@article{JRC125904, number = {KJ-NA-30818-EN-N (online)}, address = {Luxembourg (Luxembourg)}, issn = {1831-9424 (online)}, year = {2021}, author = {Bartnicka J and Langezaal I and Coecke S}, isbn = {978-92-76-41164-2 (online)}, publisher = {Publications Office of the European Union}, abstract = {Development of alternative research and testing methods, such as in vitro, in silico and in chimico assays, contributes to the reduction of animals used for scientific purposes, as per the EU Directive 2010/63/EU,2. However, in vitro methods, especially these based on cell culture, are often developed with the use of animal-derived ingredients, such as animal sera, animal proteins or antibodies. Their production raises ethical concerns, while their use may compromise the reproducibility of in vitro assays due to undefined composition, batch-to-batch variation and risk of contamination of cells with pathogens. In the context of development of in vitro methods for regulatory testing of chemicals, the advantage of in vitro approach is the ability to dissect molecular mechanisms underlying chemical-induced adverse effects. Currently, there are no such validated in vitro mechanistic methods relevant for the disruption of thyroid hormone signalling. To this end, a network of validation laboratories across European Union, in liaison with method developers and Unit F.3 of the Joint Research Centre, has been working towards the validation of 17 in vitro mechanistic methods assessing the disruption of the key events in thyroid hormone signalling. These methods contain animal-derived ingredients. Their replacement by chemically defined animal-free ingredients could improve method reliability and reproducibility, enhance the relevance for human physiology and reduce the number of animals used for their production. The aim of this project is to systematically map animal-derived ingredients present in the in vitro methods assessing thyroid signalling disruption, to evaluate the accessibility of animal-free alternatives to those ingredients and to plan the implementation of such refined protocols. The results of this investigation will be relevant to the test systems and assays beyond these focusing on thyroid signalling disruption, thus contributing to the global shift towards fully animal-free in vitro methodologies in biomedical research and regulatory testing. }, title = {Towards animal-free in vitro methods in the Thyroid Validation Study }, url = {}, doi = {10.2760/544332 (online)} }