pittsburgh, Pennsylvania, Not subject to
copyright. This document was prepared by government employees or with
government funding that places it in the public domain.

Yu, W. and K. Sepehrnoori (2013). "Optimization of Multiple Hydraulically Fractured
Horizontal Wells in Unconventional Gas Reservoirs." Journal of Petroleum

Engineering.

59


http://www.west.net/~servodyn/index.html

This page is intentionally left blank

60



European Commission
EUR 26347 - Joint Research Centre - Institute for Energy and Transport

Title: An overview of hydraulic fracturing and other formation stimulation technologies for shale gas
production

Author: Luca Gandossi

Luxembourg: Publications Office of the European Union

2013 - 60 pp. — 21.0 x 29.7 cm

EUR - Scientific and Technical Research series —ISSN 1831-9424 (online)

ISBN 978-92-79-34729-0 (pdf)

Doi: 10.2790/99937

Abstract

The technology of hydraulic fracturing for hydrocarbon well stimulation is not new, but only fairly recently
has become a very common and widespread technique, especially in North America, due to technological
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is given for its application to shale gas production.
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