@article{JRC121184, number = {KJ-NA-30311-EN-N (online)}, address = {Luxembourg (Luxembourg)}, issn = {1831-9424 (online)}, year = {2020}, author = {Csefalvay Z and Gkotsis P}, isbn = {978-92-76-20875-4 (online)}, publisher = {Publications Office of the European Union}, abstract = {Where does Europe stand in the global robotisation race? This paper aims to answer this question by developing a novel theoretical and analytical framework which applies the concept of a global value chain to robotisation. By doing this, we investigate in detail the entire robotisation chain, from robotics developers to robot manufacturers, and companies that deploy industrial robots. For the research and development (R&D)-intensive part of the chain (robotics development), we analyse the robotics patent data of the Worldwide Patent Statistical Database (PATSTAT) combined with ORBIS, while for the capital-intensive part (deployment of robots), our information is sourced from the International Federation of Robotics (IFR). Our results show that although the ‘big five’ (Europe, USA, China, Japan, and Korea) dominate the global robotisation landscape they do not all hold equally strong positions across the whole robotisation chain. Japan and Korea are the early first-movers and today’s global leaders, as they are robustly engaged in every part of the chain. Europe is very strong in robot manufacturing and robot deployment, but is behind global leaders in robotics development. The USA has its firm competitive advantages in robotics development, while at present the latecomer China is a rival only in the industrial deployment of robots. Nevertheless, in Europe, some smaller and advanced economies are specialising in certain parts of the robotisation chain, as Austria, Denmark, France, the Netherlands, and Sweden are performing well in robotics development; not only this, Belgium, Italy, and Spain are making extensive use of industrial robots for various kinds of manufacturing. European economies which are lagging behind the rest – largely consisting of Central and Eastern European countries – are involved in the robotisation chain only insofar as they are involved in robot deployment. Since there are only 43 countries globally who are taking part in robotisation, the eminent policy challenge remains to find ways for countries to become integrated into the robotisation chain, and for those countries already engaged in robotisation, the main focus is to create policies which support upgrading across the chain, as the reshoring of previously offshored production becomes more prevalent. }, title = {Global race for robotisation – Looking at the entire robotisation chain}, url = {}, doi = {10.2760/60257