Title: Dislocation Dynamics Modelling of the Ductile-Brittle Transition
Authors: HENNECKE ThomasHAEHNER Peter
Citation: MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING vol. 3 no. 1 p. 012005 (1-7)
Publisher: IOP PUBLISHING LTD
Publication Year: 2009
JRC N°: JRC56049
ISSN: 0965-0393
URI: http://iopscience.iop.org/1757-899X/3/1/012005/pdf?ejredirect=.iopscience
http://publications.jrc.ec.europa.eu/repository/handle/JRC56049
DOI: 10.1088/1757-899X/3/1/012005
Type: Articles in Journals
Abstract: Many materials like silicon, tungsten or ferritic steels show a transition between high temperature ductile fracture with stable crack grow and high deformation energy absorption and low temperature brittle fracture in an unstable and low deformation mode, the ductilebrittle- transition. Especially in steels, the temperature transition is accompanied by a strong increase of the measured fracture toughness over a certain temperature range and strong scatter in the toughness data in this transition regime. The change in fracture modes is affected by dynamic interactions between dislocations and the inhomogeneous stress fields of notches and small cracks. In the present work a dislocation dynamics model for the ductile-brittle-transition is proposed, which takes those interactions into account. The model can explain an increase with temperature of apparent toughness in the quasi-brittle regime and different levels of scatter in the different temperature regimes. Furthermore it can predict changing failure sites in materials with heterogeneous microstructure. Based on the model, the effects of crack tip blunting, stress state, external strain rate and irradiation-induced changes in the plastic flow properties can be discussed.
JRC Institute:Institute for Energy and Transport

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.