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Abstract 

Photovoltaics (PV) are expected to make a major contribution to achieving European and 

global climate change mitigation goals over the coming 35 years. It is the renewable 

energy technology with the largest scope for cost reduction and efficiency gains, as well 

as exploiting the largest resource. The rapid technical evolution needs to be matched by 

standards to ensure the highest level possible of product quality, reliability and 

sustainability, as well as transparent market conditions. This requires reliable, 

reproducible and widely applicable measurement protocols for the assessment of 

electrical performance of PV devices of traditional as well as emerging PV technologies. 

The Joint Research Centre (JRC) plays a prominent role in developing, validating and 

implementing such measurement protocols, exploiting more than 35 years of expertise 

developed in the European Solar Test Installation (ESTI), the European Commission’s 

reference laboratory to validate electrical performance and lifetime of PV devices. The 

JRC works together with policy makers, industry and the research community to monitor 

the progress of PV technology and helps develop the solutions for the future. This directly 

supports the European Union’s objective of attaining an increasing share of renewable 

energies in the market (20% in 2020 and at least 32% in 2030). 

ESTI is an ISO/IEC 17025 accredited calibration laboratory. As such, it is involved in 

benchmarking, intercomparisons (bilateral and round robin (RR)) and proficiency tests to 

maintain and improve its measurement capabilities for solar irradiance and electrical 

performance of PV devices. The results of these international activities is directly used, 

mainly through the International Electrotechnical Commission’s Technical Committee 82 

(IEC TC 82), as input for revision of existing standards or for development of new 

standards for assessment of the electrical performance of PV devices. This work concerns 

both measurement methods and PV technologies. Furthermore, ESTI actively promotes 

transfer of knowledge about the measurement procedures to the European and 

International research community, provides the PV traceability chain by generating PV 

reference materials for its partners and clients and offers verification of PV devices 

(mainly based on new technologies).  

In this report the activities of 2018 are summarised. Starting from the traceability chain 

of solar irradiance measurements according to international standards, the activities of 

ESTI in establishing the PV traceability chain at its own laboratory is outlined. Then the 

activities in international intercomparison measurements for the major instruments used 

in the traceability chain are described, starting from cavity radiometers and 

spectroradiometers to PV devices (both cells and modules). These serve to establish the 

traceability, stability and conformity of ESTI calibration measurements. This in-house 

metrology activity is then used to provide the PV traceability chain to clients and partners 

by generating reference materials, i.e. by calibrating PV cells and modules for them 

under the ISO/IEC 17025 accreditation as calibration laboratory. Another crucial activity 

is to verify those PV devices which claim to have achieved extraordinary performance, be 

it world record efficiencies or other performance beyond the usual. Last not least, the 

activities on measurement methods are described, which span from the actual 

development of new methods and their validation to their implementation into the ESTI 

quality system and ISO/IEC 17025 accreditation scope.  

Thereby, this annual report:  

— verifies the status of ESTI’s unique independent traceability chain for solar irradiance 

measurements;  

— summarises benchmarking activities with peer external international organisations; 

— summarises results of PV device calibrations performed for EU industry and research 

organisations; 

— provides an update on the adequacy of measurement methods used to assess the 

electrical performance of PV products and prototypes. 



3 

1 Introduction 

The European Union’s (EU) policy for the Energy Union aims at making the European 

citizens’ energy supply more secure, affordable and sustainable. This may also have an 

indirect positive outcome on the global approach to a more secure and sustainable 

energy supply for everybody. A part of this policy framework for energy and climate for 

2030 is in place, including a commitment to achieve a 32% share of renewables by 2030 

[1]. Furthermore, the EU’s recent reaffirmation of its commitment to achieving a 

competitive and climate neutral economy by 2050 [2] recognises the importance of 

renewable energy to achieving that aim.  

Among renewables, photovoltaics (PV) are expected to make a significant contribution to 

achieving these goals, being the renewable energy technology with the largest scope for 

cost reduction and efficiency gains. The sector has been growing rapidly, the worldwide 

installed capacity increased from around 40 GW in 2010 to more than 400 GW in 2017 

with an estimate of over 500 GW in 2018 [3]. This growth is characterised by rapid 

technological development, not just scaling up existing systems. In this context, reliable 

measurement methods for electrical performance of PV devices and corresponding 

international standards are essential to ensure market transparency, help to cut costs 

and strengthen investors’ confidence. When correctly and timely designed, they can also 

play a critical role in accelerating the uptake of innovative solutions [4]. 

The Joint Research Centre (JRC) supports all this by performing, among other activities, 

pre-normative research  on technical areas of its competence and by taking a proactive 

role in International and European standardisation bodies. In particular, the JRC 

expertise in PV is based on the work carried out at the European Solar Test Installation 

(ESTI), which is an independent European reference laboratory to validate electrical 

performance and lifetime of PV devices based on traditional as well as emerging PV 

technologies. Among its activities aimed at building and spreading a robust knowledge in 

PV and in PV metrology, ESTI also performs pre-normative research to develop and 

improve traceable, reliable and accurate measurement techniques, which are then often 

considered for inclusion in the International Electrotechnical Commission’s (IEC) 

standards for PV. In support of the EU political objective of increasing the share of 

renewable energy in the market, ’ESTI also works together with policy makers, industry 

and the research community to monitor the progress of this technology sector and to 

help develop the solutions for the future. 

The PV market is at present defined by a price per watt approach (that is, Euros per 

watt-peak of rated electrical power of the PV modules). With the annual world PV 

production exceeding 100 GW in 2018 and a market value only for the PV module 

components reaching over €25 billions, the methods and standards for the calibration of 

the power of PV modules and systems are vital. Given the increasing importance of the 

PV contribution to the energy supply and to the financial investments, the PV market 

relies on high accuracy of the power measurement.  

The power of a PV module is directly influenced by the spectral content of the sunlight 

that illuminates it, because a PV module essentially directly converts incident sunlight 

into direct-current (DC) electricity. As such, the measurement of electrical performance 

of PV cells and modules entails the measurement of the solar irradiance, which can be 

described from two interconnected points of view. The first considers the irradiance as a 

whole, and measures the overall (total) irradiance; the second looks at the spectral 

irradiance that constitute it, i.e. the distribution of the total irradiance over the 

wavelengths. International standards require foremost the PV calibration at standard test 

conditions (STC) (as defined by [5]), which include a total irradiance of 1000 W/m2 with 

a spectral irradiance distribution of the reference spectrum defined in the standard 

IEC 60904-3 [6].  

Therefore, this report considers, as an initial point, the two critical aspects related to the 

irradiance measurement, which in turn influence the power calibration and energy yield 

determination for PV devices.  
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The first concerns the measurement of the level of direct normal (beam) solar irradiance 

(DNI) using radiation broadband detectors (such as cavity radiometers). Such a 

measurement is not only indispensable for determining the incident irradiance in PV 

device calibrations, but is also critical for (i) the development and deployment of solar 

energy conversion systems, (ii) improving our understanding of the Earth’s energy 

budget for climate change studies and (iii) science and technology applications involving 

the solar flux.  

The second aspect concerns the measurement of the spectral content of the incoming 

natural or simulated sunlight used in the electrical performance assessment of PV 

devices. Today’s broad portfolio of available PV technologies, with their different 

responsivity to the spectral content of the incident light (named spectral responsivity 

(SR)), makes this information a key item for reliable characterisation, calibration and 

energy yield estimation of PV devices.  

ESTI has a well-established and world-wide acknowledged capability for both types of 

measurement, based on over 20 years’ experience with a set of precision instruments. As 

part of its role to disseminate and manage knowledge on PV, ESTI has coordinated and 

provided the scientific guidance to a European inter-laboratory group since 2011 in order 

to develop and expand the knowledge base of these fundamental solar measurements. 

Periodic intercomparisons are in general also part of performance-based quality-control 

checks for laboratories working according to ISO/IEC 17025 [7] and, in the specific case 

of solar radiation measurements, highly recommended by the World Meteorological 

Organization (WMO). During these comparison campaigns ESTI, together with other 

participating institutes, organises a series of seminars and discussions to further 

disseminate the best practices and knowledge to a wider scientific/technical audience. 

Occasions such as this allow not only international harmonisation of measurement 

procedures and instruments, but they also provide training and education opportunity for 

the peer laboratory community which is difficult to achieve in conventional seminars.  

Strictly connected to this topic, chapter 0 describes the activities performed in autumn 

2018 at the US National Pyrheliometer Comparison (NPC 2018) [8] (as part of the total 

irradiance measurements) and the preliminary results of the 2018 International 

Spectroradiometer Intercomparison (ISRC 2018), held at the INTA site in Madrid, Spain 

(as part of the spectral irradiance measurements).  

In PV performance measurements, instead, the total irradiance is usually measured by 

one or more PV reference cell(s). Essentially, the calibration of irradiance measurement 

is transferred to the device under test (DUT) (e.g. a PV module). As the measurements 

are made under natural or simulated sunlight that will always differ more or less 

significantly from the reference spectrum, a spectral mismatch error is introduced in the 

DUT performance measurement, as the reference device and the device under test will in 

general have different SRs. This spectral error can be corrected mathematically a 

posteriori, but this requires the knowledge of the SR of both reference device and DUT 

and of the spectral content of the natural or simulated sunlight used for the 

measurement. The latter can be measured by spectroradiometers. However, over the 

years it became evident that accurate measurements of the spectral irradiance are far 

from being trivial and require state-of-the-art equipment and experience. Therefore, the 

JRC is organising and running annually the International Spectroradiometer Comparison 

(ISRC) in order to gather and spread knowledge and good practices on this.  

While the traceability transfer between two PV devices is relatively straightforward due to 

their common operating principle, the very first PV device in the PV traceability chain 

needs to be calibrated against a measurement standard1 (or étalon) [9], which measures 

irradiance traceable to international measurement standards. In the case of natural 

                                           
1 i.e. the physical realisation (or nowadays more and more the calculated value of a physical or mathematical 

constant) of a given measurable quantity, with stated quantity value and associated measurement 
uncertainty, which is then used as a reference for further measurements. The physical prototype that 
defines (until the 20th May 2019) the unit mass [kg] of the International System of units is kept at the 
Bureau international des poids et mesures (BIPM) near Paris. 
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sunlight the latter is represented by the conventional World Radiometric Reference 

(WRR), which is measured with cavity radiometers (or more simply named cavities). 

However, the latter have entirely different characteristics from PV devices (most notably 

a very broadband spectral responsivity that covers the electromagnetic spectrum much 

beyond its visible part and a slower response to the incident electromagnetic radiation). 

Therefore, the calibration of PV devices against cavities requires special measurement 

procedures and skills. Such procedures and skills are part of the core knowledge at ESTI, 

which owns cavity radiometers among its calibrated precision instruments. The cavities in 

use at ESTI are measurement standards that are defined “secondary standards”, because 

they are calibrated against the WRR, which represents the “primary standard” for solar 

irradiance measurement (in PV the sun is considered a primary standard itself). The 

calibration of ESTI cavities occurs every five years against the primary standard during 

the International Pyrheliometer Comparison (IPC) held at the World Radiation Centre 

(WRC) in Davos, Switzerland, and in years in between with other secondary standards 

(through the National Pyrheliometer Comparison, NPC) for stability check.  

The metrological transfer from the WRR to the first PV reference cell in the traceability 

chain is called a primary calibration, as it calibrates a PV device against something which 

is not a PV device. From then on, the transfer is between PV devices which are more 

alike, and as such it can be considered more straightforward and to some extent 

affordable by a wider range of measurement laboratories.  

