
Report EUR 26484 EN

Igor NAI FOVINO
Ricardo NEISSE
Dimitris GENEIATAKIS
Ioannis KOUNELIS

Towards a methodology to identify over-privileged applications

20 1 4

Mobile Applications Privacy

European Commission

Joint Research Centre

Institute for the Protection and Security of the Citizen

Contact information

Igor Nai Fovino

Address: Joint Research Centre, Via Enrico Fermi 2749, TP 361, 21027 Ispra (VA), Italy

E-mail: igor.nai-fovino@jrc.ec.europa.eu

Tel.: +39 0332785809

JRC Science Hub

https://ec.europa.eu/jrc

Legal Notice

This publication is a Technical Report by the Joint Research Centre, the European Commission’s in-house

science service.

It aims to provide evidence-based scientific support to the European policy-making process. The scientific output

expressed does not imply a policy position of the European Commission. Neither the European Commission nor

any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

All images © European Union 2014

JRC87818

EUR 26484 EN

ISBN 978-92-79-35409-0

ISSN 1831-9424

doi:10.2788/66345

Luxembourg: Publications Office of the European Union, 2014

© European Union, 2014

Reproduction is authorised provided the source is acknowledged.

Abstract

Smart-phones are today used to perform a huge amount of online activities. They are used as interfaces to

access the cloud, as storage resource, as social network tools, agenda, digital wallet, digital identity repository

etc. In other words smart-phone are today the citizen’s digital companion, and, as such, they are the explicit or

implicit repository of a huge amount of personal information. The criticality of these devices is generally due to the

following considerations: 1. Being mobile by nature, they are exposed full-time to a potentially adverse

environment; 2. The need,for mobile applications, to cut the development costs to maintain the price appealing for

the mobile-application market, is often translated into a quick prototyping approach, rather than a careful cyber-

security oriented code development; 3. Being the smart-phone strongly linked to their owner, a successful

exploitation of a smart-phone can directly impact the security and privacy of its owner. One of the major source of

back-doors of mobile applications, is the bad use of privilege permissions. Developers tend to attribute to their

applications as much permission rights as possible, even if they are not indeed needed.Malicious applications can

leverage of these permissions to create covert channels allowing to get private information stored into the smart-

phone. In this report we investigate on the “Declarative permissions scheme model” on which relies the security

layer of Android, proposing an innovative technique combining together dynamic and static analysis to profile

mobile applications and identify if they are over-privileged. In the same report we introduce also a first proposal for

enforcing the end-user control on the hidden behaviours of mobile applications. This report is the first of a

series in which privacy and security aspects of smartphones will be analysed.

1 Executive Summary

Smart-phones are today used to perform a huge amount of online activities. They are
used as interfaces to access the cloud, as storage resource, as social network tools,
agenda, digital wallet, digital identity repository etc. In other words smart-phone are
today the citizen’s digital companion, and, as such, they are the explicit or implicit
repository of a huge amount of personal information. The criticality of these devices is
generally due to the following considerations:

1. Being mobile by nature, they are exposed full-time to a potentially adverse envi-
ronment

2. The need, for mobile applications, to cut the development costs to maintain the
price appealing for the mobile-application market, is often translated into a quick-
prototyping approach, rather than a careful cyber-security oriented code develop-
ment

3. Being the smart-phone strongly linked to their owner, a successful exploitation of
a smart-phone can directly impact the security and privacy of its owner

One of the major source of back-doors of mobile applications, is the bad use of priv-
ilege permissions. Developers tend to attribute to their applications as much permission
rights as possible, even if they are not indeed needed. Malicious applications can lever-
age of these permissions to create covert channels allowing to get private information
stored into the smart-phone.

In this report we investigate on the “Declarative permissions scheme model” on
which relies the security layer of Android, proposing an innovative technique combin-
ing together dynamic and static analysis to profile mobile applications and identify if
they are over-privileged. In the same report we introduce also a first proposal for en-
forcing the end-user control on the hidden behaviours of mobile applications.

This report is the first of a series in which privacy and security aspects of smart-
phones will be analysed.

2 Introduction

In this report we investigate mobile applications (apps in the following) in order to
identify potential weaknesses that lies on the exploitation of needless privileges. Mo-
bile applications are the instruments through which the user interacts with his mobile
device. They have, often, access to all sorts of personal data (e.g., pictures, private mes-
sages, bank accounts, credit cards, etc.). For that reason their security should be highly
taken into account and enforced as much as possible, to protect the end-user from pri-
vacy breaches and security threats. Although mobile applications in general leverage on
some of the native security functionalities of the underlying operating system in order
to guarantee a minimum level of security, the business model on which the development
process of mobile applications is based (aiming at minimizing development costs and
sw life cycle), implicitly influence the amount of resources invested by developers in
taking care of the security of their apps. As a result, it is not rare to see on the market
applications that can be easily mis-configured by malicious actors to obtain unautho-
rized personal information. This can be for example the case when mobile applications
ask for permissions which they do not need for their execution, permissions that, in the
following, might be exploited by malicious apps to perform unauthorised actions. The
over-permission of mobile apps, as will be showed in this report, is a quite common
practice among apps developers, but it is also a possible source of threats that can have
a direct impact on the users privacy. It is of high importance to investigate mobile appli-
cation for potential privacy and security flaws especially taking into consideration the
almost pervasive presence of mobile applications in our daily life. Scope of this report
is that of presenting the first results of a new technique we developed to profile mobile
applications, with the aim of identifying if a given mobile app is over-priviledged and
consequently prone to possible miss-configurations and attacks.

The mobile applications business model is based on a one-stop shop model on which
the app-stores (Google play store, Apple store (iOS), etc.), allow to the users to purchase
the desired application and install it directly on their phones without any additional in-
terventions. These stores before publishing any application scrutinize it to identify pos-
sible malicious activities by using particular security techniques such as the Google’s
Bouncer [1]. Though users trust these centralized stores and their security approaches, it
is almost impossible to be 100% secure of the correctness of any given application. For
instance, in [2] is presented a technique to bypass Google’s Bouncer security checks. A
similar problem was faced also by Apple’s store [3].

These threats acquire a high relevance on the light of the fact that today smartphones
can be considered mobile personal inventories, managing an enormous amount of per-
sonal information. This fact, combined with the always online nature of mobile devices
makes the smartphones an interesting target for attackers. For example, spying applica-
tions can collect user’s position or steal personal information and sell them to marketing
companies [4]. Even well-known applications may manipulate their access to personal
information as shown in various research works [5–7]. In other cases a mobile appli-
cation might be over-privileged; meaning that it requests more permission than what it
actually needs to accomplish its task. As a result, these applications might be requested
by malicious applications to act on behalf of them [8] and provide access to otherwise
private information.

