Title: Benefits and cost implications from integrating small flexible nuclear reactors with off-shore wind farms in a virtual power plant
Citation: ENERGY POLICY vol. 46 no. 558–573 p. 15
Publication Year: 2012
JRC N°: JRC66248
ISSN: 0301-4215
URI: http://www.sciencedirect.com/science/article/pii/S0301421512003424
DOI: http://dx.doi.org/10.1016/j.enpol.2012.04.037
Type: Articles in periodicals and books
Abstract: Nuclear power currently supports the goals of the European Union low-carbon society by being a dependable source of energy, while emitting no CO2. In the future, more flexible nuclear systems could enable wind to achieve a 50% share of the renewable contribution to the energy mix. Small and medium-sized reactors (SMRs) could provide firming power generation to back-up the supply from renewable resources and follow-load. This study involves the hypothetical combination of an off-shore wind farm and a SMR, operated together as a virtual power plant (VPP). Results using wind data from the North Sea indicate that the combination results in 80% less wind power variation to the grid, effectively creating a virtual baseload power plant. This gain comes at the loss of 30% SMR capacity utilization. The research identified that the reduction of 1000 MW off-shore wind farm variability was best achieved with 700 MW SMRs using 100 MW modules. In demand-following mode the VPP could maneuver output to improve synchronization with demand by 60–70% over a wind-only system. Power variability was indifferent to the SMR module size. The VPP could not reduce 100% of the wind variation, as additional balancing measures (e.g., smart grid, storage, and hybrid-nuclear systems) are still needed
JRC Institute:Energy, Transport and Climate

Files in This Item:
There are no files associated with this item.

Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.