Different primary calibration methods are historically in use in the PV community and the 

question arose whether they all agree and which one is the best, if any. In the course of 

international round-robins, an agreement was found and it was decided that all valid 

measurements should be considered for producing the average reference value, thereby 

generating the World Photovoltaic Scale (WPVS). ESTI has decided in 1995 to implement 

from then onwards this WPVS in its own PV calibration chain, as that is the best 

reference, providing the highest level of reliability of solar irradiance measurements for 

PV. Other laboratories, instead, decided to use it only for their proficiency testing (as 

required under ISO/IEC 17025 [7]), i.e. only to check that their results are still in 

agreement with the WPVS (within measurement uncertainty (UC)). ESTI has used the 

WPVS ever since. It has also continuously developed the concept further, thereby 

generating in 2008 the ESTI reference cell set (made of five primary reference cells) to 

which it has assigned the weighted average of all valid primary calibration 

measurements. In that way, it not only provided the highest confidence but also the 

lowest uncertainty in PV calibration, target unachievable by any individual measurement. 

A noteworthy side effect of this is that secondary calibrations (i.e. PV against PV) can be 

performed at ESTI with the same resulting UC as the best primary calibration methods, 

thereby saving on effort and cost without compromising accuracy. These traceability 

chain and facilities are unique and establish ESTI as the laboratory owning the PV devices 

with the lowest UC for solar irradiance measurement.  

The WPVS at ESTI is updated whenever new valid measurements become available, but 

the annual stability is always checked and verified. The set of five reference cells is well 

maintained under rigorously controlled storage conditions and PV devices under these 

conditions have very long-term stability (>30 years). Furthermore, the ESTI laboratory 

regularly compares its measurements with its peers around the world, either in bilateral 

or round robin campaigns.  

This whole background and fundamental work is then the basis to offer PV device 

calibration under the ISO/IEC 17025 accreditation scheme of the laboratory. ESTI was 

the first laboratory to be accredited initially for PV device testing (COFRAC 1-0717 in 

1996) and later for PV device calibration (COFRAC 2-1671 in 2004), which was 

subsequently transferred still as accreditation for PV device calibration (Accredia LAT 225 

since 2011) [10]. The ESTI laboratory remains one with the largest range of methods. 

Clients and partners send PV devices (cells and modules) to ESTI for traceable calibration 

(incl. delivery of calibration certificates). In this way, ESTI generates PV reference 

material, which can then be used by the original owner of the device to calibrate further 
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PV devices of its own (chapter 0). This creates the uninterrupted metrological connection 

of the traceability chain between the testing laboratories or PV manufacturers and the 

international standard through ESTI. With the growing PV market, it would be very 

difficult for ESTI to provide a calibration service for hundreds of manufactured PV 

modules, therefore ESTI specialises in providing the traceability chain to the PV 

community, which is costly and cannot be maintained by each laboratory.  

The expertise in ESTI is furthermore used to (officially) assess the electrical performance 

of PV devices that claim to achieve world record or other extraordinary performance 

(chapter 5). In fact, ESTI is a member of the small peer group editing the world-record 

PV efficiency tables [11, 12]. As ESTI is independent of any commercial as well as 

national interests, it is acknowledged as neutral in assessing such PV devices. Again, it is 

the long-term expertise built over decades of constantly refined practice that has led 

ESTI to being entrusted with this role.  

ESTI is involved in the dissemination of its knowledge to improve measurement and 

calibration of PV devices worldwide (chapter 0).  

In order to be ready for future challenges, measurement methods are continuously 

improved and updated at ESTI (chapter 7). Furthermore ESTI verifies alternative 

methods to ensure world-wide compatibility of results. This pre-normative research is 

eventually used as input for international standardisation. Similarly, sometimes ESTI 

deals with methods which will be applicable to all PV devices, sometimes there are 

procedures more specific to new or emerging PV technologies. The latter is an important 

point, as the development of new technologies can be assessed and guided only through 

reliable measurement. Once more, this requires recognised independent assessment, 

which can only be provided and developed based on long-term experience and expertise. 

The activities on measurement methods described span from the actual development of 

new methods and their validation to their implementation into the ESTI quality system 

and ISO/IEC 17025 accreditation scope. The latter is usually achieved by a two-step 

procedure under the accreditation scheme with which ESTI is required to comply, which 

allows the temporary inclusion of the validated methods under the flexible scope that 

ESTI has gained under its IEC/ISO 17025 accreditation and the successive inclusion of 

the method in the published list of accredited methods once the accreditation body has 

approved it. 

Overall, the activities of ESTI in all these aspects of PV make ESTI a unique European 

reference laboratory for the assessment of electrical performance of PV devices. 

Traditionally, PV measurements are not located in National Metrology Institutes (NMIs), 

but rather in specialised laboratories dealing with renewable energies. ESTI is among the 

only handful laboratories around the world providing PV measurements at the highest 

level. ESTI compares regularly to these peers ensuring equivalence of results from all 

laboratories around the globe (for examples see chapter 3.3).  

This technical report for the first time collects and summarises all ESTI activities in 

connection with the measurement of electrical performance of PV devices. It is intended 

that this will become an annual report to be published towards the end of each year, 

updating on the report of the previous year. As this is the first report of its kind, it 

necessarily gives the overall background. Therefore, many activities and results reported 

here are pertinent to 2018, but some from 2017 and earlier are included as well to 

complete the overall picture and give the necessary information to put the 2018 activities 

and results into context. Also some activities stretched over several years and were 

completed in 2018.  
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2 Traceability of solar irradiance measurement for 

photovoltaics 

The measurement of the solar irradiance is the most crucial measurement in the 

assessment of electrical performance of PV devices because it contributes the largest part 

to the measurement UC. Therefore, its traceability to the international measurement 

standard is relevant. This section describes ESTI activities in this field from international 

standardisation, i.e. the primary measurement of total and spectral irradiance, down to 

the unique reference for PV irradiance measurement, which is the ESTI reference cell set 

incorporating the WPVS. 

2.1 International standard IEC 60904-4 

The International Standard IEC 60904-4 [13] describes the traceability chain of the solar 

irradiance measurements for PV. This standard was developed with JRC-ESTI acting as 

project leader. Currently, it is under revision again under leadership of the JRC-ESTI. The 

work has progressed to the stage of final draft International Standard (FDIS) and the 

publication is envisaged for early 2019.  

The IEC 60904-4 describes the requirements for traceability as well as the possible 

routes to achieve it. Furthermore, typical implementations of currently available methods 

are described in detail in its annex.  

 

Figure 1. Schematic diagram of the traceability chain for PV reference devices.  

Essentially, the irradiance measurement can be traced either to the WRR, which is a 

conventional detector-based measurement standard for direct natural sunlight, or to the 

International System (SI) irradiance scale, through standard detectors, 

spectroradiometers, standard lamps and black-body sources (see Figure 1). The former 

has total irradiance and spectral irradiance similar to the PV reference spectrum [6] and 

requires outdoor measurements under suitable conditions. The other methods are 

laboratory based and typically have much lower irradiance intensities and very different 



8 

spectral irradiance compared to the reference spectrum, thus requiring extra efforts 

during the metrological transfer to PV devices concerning linearity and spectral 

mismatch. The implementation of the traceability chain at ESTI is shown in Figure 2. 

Once the transfer to a PV reference device (typically a solar cell) has been achieved 

traceably by these methods (i.e. primary calibration), the further transfer (i.e. secondary 

calibration) to other PV devices can be performed and is governed by separate IEC 

Standards.  

 

 

Figure 2: Overview of irradiance traceability chain at ESTI. 
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2.2 WRR and cavity radiometers 

The WRR is a conventional primary (measurement) standard based on a group of cavity 

radiometers, named the World Standard Group (WSG), and transferred every five years 

to secondary (measurement) standards. ESTI holds three such secondary standards 

which it uses to transfer the calibration chain to PV devices according to IEC 60904-4. 

The methods implemented at ESTI are mainly the Global Sunlight Method (GSM) and 

Direct Sunlight Method (DSM). The former was developed at ESTI and is unique, whereas 

the DSM was originally pioneered by NREL and implemented at ESTI for comparison and 

validation purposes.  

2.3 Spectroradiometers 

The IEC 60904-4 makes it also possible to follow the traceability to black-body radiation 

via standard lamps (see Figure 1). This route was pioneered at AIST and is implemented 

at ESTI for comparison. 

2.4 ESTI reference cell set 

As primary calibrations are expensive in effort and costs, not all PV devices can be 

calibrated utilising them. Firstly, there is a size constraint which essentially limits the 

application of the above-mentioned methods to reference cells with an active area of 

typically 2 cm by 2 cm. A laboratory normally has one or a few of these cells, used as the 

laboratory primary reference. ESTI uses a set of five such cells (the ESTI reference cell 

set). This allows verification of their stability by cross comparison.  

2.5 World Photovoltaic Scale (WPVS) 

Several methods are available that have proven in the past to produce results consistent 

with each other within measurement UC. However, as is usual practise in international 

metrology at the highest level, a key comparison reference value (KCRV) can be 

assigned, even to a measurement standard, based on all valid measurements on the 

same device. In general, the weighted average is used, with the weighting provided by 

the measurement UC of the contributing results. This will provide a value which is more 

reliable than the individual values, as it contains information from all validated methods, 

thereby also reducing the uncertainty of this final average. This concept was the original 

idea at the basis of the WPVS, implemented in the 1995 as outcome of the Photovoltaic Solar 

Energy Project (PEP) of the Technology, Growth and Employment Working Group of the G7 summit 

[14]. However, only arithmetic averaging was used at that time. Furthermore, 

participants other than ESTI chose to maintain their own traceability with comparison to 

WPVS only for consistency. ESTI on the other hand decided to implement the WPVS and 

hence take full advantage of its benefits. In the following years ESTI developed the 

concept further, accumulating measurements from a variety of validated methods and 

finally (in 2008) implementing the weighted average approach, thus reducing the UC of 

the original WPVS from 1.9% to 0.25% (i.e. almost a factor 10). Now, ESTI is the keeper 

of the WPVS, which is constituted by the ESTI reference cell set (at present five cells). 

The uncertainty for solar irradiance measurements with these reference cells has now 

become the lowest available worldwide [15].  
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3 Intercomparisons measurements 

In metrology, two measurement results are typically compared by the En number 

analysis [16] [17], according to the following equation:  

𝐸𝑛 =
𝑋𝐿𝑎𝑏 − 𝑋𝑟𝑒𝑓

√(𝑈95,𝐿𝑎𝑏)2 + (𝑈95,𝑟𝑒𝑓)2
 

with 

XLab  is the value reported by a laboratory 

Xref  is the reference value or the value reported by the reference laboratory 

U95,Lab is the combined uncertainty (with 95% confidence) of the first measurement 

U95,ref is the combined uncertainty (with 95% confidence) of the reference laboratory or 

of the reference value.  

U95,diff =√(U95,Lab)2 + (U95,ref)
2 is for extension the combined uncertainty of the difference 

XLab - Xref 

Essentially, the En number represents a metric that measures the distance between a 

measured value (XLab) and the reference value (Xref) in terms of their uncertainties they 

both may have compared to the real (unknowable) absolute value of the quantity under 

measurement. 

It is evident from the above equation that, when the difference XLab - Xref is zero, the En 

number equals also zero whatever the uncertainty of the measurements. However, as in 

metrology the results of two measurements are never exactly the same, the agreement 

of XLab with Xref is defined by those cases for which XLab is included in the range [Xref - 

U95,diff , Xref - U95,diff], i.e. the En number belongs to the interval [-1 ; 1] indicating 

consistency within declared uncertainties. If this is not the case, XLab is not consistent 

with Xref.  

In the case of equivalent measurements, the same approach can be applied, although 

there is no reference anymore, as both results can play the role of reference value.  