Further, end-users might try to install applications from third party stores, which
do not scrutinize the functionality of the provided applications. These facts show that
even the existence of security analysis mechanisms at the store side do not guarantee
the security (e.g., lack of malicious operations) and the privacy of end-users personal
data that is handled by the provided applications.

To identify possible mis-configurations and over-privileges in mobile applications
researchers focus on different approaches such as:

– Static analysis: Either the source code or the binary of application are analyzed to
identify possible sources and sinks of data leakages (e.g., [9–11]) without executing
it.

– Dynamic monitoring: The behavior of applications is examined at runtime (e.g., [6,
12]).

– Scanning applications: Third party applications, like Permission Explorer [13], are
able to scan all the installed application and generate a user friendly report notifying
users for the usage of the requested permissions.

– Operating systems privileges enforcements: Operating systems enforce specific
mechanisms in order to eliminate personal data manipulation. For instance, An-
droid OS requests from the user to give explicit authorization access to specified
resources during installation procedure, otherwise the installation fails.

Although these approaches can either identify over-privileged applications or elimi-
nate the chances of manipulating personal data, we believe that an orthogonal approach
is required in order to identify and validate the outcomes of such techniques. Static
analysis techniques (e.g., [9–11]), usually do not take into account the runtime con-
text, making them prone to false negative identification or requiring, to be effective, the
source code access or/and modification to the underlying framework. For instance, [10]
modifies the Android framework to log the permission checks, while solutions such
as [6] do not focus on identifying over-privileged applications.

On the light of these considerations, in this report, we elaborate on identifying over-
privileges, and validating the need of declaring specific permissions in the manifest of
any given Android application, by combining static analysis and runtime information.
With such an approach, we aim at combining the advantages of exhaustive static anal-
ysis with the discrimination power of dynamic analysis, to provide to the end-user, an
useful instrument to limit and restrict the freedom degrees of mobile applications of
uncertain provenance.

We focus on the Android OS because it is among the most utilized operating sys-
tems in the market, and it is considered a main target for attackers [14]. Particularly,
we capitalize on the advantages of Dexpler [15] and Soot [16] framework to reverse
engineer and analyze any given Android application both statically and dynamically.
We record and instrument all the possible Application Programming Interfaces (APIs)
identified at the reversed engineered code in order to monitor the APIs executed at run-
time as well. Relying on the extracting information we audit the permission included in
the application’s manifest.

To the best of our knowledge, this is the first work focusing on determining over-
privileges on Android applications by linking static and runtime information. This ap-
proach complements other solutions such as [9–12], and can accurately justify whether

or not the application request to a specific resource is required. Results show that 66%
(8/12) of the examined applications were identified as over-privileged. The main con-
tributions of this work consists in the definition of a new approach allowing to iden-
tify over-privileged applications in Android OS and enabling the explicit validation of
the un-required permissions by the user. This approach has, moreover, the advantage of
being transparent with respect to the OS and the application’s source code (that is, in
fact, not needed to perform the analysis). It is worth to note that the developed prototype
is freely available1.

The rest of this report is structured as follows. In Section 3 we provide an overview
of the Android OS security model and we describe the security issues that introduced by
over-privileged applications. In Section 5 we outline our approach for identifying over-
privileged applications by combining static and dynamic analysis information, while
in Section 6 we evaluate this approach. We overview other similar works in Section 7
and we comment on the findings of our approach in Section 8. In Section 9 we illus-
trate the limitations of our approach and present some pointers to future work. Finally,
in Section 11 we draw our conclusions.

1 http://code.google.com/p/android-app-analysis-tool/

3 Preliminaries

In this section an overview of the cyber-security aspects of Android and mobile appli-
cations is provided.

3.1 An Overview of Android Security Model

The core of the Android is built on top of the Linux kernel. This enables it to provide
strong isolation for protecting users data, system resources and avoiding conflicts, for
both Java programming language and native Android applications. Figure 1 overviews
the Android OS architecture.

The Android OS system runs each application under the privileges of different
“user”, and assigns a unique user ID to each of them. This approach differs from other
operating systems where multiple applications run under the same user’s permissions.
By default, applications are not allowed to execute functions that might affect other
applications or users, and they have access to a limited set of resources. Applications
must mandatory declare in a manifest (see Listing 1.12) all the “sensitive” operations
that can take place in the course of execution; the users, during the installation, are re-
quested to endorse them, otherwise the installation fails. In case an application executes
a protected feature that has not been declared in the manifest, a security exception will
throw during execution.

<android.permission.CAMERA/>
<android.permission.WRITE_EXTERNAL_STORAGE/>
<android.permission.INTERNET/>
<android.permission.ACCESS_NETWORK_STATE />
<android.permission.READ_PHONE_STATE/>
<android.permission.READ_CONTACTS/>
<android.permission.VIBRATE/>
<android.permission.WRITE_CALENDAR/>

Listing 1.1: An example of a real Android application manifest records. The application
requests access to various resources such as Camera, Internet, Calendar, etc.

2 The proper syntax is the following: uses-permission android:name=permission-name.

Fig. 1: Android software modular architecture.

3.2 Permission Back-doors

Mobile users enjoy the advantages of mobile operating systems evolution combined
with high speed network access, which mobile operators offers, albeit the fact that new
threats are emerged. As mobile applications manage a wide range of personal informa-
tion such as unique identifiers, location, call history, text messages, emails, etc., they
generate new opportunities for profiling users’ and manipulating these data in return of
financial benefit. Not only malicious applications (malware) misuse such information,
but even legitimate ones. This is, for instance, the case of the Twitter application which
sent out users’ personal information, without notifying the users [17] beforehand. This
information can be even lost or modified if applications are allowed to execute the cor-
responding operations.

In other cases, malware might exploit legitimate applications’ configuration vulner-
abilities, and/or manipulate their permissions in order to gain access either to private
information or to other protected functionalities, provided only to the legitimate ap-
plications. This, for instance, can be achieved through inter-process communication as
demonstrated in [8], without the need to exploit a vulnerability. Alternatively, a mal-
ware might exploit a specific vulnerability that will allow the execution of an API that
otherwise was not able to be executed, as illustrated in Figure 2. Webview , for example,
is vulnerable to malicious input, as referred in [18]. In that case the malware can exe-
cute any API, if the exploited application has the appropriate permissions. A detailed
analysis of personal data manipulation in mobile applications can be found in [5–7].

