Title: Physical and mechanical characterization of irradiated uranium dioxide with a broad burnup range and different dopants using acoustic microscopy
Authors: MARCHETTI MARALAUX DIDIERFONGARO LORENZOWISS THIERRYVAN UFFELEN PAULDESPAUX GILLESRONDINELLA VINCENZO
Citation: JOURNAL OF NUCLEAR MATERIALS vol. 494 p. 322-329
Publisher: ELSEVIER SCIENCE BV
Publication Year: 2017
JRC N°: JRC106099
ISSN: 0022-3115
URI: http://publications.jrc.ec.europa.eu/repository/handle/JRC106099
DOI: 10.1016/j.jnucmat.2017.07.041
Type: Articles in periodicals and books
Abstract: Scanning acoustic microscopy is a non-destructive technique that allows determining the local material elastic properties by measuring the velocity of acoustic waves propagating in matter. High frequency acoustic waves are generated by a piezoelectric transducer, focused and then detected by the same transducer after having interacted with the sample. This technique has been employed in the past to assess different types of irradiated nuclear fuel and unirradiated chemical analogues of UO2 and it has enabled to relate the Rayleigh wave velocity of propagation with the Young's modulus and the density of the material. In the present study, thanks to new measurements on irradiated fuel and to analysis of data from the open literature, the variation of the density with burnup is determined up to ~ 100 GWd·t−1M. The porosity is then determined taking account of the irradiated fuel matrix swelling. Finally, an expression is proposed describing Young's modulus as a function of burnup, that can be used in fuel performance calculation.
JRC Directorate:Nuclear Safety and Security

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.