Title: A hybrid method combining SOM-based clustering and object-based analysis for identifying land in good agricultural condition
Authors: TASDEMIR KADIMMILENOV PavelTAPSALL Brooke
Citation: COMPUTERS AND ELECTRONICS IN AGRICULTURE vol. 83 p. 92-101
Publisher: ELSEVIER SCI LTD
Publication Year: 2012
JRC Publication N°: JRC68648
ISSN: 0168-1699
URI: http://www.sciencedirect.com/science/article/pii/S0168169912000300
http://publications.jrc.ec.europa.eu/repository/handle/JRC68648
DOI: 10.1016/j.compag.2012.01.017
Type: Articles in Journals
Abstract: Remotely sensed imagery is currently used as an efficient tool for agricultural management and monitoring. In addition, the use of remotely sensed imagery in Europe has been extended towards determination of the areas potentially eligible for the farmer subsidies under the Common Agricultural Policy (CAP), through interactive or automatic land cover identification. For accurate quantification and fast identification of agricultural land cover areas from the imagery, a hybrid method, which combines automated clustering of self-organizing maps with object based image analysis, and called SOM+OBIA, is proposed. Performance analysis on three test zones (using multi-temporal Rapideye imagery) indicates that for the basic land cover categories (forest, water, vegetated areas, bare areas and sealed surfaces), unsupervised classification with the proposed SOM+OBIA method achieves an identification accuracy comparable to the accuracy of the traditional interactive object oriented analysis, with considerably less user interaction.
JRC Institute:Institute for Environment and Sustainability

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.