This approach has been applied at ESTI and in measurement comparisons with ESTI 

partners for several years (see intercomparisons described in the following). In the case 

of a measurement by ESTI flagged as inconsistent with the reference value, further in-

depth investigation follows to determine and eliminate, or if not fully possible at least 

mitigate, the cause of the discrepancy.  

Moreover, for institutions participating to inter-laboratory comparisons that apply a 

quality system or have an ISO/IEC 17025 accreditation, the intercomparison itself is an 

implementation of the required periodical checks of the quality control system based on 

comparable laboratory performance and the En number approach is increasingly accepted 

as a suitable assessment method of the results. 

 

3.1 Comparisons of broadband irradiance instruments 

In the late 1970s, the WMO established the WRR as a conventional international standard 

for DNI measurement [18]. As mentioned in section 2.2, the WRR is a conventional,  

internationally recognised, detector-based measurement standard determined by the 

collective performance of electrically self-calibrated absolute cavity radiometers forming 

the WSG. The WSG is maintained at the PMOD/WRC at Davos, Switzerland. PMOD/WRC 

Davos has a mandate from the WMO to transfer the WRR to secondary radiometers. 
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To produce research-quality solar irradiance measurements, accurate radiometer 

calibrations traceable to an international primary standard are necessary. Maintaining the 

high precision of these calibrations/verifications is assured by comparisons at fixed time 

intervals. That’s why every five years, the PMOD/WRC in Davos hosts an IPC for 

transferring the WRR to participating radiometers. ESTI has represented the European 

Commission in each IPC since 2000.  

Annually, (except in IPC years) ESTI also participates in the NPC held at the National 

Renewable Energy Laboratory (NREL), Golden (CO), USA.  

Since 1996, ESTI has developed its internal procedures to operate a selected group of 

absolute cavity radiometers with direct traceability to the WRR, thanks to the constant 

participation in the IPCs. These radiometers are therefore secondary measurement 

standards and as such they are part of the control radiometers during the NPC’s at NREL. 

ESTI participation to the above-mentioned radiometer comparisons fulfils its ISO/IEC 

17025 accreditation, which also requires participation to such comparisons. 

 

3.1.1 Cavity radiometer and pyrheliometer verification at NPC 2018 

In 2018, ESTI participated to the US NPC organised by NREL (24 Sep – 5 Oct 2018 in 

Boulder, CO, USA) with its three cavity radiometers (codes: PMO-6 81109, PMO-6 

911204 and TMI 68835). The purpose of the participation was to verify the stability of 

ESTI instruments as well as the US control radiometers. This was achieved by comparing 

the correction value determined at the NPC with respect to that of the last valid 

calibration, i.e. the Twelfth International Pyrheliometer Comparison, IPCXII (2015) [19] 

(Table 1). The stability of all three instruments was confirmed.  

As the US and the ESTI cavity radiometers are all secondary measurement standards, 

these comparison measurements are merely used to check the instrument stability within 

the time period between one IPC and the next, but the results are not used as actual 

calibration values of the ESTI instruments. The latter are always calculated from the last 

valid calibration against the WRR (which is a primary measurement standard), i.e. 

currently against the IPC-XII value. Figure 3 shows the long-term stability of the three 

ESTI cavity radiometers during international inter-comparisons.  

Table 1: Comparison of cavity radiometer stability in 2018.  

 PMO6 81109 PMO6 911204 TMI 68835 

IPC-XII (2015) 0.998320 ± 0.32% 0.999450 ± 0.41% 1.000714 ± 0.32% 

NPC (2018) 0.998230 ± 0.39% 1.000130 ± 0.41% 0.999830 ± 0.41% 

Difference -90 ppm +680 ppm -884 ppm 

En -0.02 +0.12 -0.17 

Furthermore, also ESTI secondary pyrheliometers are usually compared to the NREL 

reference standards during the NPC. This occurred also in 2018. The historical trend in 

the WRR correction factors (for pyrheliometer CH1 930018 this goes back 24 years) 

shown in Figure 4 and the En number analysis (not shown) confirm the stability of these 

instruments.  
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Figure 3. Stability of ESTI cavity radiometers as determined from international comparisons.  

 

 

Figure 4. Stability of ESTI pyrheliometers as determined from international comparisons.  
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3.1.2 Pyranometer comparisons 

Regarding the calibration of pyranometers, which are another type of broadband 

irradiance detectors based on a different operating principle compared to PV, ESTI 

additionally implemented the “Alternate method” [20, 21] in 2018 and then validated the 

results against the traditional method as well as against results from an ISO/IEC 17025 

accredited peer laboratory (ISO-CAL, USA) for two pyranometers (CM22 060142 and 

CM22 060143). This showed that the “Alternate method” as implemented at ESTI is 

equivalent to the traditional one and all results fully agree within stated uncertainties.  

Table 2: Results and En number analysis for calibration of two pyranometers with traditional and 
“Alternate method” at ESTI as compared to peer laboratory ISO-CAL. 

 CM22 (060142) CM22 (060143) 

 CF 
[V/W/m²] 

stdev 
[V/W/m²] 

En CF 
[V/W/m²] 

stdev 
[V/W/m²] 

En 

ESTI historical 

calibration  

8.63 0.054 0.05 8.60 0.043 0.36 

ESTI “Alternate 

method” (April 2018) 

8.60 0.032 0.69 8.60 0.032 0.42 

ISO-CAL USA 

(June 2018) 

8.633 0.035  8.62 0.035  

 

3.2 Spectroradiometers comparisons 

There is a growing request of harmonisation of good measurement practices and 

knowledge transfer in the field of spectrally-resolved solar radiation for solar energy 

applications (e.g. PV) in order to make them comparable and directly traceable to SI 

units. Moreover, there is a growing request for comparable, traceable and low-

uncertainty (natural or simulated) sunlight spectrum measurements for PV energy yield 

estimate. The spectroradiometer intercomparison, whose results are summarised in this 

work, is thus a good opportunity to raise the awareness on these crucial measurements. 

Nowadays, spectroradiometers with different operating principles (e.g. single-, double- 

stage rotating-grating monochromator or fixed single-grating polychromator with 

photodiode array or CCD detectors and filter radiometer-based instruments) are routinely 

used for sunlight spectrum measurements.  

Due to the large variety of PV technologies, covering different wavelength ranges of the 

solar spectrum, new challenges for research centres and product manufacturers arise. 

This is mainly due to the increasing and crucial need to know the spectral composition of 

the natural or simulated sunlight used during PV calibration in comparison to the 

standard reference spectrum. The measurement spectrum is indeed needed with higher 

accuracy and over a extended wavelength range in order to meet the demand for higher 

accuracy of PV calibration. Moreover, the paradigm change in defining the price of PV 

modules and cells from €/(watt-peak) to €/(produced kWh) makes accurate and long-

term in-situ spectral measurements a key parameter in energy-rating and energy-yield 

estimates. 

Spectroradiometry is a key metrological discipline for accurate calibration of PV devices, 

particularly relevant for the following aspects: 

● Spectral irradiance is one of the three parameters according to which solar 

simulators are rated as per the international standard IEC 60904-9 [22]; 
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● Spectral mismatch correction typically represents the major source of uncertainty 

in measuring the performance of PV devices. Accurate measurements of natural or 

simulated sunlight spectral irradiance are essential in limiting the overall amount 

of the spectral mismatch, especially in those cases where the SRs of the DUT and 

the reference device significantly differ from each other; 

● While PV devices are rated at the reference spectral irradiance [6], in real PV 

installations both the total as well as the spectral irradiance may differ 

significantly from STC and therefore accurate measurements of these two 

quantities plays an important role for energy yield estimation; 

● Comprehensive knowledge of both repeatability and reproducibility of spectral 

irradiance measurements is also key to a correct uncertainty evaluation for PV 

device measurement, which is also mandatory for ISO/IEC 17025 accreditation. 

3.2.1 PTB-JRC intercomparison 

A high-level intercomparison between the spectroradiometers of ESTI (two instruments) 

and PTB (one instrument) was made under natural as well as simulated sunlight. From 

the detailed analysis, it was concluded that measurement results of the three 

instruments agree within their stated UCs for most wavelengths. Some discrepancies are 

due to different resolution and the noise level at low signals. Some systematic differences 

in the UV region of the spectrum require further investigation [23].  

 

 

Figure 5. Comparison of the global spectrum of natural sunlight as measured by two 
spectroradiometers from ESTI and one from PTB.  
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3.2.2 International Spectroradiometer Intercomparison (ISRC) 2018 

ESTI is organising and leading the ISRC since 2011, usually in various localities in the 

Mediterranean Basin (either Italy or Spain). These intercomparisons gather research 

institutes, universities and commercial partners with the aim of sharing good laboratory 

practices, improving measuring techniques and measurement equivalence of total and 

spectrally-resolved solar radiation. In 2018 the intercomparison was held at the “Instituto 

Nacional de Técnica Aerospacial” (INTA) in Torrejón de Ardoz, Madrid, Spain from 4th to 

8th June. Table 3 summarizes participating institutions and the main characteristics of the 

instruments. The ISRC 2019 is planned to be held at the Observatoire Astronomique de 

Saint-Véran “AstroQueyras”, department of Haute-Alps, in France. 

In order to harmonise European wide determination methods of solar spectral resource, 

ESTI provides through the ISRC the calibration measurement standard traceable to SI 

units and also to the WRR, against which all the other participating instruments are 

compared. The first ISRC in 2011 involved only three Member States, with eight 

participating in 2018. The goal is to extend this activity involving participants from all 28 

EU Member States.  

So far the scientific output of the ISRCs includes seven conference contributions, four 

papers published on peer reviewed journals and another one submitted and under 

review. The good scientific production rate and the increasing participation from 

European and even non-European partners testify the interest of the PV community to 

the subject. Moreover, the participation to intercomparisons and/or round robin exercises 

is required for ISO/IEC 17025 accredited laboratories as a factual-based quality-control 

assessment. 
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Table 3. Participants to ISRC 2018. 

Institute Country Instrument Wave-

length 

range 

[nm] 

Global / 

Direct 

AIT Austria MAYA 2000 Pro & NIRQuest 

512-1.7 

300-1600 GNI2 

Loughboro

ugh 

University 

UK Avantes Avaspec-2048 X 300-1100 GNI 

CEA INES France Avantes AvaSpec-ULS2048CL-

EVO (CMOS) & Avantes 

AvaSpec-NIR256-1.7 

300-1600 GNI 

Radboud 

University / 

ReRa 

Solutions 

South Africa EKO MS711 & MS712 

 

300-1700 GNI 

DTU Denmark EKO MS711 300-1100 DNI3 

JRC EU EKO MS701 & MS710 & 

MS712 

300-1700 GNI / DNI 

EKO The 

Netherlands 

EKO MS711 & MS712 300-1700 DNI 

RSE Italy Spectrafy SolarSIM-D2 300-4000 DNI 

INTA Spain Avantes AvaSpec-ULS2048L / 

XL 

280-900 GNI / DNI 

INTA - 

SPASOLAB 

Spain IS320D 

CAS140 CT 

300–1550 

1550-2188 

N/A 

Only Indoor 

UEX Spain Stellarnet Black-Comet UV-Vis 

Avantes AvaSpec-ULS2048L / 

XL 

280-900 GNI 

GNI / DNI 

Alitec srl Italy Own product to calibrate  --- 

ENEA Italy Stellarnet EPP2000 VIS & NIR 300-1700 GNI / DNI 

UCY Cyprus Spectrafy SolarSIM-D2 300-4000 DNI 

SERIS Singapore Avantes Avaspec-3648-USB2 300-1100 GNI 

 

                                           
2 Global Normal Incidence 
3 Direct Normal Incidence 
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Due to the differences among various instruments in measurement timing, bandwidth 

and spectral resolution, specific procedures for instruments synchronisation and data 

acquisition and analysis were developed in order to make the spectroradiometers’ output 

comparable to each other. Prior to the intercomparison each participant calibrated its 

own spectroradiometer(s) following its usual procedures. This allowed the evaluation of 

each instrument performance together with its traceability chain and calibration 

procedure. Indeed, some spectroradiometers were calibrated by an external accredited 

calibration laboratory, while others were calibrated either in house using a calibrated 

radiometric standard lamp or at the manufacturer.  