It should be noted that these problems are mainly due to the fact that the An-
droid permission’s system assumes that an application can only use the functionality
for which the appropriate permissions are available.

Fig. 2: Example of exploiting vulnerabilities, by a malware, on the method C in order
to execute the method U that is “out of the scope” of the application. By the term “out
of the scope” we mean that the malware is taking the advantage of the application’s
needless privileges to execute the method U.

4 Profiling Techniques for Android Applications

The techniques that can be deployed to monitor and determine applications’ behaviour
can rely either on static or dynamic analysis depending on:

1. the application’s source code availability, and
2. the applications properties and features needed to be studied.

In this Section, we overview the dynamic analysis tools that can be used for pro-
filing different features of Android applications. Note that currently we focus only on
dynamic analysis tools, since we are interested in the information that can be extracted
from an Android application, during runtime in order to assess its security level.

Dalvik Debug Monitor Server: In case in which applications’ source code is available,
the Dalvik Debug Monitor Server (DDMS) [19] can be used in order to monitor various
metrics of the methods that we are interested in. For instance, relying on DDMS we
can extract information such as the called methods, the number of calls to other meth-
ods, the time spent by the examined method, and other related information. To extract
this data the application developer should include the startMethodTracing()
and stopMethodTracing(), to start and terminate the monitoring, in the applica-
tion’s source code. APIs

Operating System Level Monitoring: The Systrace [20] can be used to monitor other
properties of the examined application at the operating system level such as mobiles
cpu usage, memory and other information. Note that systrace also can be used to trace
specific parts of the application code by including the Trace.beginSection()
and Trace.stopSection() in the parts of the code that the developer would like
to monitor.

TaintDroid is a solution which applies on Dalvik bytecode. It requires the modification
of Android OS in order to monitor if applications manipulate private information [6].
TaintDroid achieves this goal by marking data originated from predefined sensitive
sources, such as global positioning system, and monitoring their flow during execution
at the operating system level.

Repackaging and Instrumentation: Android mobile applications target the Dalvik,
instead of pure Java, bytecode. Java based applications can be reverse-engineered using
tools such as Jad [21] and ASM [22]. Similarly, the android mobile applications can be
analyzed and modified using tools such as ApkTool [23], Androguard [24], Dexpler [15]
and Dex2Jar [25]. Note that in most cases Dalvik bytecode is not translated to the
original Java code but to an intermediate format, depending on the tools capabilities.
As soon as the analysis is completed the application is signed and can be installed and
executed on the Android phone. The general procedure for analyzing and repackaging
an Android application is illustrated in Figure 3.

In the following we provide an overview of the mentioned tools.

Fig. 3: A high level procedure for repackaging android applications.

DroidBox: The Droidbox [26] is a dynamic analysis tool that enables automatically
to monitor information such as net read, net write, cryptographic functions and other
operations. The current version of DroidBox does not support the monitor of all the
available methods provided by the Android OS. It can monitor only predefined methods
declared in a configuration file.

Dexpler: Dexpler [15] enables the transformation of Dalivk bytecode to Jimple repre-
sentation; a Soot’s [16] intermediate format. This way, existing Soot analysis tools and
libraries can be re-used, while at the same time additional tools can be built on top of
the Soot to analyze, modify and repackage Android applications.

ApkTool: Similar to the Dexpler, the ApkTool [23] analyzes, modifies and repackages
Android mobile applications. The ApkTool does not support the Jimple intermediate
representation, as Dexpler does, but converts the Dalvik bytecode to another intermedi-
ate format named Smali [27].

Dex2Jar: The Dex2Jar [25] is a repackage tool, such as Dexpler and ApkTool. The
Dex2Jar converts the Dalvik bytecode to Jasmin [28], an assembly format for Java,
in which you can introduce your code and create a new application afterwards. This
functionality is provided by the Dex2Jar through the Dex-reader,translator,ir and tools
components.

Androguard: The Androguard [24] is another tool for reverse engineering Android
applications statically. The current version of Androguard provides different features
such as checks if an application belongs to a malware database, integration with external
decompilers, and access to static analysis information (basic blocks, instructions, etc.).

5 Proposed Approach

As described in the introduction, we are interested in defining a method allowing to
effectively profile and analyse mobile applications, in search for over-priviledges. The
approach adopted is based on application repackaging to verify the real need of request-
ing and granting access to all the “sensitive” Android’s APIs3 by a target application.
This approach requires neither access to the applications’ original source code nor mod-
ification of the underlying framework.

We rely on static analysis to compute the (maximum) set of permissions that might
be used by the examined application, while we validate their proper employment relying
on dynamic analysis.

Outcomes of both static and dynamic analysis are combined and compared with the
manifest’s permission set to deduce whether the application is over-privileged or not.

5.1 Application Analysis

In this work, we rely on Dexpler [15] a Soot framework [16] based tool for analyzing,
modifying and repackaging android mobile applications as mentioned previously. Our
choice is based on the fact that Soot framework provides ready to use libraries for ana-
lyzing both statically and dynamically an Android application. In this framework, any
given android application can be combined with a proper designed analysis driver to an-
alyze and introduce new code to the initial application; the outcome is the instrumented
application.

Consider for instance the case where we are interested to record (e.g., in a file)
the calls made towards the getDeviceId API at runtime. The mobile application
is transformed to Jimple interpretation [29] through dexpler, which enables the us-
age of Soot framework [16]. The analysis driver iterates on the code to identify the
method getDeviceId in which the monitor code is injected. This task is accom-
plished by the code illustrated in Listing 1.2.

As soon as the analysis is completed the application is signed and can be installed
and executed on the Android phone. The general procedure for analyzing and repack-
aging an Android application is illustrated in Figure 3.

5.2 Identify over-privileged applications

An application is considered over-privileged if and only if there is a permission record in
the manifest without matching to any of the permissions identified in the static analysis
part. Complementary, an application is validated as non over-privileged, if and only
if the static, dynamic and manifest permission sets match. These cases are illustrated
in Figure 4, while the whole procedure to identify an over-privileged application is
illustrated in Figure 5. To determine over-privileged applications, we integrated the
Dexpler [15] and Soot framework [16] with an analysis driver that:

1. Identifies and records all the methods existing in the reversed engineered applica-
tion.

3 Sensitive APIs, as defined by Android OS, are the ones that need to be declared in the manifest.

(a) A validated non over-privileged set.

