Title: Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results
Authors: SCHNEISING O.BERGAMASCHI PeterBOVENSMANN HeinrichBUCHWITZ MichaelBURROWS JohnDEUTSCHER N. M.GRIFFITH D. W. T.HEYMANN J.MACATANGAY R.MESSERSCHMIDT J.NOTHOLT JustusREUTER M.SUSSMANN R.TOON G.c.VELAZCO V.WARNEKE ThorstenWENNBERG P. O.WUNCH D.
Citation: ATMOSPHERIC CHEMISTRY AND PHYSICS vol. 12 p. 1527-1540
Publisher: COPERNICUS GESELLSCHAFT MBH
Publication Year: 2012
JRC Publication N°: JRC67263
ISSN: 1680-7316
URI: www.atmos-chem-phys.net/12/1527/2012/
http://publications.jrc.ec.europa.eu/repository/handle/JRC67263
DOI: 10.5194/acp-12-1527-2012
Type: Articles in Journals
Abstract: SCIAMACHY onboard ENVISAT (launched in 2002) enables the retrieval of global long-term column-averaged dry air mole fractions of the two most important anthropogenic greenhouse gases carbon dioxide and methane (denoted XCO2 and XCH4). In order to assess the quality of the greenhouse gas data obtained with the recently introduced v2 of the scientific retrieval algorithm WFM-DOAS, we present validations with ground-based Fourier Transform Spectrometer (FTS) measurements and comparisons with model results at eight Total Carbon Column Observing Network (TCCON) sites providing realistic error estimates of the satellite data. Such validation is a prerequisite to assess the suitability of data sets for their use in inverse modelling. It is shown that there are generally no significant differences between the SCIAMACHY and CarbonTracker carbon dioxide annual increases (2:000:16 ppm/yr compared to 1:940:03 ppm/yr on global average). The XCO2 seasonal cycle amplitudes derived from SCIAMACHY are typically larger than those from TCCON which are in turn larger than those from CarbonTracker. The absolute values of the northern hemispheric TCCON seasonal cycle amplitudes are closer to SCIAMACHY than to CarbonTracker and the corresponding differences are not significant when compared with SCIAMACHY, whereas they can be significant when compared with CarbonTracker. At Darwin we find discrepancies of the seasonal cycle derived from SCIAMACHY compared to the other data sets which can probably be ascribed to occurrences of undetected thin clouds. Based on the comparison with the reference data, we conclude that the carbon dioxide data set can be characterised by a regional relative precision of about 2:2 ppm and a relative accuracy of 1:1-1:2 ppm for monthly average composites within a radius of 500 km. For methane, prior to November 2005, the regional relative precision amounts to 12 ppb and the relative accuracy is about 3 ppb with respect to model simulations for monthly composite averages within the same radius. The loss of some spectral detector pixels results in a degradation of performance thereafter in the spectral range currently used for the methane column retrieval. This leads to larger scatter and less methane retrieved in the tropics for the subsequent time period degrading the relative accuracy. As a result, the overall relative precision is estimated to be 17 ppb and the relative accuracy is in the range of about 10-20 ppb for monthly averages within a radius of 500 km. The derived estimates show that the SCIAMACHY XCH4 data set before November 2005 is suitable for regional source/sink determination via inverse modelling worldwide. In addition, the XCO2 monthly data potentially provide valuable information in continental regions, where there is sparse sampling by surface flask measurements.
JRC Institute:Institute for Environment and Sustainability

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.