Title: Global inverse modeling of CH4 sources and sinks: An overview of methods
Authors: HOUWELING SanderBERGAMASCHI PeterCHEVALLIER FredericHEIMANN MartinKAMINSKI ThomasKROL MaartenMICHALAK Anna M.PATRA Prabir
Citation: ATMOSPHERIC CHEMISTRY AND PHYSICS vol. 17 p. 235–256
Publisher: COPERNICUS GESELLSCHAFT MBH
Publication Year: 2017
JRC N°: JRC102487
ISSN: 1680-7316
URI: http://www.atmos-chem-phys.net/17/235/2017/
http://publications.jrc.ec.europa.eu/repository/handle/JRC102487
DOI: 10.5194/acp-17-235-2017
Type: Articles in periodicals and books
Abstract: The aim of this paper is to present an overview of inverse modeling methods that have been developed over the years for estimating the global sources and sinks of CH4. It provides insight into how techniques and estimates have evolved over time and what the remaining shortcomings are. As such, it serves a didactical purpose of introducing apprentices to the field, but it also takes stock of developments so far and reflects on promising new directions. The main focus is on methodological aspects that are particularly relevant for CH4, such as its atmospheric oxidation, the use of methane isotopologues, and specific challenges in atmospheric transport modeling of CH4. The use of satellite retrievals receives special attention as it is an active field of methodological development, with special requirements on the sampling of the model and the treatment of data uncertainty. Regional scale flux estimation and attribution is still a grand challenge, which calls for new methods capable of combining information from multiple data streams of different measured parameters. A process model representation of sources and sinks in atmospheric transport inversion schemes allows the integrated use of such data. These new developments are needed not only to improve our understanding of the main processes driving the observed global trend but also to support international efforts to reduce greenhouse gas emissions.
JRC Directorate:Energy, Transport and Climate

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.