(b) An over-privileged set.

Fig. 4: Definition of validated non over-privileged and over-privileged application.

Fig. 5: Proposed run-time verification approach.The soot framework analyzes the mo-
bile application and inserts small pieces of code to monitor the executed methods (1).
Every time the application is executed all the methods are logged (2) and analyzed (3,4)
in order to determine whether the application uses all the requested permissions (5).

2. Injects small pieces of monitoring code before every API call provided by the An-
droid OS and records its name in the private storage area of the analyzed applica-
tion. This allows us to run the application without the need to modify the manifest
of the original application.

The output of the analysis generates a new android application package, the in-
strumented one, which records (a) all the possible methods that exist in the reversed
engineered application, and (b) the called methods at runtime. We call the former as
the static analysis part of our approach. Note that the reversed engineered code does
not necessarily correspond to the application’s original source code. The instrumented
application should be executed manually to reproduce common real life situations and
record the called methods. We are considering to create an automated procedure in order
to navigate through all the functionalities of the targeted Android application for future
work. When the execution is completed, we create the methods (APIs) permission map
for both the static and the dynamic analysis, and we determine:

1. The set of permissions included in the reversed engineered application (the outcome
of the static analysis), and

2. The permission set required for the examined applications execution (the outcome
of the dynamic analysis).

This is achieved by identifying the signature of the executed call in the permission
mapping database, based on the permission mapping published in [10]. Afterwards, we
compare the permissions sets identified in the previous step with those included in the
manifest to deduce whether or not the examined application is over-privileged.

We control whether the set of static analysis is a subset of the permissions declared
in the manifest or not. If so then we deduce that the application is over-privileged with
accuracy of 100%. This is because the static analysis set is the superset of the permis-
sions that the application need to be executed, and consequently the manifest set cannot
be a superset of the static analysis. If not we examine the set of permissions extracted
at the dynamic analysis (runtime information) and compare it with the manifest’s and
the static analysis permission sets. We deduce that the application is not over-privileged
with accuracy of 100% if these sets are equal, as the runtime information matches with
static analysis outcome. This means that all the methods, requesting specific permission
to be executed, were reached during runtime.

In the case that the conjunction of runtime analysis and manifest permission sets is
a superset of the conjunction of the static analysis and manifest permission sets there is
a possibility of manipulating the examined application’s permissions. However, this can
also be a dynamic analysis false identification4. Note that if the static analysis set is a
superset of the manifest we analyse only the manifest set, since all the other permissions
will not be triggered through an API as the Android OS will throw a security exception.
Combining in that way static and dynamic analysis we guarantee:

1. The need of declaring specific permission in the manifest.
2. The identification of useless permissions declared in the manifest.
3. Whether a given application isover-privileged or not.

4 In the context of this work, we refer to false positive as the case where permission identified by
our approach as used are not, in reality, used at all. The opposite is the case for false negatives.

protected void
internalTransform(Body bd,String pNm, Map op)
{
Chain units = bd.getUnits();
Iterator stmtIt = units.snapshotIterator();
while(stmtIt.hasNext())
Stmt s = (Stmt) stmtIt.next();
InvokeExpr iexpr = s.getInvokeExpr();
if(iexpr instanceof InvokeExpr)

SootMethod trgt = iexpr.getMethod();
if(trgt.getMethod().equals("getDeviceId()"))
//monitor code

}

Listing 1.2: An Example of analysing a mobile application with Soot framework for
identifying a particular method such as getDeviceId.

6 Evaluation

To demonstrate and evaluate our approach’s effectiveness we performed a first initial
campaign where we analyzed twelve Android applications belonging in different cat-
egories in order to classify them as over-privileged or not. We are planing to analyze
additional applications in a future work. For the purpose of this initial analysis, we
distinguish the examined application in the following categories based on their func-
tionalities:

1. Expenses: Manage users’ financial transactions.
2. Linguistic: Provide language tests.
3. Shopping: Manage daily shopping needs.
4. Entertainment: Applications for entertainment such as games.
5. Accessories: Support users’ in various daily tasks (e.g., notes, bookmarks, etc.).
6. Hello: A reference application developed by us, which shows a hello-world mes-

sage and writes it in the external secure digital (SD) storage.

To extract the runtime information, which includes the called methods, we exe-
cuted manually each of the analyzed applications twenty times under different test case
scenarios, while the static analysis information was generated during instrumentation.
Outcomes show that most of the examined applications are over-privileged; meaning
that they request and gain access to permissions which are not needed for their execu-
tion. Table 1 summarizes the outcomes of our analysis by identifying whether or not
the examined application is over-privileged.

Table 1: Types of applications analysed for over-privileges identification. We collect
static analysis and runtime information. In particular, we identify both the number and
the signature of the methods that exist in the reversed engineered applications, and we
provide the statistics related to the executed methods. We determine that eight out of
the twelve examined applications as over-privileged.

Type Methods Executed Methods Over-privileged
Max/Avg.

Expenses(1) 1830 661/558 Yes
Entertainment(1) 1873 32/31 No
Accessories(1) 559 147/113 Yes
Expenses(2) 3910 1172/925 Yes
Linguistic 2105 667/605 No

Shopping(1) 1848 631/596 Yes
Hello 2113 18/18 No

Shopping(2) 505 183/136 No
Shopping(3) 257 169/125 Yes
Shopping(4) 211 141/132 No

Entertainment(2) 2180 98/74 Yes
Accessories(2) 396 209/138 No

Our approach determined that eight out of twelve (66%) of the examined applica-
tions request more permissions than those needed for their execution, whereas only 4
out of 12 (34%) of the examined applications are validated as not over-privileged. The
most common permissions the over-privileged applications request are illustrated in
Table 2, while Table 3 shows the permissions requested and not used by the examined
applications, combining the results of static and runtime analysis.

As we do not have the original source code of the examined applications we cannot
have an accurate indication of the applications code covered during dynamic analysis.
This is because, Java application’s reverse engineered ”source code“ consists of thou-
sands of reachable methods, even for the single Java Hello-World application [30]. This
is also the case for the Android applications relying on Java as indicated in our results
(refer to Table 1).

Table 2: Most used permissions among over-privileged applications as identified by our
approach.