All participating instruments were mounted on high-accuracy solar trackers in order to 

reduce errors due to instruments pointing. In parallel to the intercomparison, ESTI cavity 

radiometers were also in use as reference instruments for broadband irradiance data 

ensuring the direct link to SI units. For clear-sky conditions, the corresponding output 

data obtained from SMARTS model were used for consistency check purposes.  

The dissemination activity performed by JRC-ESTI in the framework of the 

spectroradiometer intercomparisons is fundamental to maintain a reliable and traceable 

connection of the solar spectral measurement performed in the European PV community 

to the SI units. As well, such an activity is crucial to improve measurement results 

comparability among participating institutions. Due to bad weather conditions, the ISRC 

2018 was run mainly indoor using an AM0-like solar simulator and only partially outdoor 

during the single day with decent weather. Data from this measurement exercise are 

being analysed and circulated to the participants to increase awareness regarding 

accuracy, stability, repeatability and reproducibility for their respective instruments. The 

final goal is to publish the comparison results as a contribution to a PV conference and/or 

as a scientific paper in a peer-review journal. 

Figure 6, Figure 7 and Figure 8 show some examples of acquired spectra during ISRC 

2018 where the acquired spectra are superimposed one on top of each other for a quick 

and preliminary spectra quality evaluation (upper graphs in the figures). Figure 6 

contains data from measurements made on a high-intensity solar simulator for 

characteirisation and calibration of space cells; Figure 7 and Figure 8 show data from 

outdoor solar DNI measurements. For this exercise, analyses of the 

wavelength-by-wavelength differences relative to reference spectrum peak irradiance 

were performed and reported in the lower graphs in the figures.  

Previous data analysis has focussed on the differences in absolute spectral irradiance 

among participating instruments. A different approach can be used to separate 

systematic effects (e.g. arising from instrument calibration or from instrument time drift) 

from non-linearity, internal stray light or distortion as outlined previously [24]. This is 

important in solar spectrum measurement applied to PV field, where a correct 

measurement of the (shape of) the incoming sunlight spectral distribution is 

fundamental, whereas the total irradiance is usually measured by other means, often 

also with lower UC (e.g. cavity radiometers, reference solar cells, pyrheliometers, 

pyranometers, etc.).  

In order to compare solar spectra acquired by ‘fast’ and ‘slow’ measuring instruments, 

several sets of average spectra, measured during 7-minute acquisition time series, were 

analysed. During the time series, the irradiance must vary less than 1% in order to 

consider the spectra series ‘stable’ and flagged for analysis. The stability constraint 

avoids adding errors arising from fast-changing weather conditions affecting the output 

of spectroradiometers in different ways. This constraint limited the useful sky conditions 

to clear or almost clear. Several analyses were performed on output data in terms of 

both absolute spectral irradiance and spectral shape deviation.  
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Figure 6: Example of spectra comparison. 

 

   

Figure 7: Example of spectra comparison. 

  

Figure 8: Example of spectra comparison. 
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3.3 PV device calibration comparisons 

The ESTI reference cell set (comprising five solar cells) constitutes the primary reference 

of PV reference devices for the ESTI laboratory. Every year the stability of the five cells in 

the set is verified and then the set is used to calibrate the about 30 other ESTI PV 

reference cells. The latter constitute secondary references for the ESTI laboratory (see 

Figure 1 for definition in the traceability chain) and are used in routine measurements in 

the laboratory. Furthermore, ESTI regularly compares the calibration of PV reference 

devices with its peers, both in bilateral intercomparisons as well as in round-robin 

comparisons with multiple peers.  

3.3.1 Annual calibration of ESTI secondary references 

In the annual calibration the almost 30 secondary references of the ESTI laboratory are 

calibrated against the primary reference (ESTI reference cell set). Such measurements, 

called secondary calibrations, require less effort and are faster than the primary 

calibrations against non-PV devices (see sections above).  

3.3.1.1 Stability of ESTI reference cell set 

The first step for ensuring a reliable calibration of the secondary references is in fact to 

check the stability of the primary reference. Therefore, the five cells of the ESTI 

reference cell set are calibrated against each other, i.e. taking one of the cells in turn as 

the reference device and calibrating the other cells against it. The results are then 

compared to the previous assigned calibration value (CV) for each cell. As the set 

comprises five cells of different type, the drift of any member of the set can be detected 

by this wide cross comparison. Only if all cells in the set drifted exactly by the same 

amount relatively to each other and to all possible combinations, the drift would pass 

unnoticed; however, this is highly unlikely. As an example, Figure 9 shows the results of 

this check for the cell PX201C (a member of the set) over the last ten years with respect 

to the assigned reference value. The verification shows that the results are fully 

consistent, as the variation among the measured values (blue dots) is much less than the 

measurement UC as shown by the error bars. 

 

Figure 9. Stability of one reference cell within the ESTI reference cell set.  
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3.3.1.2 Calibration transfer to secondary references 

Once the stability of the ESTI reference cell set has been verified, all other ESTI 

reference cells are calibrated against at least two members of this set, using the WPVS 

assigned CV for the primary references as that is based on primary calibrations and have 

lower measurement UC. As an example the yearly calibration of one secondary reference 

cell (PX305C) is shown in Figure 10. Again the yearly variation is much less than the 

measurement UC, showing that the cell itself is stable over time and that the 

measurements at ESTI are reproducible over time. In fact, any noticeable deviation in 

the results would be flagged for further investigation before releasing the respective 

calibration certificate.  

 

Figure 10. Stability of one reference cell in use at ESTI for routine measurements (typically for 
transfer of traceability to external reference cells).  

 

3.3.2 Bilateral intercomparisons 

As a further check on the reliability of the calibration results obtained by ESTI, bilateral 

calibration intercomparisons are regularly made with peer laboratories around the world. 

This includes reference cells as well as full-size PV modules. Such intercomparisons are 

vital to guarantee the world-wide equivalence of PV measurement results, but as already 

mentioned they are also a requirement under the ESTI ISO/IEC 17025 accreditation as 

calibration laboratory.  

In the following, the comparison of results will be typically done using the concept of En 

number, which is the comparison’s most appropriate  metric in metrology. When two 

measurements are performed by two institutions (or for that matter by applying two 

different methods), each has to quote its result together with the expanded 

measurement uncertainty UC(95%), i.e. covering an interval which is expected to contain 

the true value with a probability of 95%. The assignment of this measurement UC is far 

from trivial and requires skills and experience to setup and run dedicated experiments 

assessing sources of measurement UC contributions as well as their combination. ESTI 
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has been traditionally very active in this area [25] and is working as well on transferring 

the acquired knowledge of UC calculation.  

3.3.2.1 NREL 

Since many years there has been fruitful and intense collaboration with the US reference 

laboratory for PV calibration, NREL,  by exchanging best practices on calibration methods 

and procedures as well as directly comparing the calibration of actual PV devices. In 

2018, two ESTI reference cells were calibrated at NREL and compared to the results from 

the prior calibration at ESTI (Table 4) with satisfactory agreement.  

Table 4. Comparison of the CVs together with UCs of two PV reference cells between ESTI and 
NREL. 

ESTI code CV (ESTI) [mA] CV (NREL) [mA] En 

PX505C 150.42 ± 0.72 150.71 ± 0.93 -0.25 

PX506C 154.93 ± 0.74 155.89 ± 0.96 -0.79 

 

3.3.2.2 PTB 

The collaboration with the group of PTB, the German NMI, that deals with PV reference 

cells calibration is another long-lasting partnership with ESTI. Over the years, it has 

involved staff exchanging (visiting scientists for one month), best practices on PV 

calibration methods and procedures and comparison of real calibration of actual PV 

devices. In 2018, three PTB reference cells were calibrated at ESTI and compared to the 

results from the prior calibration at PTB (Table 5) showing satisfactory agreement.  

Table 5. Comparison of CVs together with UCs for three PV reference cells between ESTI and PTB. 

ESTI code CV (ESTI) [mA] CV (PTB) [mA] En 

SR81 140.40 ± 0.67 139.47 ± 0.67 0.98 

SR82 36.35 ± 0.55 35.84 ± 0.19 0.88 

SR83 149.86 ± 0.72 149.28 ± 0.75 0.56 

 

3.3.2.3 ISFH 

The German laboratory ISFH was recently accredited for PV reference cell calibration 

under ISO/IEC 17025. In 2018, two reference cells from ISFH were calibrated at ESTI 

and compared to the results from the prior calibration at ISFH (Table 6), showing 

agreement. Furthermore, a detailed comparison was done on the SR measurement, 

which is required to correct the spectral mismatch mainly arising from the difference of 

the simulated sunlight spectrum used during calibration to the reference spectrum 

tabulated by the IEC 60904-3 [6]. The comparison was made on a wavelength-by-

wavelength basis using interpolated values to allow compare the same wavelengths and 

again the En number assessment (Figure 11).  
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Table 6. Comparison of CVs together with UCs for two PV reference cells between ESTI and ISFH. 

ESTI code CV (ESTI) [mA] CV (ISFH) [mA] En 

SS81 149.61 ± 0.93 149.53 ± 1.40 0.05 

SS82 146.25 ± 0.70 146.51 ± 1.40 0.17 

 

 

Figure 11. Comparison of SR for PV reference cell SS82 between ESTI and ISFH. 

 

3.3.3 Round-robin intercomparisons 

Round-robin measurement campaigns comprise more than two participants and are set 

so that the devices to be measured are sent to the next laboratory in the sequence, 

without going back to the initiator until the very end of the campaign itself. Sometimes 

the expertise level of the participants is varied, ranging from peer laboratories to those at 

a lower level or even newly entering the PV field. The round-robin exercises between 

peer laboratories give more easily a broader overview of compatibility between their 

measurement capabilities, as the effort required to achieve the same with bilateral 

comparisons would be much larger. In the case of participants of different expertise 

level, round-robins are extremely useful to spread good measurement practices and to 

periodically check the laboratories procedures (even at the reference laboratory). The 

results of two example round-robin intercomparisons, one run between 2016 and 2017 

and concerning PV reference cells calibration and the other one on full-size PV modules 

calibration run between 2015 and 2017, are reported. Further round-robin exercises on 

bi-facial PV devices are ongoing and will be reported in the future.  

Within the EURAMET ENG55 “PHOTOCLASS” project several round-robin intercomparisons 

were made, which ranged from electrical performance (including the one reported in 

3.3.3.1) over temperature coefficients to linearity and covered PV devices from reference 
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cells to full-size modules passing through two intermediate sizes and interconnections of 

PV devices. The aim of the project was to develop, implement and improve an advanced 

metric based on energy rating. In order to do this, new and improved measurement 

methods for PV device characterisation were necessary and put in place at ESTI. 

Therefore, not all the measurements made for this project were fully covered by the 

ISO/IEC 17025 accreditation of the ESTI laboratory, not even under its flexible scope. An 

example of this are the linearity measurements via the two-lamp method. The results 

were released on ESTI calibration certificates (but not under the accreditation scheme) 

with a total of 17 certificates.  

