Title: Detection and Discrimination between Oil Spills and Look-Alike Phenomena through Neural Networks
Authors: TOPOUZELIS KONSTANTINOSKARATHANASSI VassiliaPAVLAKIS PetrosROKOS Demetrius
Citation: ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING vol. 62 p. 264-270
Publisher: ELSEVIER SCIENCE BV
Publication Year: 2007
JRC N°: JRC40318
ISSN: 0924-2716
URI: http://publications.jrc.ec.europa.eu/repository/handle/JRC40318
DOI: 10.1016/j.isprsjprs.2007.05.003
Type: Articles in Journals
Abstract: Synthetic Aperture Radar (SAR) images are extensively used for dark formation detection in the marine environment, as their recording is independent of clouds and weather. Dark formations can be caused by man made actions (e.g. oil spill discharging) or natural ocean phenomena (e.g. natural slicks, wind front areas). Radar backscatter values for oil spills are very similar to backscatter values for very calm sea areas and other ocean phenomena because they damp the capillary and short gravity sea waves. The ability of neural networks to detect dark formations in high resolution SAR images and to discriminate oil spills from lookalike phenomena simultaneously was examined. Two different neural networks are used; one to detect dark formations and the second one to perform a classification to oil spills or look-alikes. The proposed method is very promising in detecting dark formations and discriminating oil spills from look-alikes as it detects with an overall accuracy of 94% the dark formations and discriminate correctly 89% of examined cases.
JRC Institute:Institute for the Protection and Security of the Citizen

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.