Title: Assessment of Satellite Ocean Color Products at a Coastal Site
Authors: MELIN FREDERICZIBORDI GIUSEPPEBERTHON JEAN-FRANCOIS
Citation: REMOTE SENSING OF ENVIRONMENT vol. 110 p. 192-215
Publisher: Elsevier
Publication Year: 2007
JRC N°: JRC36761
URI: http://publications.jrc.ec.europa.eu/repository/handle/JRC36761
Type: Articles in Journals
Abstract: A comprehensive set of bio-optical measurements collected at the Acqua Alta Oceanographic Tower site in the northern Adriatic Sea is used to assess satellite derived optical properties and concentrations of optically significant constituents. These include normalized water leaving radiance spectra L_WN, absorption spectra due to phytoplankton, non-pigmented particles and chromophoric dissolved organic matter, back-scattering spectra, concentrations of chlorophyll a Chla and total suspended matter TSM, and diffuse attenuation coefficients K_d, obtained with a diverse set of algorithms. A total of 81 and 21 match-ups are found for SeaWiFS and MODIS L_WN, respectively. For both sensor products, the match-ups show mean absolute percentage differences of approximately 30% at 412 nm, 20% at 443 nm, and 14% from 490 to 555 nm. Some dependence of these differences has been found with respect to the aerosol optical thickness and the single scattering albedo associated with the in-water constituents. However, the performance of the atmospheric correction scheme appears relatively robust with respect to angular and environmental conditions. The different Chla products generally show quite large uncertainties whereas a TSM product shows encouraging results. Three algorithms produce K_d(490) with a RMS uncertainty of 0.13 for log-transformed data. The comparison between in situ data and satellite derived absorption values yields varying levels of uncertainties for the three bio-optical algorithms considered here and for the different wavelengths. Preliminary improvements could be reached by reducing biases affecting the total absorption coefficient at various wavelengths. Another general result is that the bio-optical models are able to represent a larger part of the observed variability for phytoplankton absorption than for the absorption by dissolved and non pigmented particulate matter. The assumed spectral shape of the latter absorption term appears logically as a strong determinant of the partition of the total absorption. The three sets of satellite derived back-scattering spectra compare favorably with in situ optical measurements, with mean RMS differences between 0.12 and 0.18. Importantly, the uncertainties obtained here for satellite match-ups of absorption coefficients are comparable to published estimates of the inherent uncertainties associated with the bio-optical algorithms.
JRC Institute:Institute for Environment and Sustainability

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.