 

3.3.3.1 Reference cells 

Two PV reference cells of different technology (crystalline silicon and gallium-arsenide) 

were calibrated by nine laboratories within the European PHOTOCLASS project [26]. The 

results (Figure 12) were evaluated by calculating the deviation of each participant from 

the weighted mean. As the weighted mean is contained within the UC interval of each 

single measurement (as already visually shown in Figure 12 by the value 1 in the left 

plots), the overall data set is fully consistent. The En analysis shown in the right-hand 

plots confirms this statement, as no value is outside the range [-1;1]. This proves that 

the calibration results from all participating laboratories agree within their stated UCs and 

therefore can all be used as valid CVs.  

 

 

 

Figure 12. Results of round-robin measurements of two reference cells of different technologies. 
Left-side: Results of participants (dashes) with stated measurement uncertainties (error bars) and 

normalised to the weighted mean value. Right-side: En number corresponding to the left-side 
results towards the weighted mean. 
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3.3.3.2 PV modules 

Seven full-size PV modules were calibrated in a world-wide intercomparison between four 

reference laboratories for PV calibration: NREL, AIST, FhG-ISE and ESTI [27]. While for 

PV reference cells the comparison is usually limited to the short-circuit current or CV of 

the cells (see examples above), as this parameter only is used when they are employed 

to measure the incident irradiance in other PV device calibrations, for PV modules the full 

current-voltage characteristics (I-V curves) are measured. From these, various relevant 

parameters can be extracted such as the short-circuit current (ISC), the open–circuit 

voltage (VOC) and the maximum power (PMAX). In the intecomparison all these parameters 

were compared in detail for all seven modules. As an example, the comparison for 

maximum power calibration is reported (Figure 13). Again, the relative deviation from 

the weighted mean is shown with the respective error bars for each measurement. 

Consistency was found for all devices.  

 

 

Figure 13. Results of PMAX calibration measurements of the seven PV modules of different 
technologies included in the intercomparison between NREL, AIST, FhG-ISE and ESTI.  
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4 Generation of PV reference material 

Based on the calibration chain available at ESTI (see section 2), transfer of the 

traceability chain to downstream PV calibrations are also made for clients and partners. 

Essentially, all laboratories for PV measurements require to have the unbroken 

traceability chain. However, the effort to ensure it in a reliable way is such that only few 

laboratories in the world have all of it in house (as ESTI does). Therefore, one service 

that ESTI provides with its unique position is to calibrate secondary references for 

external clients issuing a calibration certificate under its ISO/IEC 17025 accreditation and 

thereby providing the necessary traceability chain to the client.  

Furthermore, the measurement capability of PV laboratories has to be periodically 

assessed in proficiency testing. This does not concern the top-level calibration institutes 

(such as ESTI), as in this verification aspect they would essentially be covered by 

calibration intercomparisons between peer laboratories, but rather all those test 

laboratories who routinely measure performance of PV devices at a somewhat lower level 

in the traceability chain. These laboratories have to be evaluated against a reference, 

which is usually provided by one of the top-level calibration institutes, e.g. ESTI.  

4.1 Proficiency testing 

ESTI has recently served as the reference laboratory in two cases. The devices under test 

were calibrated at ESTI and the calibration result was used to assign the reference value 

to the device (including uncertainty). All participants then measured the devices and 

their results were evaluated against the reference value through En number approach.  

4.1.1 High-efficiency crystalline silicon PV modules 

The measurement of high-efficiency crystalline silicon PV modules poses a challenge to 

PV calibration, as the inherent capacitance of these devices complicates the I-V curve 

measurement using pulsed solar simulators. Various solutions have been proposed as a 

workaround. Such methods have been evaluated against the reference value provided by 

ESTI and based on measurements under natural sunlight (Table 7) [28], which do not 

suffer from the time limitations due to the continuous nature of the light source. By 

validating the methods against the reference value provided by ESTI, they can now be 

used in test laboratories and PV industry.  

Table 7. En numbers comparison of the results for maximum power of high-efficiency PV modules 
and obtained by proficiency testing participants with respect to the reference value as measured by 
ESTI. 

En Lab #1 Lab #2 Lab #3 Lab #4 Lab #5 Lab #6 Lab #7 

Module #1 0.04 0.80 0.92 0.84 -0.25 0.09 0.89 

Module #2 0.20 0.89 0.87 0.83 -0.15 0.19 0.84 

Module #3 0.22 0.56 0.64 0.61 -0.36 -0.21 0.63 

Module #4 0.15 0.52 0.45 0.46 -0.42 -0.33 0.42 

Module #5 0.12 0.34 0.37 0.39 -0.17 -0.24 0.08 

Module #6 0.24 0.21 0.43 0.43 -0.21 -0.20 0.14 

Module #7 0.66 0.35 0.49 0.54 -0.01 0.57 -0.01 

Module #8 0.78 0.57 0.78 0.90 0.27 0.85 0.21 
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4.1.2 Multi-junction PV cells 

Monolithic multi-junction (MJ) PV devices are formed by the superposition of two or more 

photoactive layers of semiconducting p-n junctions, each of which is usually responsive 

to a different spectral range of the incident light. In monolithic structures, such layers (or 

junctions) are electrically connected in series, which implies that the electric charges 

created by the conversion of light inside the photoactive junction have to cross all the 

device material (and therefore its other junctions) in order to be available for collection 

at the terminals of the PV device. In some cases, electric charges created in one of the 

junctions of MJ PV devices (usually the one responsive to photons with higher energy, i.e. 

towards the blue region of the spectrum) can recombine within the junction itself and 

emit new photons, which can in turn travel through the material and couple with the 

junction(s) responsive to less energetic photons altering their light conversion process. 

When this happens, the recombined charges are removed from the process of light 

conversion into electricity. This usually results in a lower conversion efficiency of the MJ 

PV device, as the maximum electric current flow through the entire MJ PV device is ruled 

by the junction that allows the smallest electric current through it (therefore called 

limiting-junction). As the limiting junction is typically the one responsive to higher 

energy, reducing the amount of its effective converted charges implies usually a 

reduction in the total amount of electricity that can be produced by the MJ PV device and 

so in its overall conversion efficiency. 

Hence, the measurement of monolithic MJ PV devices poses particular challenges in both 

I-V curve and SR cases, as the electric charges have to pass through (all) other 

junction(s) due to their series connection. Therefore, such measurements require special 

instrumentation and procedures, e.g. proper narrowband bias light together with 

appropriate compensating bias voltage during spectral responsivity measurement. 

Furthermore, the devices that were specifically investigated in this proficiency testing are 

made of two junctions (for which they are named double-junction or tandem PV devices) 

consisting of amorphous and micro-crystalline silicon. These materials are known to have 

some inherent instability. Therefore, ESTI had to first stabilise the devices following 

international standard procedures and then calibrated them. The devices were then 

circulated with a round-robin approach to the twelve participants of the proficiency test, 

not all of which had the expertise nor all the facilities to fully measure MJ PV devices. 

However, this was part of the campaign and one of the reasons for which ESTI was 

chosen as its reference laboratory, as good practice and expertise in MJ PV device 

measurements are both far from being routinely available at many laboratories in the 

world. At the end of July 2017, the devices were returned to ESTI for the final calibration 

that had to close the proficiency test. As the whole exercise lasted more than 1.5 years, 

ESTI first calibrated them as received (following the same instructions given to all 

participants) and then after repeating the initial stabilisation procedure. An example of 

the results from all participants are shown for one device in Figure 14. All the results 

(including those by ESTI at the end of 2017) were compared and are shown in terms of 

their deviation from ESTI original calibration value generated at the beginning of the 

proficiency test (corresponding to the horizontal axis in the plot). From the compiled 

results (whose detailed data analysis was finalised by ESTI in 2018) a variety of 

conclusions can be drawn. These include the proficiency of the participants to measure 

MJ PV devices and the stability of the circulated devices over time. For example, the 

shown device clearly changed during the round-robin because after its return to ESTI the 

first measured maximum power value (the green triangle just after the vertical blue-

dashed line) was more than 4% higher than at the beginning. After stabilisation the 

maximum power returned to its original value, proving that the stabilisation procedure 

required by the IEC standards is reproducible. It also shows that it is necessary, although 

not sufficient, to reliably calibrate this type of devices. 

Due to the observable change of the devices, the participants measuring towards the end 

typically found higher values of the maximum power compared to the ESTI original value. 

All these observations will be evaluated in more detail using all available information and 

published in a peer-reviewed paper currently under preparation.  
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Figure 14. Results of proficiency test of MJ PV device measurements shown as deviations from the 

original reference value provided by ESTI at the beginning of the round robin. 

 

 

4.2 Reference devices for clients and partners 

In 2018 ESTI calibrated a number of reference devices for clients and partners. Table 8 

gives an overview. A short description of each case is given in the following sub-sections. 

Table 8. Overview of ESTI calibration certificates for clients and partners under its ISO/IEC 17025 

accreditation as calibration laboratory. 

Client ESTI job code Number of calibration 

certificates issued 

CENER (Spain) DC-18-TY 

DC-18-UG 

3 

5 

UCY (Cyprus) DC-18-UE 2 

PV Lab (Germany) DC-18-UH 5 

CSIR Energy Centre (South Africa) DC-18-UM 2 

EURAC Research (Italy) DC-18-TQ 

DC-18-UQ 

1 

3 

Loughborough University (UK) DC-18-UO 5 
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4.2.1 CENER 

JRC-ESTI has been providing PV reference cell calibration to CENER (the Spanish National 

Renewable Energy Laboratory) since the beginning of 2001. The work reported here was 

covered under a Memorandum of Understanding (MoU) as of January 2007. CENER uses 

these PV reference cells calibrated at ESTI to further calibrate PV devices for its clients. 

Hence, essentially ESTI provides the traceability chain for irradiance measurements (see 

section 2) to CENER and, through it, to its clients. This is in the framework of 

international harmonisation of PV device calibration and their traceability. 

4.2.2 PV Lab 

JRC-ESTI is collaborating with the German independent laboratory PV Lab in the field of 

PV solar energy for technology monitoring. This work is in support of the European 

Regions. ESTI provides PV Lab with traceable calibration of their PV reference solar 

devices, which are then used in their regional projects. This is in the framework of 

international harmonisation of PV device calibration and their traceability. 

4.2.3 CSIR Energy Centre 

JRC-ESTI is collaborating with the Council for Scientific and Industrial Research (CSIR) 

Energy Centre PV testing Facility, which is envisaged to be the premier PV research and 

testing laboratory in South Africa for the local provision of credible safety, reliability and 

performance measurements of PV modules and systems. CSIR will use PV reference 

devices calibrated at ESTI to further calibrate PV devices for its clients. Hence, also in 

this case ESTI provides the traceability chain for irradiance measurements to CSIR and, 

through it, to its clients. This is in the framework of international harmonisation of PV 

device calibration and their traceability. 

4.2.4 Loughborough University 

JRC-ESTI is collaborating with the Applied Photovoltaic Research Laboratory of the 

University of Loughborough in both material assessment, through measurements of PV 

performance, and technology monitoring. ESTI provides the University of Loughborough 

with traceable calibration of their reference PV devices, which are then used in their 

regional projects. This is in the framework of support to European universities for the 

traceability of solar irradiance measurements. 

4.2.5 University of Cyprus 

JRC-ESTI provides the University of Cyprus with traceable calibration of their reference 

solar cells and PV modules. This is in the framework of support to European universities 

for the traceability of solar irradiance measurements. 

4.2.6 EURAC Research 

ESTI is collaborating with the laboratory EURAC Research (based in Bolzano, Italy) in the 

field of PV solar energy for technology monitoring. This work is in support of the 

European Regions. ESTI provides EURAC Research with traceable calibration of their PV 

reference solar devices, which are then used in their regional projects. This is in the 

framework of international harmonisation of PV device calibration and their traceability. 
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5 Verification and validation of prototype PV devices 

The ESTI laboratory also serves as an independent reference laboratory for the 

verification and validation of prototype PV devices, based on its experience and 

measurement capability. Since many years, ESTI co-authors the world record efficiency 

tables published twice a year in Progress and Photovoltaics [11, 12] and is one of the few 

world laboratories recognised as fully capable of independently verifying claims on 

exceptional performance of PV devices.  

