

Joint Research Centre Certified reference materials for testing of thermal properties

IRMM-440, Thermal conductivity of a resin bonded glass fibre board

IRMM-440 consists of a resin-bonded glass fibre board of nominal density between 64 and 78 kg/m³. Boards can be cut to the following dimensions:

- (300 x 300 x 35) mm³
- (500 x 500 x 35) mm³
- (600 x 600 x 35) mm³
- (1000 x 1000 x 35) mm³

The certified thermal conductivity between – 10 $^\circ\,$ C and + 50 $^\circ\,$ C is given by

$$\lambda \left[W/(m.K) \right] = 2.93949 \cdot 10^{-2} + \frac{T}{^{\circ}C} \cdot 1.060 \cdot 10^{-4} + \frac{T^2}{(^{\circ}C)^2} \cdot 2.047 \cdot 10^{-7}$$

The uncertainty of the certified thermal conductivity is 0.000 28 W/(m.K) at the 95 % confidence level over the range from - 10 $^\circ\,$ C to + 50 $^\circ\,$ C.

An indicative value for the thermal conductivity between -170° C and -10° C is given by

$$\lambda \left[\text{W/(m.K)} \right] = 2.95 \cdot 10^{-2} + \frac{T}{^{\circ}\text{C}} \cdot 1.08 \cdot 10^{-4} + \frac{T^2}{(^{\circ}\text{C})^2} \cdot 2 \cdot 10^{-8}$$

The indicative uncertainty of thermal conductivity is 5% at the 95 % confidence level over the range from - 170 $^\circ\,$ C to - 10 $^\circ\,$ C].

(λ in W/(m.K) and T in $^\circ~$ C)

Confidence in measurements

All certificates and detailed production information can be found at https://crm.irmm.jrc.ec.europa.eu

https://ec.europa.eu/jrc/

BCR-724, Thermal conductivity and diffusivity of glass ceramic (Pyroceram)

BCR-724 samples are cylinders of Pyroceram 9606. Samples are available as cylinders of different dimensions:

• BCR-724A: diameter = 13.0 mm, height > 18 mm

• BCR-724B: diameter = 13.9 mm, height > 21 mm

- BCR-724C: diameter = 25.9 mm, height > 22 mm
- BCR-724D: diameter = 26.9 mm, height > 22 mm

The certified thermal diffusivity α and thermal conductivity λ are given by

 $\alpha = 4.406 - 1.351 \cdot 10^{-2} \cdot T + 2.133 \cdot 10^{-5} \cdot T^2 - 1.541 \cdot 10^{-8} \cdot T^3 + 4.147 \cdot 10^{-12} \cdot T^4$

 $\lambda = 2.332 + 515.1/T$

with α in m²/s •10⁻⁶, λ in W/(m.K) and T in K.

The equations are valid for temperatures between 298 K and 1025 K. Relative expanded uncertainties are 6.1 % for α and 6.5 % for λ , corresponding to confidence levels of 95 %.

How to order reference materials

From JRC in Geel

Tel.: +32 14 571 705 • Fax: +32 14 590 406 https://ec.europa.eu/jrc/en/reference-materials E-mail: jrc-irmm-rm-distribution@ec.europa.eu

From authorised distributors

LGC Standards GmbH (DE) http://www.lgcstandards.com/ E-mail: de@lgcstandards.com

Sigma-Aldrich Chemie GmbH (CH) http://www.sigmaaldrich.com/irmm E-mail: flukatec@sial.com

Sigma-Aldrich RTC Inc. (USA) http://www.RT-Corp.com E-mail: RTCSalesgroup@sial.com

ARMI (USA) http://www.armi.com E-mail: Info@ARMI.com

Industrial Analytical (RSA) http://www.industrialanalytical.co.za E-mail: info@industrialanalytical.co.za

Legal Notice: Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this information. JRC101500 © European Communities, 2009. All rights reserved.

> Joint Research Centre