Title: An Efficient Parallel Algorithms for Multi-Scale Analysis of Connected Components in Gigapixel Images
Authors: WILKINSON MICHAELPESARESI MARTINOOUZOUNIS GEORGIOS K.
Citation: ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION vol. 5 no. 3 p. 22
Publisher: MDPI AG
Publication Year: 2016
JRC N°: JRC99378
ISSN: 2220-9964
URI: http://www.mdpi.com/2220-9964/5/3/22
http://publications.jrc.ec.europa.eu/repository/handle/JRC99378
DOI: 10.3390/ijgi5030022
Type: Articles in periodicals and books
Abstract: Differential Morphological Profiles (DMPs) and their generalized Differential Attribute Profiles (DAPs) are spatial signatures used in the classification of earth observation data. The Characteristic-Salience-Leveling or CSL is a model allowing to compress and store the multi-scale information contained in the DMP and DAP into raster data layers, used for further analytic purposes. Computing DMPs or DAPs is often constrained by the size of the input data and scene complexity. Addressing very high resolution remote sensing gigascale images, this paper presents a new concurrent algorithm based on the Max-Tree structure that allows the efficient computation of CSL. The algorithm extends the ``one-pass'' method for computation of DAPs, and delivers an attribute zone segmentation of the underlying trees. The DAP vector field and the set of multi-scale characteristics are computed separately and in a similar fashion to concurrent attribute filters. Experiments on test images of 3.48 to 3.96 Gpixel showed an average computational speed of 59.85 Mpixel per second, or 3.59 Gpixel per minute on a single 2U rack server with 64 opteron cores. The new algorithms could be extended to morphological keypoint detectors capable of handling gigascale images.
JRC Directorate:Space, Security and Migration

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.