The most recent claim verified by ESTI occurred in 2018 and requests for two more 

concerning the emerging technology of perovskite (see also section 7.3.4) have been 

very recently received and will be reported in the future.  

5.1 Co-authorship on world record PV efficiency tables 

Based on the long term experience and the high level for PV device calibration at ESTI, it 

is currently co-author on the world record efficiency tables published twice yearly [11, 

12]. Results submitted for inclusion in the tables are critically reviewed by the board of 

authors.  

5.2 Innovative hybrid PV device 

An innovative hybrid PV device, combining crystalline silicon technologies and a 

traditional thin-film technology was proposed and filed for patent. ESTI was asked by a 

potential investor to independently assess the electrical performance of the device for 

comparison with the manufacturer’s claims made. Prototype devices were delivered to 

ESTI, measurements made on them and the results provided to the contractor. 
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6 Deployment of knowledge 

Thanks to the expertise and knowledge on PV built since its foundation, ESTI is regularly 

approached to help in the broadest dissemination of its knowledge, in particular when it 

comes to set up (also from scratch) and improve PV test laboratories, their 

ISO/IEC 17025 accreditation and/or their proficiency.  

6.1 CSIR SA 

Among these requests, in the course of 2018 a collaboration was agreed between the 

JRC and the Council for Scientific and Industrial Research (CSIR), Energy Centre PV 

Testing Facility, which established to support the development of solar technologies in 

South Africa. The facility is envisaged to positively contribute to the deployment of PV by 

providing support for local and national policy makers, as well as project developers and 

engineering, procurement and construction contractors. 

In addition to the calibration services for the CSIR PV reference devices, thus providing 

traceability to the SI units as already described above, the JRC offered that ESTI could 

provide assistance in the following fields: 

● CSIR preparation for ISO/IEC 17025 accreditation 

ESTI could share its approach to quality, procedures and objectives and help in 

determining the uncertainty calculations for specific tests that would be performed 

at CSIR, thanks to the many years of experience that ESTI has spent in operating 

under the ISO/IEC 17025 scheme. By this, ESTI is meant to help the CSIR Solar 

PV Testing Facility in setting up their ISO/IEC 17025 system, including hosting the 

quality officer from CSIR to discuss with ESTI quality officer. 

● Training to IEC 60904, IEC 61215 and IEC 61853 international series of standards 

The ESTI laboratory could host members from the CSIR Solar PV Testing Facility 

for training in specifics of the individual IEC standards belonging to the above-

mentioned series, due to the significant contribution ESTI staff gave to their 

development and improvement. 

● Calibration of PV modules and participation in round-robin testing of PV modules 

ESTI could provide bi-lateral intercomparisons with the CSIR Solar PV Testing 

Facility, which would benefit from ESTI’s unique traceability chain and from the 

full incorporation of the World Photovoltaic Scale (WPVS) into it. As previously 

outlined, such intercomparisons are required as benchmarking activity under the 

ISO/IEC 17025 scheme and would build confidence in the CSIR performance 

measurements of PV modules for both the South African accreditation body and all 

the clients of the CSIR Solar PV Testing Facility. At a later stage, ESTI could 

introduce the CSIR Solar PV Testing Facility to international round-robin testing 

through its extensive peer laboratory collaborations. 

● Determination of measurement uncertainty for the I-V characteristics 

ESTI offers to provide guidance based on details of its own uncertainty 

methodology and calculations, also published in the scientific literature, using 

these as a good starting point for the determination of the final uncertainty of the 

I-V characteristics of the CSIR Solar PV Testing Facility. 

6.2 Workshop with Politecnico di Milano 

On Wednesday 14th November 2018 the third annual training workshop on the 

Integration of Photovoltaics in the Mediterranean Electricity Markets was held at the JRC 

premises jointly organised with the Politecnico di Milano. Some 50 participants from 14 

Mediterranean and African countries representing utilities, energy purchasers, 

economists, local and national governments and administrations attended the workshop.  
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Presentations from JRC staff were made concerning  

● The state-of-the-art of PV technologies;  

● The situation of African PV deployment with particular emphasis on the 

Mediterranean countries;  

● The applications and potential for the JRC PVGIS model to help planning 

deployment, management and monitoring of distributed installations;  

● The role that international standards play in ensuring the reliability and quality of 

supply from renewable energy sources. 

In addition an extensive tour of the dedicated facilities at the EST laboratory for 

characterisation and verification of PV technologies was a key feature for the participants. 
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7 Pre-normative research 

The ESTI laboratory is involved in a variety of activities which can be classed as pre-

normative research. On the one hand, measurement methods and procedures are 

investigated, either by devising new approaches or by improving upon existing ones. On 

the other hand, new and emerging PV technologies are also investigated from a 

metrological point of view. Often these devices have particular properties, which may 

lead to artefacts and unreliable results when conventional measurement techniques are 

applied. Therefore, the actual interaction between the devices under test and the 

procedures to measure them is investigated aiming at finding solutions for reliably 

achieving correct and reproducible results.  

7.1 Measurement methods 

ESTI has been partner in two EURAMET-founded metrology projects. The first was the 

ENG55 “PhotoClass” [29], which started in 2014 and ended in 2017, and the second, the 

“PV-ENERATE” [30], is one born from the knowledge foundation set in the previous 

project and is running since 2017 until 2020. In particular PhotoClass investigated 

several metrological aspects for the energy rating of PV devices. Some of the ESTI 

research continued also after the end of the project under institutional funding and is 

being included, for example, in the improvement of some of the IEC standards that are 

currently under revision with JRC-ESTI leadership.  

7.1.1 Temperature coefficients (TCs) 

The correct temperature measurement of the PV device and the dependence of the DUT 

electrical performance on temperature is the second most important parameter for 

evaluating the PV device energy rating, the most important being the total irradiance 

(already dealt with extensively above). During the PhotoClass project, ESTI extended its 

TC measurement capabilities in both temperature range and usable set-ups [31], so that 

state-of-the-art facilities are now available for PV devices ranging from reference cells to 

full-size PV modules.  

7.1.1.1 Intra-laboratory validation of ESTI TC measurements and procedures 

Traditionally, the TCs were measured at ESTI with a pulsed solar simulator (in this 

validation labelled GPS) where the DUT was enclosed in a thermally-isolated cabinet with 

a glass front door. The internal temperature of the cabinet was increased by electric 

resistive heating. This approach had a couple of drawbacks; firstly, the relative long time 

required to achieve temperature stabilisation and thus to complete the measurement of 

one device (typically just under a day), and secondly the relatively poor spectral 

irradiance of the solar simulator that was necessarily leading to significant additional 

contributions in the measurement UC, as the spectral mismatch of most typical PV 

devices (crystalline silicon) changes with temperature but could not be corrected for with 

this facility and procedure due to difficulties in reliably measuring such poor spectral 

irradiance.  

This issue had been successfully overcome before PhotoClass by implementing TC 

measurements under natural sunlight. However, the outdoors conditions under which a 

TC measurement can be easily and rapidly achieved are limited during the year. 

Therefore, during the PhotoClass project the same approach developed for the outdoor 

system was implemented and validated at the unique large-area steady-state solar 

simulator present at ESTI (APOLLO). Furthermore, the TC measurements were 

implemented also at the steady-state solar simulator (WACOM) dedicated to reference 

cells calibration, through a procedure specifically developed for it [31]. In the case of 

continuous (natural or simulated) sunlight, the heating is achieved and controlled by 

using the incident irradiance itself, a procedure that leads to typical measurement times 

of about 20 minutes, so that several devices can be measured on the same day one after 

the other. The spectral irradiance of the natural sunlight is almost perfectly matched to 
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the reference spectrum under permissible measurement conditions, so that all 

uncertainties due to spectral mismatch are negligible [31]. The APOLLO steady-state 

solar simulator available at ESTI has a much better spectral match than the GPS solar 

simulator, thus reducing the spectral mismatch contribution to the measurement UC. 

After the methods were fully implemented, an extensive intra-laboratory validation was 

carried out [31] with the use of En number assessment, keeping the outdoors results as 

reference due to the closer measurement conditions to the reference spectrum. Table 9 

shows the three principal TCs for a series of devices (from reference cells to PV modules) 

measured on all possible systems available at ESTI for each type of device. The detailed 

analysis with En numbers (not shown here) showed that all methods yield equivalent 

results and therefore are fully validated for use.  

Table 9. Results of the determination of TCs ( for short-circuit current,  for open-circuit voltage 

and  for maximum power) for a range of PV modules and cells obtained by various measurement 

set-ups at ESTI including the measurement uncertainties. 

Device Setup α 

[%/K] 

UC α 

[%/K] 

β 

[%/K] 

UC β 

[%/K] 

δ 

[%/K] 

UC δ 

[%/K] 

ADX00 

OUTDOOR 0.0568 0.0129 -0.3548 0.0765 -0.4631 0.0776 

GPS 0.0853 0.0576 -0.3543 0.0223 -0.4233 0.0618 

APOLLO 0.0517 0.0152 -0.3291 0.0287 -0.4268 0.0324 

GC01 

OUTDOOR 0.0526 0.0129 -0.3501 0.0765 -0.4696 0.0776 

GPS 0.1176 0.0576 -0.3639 0.0223 -0.4157 0.0618 

APOLLO 0.0518 0.0152 -0.3319 0.0287 -0.4360 0.0324 

ZZ71 

OUTDOOR 0.0425 0.0129 -0.3510 0.0765 -0.4678 0.0776 

GPS 0.0771 0.0576 -0.3535 0.0223 -0.4199 0.0618 

APOLLO 0.0318 0.0152 -0.3225 0.0287 -0.4332 0.0324 

TD81 

OUTDOOR 0.0621 0.0129 -0.3418 0.0765 -0.4677 0.0776 

GPS 0.0943 0.0576 -0.3471 0.0223 -0.4289 0.0618 

APOLLO 0.0612 0.0152 -0.3427 0.0287 -0.4624 0.0324 

AY81 

OUTDOOR 0.0589 0.0125 -0.3121 0.0765 -0.2386 0.0776 

GPS 0.0659 0.0071 -0.3234 0.0223 -0.2045 0.0234 

APOLLO 0.0668 0.0072 -0.3130 0.0287 -0.2292 0.0296 

NUF2 

OUTDOOR 0.0450 0.0060 NA NA NA NA 

GPS 0.0782 0.0575 NA NA NA NA 

APOLLO 0.0493 0.0147 NA NA NA NA 

PX305C 

OUTDOOR 0.0401 0.0060 NA NA NA NA 

GPS 0.0654 0.0575 NA NA NA NA 

WACOM 0.0470 0.0144 NA NA NA NA 

The validated methodologies were approved by the accreditation body that delivers to 

ESTI its ISO/IEC 17025 accreditation certificate as calibration laboratory and it was 

included in the flexible scope of ESTI accreditation scheme in 2016. The advanced UC 

calculation done for this validation also improved the ESTI best measurement capability 
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for TC measurements, as it proved that some UCs were overestimated and could be (and 

actually were) reduced. 