Permission Type Usage by Application
WRITE EXTERNAL STORAGE 37.5%

RECEIVE SMS 25%
READ CONTACTS 50%

SEND SMS 50%
READ PHONE STATE 50%

It should be noted that by exploiting the advantages of runtime information, on
one side, our approach does not generate false positive identification alarms that static
analysis might generate. This is due to the fact that an application in order to execute
a method that requires specific permissions has to get authorization during installation,
otherwise the execution will fail whenever this method is triggered. On the other side,
the static analysis eliminates the false negatives which the dynamic analysis might trig-
ger. Though the number of the examined applications are limited, results show that our
approach can be used not only to prove that a declared permission is indeed been used,
but also to identify over-privileged applications.

7 Related Work

In this section we mainly overview the works focus on the elimination of users’ privacy
violations for the Android and iOS operating systems as they are the most used in the
market. To eliminate the risk of personal data manipulation Android and iOS operat-
ing systems follow different approaches. On the one hand, Android OS [31] provides
strong application isolation. By default applications are not allowed to execute func-
tions that affect other applications or the user. Applications have to declare in a man-
ifest all “sensitive” operations that can be accomplished during their execution, which
the user should endorse during installation. Android does not offer any capacity to users
for dynamically enabling permissions. On the other hand, iOS [32] since version five,
did not incorporate any functionality to avoid data manipulation; iOS in fact, protects
users’ data through developer license agreement. In the latest release iOS enables users
to enhance the control of their personal data by requiring applications to get explicit
permission before accessing them.

However, not only the underlying security mechanism can be by-passed (e.g., [2,
32]), but, even worst, “benevolent” applications can manipulate personal data as demon-
strated in [6,7]. In this context, [33] introduces a methodology based on self-organized
maps for assessing Anrdoid’s permission model, while the PScout solution [34] de-
velops a tool for assessing permissions of the Android OS by statically analyzing its
source code. The security level of the Android OS is criticized in [35], while the App-
sPlayground [36] introduces a framework for automated dynamic security analysis of
Android applications.

Various researches are working to enhance the security and privacy levels in the mo-
bile platforms, relying either on dynamic or static analysis of the application or/and the
underlying framework. [6] describes an extension to the Android platform that tracks
the flow of sensitive data through third-party applications in order to identify possible
data leaks, while [37] allows users to revoke access to particular resources at run-time.
Similarly, solutions such as [38, 39] deploy a run time monitor for enabling users to
control their data through their defined policies. The work presented in [40] introduces
on [6] the notion of fine grained security policies to monitor applications’ behaviour.
Analogous research works have been accomplished for iOS [41,42]. To avoid the modi-
fications in the underlying framework (e.g., middleware, OS,etc.) [12] proposes repack-
aging of the application in which the compiled applications are analyzed and injected
with particular code at the bytecode level in order to monitor all the access of personal
data.

In [7, 43] are introduced alternative approaches based on static analysis to clas-
sify the information flows inside the application as safe or unsafe in terms of privacy.
ScanDroid [44] extracts security specifications from the manifest of the examined ap-
plication and checks through static analysis whether data flows is consistent with this
specifications, however, this solution has not been tested in real-world applications yet.
In [11] the authors develop a knowledge base of privacy related behaviours, which is
used to assess the privacy “level” of a given application.

Besides the techniques used to eliminate the privacy violations by controlling users
data, other works focus on detecting over-privileged applications [9, 10]. These works
rely on application static analysis in order to identify over-privileges for any given ap-

plication. Each of these solutions develops a permission map first and then use a static
analysis approach to identify possible data leaks, however, the permission map is pub-
lished only in [10]. In [45] the authors accomplished a thorough survey to examine the
effectiveness of the permission system in terms of supporting users to take the appro-
priate security decisions based on their needs.

8 Discussion

To the best of our knowledge this is the very first work that investigates the possibil-
ities of validating the usage/need of declaring specific permissions in the manifest of
Android applications by combining static and runtime analysis. Note that the Android
OS uses the permissions as a mechanism to protect access to ”sensitive“ APIs. This
way, if an application follows the least privilege principle [46] a potential exploitation
would have a minimum impact. However, the existence of needless permissions offer
the chance to bypass this protection mechanism.

The outcomes reveal that applications request access to permissions that are not
required for carrying out their tasks. Consequently, this can be of high risk, because
malware might discover such parts of the code in applications and manipulate it for ac-
cessing personal data, or some other functionality, without users being able to recognize
such malicious activities. Table 2 illustrates the needless permissions that applications
request. For instance, the examined over-privileged applications request access to per-
missions such as the SEND SMS and the WRITE EXTERNAL STORAGE. Malware
might exploit these permissions not only to gain access to otherwise private informa-
tion, but also to profit by sending SMS to premium rate services.

Exploiting the advantages of runtime information, on the one side, our approach
does not generate false positive identification alarms that static analysis might generate.
This is due to the fact that an application, to execute a method that requires specific
permissions, has to get authorization during installation, otherwise the execution will
fail whenever this method is triggered. On the other side, the static analysis eliminates
the false negatives, which the dynamic analysis might trigger. Nevertheless, it should
be noted that dynamic analysis is an alternative and complementary approach technique
to static analysis for determining over-privileged applications. As the results show, in
most cases the dynamic analysis’ outcome set is a superset of the static analysis. This
is because, we execute the applications manually, and thus we cannot guarantee the
coverage of all the possible paths. We validate with accuracy the need of the declared
permissions in the manifest by combining the static and runtime information.

In addition, relying on the proposed solution, the false positive alarms generated by
other static analysis approaches can be eliminated. For instance, in Stowaway [10],
a solution that relies on static analysis, authors mention that their approach gener-
ates false positives. This is due to the fact that Stowaway does not take into account
which parts of the code are executed. We determined such a case when we use Stow-
away for analyzing the Hello application. In details, Stowaway identifies the permis-
sion WRITE EXTERNAL STORAGE unnecessary, and characterizes this application
as over-privileged. However, the application needs this specific permission to execute a
write operation in the external storage. We are aware of this since we develop the Hello
application in order to use it, among the others, as a demonstrator of the proposed ap-
proach.

Stowaway, also, assumes the need of the WRITE EXTERNAL STORAGE permis-
sion if they identify an API call that returns a path to the SD card directory such as
Environment.getExternalStorageDirectory(). However, this does not
seem to be the case, since in the Hello application we use this particular API, and the
Stowaway analysis online tool considers the WRITE EXTERNAL STORAGE permis-

sion as an extra permission. We should note that we compared the outcomes of this work
only with the Stowaway solution because no other solution provides the code or an on-
line service for analyzing application’s permissions. Table 3 overviews the comparison
between the Stowaway and our approach.

