Title: A Printed Nanoliter-Scale Bacterial Sensor Array
Authors: MELAMED S.CERIOTTI LauraWEIGEL W.ROSSI FrancoisCOLPO PascalBELKIN S.
Citation: LAB ON A CHIP vol. 11 no. 1 p. 139-146
Publisher: ROYAL SOC CHEMISTRY
Publication Year: 2011
JRC N°: JRC59431
ISSN: 1473-0197
URI: http://publications.jrc.ec.europa.eu/repository/handle/JRC59431
DOI: 10.1039/c0lc00243g
Type: Articles in Journals
Abstract: The last decade has witnessed a significant increase in interest in whole-cell biosensors for diverse applications, as well as a rapid and continuous expansion of array technologies. The combination of these two disciplines has yielded the notion of whole-cell array biosensors. We present a potential manifestation of this idea by describing the printing of a whole-cell bacterial bioreporters array. Exploiting natural bacterial tendency to adhere to positively charged a-biotic surfaces, we describe immobilization and patterning of bacterial ¿spots¿ in the nanoliter volume range by a non-contact robotic arrayer. We show that the printed Escherichia coli-based sensor bacteria are immobilized on the surface, and retain their viability and biosensing activity for at least 2 months when kept at 4 oC. Immobilization efficiency was improved by manipulating the bacterial genetics (overproducing curli protein), the growth and printing media (osmotic stress and osmoprotectants) and by a chemical modification of the inanimate surface (self-assembled layers of 3-aminopropyltrimethoxysilane). We suggest that the methodology presented herein may be applicable to the manufacturing of whole-cell sensor arrays for diverse high throughput applications.
JRC Institute:Institute for Health and Consumer Protection

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.