 

7.1.1.2 PhotoClass round-robin of TC measurements 

The next step was to compare the TC measurements with peer laboratories. Such 

comparisons have historically been sparse in the PV community and when reported had 

shown significant inconsistencies. In the more recent PhotoClass RR, on the other hand, 

a full consistency between all participants was found for the TC of the short-circuit 

current and for several devices of very different size and PV technology [32]. Figure 15 

shows the RR results including their uncertainties for the six participants (amongst them 

ESTI), which already visibly are consistent. This was again confirmed by En number 

analysis (not shown here). This is significant improvement over previously published 

results. Work is already in progress at ESTI to extend this achievement to the TCs of 

short-circuit current, open-circuit voltage and maximum power for a range of full-size PV 

module technologies.  

 

Figure 15. Comparison of the results for TC of Isc in the PhotoClass round robin. 

 

7.1.1.3 Building integrated PV: towards higher temperatures 

In building integrated PV (BIPV), the PV devices may reach higher temperatures due to 

the reduced natural cooling as a consequence of the building integration. Therefore, it is 

important to extend the temperature range beyond the 75 °C limit required by the 

standard IEC 61853-1 for the conventional power matrix [33]. ESTI was able to extend 

the measurement range on the APOLLO solar simulator under specific conditions and 

within a reasonable measurement time well above this temperature, currently up to 

85 °C. Figure 16 shows on the left examples of measured current-voltage characteristics 

at three different temperatures and on the right the maximum power over the full 

temperature range 25 °C to 85 °C. From this the TC δ is extracted as slope of the linear 

fit that is built on the measured data set.  
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Figure 16: Characterisation of PV module over extended temperature range: current-voltage 
characteristics at three different temperatures (left) and TC of maximum power (right). 

 

7.1.2 Linearity 

The concept of linearity of a PV device is usually used within the PV community as 

synonym of the proportionality of the PV device short-circuit current with respect to the 

incident irradiance, even though the IEC standard that derives its name from it deals also 

with more general linear dependences (e.g. linear dependence of maximum power on 

temperature, as shown just above). This is of importance as PV reference devices are 

calibrated at STC, which correspond to an irradiance of 1000 W/m2, but are then used to 

measure for example the power matrix [33] at irradiances between 100 W/m2 and 1100 

W/m2. Deviation of the short-circuit current of the reference device from the 

proportionality to the incident irradiance will directly contribute to measurement 

uncertainty.  

7.1.2.1 JRC project leader IEC 60904-10 

The linearity of PV devices is defined and assessed in the IEC 60904-10 [34]. The current 

ed. 2 has some shortcomings. The first and more important for the correct measurement 

of PV devices at any irradiance other than 1000 W/m2 is that the linearity, as intended by 

the common practice and use in PV mentioned above, is not defined as proportionality 

but rather as a generic linear relationship that applies as such to many dependences of 

the electrical parameters (such as short-circuit current or maximum power) on the 

environmental parameters (such as irradiance or temperature). Secondly, one method 

allowed to assess the linearity of short-circuit current towards irradiance, namely the 

two-lamp method, is only described experimentally without the required data analysis to 

obtain information from it that could be useful and above all comparable to the other 

methods allowed by the same standard. Therefore, the IEC 60904-10 is currently under 

revision and the (technical) project leadership has been assigned to ESTI. 

7.1.2.2 Linearity Round Robin 

Dealing with energy rating of PV technologies, the PhotoClass project included a RR 

intercomparison on linearity measurements [35].The APOLLO solar simulator at ESTI, 

which consists of 11 equivalent lamps that can be controlled individually in power and 

shuttering, was used to verify and include the two-lamp method in the RR. In order to do 

this, ESTI had also to develop the missing data analysis (see 7.1.2.3) so to compare its 

own results to those obtained by the other participants, who used other independent 

methods including SR. In general, a certain scatter of results between all participants 

was observed, partly coupled with relatively large measurement uncertainties (see one 

example in Figure 17). The data are not fully consistent, which is currently subject to 
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further investigation. However, it is noted that the results from the two-lamp method are 

in fact in between those of the other methods.  

 

Figure 17. Comparison of the results for non-linearity of a PV reference cell obtained by various 
methods in the PhotoClass round robin. The data for the two-lamp method (2Lamp) were obtained 

by applying the analysis reported in 7.1.2.3. 

 

7.1.2.3 ESTI improvement of the two-lamp method 

The PhotoClass RR on linearity measurements gave the possibility to ESTI to develop the 

necessary data analysis to compare results from the two-lamp method (basically applied 

only at NREL and as simple pass/fail test) to all other methods allowed by the standard 

IEC 60904-10 [34]. This subsection aims to giving some additional information on this 

achievement, although without giving full details that can be found in the literature 

references given in this whole section. 

The plain application of the two-lamp method as currently described in IEC 60904-10 ed. 

2 [34] to a reference cell that in the PhotoClass RR was known to be non-linear (Figure 

17) yields the upper data points (blue diamonds) in Figure 18. During the PhotoClass 

project, ESTI has implemented this method on the APOLLO solar simulator. A completely 

new data analysis had also to be developed to combine the local non-linearities to a 

global non-linearity, shown as the lower curve (with red dots) in Figure 18 [36]. This 

produced the advantage that the results from the two-lamp method can now be 

compared directly to all other methods and thereby checked for consistency.  
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Figure 18. Comparison of the results for non-linearity of a PV reference cell (same device as in 

Figure 17) according to current standard IEC 60904-10 ed.2 and the proposal for data analysis as 
developed at ESTI. 

 

7.1.2.4 Towards the N-lamp method 

The two-lamp method is very attractive as it is simple to implement, it provides 

measurement results in relatively short time (less than one day per device) and is a 

primary method, i.e. it does not require any reference device nor a priori knowledge 

about the DUT. Therefore, ESTI is working to further develop the scheme towards what it 

calls the “N-lamp method”, which is ideally and naturally suited to determine the non-

linearity of PV devices on the APOLLO solar simulator [37], as well as on any other set-up 

where more than two light sources are available. The final significant result is detailed 

non-linearity information over the entire irradiance range of interest in PV (from 100 

W/m2 to 1100 W/m2) in steps of roughly 100 W/m2 (as would be very useful for the 

power matrix measurements [33], for example). Figure 19 shows the irradiance 

dependence of the parameter R that has been introduced into this advanced 

methodology and strictly linked to the non-linearity of the PV device. Furthermore, the 

procedure and data analysis developed for the N-lamp method would reduce significantly 

the measurement UC (compare Figure 19 to Figure 18 which are for the same devcie). 

Most importantly this quantitative information about linearity can be used to 

quantitatively correct measurements for the effects of non-linearity via the parameter R, 

in the same way a correction is made for the spectral mismatch factor according to the 

IEC 60904-7 [38]. The uncertainty of the correction is more than ten times less than the 

actual effect in the example shown.  
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Figure 19. Comprehensive determination of PV device non-linearity with the N-lamp method on 
the same device as for Figure 17 and Figure 18. 

 

7.2 Bifacial PV devices 

The market share of bifacial crystalline Si PV modules has grown significantly over the 

last years, because they can produce additional output energy in comparison to 

conventional (monofacial) PV modules. This is achieved by the fact that both sides of the 

PV module, front and rear, are exposed to solar radiation and can thus absorb it, also 

utilising the light scattered from the ground and surroundings on the back side of the 

module. The International Technology Roadmap for Photovoltaic (ITRPV) anticipates that 

the bifacial concept is expected to grow to a 10% market share in 2018, 15% in 2020 

and to gain close to 40% market share in 10 years [39].  

There is little additional effort required to turn an advanced crystalline silicon cell 

architecture into a bifacial PV device. The main bifacial cell technologies are passivated 

emitter rear cell (PERC), passivated emitter rear locally-diffused (PERL), passivated 

emitter rear totally-diffused (PERT) and based on heterojunction with intrinsic thin layer 

(HIT) and different subsection, depending on the employed materials and production 

tools. For a PV module to become bifacial, the rear cover must be made of transparent 

material, for example glass or transparent plastic backsheets [40]. 

Currently, there is no international standard for measuring the I-V characteristics of 

bifacial modules. However, the draft technical specification IEC TS 60904-1-2 developed 

at the IEC TC 82 specifically on this type of devices is currently close to its publication 

[41] (due early 2019).  

Along with the development of the IEC technical specifications, different approaches have 

been developed and proposed for indoor [42, 43, 44, 45, 46, 47] and outdoor (under 

natural sunlight) [48, 49] measurement of bifacial PV devices (cells and modules). They 



39 

are schematically summarised in Figure 20. Most of them were finally included in the 

draft IEC technical specification and all of them have been tested also at ESTI.  

 

 

Figure 20: Schematic representation of the different approaches proposed for the bifacial PV 
modules testing (single-side illumination methods: indoor a1, a2, a3 and b) and outdoor e); 

double-sided illumination methods: indoor c) and d) and outdoor f) ). 

7.2.1 IEC TS 60904-1-2 

ESTI was member of the project team to develop the technical specifications 

IEC TS 60904-1-2 [41], which is due to be published early 2019.  

7.2.2 Indoor set-up 

The most convenient measurement for bifacial PV devices is indoors as the environment 

can be controlled more easily than outdoors.  

7.2.2.1 Single-side illumination: equivalent irradiance method 

The first verified indoor approach is based on the individual measurement of both sides of 

the device at STC (Figure 20 a1 and a2) by means of a single-sided illumination or 

single-source solar simulator with adjustable irradiance level (both pulsed or continuous 

large-area solar simulators) and this is currently the most used method for 

characterisation of bifacial PV modules [50, 51]. As for all high-efficiency PV modules, 

also for bifacial PV modules the capacitance effects can show up and as such should be 

managed (see section 4.1.1).  
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Figure 21: I-V curve of a bifacial PV module measured with single-flash forward sweep and with 

MF method using a pulsed solar simulator (left). Front and rear-side I-V curves of commercially 
available bifacial Si PV modules measured with MF method in a pulsed solar simulator. Note the 

different bifacialities and the kinks in the rear side curves due to partial self-shading on the rear 
due to junction box, label and frames. 

 

Figure 21 (left) shows the I-V curves of a typical bifacial PV module measured at ESTI 

with usual single flash (10 ms) and with multiflash (MF) methods at the same pulsed 

solar simulator. In general, for commercial modules, a difference of 2% to 3.5% is 

obtained. During these measurements, the side of the module not facing the solar 

simulator was covered by either a non-reflective or a black absorbing material in order to 

reduce the back-reflected light. The I-V curve of the illuminated side is then measured 

(first front side and subsequently rear side). The right plot in Figure 21 shows the front-

side and rear-side I-V curves of commercial bifacial PV modules measured at ESTI under 

STC with a black cover on the rear side. 

The bifaciality characteristics of such PV devices refers to the ratio between the main I-V 

characteristics of the rear and front side, typically at STC. This has been quantified with 

reference to bifaciality coefficients for the short-circuit current, Isc, the open-circuit 

voltage, Voc and the maximum power, Pmax. The latter is defined as: 

 


𝑃𝑚𝑎𝑥

=
𝑃max Rear

𝑃max Front

             

 

where PmaxRear and PmaxFront are the module maximum power measured when illuminating 

only the rear and the front side at STC, respectively. The coefficients are usually 

expressed as percentages. The bifaciality factors are calculated and then the 

measurement at equivalent irradiance level can be performed as defined in the IEC TS 

60904-1-2 (Figure 20 a3). Figure 23 and Table 10 show the measurements and data of 

measured maximum power at STC and equivalent irradiance levels for a representative 

bifacial module. 

 

7.2.2.2 Double-sided illumination 

The second approach is based on the simultaneous illumination of both sides of the 

bifacial device with 1000 W/m2 on the front and at least two consecutive different rear 

side irradiance levels. Different set-ups were considered including the measurement with 

a double-source solar simulator (Figure 20 b), tilted mirrors (Figure 20 c) [46, 47, 52] or 
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by using a diffuse reflector with known reflectivity placed at a specific distance behind the 

module (for example, a reflective white rear sheet as shown in Figure 20 d). 