Further, one might argue that permission scanning applications can determine which
permissions are required in order to execute an application. However, such applications
simply read the manifest of a given application without carrying out any type of analysis
analysis on it. Consequently, they do not provide any valuable information on how the
examined applications’ declared permissions are used.

We should note that if an application is not over-privileged does not necessary mean
that it is not malware. An application can be infected by malware either it is over-
privileged or not; it may be the case that a pure malware application does not over
use privileges. Therefore, our findings do not directly point out malware applications
but reveal (a) bad programming techniques from the developers side, and (b) potential
points of manipulation. Our goal in this phase is to focus our research only on the over-
privileges and use the findings for future activities.

Table 3: An over-privileged accuracy comparison between Stowaway [10] and our dynamic and static analysis approach.
Type Stowaway [10] Dynamic analysis permission set Static analysis permission set

Expenses(1)
READ EXTERNAL STORAGE READ EXTERNAL STORAGE READ EXTERNAL STORAGE
ACCESS COARSE LOCATION ACCESS COARSE LOCATION ACCESS COARSE LOCATION

READ PHONE STATE
Entertainment(1) — — —

Accessories(1) —
WRITE EXTERNAL STORAGE WRITE EXTERNAL STORAGE

WRITE HISTORY BOOKMARKS WRITE HISTORY BOOKMARKS

Expenses(2)

CAMERA CAMERA
READ CALENDAR READ CALENDAR
READ CONTACTS

WRITE EXTERNAL STORAGE RECEIVE BOOT COMPLETED RECEIVE BOOT COMPLETED
VIBRATE

WRITE CALENDAR WRITE CALENDAR
WRITE EXTERNAL STORAGE

Linguistic — — —
Hello-World WRITE EXTERNAL STORAGE — —
Shopping(2) — — —

Shopping(3) READ SMS
READ CONTACTS READ CONTACTS

READ SMS READ SMS
Shopping(4) — — —

Entertainment(2)
INTERNET ACCESS NETWORK STATE INTERNET

READ PHONE STATE INTERNET READ PHONE STATE
READ PHONE STATE

Accessories(2) — — —

9 Limitations and Future Improvements

Our approach main limitation lies in the fact that the dynamic analysis part might gener-
ate false negative identifications, since we cannot guarantee a complete code coverage.
This is due to the fact that, in the current evaluation, we rely on user’s interaction and
as a result some parts of the code might not be executed since particular criteria are not
met. Thus, we are considering to build an extension of our solution that will achieve as
much as possible coverage of the code surface. However, we eliminate this problem by
exploiting static analysis information.

Further, because of application repackaging not all the applications can be executed
successfully as the generated code might violate the Android OS execution environ-
ment. This is a current limitation of Dexpler [15] as it does not handle optimized Dalvik
(odex) opcodes. Even more when Dexpler infers types for ambiguous declarations the
algorithm supposes that the Dalvik bytecode is correct, which might not be the case un-
der all circumstances. Currently, we are looking these cases in order to eliminate those
problems.

10 Towards a Framework for Eliminating Privacy Violations in
Mobile Applications

In order to enforce runtime security policies in an Android application we propose the
framework described in Figure 6. In this framework an Android application is used as
input with the list of Android permissions for the authoring of security policies (Policy
Authoring). Policies specify what an application is allowed to do, what should be de-
nied, and possible modifications on the application activities. For example, a security
policy could be specified to obfuscate the user location of the phone unique identifier.
The specified security policies are used as input for the instrumentation of the appli-
cation (Security Instrumentation) to generate a new instrumented application that at
runtime will support the enforcement of the policies. The instrumentation also inserts
information flow tracking code, that initializes data identifiers and invokes an Infor-
mation Flow Monitor application when data is received by the application from the
environment of send to the outside environment.

When an instrumented application is running, all the executed actions that are ref-
erenced in the policy are redirected to the Security Enforcement Monitor application,
which checks the security policies and possible executes enforcement actions. In Figure
, one example instrumentation shows the getDeviceIdEvent being notified to the
enforcement monitor app with the answer to modify the id to the value 0.

Fig. 6: A proposed framework for security policy enforce in Android Applications

Is part of our future work to identify and design efficient instrumentation and run-
time monitoring techniques for Android applications. Furthermore, the specification of
security policies should not rely on mobile phone users, and security policy templates
to support secure mobile phone usage will be specified. In the current Android model
users are unaware of the risks and are unable to verify the requested permissions of all
installed applications.

11 Conclusions

Over-privileged applications constitutes a serious source of threat as they can be used as
back-doors to get the access to personal information managed in smart-phones. Users
have to trust the manifest declaration for any given application, on Android OS, if they
would like to use it. However, even benevolent over-privileged applications might be ex-
ploited by malicious applications to gain access to otherwise un-accessible (personal)
data. In this report, after having provided an overview of the problem and of the sci-
entific literature on the topic, we introduced a new approach that combines static and
dynamic analysis to identify over-privileged applications. This approach not only iden-
tifies accurately whether an application is over-privileged, but also provide means to
analyse the behaviour of unknown mobile applications. The application of this analysis
method during a preliminary test campaign, allowed to draw the following considera-
tions:

– the technique developed is effective in identifying over-priviledged applications
– it can be used to perform a behavioural analysis of target applications
– the bad use, by the developers, of the privileges attributes schemes in mobile appli-

cations is quite common

The last consideration is, under a cyber-security perspective, extremely relevant.
For this reason, we plan to conduct an extensive analysis campaign of general purpose
mobile applications, to assess the real magnitude of the phenomenon.

What is also important to note is that, at the moment, the end-user is almost blind
with respect to the hidden activities of the mobile applications installed on his smart-
phone. To truly secure the end-user sensitive personal information and to protect him
from cyber-threats we believe that two actions would be needed:

1. The definition of an open framework allowing to give back to the end-user the full
control on the access of every information and feature stored on his mobile phone

2. The definition of a set of best practices guiding the end-user in understanding how
to better protect his online activities

A following set of reports will be delivered to cover these two main topics

References

1. “Android and security: Google bouncer.” [Online]. Available: http://googlemobile.blogspot.
it/2012/02/android-and-security.html

2. C. Miller and J. Oberheide, “Dissecting the android bouncer.” [Online]. Available:
http://jon.oberheide.org/blog/2012/06/21/dissecting-the-android-bouncer/

3. P. Ducklin, “Apple’s app store bypassed by russian hacker, leaving develop-
ers out of pocket.” [Online]. Available: http://nakedsecurity.sophos.com/2012/07/14/
apple-app-store-bypassed-by-russian-hacker-leaving-developers-out-of-pocket/

4. “FBI warns loozfon, FinFisher mobile malware hitting android phones,”
Oct. 2012. [Online]. Available: http://www.networkworld.com/community/blog/
fbi-warns-loozfon-finfisher-mobile-malware-hitting-android-phones

5. P. Stirparo and I. Kounelis, “The mobileak project: Forensics methodology for mobile appli-
cation privacy assessment,” in Internet Technology And Secured Transactions, 2012 Interna-
tional Conferece For, 2012, pp. 297–303.

