Title: A Multi-Model Assessment of Pollution Transport to the Arctic
Authors: SHINDELL D. T.MIAN ChinDENTENER FRANCISCUSDOHERTY R. M.FALUVEGI G.FIORE A. M.HESS P.KOCH D. M.MACKENZIE I. A.SANDERSON M. G.SCHULTZ M.SCHULZ M.STEVENSON D. S.TEICH H.TEXTOR C.WILD O.BERGMANN D. J.BEY I.BIAN H.CUVELIER CornelisDUNCAN B. N.FOLBERTH G.HOROWITZ L. W.JONSON J.KAMINSKI J. W.MARMER ElinaPARK R.PRINGLE K. J.SCHROEDER S.SZOPA S.TAKEMURA T.ZENG G.KEATING T. J.ZUBER A.
Citation: ATMOSPHERIC CHEMISTRY AND PHYSICS vol. 8 p. 5353-5372
Publisher: EUROPEAN GEOSCIENCES UNION
Publication Year: 2008
JRC Publication N°: JRC45472
ISSN: 1680-7316
URI: www.atmos-chem-phys.net/8/5353/2008/
http://publications.jrc.ec.europa.eu/repository/handle/JRC45472
Type: Articles in Journals
Abstract: We examine the response of Arctic gas and aerosol concentrations to perturbations in pollutant emissions from Europe, East and South Asia, and North America using results from a coordinated model intercomparison. These sensitivities to regional emissions (mixing ratio change per unit emission) vary widely across models and species. Intermodel differences are systematic, however, so that the relative importance of different regions is robust. North America contributes the most to Arctic ozone pollution. For aerosols and CO, European emissions dominate at the Arctic surface but Asian emissions become progressively more important with altitude, and are dominant in the upper troposphere. Sensitivities show strong seasonality: surface sensitivities typically maximize during boreal winter for European and during spring for East Asian and North American emissions. Mid-tropospheric sensitivities, however, nearly always maximize during spring or summer for all regions. Deposition of black carbon (BC) onto Greenland is most sensitive to North American emissions. North America and Europe each contribute 40% of total BC deposition to Greenland, with 20% from East Asia. Elsewhere in the Arctic, both sensitivity and total BC deposition are dominated by European emissions. Model diversity for aerosols is especially large, resulting primarily from differences in aerosol physics and removal. Comparison of aerosols with observations indicates problems in either the models or interpretation of the measurements. For gas phase pollutants such as CO and O3, which are relatively well-simulated, the processes contributing most to uncertainties depend on the source region. Uncertainties in the Arctic surface CO response to emissions perturbations are dominated by emissions for East Asian sources, while uncertainties in transport, emissions, and oxidation are comparable for European and North American sources. At higher levels, model-to-model variations in transport and oxidation are most important. Differences in photochemistry appear to play the largest role in the intermodel variations in Arctic ozone sensitivity.
JRC Institute:Institute for Environment and Sustainability

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.