Title: Pressure Effect on the 2NaH+MgB2 Hydrogen Absorption Reaction
Authors: PISTIDDA ClaudioGARRONI SebastianoBONATTO MINELLA ChristianDOLCI FRANCESCOJENSEN TorbenNOLIS PauBÖSENBERG UlrikeCERENIUS YngveLOHSTROH WiebkeFICHTNER MaximilanBARÓ Maria DoloresBORMANN RüdigerDORNHEIM Martin
Citation: JOURNAL OF PHYSICAL CHEMISTRY C vol. 114 no. 49 p. 21816–21823
Publisher: AMER CHEMICAL SOC
Publication Year: 2010
JRC Publication N°: JRC55958
ISSN: 1932-7447
URI: http://pubs.acs.org/doi/abs/10.1021/jp107363q
http://publications.jrc.ec.europa.eu/repository/handle/JRC55958
DOI: 10.1021/jp107363q
Type: Articles in Journals
Abstract: The hydrogen absorption mechanism of the 2NaH + MgB2 system has been investigated in detail. Depending on the applied hydrogen pressure, different intermediate phases are observed. In the case of absorption measurements performed under 50 bar of hydrogen pressure, NaBH4 is found not to be formed directly. Instead, first an unknown phase is formed, followed upon further heating by the formation of NaMgH3 and a NaH-NaBH4 molten salt mixture; only at the end after heating to 380 °C do the reflections of the crystalline NaBH4 appear. In contrast, measurements performed at lower hydrogen pressure (5 bar of H2), but under the same temperature conditions, demonstrate that the synthesis of NaBH4 is possible without occurrence of the unknown phase and of NaMgH3. This indicates that the reaction path can be tuned by the applied hydrogen pressure. The formation of a NaH-NaBH4 molten salt mixture is observed also for the measurement performed under 5 bar of hydrogen pressure with the formation of free Mg. However, under this pressure condition the formation of crystalline NaBH4 is observed only during cooling at 367 °C. For none of the applied experimental conditions has it been possible to achieve the theoretical gravimetric hydrogen capacity of 7.8 wt %.
JRC Institute:Institute for Energy and Transport

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.