6. W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth, “Taint-
droid: an information-flow tracking system for realtime privacy monitoring on smartphones,”
in Proceedings of the 9th USENIX conference on Operating systems design and implemen-
tation, ser. OSDI’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 1–6.

7. C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks: automatically detecting po-
tential privacy leaks in android applications on a large scale,” in Proceedings of the 5th
international conference on Trust and Trustworthy Computing, ser. TRUST’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 291–307.

8. C. Orthacker, P. Teufl, S. Kraxberger, G. Lackner, M. Gissing, A. Marsalek, J. Leibetseder,
and O. Prevenhueber, “Android security permissions can we trust them?” in Security and
Privacy in Mobile Information and Communication Systems, ser. Lecture Notes of the In-
stitute for Computer Sciences, Social Informatics and Telecommunications Engineering,
R. Prasad, K. Farkas, A. Schmidt, A. Lioy, G. Russello, and F. Luccio, Eds. Springer
Berlin Heidelberg, 2012, vol. 94, pp. 40–51.

9. A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, “Automatically securing permission-
based software by reducing the attack surface: an application to android,” in Proceedings of
the 27th IEEE/ACM International Conference on Automated Software Engineering, ser. ASE
2012. New York, NY, USA: ACM, 2012, pp. 274–277.

10. A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions demystified,”
in Proceedings of the 18th ACM conference on Computer and communications security, ser.
CCS ’11. New York, NY, USA: ACM, 2011, pp. 627–638.

11. S. Rosen, Z. Qian, and Z. M. Mao, “AppProfiler: a flexible method of exposing privacy-
related behavior in android applications to end users,” in Proceedings of the third ACM con-
ference on Data and application security and privacy, ser. CODASPY ’13. New York, NY,
USA: ACM, 2013, p. 221232.

12. P. Berthome, T. Fecherolle, N. Guilloteau, and J. F. Lalande, “Repackaging android appli-
cations for auditing access to private data,” in Availability, Reliability and Security (ARES),
2012 Seventh International Conference on, 2012, pp. 388–396.

13. “Permission explorer.” [Online]. Available: https://play.google.com/store/apps/details?id=
com.carlocriniti.android.permission explorer&hl=en

14. “Kaspersky security bulletin 2012. the overall statistics for 2012.” [Online].
Available: https://www.securelist.com/en/analysis/204792255/Kaspersky Security Bulletin
2012 The overall statistics for 2012

15. A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, “Dexpler: converting android dalvik
bytecode to jimple for static analysis with soot,” in Proceedings of the ACM SIGPLAN In-

http://googlemobile.blogspot.it/2012/02/android-and-security.html
http://googlemobile.blogspot.it/2012/02/android-and-security.html
http://jon.oberheide.org/blog/2012/06/21/dissecting-the-android-bouncer/
http://nakedsecurity.sophos.com/2012/07/14/apple-app-store-bypassed-by-russian-hacker-leaving-developers-out-of-pocket/
http://nakedsecurity.sophos.com/2012/07/14/apple-app-store-bypassed-by-russian-hacker-leaving-developers-out-of-pocket/
http://www.networkworld.com/community/blog/fbi-warns-loozfon-finfisher-mobile-malware-hitting-android-phones
http://www.networkworld.com/community/blog/fbi-warns-loozfon-finfisher-mobile-malware-hitting-android-phones
https://play.google.com/store/apps/details?id=com.carlocriniti.android.permissio n_explorer&hl=en
https://play.google.com/store/apps/details?id=com.carlocriniti.android.permissio n_explorer&hl=en
https://www.securelist.com/en/analysis/204792255/Kaspersky_Security_Bulletin_2012_The_overall_statistics_for_2012
https://www.securelist.com/en/analysis/204792255/Kaspersky_Security_Bulletin_2012_The_overall_statistics_for_2012

ternational Workshop on State of the Art in Java Program analysis, ser. SOAP ’12. New
York, NY, USA: ACM, 2012, pp. 27–38.

16. R. Vallee-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan, “Soot - a java
bytecode optimization framework,” 1999.

17. “Mobile apps take data without permission.” [Online]. Available: http://bits.blogs.nytimes.
com/2012/02/15/google-and-mobile-apps-take-data-books-without-permission/

18. H. Stephan and R. Siegfried, “Javascript in android apps an attack vector,” 2013. [Online].
Available: http://www.bodden.de/2013/09/16/javascript-in-android-apps-an-attack-vector/

19. “Dalvik debug monitor server.” [Online]. Available: http://developer.android.com/tools/
debugging/ddms.html

20. “Android systrace tool.” [Online]. Available: http://developer.android.com/tools/help/
systrace.html

21. “Jad java decompiler.” [Online]. Available: http://varaneckas.com/jad/
22. “ASM - home page.” [Online]. Available: http://asm.ow2.org/
23. “A tool for reverse engineering android apk files.” [Online]. Available: https://code.google.

com/p/android-apktool/
24. “androguard - reverse engineering, malware and goodware analysis of android applications

and more (ninja !) - google project hosting.” [Online]. Available: http://code.google.com/p/
androguard/

25. “ModifyApkWithDexTool - dex2jar - modify apk with dex-tools - tools to work
with android .dex and java .class files - google project hosting.” [Online]. Available:
http://code.google.com/p/dex2jar/wiki/ModifyApkWithDexTool

26. “Droidbox, android application sandbox.” [Online]. Available: http://code.google.com/p/
droidbox/

27. “smali, an assembler/disassembler for android’s dex format.” [Online]. Available:
http://code.google.com/p/smali/

28. “Jasmin, an assembler for the java virtual machine.” [Online]. Available: http:
//jasmin.sourceforge.net/

29. R. Vallee-Rai and L. J. Hendren, “Jimple: Simplifying java bytecode for analyses and trans-
formations,” 1998.

30. K. Ali and O. Lhoták, “Application-only call graph construction,” in Proceedings
of the 26th European Conference on Object-Oriented Programming, ser. ECOOP’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 688–712. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-31057-7 30

31. I. Google, “Andoid operating system.” [Online]. Available: http://source.android.com/
32. I. Apple, “ios.” [Online]. Available: http://www.apple.com/ios/
33. D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji, “A methodology for em-

pirical analysis of permission-based security models and its application to android,” in Pro-
ceedings of the 17th ACM conference on Computer and communications security, ser. CCS
’10. New York, NY, USA: ACM, 2010, pp. 73–84.

