Title: Land cover detection with unsupervised clustering and hierarchical partitioning
Authors: POGGIO LauraSOILLE Pierre
Publisher: Springer
Publication Year: 2010
JRC N°: JRC61756
ISBN: 978-3-642-10744-3
ISSN: 1431-8814
URI: http://publications.jrc.ec.europa.eu/repository/handle/JRC61756
DOI: 10.1007/978-3-642-10745-0_49
Type: Articles in books
Abstract: An image segmentation technique relying on spatial clustering related to the single linkage approach has been put forward recently. This technique leads to a unique partition of the image domains into maximal segments satisfying a series of constraints related to local (alpha) and global (omega) intensity variation thresholds. The influence of such segmentation on clustering separability was assessed in this study, as well as the threshold values for segmentation maximising the cluster separability. The CLARA clustering method was used and the separability among clusters was calculated as the total separation between clusters. The clustering was applied to: (i) raw data; (ii) segmented data with varying alpha and omega parameters; and (iii) masked segmented data where the transition segments were excluded. The results show that the segmentation generally increases the separability of the clusters. The threshold parameters have an influence on the separability of clusters and maximising points could be identified while the transition segments were not completely included in one single cluster. The constrained connectivity paradigm could benefit land cover types/changes detection in the context of unsupervised object-oriented classification.
JRC Institute:Institute for the Protection and Security of the Citizen

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.