34. K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing the android permission
specification,” in Proceedings of the 2012 ACM conference on Computer and communica-
tions security, ser. CCS ’12. New York, NY, USA: ACM, 2012, pp. 217–228.

35. A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer, “Google android: A
comprehensive security assessment,” Security Privacy, IEEE, vol. 8, no. 2, pp. 35–44, 2010.

36. V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: automatic security analysis of smart-
phone applications,” in Proceedings of the third ACM conference on Data and application
security and privacy, ser. CODASPY ’13. New York, NY, USA: ACM, 2013, pp. 209–220.

37. A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mockdroid: trading privacy for ap-
plication functionality on smartphones,” in Proceedings of the 12th Workshop on Mobile

http://bits.blogs.nytimes.com/2012/02/15/google-and-mobile-apps-take-data-books-without-permission/
http://bits.blogs.nytimes.com/2012/02/15/google-and-mobile-apps-take-data-books-without-permission/
http://www.bodden.de/2013/09/16/javascript-in-android-apps-an-attack-vector/
http://developer.android.com/tools/debugging/ddms.html
http://developer.android.com/tools/debugging/ddms.html
http://developer.android.com/tools/help/systrace.html
http://developer.android.com/tools/help/systrace.html
http://varaneckas.com/jad/
http://asm.ow2.org/
https://code.google.com/p/android-apktool/
https://code.google.com/p/android-apktool/
http://code.google.com/p/androguard/
http://code.google.com/p/androguard/
http://code.google.com/p/dex2jar/wiki/ModifyApkWithDexTool
http://code.google.com/p/droidbox/
http://code.google.com/p/droidbox/
http://code.google.com/p/smali/
http://jasmin.sourceforge.net/
http://jasmin.sourceforge.net/
http://dx.doi.org/10.1007/978-3-642-31057-7_30
http://dx.doi.org/10.1007/978-3-642-31057-7_30
http://source.android.com/
http://www.apple.com/ios/

Computing Systems and Applications, ser. HotMobile ’11. New York, NY, USA: ACM,
2011, pp. 49–54.

38. D. Schreckling, J. Kstler, and M. Schaff, “Kynoid: Real-time enforcement of fine-grained,
user-defined, and data-centric security policies for android,” Information Security Technical
Report, vol. 17, no. 3, pp. 71–80, feb 2013.

39. P. Kodeswaran, V. Nandakumar, S. Kapoor, P. Kamaraju, A. Joshi, and S. Mukherjea, “Secur-
ing enterprise data on smartphones using run time information flow control,” in Proceedings
of the 2012 IEEE 13th International Conference on Mobile Data Management (mdm 2012),
ser. MDM ’12. Washington, DC, USA: IEEE Computer Society, 2012, p. 300305.

40. D. Feth and A. Pretschner, “Flexible data-driven security for android,” in Proceedings of the
2012 IEEE Sixth International Conference on Software Security and Reliability, ser. SERE
’12. Washington, DC, USA: IEEE Computer Society, 2012, pp. 41–50.

41. T. Werthmann, R. Hund, L. Davi, A.-R. Sadeghi, and T. Holz, “Psios: bring your own pri-
vacy & security to ios devices,” in Proceedings of the 8th ACM SIGSAC symposium on
Information, computer and communications security, ser. ASIA CCS ’13. New York, NY,
USA: ACM, 2013, pp. 13–24.

42. M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS: Detecting Privacy Leaks in iOS Appli-
cations,” in Proceedings of the Network and Distributed System Security Symposium (NDSS),
San Diego, CA, February 2011.

43. X. Xiao, N. Tillmann, M. Fahndrich, J. D. Halleux, and M. Moskal, “User-aware privacy
control via extended static-information-flow analysis,” 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011), vol. 0, pp. 80–89, 2012.

44. A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “Scandroid: Automated security certification of
android applications,” Tech. Rep., 2009.

45. A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android permissions: user
attention, comprehension, and behavior,” in Proceedings of the Eighth Symposium on Usable
Privacy and Security, ser. SOUPS ’12. New York, NY, USA: ACM, 2012, pp. 3:1–3:14.

46. M. Bishop, Computer Security: Art and Science, 1st ed. Addison-Wesley Professional, dec
2002.

Europe Direct is a service to help you find answers to your questions about the European Union

Freephone number (*): 00 800 6 7 8 9 10 11

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet.

It can be accessed through the Europa server http://europa.eu.

How to obtain EU publications

Our publications are available from EU Bookshop (http://bookshop.europa.eu),

where you can place an order with the sales agent of your choice.

The Publications Office has a worldwide network of sales agents.

You can obtain their contact details by sending a fax to (352) 29 29-42758.

European Commission

EUR 26484 EN – Joint Research Centre – Institute for the Protection and Security of the Citizen

Title: Mobile Applications Privacy

Authors: Igor NAI FOVINO, Ricardo NEISSE, Dimitris GENEIATAKIS, Ioannis KOUNELIS

Luxembourg: Publications Office of the European Union

2014 – 31 pp. – 21.0 x 29.7 cm

EUR – Scientific and Technical Research series – ISSN 1831-9424

ISBN 978-92-79-35409-0

doi:10.2788/66345

ISBN: 978-92-79-35409-0

doi:10.2788/66345

JRC Mission

As the Commission’s
in-house science service,
the Joint Research Centre’s
mission is to provide EU
policies with independent,
evidence-based scientific
and technical support
throughout the whole
policy cycle.

Working in close
cooperation with policy
Directorates-General,
the JRC addresses key
societal challenges while
stimulating innovation
through developing
new methods, tools
and standards, and sharing
its know-how with
the Member States,
the scientific community
and international partners.

Serving society
Stimulating innovation
Supporting legislation

LB
-N

A
-26484

-E
N

-N

	