7.2.2.2.1 Reflective rear panel 

This setup (Figure 22) allows for a simultaneous measurement of both sides with a single 

flash from the front and consists on a reflective rear surface parallel to the module [45, 

53, 54]. However, it shows several problems such as rear irradiance non-uniformity, 

need of the specifications of the reflector’s material and positioning which would result in 

a difficult implementation.  

 

Figure 22: Experimental setup for double-sided illumination using a well-defined reflector on the 
rear. 

 

 

Figure 23: Pmax as a function of average irradiance level on the rear side GR (for double-side 

illumination) and its single-side equivalent irradiance. The red line is the linear fit of the values and 
the green circles are the measured values at equivalent irradiance level of 100 and 200 W/m2. 
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Table 10. Output power values measured with single-side equivalent irradiance level method (Pmax 

GE) and with a double-sided illumination method using reflective rear panels (Pmax BiFiGR).  

 (%) GR (W/m2) GE (W/m2) Pmax GE (W) Pmax BiFiGR (W) Pmax (%) 

98 

0 1000 251.7 251.7 +0 

100 1098 273.4 271.9 +0.5 

200 1196 295.8 292.1 +1.3 

 

Despite a high rear-side irradiance non-uniformity around 20% on average for full-size 

modules (10% for mini-modules), higher than the technical specification requirement for 

double-sided illumination, similar results for Pmax are obtained with respect to the single-

side equivalent irradiance method [55]. This result agrees with previously reported works 

that showed that the non–uniform irradiance affects Isc and the voltage region from 0 to 

Vmpp but to a much lesser extent the Pmax. The suitability of this method for the 

measurement of bifacial PV Modules need to be confirmed with more tests in different 

module types and the rear-side irradiance should be improved by mean of new designs 

and materials of the rear reflector. 

7.2.2.2.2 LED simulator 

The setup consisting of a double-source solar simulator is considered in the draft 

technical specification IEC TS 60904-1-2 as a suitable method for double-sided 

illumination. However, this approach presents some problems at the PV module scale 

such as the logistics of timing two flashes, controlling the reflection from the environment 

and the added cost of using two controlled light sources instead of one [43, 45]. 

 

  

Figure 24: Prototype of LED solar simulator (right) and Solar spectrum AM1.5G, spectrum of the 
4000K LED simulator at 350 W/m2 and spectrum of a xenon Class AAA solar simulator at 

1000 W/m2. 
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Figure 25: IV curves measured with the equivalent irradiance single-side method and double-side 
illumination method. Front side only at STC and rear side at 200 W/m2 IV curves are also shown for 

reference. 

The prototype LED simulator developed at ESTI (Figure 24) has demonstrated very good 

performance, enabling illumination of the rear side of a bifacial module at variable light 

levels to above 300 W/m2. When combined with a commercial Class AAA pulsed solar 

simulator for the characterisation of a bifacial mini-module, double-side illumination 

produces similar results to those obtained with the Class AAA solar simulator using 

equivalent irradiance and single-side illumination (<1% difference). The non-uniformity 

below 5% means it meets the requirements of draft IEC TS 60904-1-2 [41] for use with 

bifacial modules. The spectral match to AM1.5G is outside Class C, but this may be 

compensated by a mismatch correction, or using the effective irradiance method. The 

uniformity of the LED simulator may also be readily adjusted, by changing the geometry 

or by varying the powering of individual LEDs, which may enable the performance of 

bifacial modules to be evaluated over the full range of outdoor conditions. The modular 

simulator design means that extension of the area to allow measurement of full size 60-

cell modules will be straightforward and at low cost. Further details can be found in [56]. 

7.2.3 Outdoor set-up 

Two outdoor approaches have been proposed consisting of an outdoor single side 

illumination with equivalent irradiance levels measurements (Figure 20 e) [49] similar to 

the indoor method and a double-side illumination with reflective cloth or surfaces in order 

to change the albedo from the ground included in the draft technical specification IEC TS 

60904-1-2 (Figure 20 f) [41, 48]. Basically, in the latter method, besides the STC 

measurement at 1000 W/m2 (GR = 0 W/m2), AM1.5G and 25 °C, Pmax of the module shall 

be measured at 1000 W/m2 ± 10% on the front side (or corrected to this value), plus 

different rear side irradiance levels GRi (i=1, 2 ,3…, for instance, GR1 <  100 W/m2, 100 

W/m2 < GR2 < 200 W/m2 and Gr3> 200 W/m2). [57] 

The Outdoor set-up for measurement of bifacial PV modules is shown in (Figure 26), 

where white stones have been placed on the surroundings to increase the albedo. Also 

indicated are the positions of 9 irradiance sensors on the rear side used to determine the 

uniformity of the rear side irradiance. The draft technical specification IEC TS 60904-1-2 

requires that the rear side irradiance uniformity is better than 10%. This has been found 

to be achievable under certain conditions and certain times of day (see Figure 27).  

The Current-voltage characteristics of a 4-cell mini-module have been measured both 

indoors and outdoors in order to compare the results for both single sided illumination 

and double sided illumination (Figure 28). The current is normalised to the value of the 

indoor measurement at 1000 W/m2. Indoor and outdoor measurements are found to 

agree closely for both the single sided illumination and double-sided illumination cases, 

demonstrating that the outdoor method can be usefully performed as long as rear side 

uniformity is below 10%. 
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Figure 26: Outdoor set-up for measurement of bifacial PV modules. 

 

Figure 27: Variation during the day. 

 

 

Figure 28: Current-voltage characteristics. 
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7.3 PV devices: Emerging technologies 

7.3.1 IEC TR 63228: standardisation activity on emerging PV 
technologies 

In the pre-normative context ESTI participated in an international group of experts 

working on the preparation of a document containing guidelines for assessing emerging 

PV technologies. The main aim was to reach broad consensus with other internationally 

accredited laboratories on measuring efficiencies of these devices. A contribution to the 

definition of best-practice methods for the measurements of emerging PV devices has 

been given through the preparation of a new IEC Technical Report on the “Measurement 

Protocols For Photovoltaic Devices based On Organic, Dye-sensitized Or Perovskite 

Materials”, has been voted positively and will be published in 2019. 

7.3.2 Organic PV: calibration and power matrix of large-area organic PV 
modules and mini-modules from two different manufacturers 

The main objective of these collaborations was to receive devices to characterize at ESTI 

(following the protocol developed previously [58]) and to improve the measurement 

protocols of both parties. An initial STC calibration of the devices at a solar simulator and 

a subsequent energy rating study based on indoor power matrix measurements has been 

initiated and currently running according scheduling (Figure 29). 

The manufacturers are two European companies working in the organic PV sector. The 

devices are roll-to-roll printed organic PV (OPV) devices based on different new organic 

materials. The modules have an area of 30x200 cm2 and 24 cells in series. The smallest 

mini-modules have area 10x15 cm2and 8 cells in series. 

The results of the measurements of these devices have been presented in a series of 

conferences and papers: 

— EU PVSEC 2017: "Power matrix measurements and energy rating analysis of organic 

PV mini-modules" [59]; 

— EU PVSEC 2018: "Indoor Calibration of Large Area Organic PV Modules" [60] 

— SEPV 2018: "Energy rating study of three different organic PV devices in five different 

climatic conditions: a comparative study with other PV technologies" 

 

Currently the large area OPV module under study has been setup outdoor under natural 

sunlight and I-V curves are repeatedly measured during the day every 5 minutes. An 

energy rating study of this device kept outdoor at different weather conditions is the 

main aim of this experiment. Periodically (once a month) an STC calibration of the device 

is performed indoor under solar simulator illumination in order to study the long term 

stability.  
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Figure 29: Picture of one large-area module under test, comparison of single flash and multiflash 
(MF) I-V curves, and plot of the power matrix measurements 

7.3.3 Large-area dye-sensitized semi-transparent modules 

The main objective of this collaboration was to test our internal protocol for the 

calibration of innovative PV devices, in particular the ones possessing a long response to 

a light pulse i.e. dye-sensitized solar cells (DSSC). In this case standard protocols cannot 

be applied and new procedures need to be adopted. Previous work was performed in our 

laboratory with small 1x1 cm2 DSSC. In this case we worked with a large area module of 

the same technology (Figure 30). 

The manufacturer is one company from Switzerland working in the DSSC PV sector. The 

device under test is a screen-printed DSSC PV large area semi-transparent module with 

an area of 30x200 cm2 and 24 cells in series. The measurements performed at ESTI 

consisted of a study of the time response of the device and subsequent calibration at STC 

indoor under continuous large area solar simulator. A protocol developed internally for 

the calibration of emerging PV devices in general and specifically for DSSC was tested in 

this case. The results have been summarised in a JRC technical report (JRC112321) and 

discussed with the company in a bilateral meeting. 

 

    

Figure 30: Picture of the large area module under test and analysis of the electrical parameters 
dependence from the sweep time in I-V curves. 
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7.3.4 Perovskite solar cells: test before calibration, light soaking and 

stability 

The main objective of this collaboration was to evaluate the contributions affecting the 

calibration of perovskite solar cells and propose solutions on how to better control them 

in order to improve the quality of the results, ensure more reliable power measurements 

and contribute to the development of new measurement protocols (Figure 31). 

The manufacturer of the perovskite solar cells under test is one research centre from 

Netherland working in the perovskite PV sector. The cells were prepared on glass-glass 

substrate and have an active area cell 1x1 cm2. The measurements performed at ESTI on 

these devices consisted of an initial evaluation of the time response under continuous 

light exposure and the optimization of the parameters for I-V sweep. Subsequently the 

effect of holding the cell at Voc or Isc for different time before performing the I-V sweep 

was studied and considerable differences in the I-V curves observed. Finally the short 

time stability of the performances under continuous illumination and their recovery in the 

dark were analysed. The results of the measurements of one of these devices have been 

presented in a conference (SEPV 2018 conference – Stability of emerging photovoltaics 

from fundamental to application). 

 

 

Figure 31: Poster presented at the SEPV 2018 conference (Stability of emerging photovoltaics 
from fundamental to application). 
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8 Conclusions 

Benchmarking, intercomparisons and proficiency tests have a crucial role to play in 

maintaining and improving the measurement techniques for solar irradiance and 

electrical performance of PV devices and to promote transfer knowledge to the European 

PV research community. Moreover, periodical intercomparisons are part of performance-

based quality-control checks for a calibration laboratory as ESTI working according to 

ISO/IEC 17025 and also highly recommended by the World Meteorological Organization. 

Since many years, and confirmed also for 2018, ESTI has played a leading role in 

intercomparisons for spectroradiometers, pyrheliometers and PV devices with 

international and European organisations from scientific as well as industrial sectors. 

ESTI has provided PV device calibration and connection to the PV traceability chain for 

clients and partners, has validated new PV technologies, has developed and/or improved 

new measurements methods for existing and emerging PV technologies. All this finds its 

final practical outcome and broadest out-reach activity in the application of what is 

developed and/or validated at ESTI into their standardisation in international standards 

for PV, as discussed in the Science for Policy Report [61]. 

Overall, the described activities underline the standing of ESTI as a true reference 

laboratory for the assessment of electrical performance of PV devices.  
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List of abbreviations and definitions 

AIST National Institute of Advanced Industrial Science and Technology, Japan 

AIT Austrian Institute of Technology, Austria 

AM Air mass 

ARC Anti-Reflective Coating 

BIPV Building Integrated PV 

CEA INES Alternative Energies and Atomic Energy Commission, National Solar 

Energy Institute, France 

CENER National Renewable Energy Centre, Spain 

CIEMAT Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, 

Spain 

CSIR Council for Scientific and Industrial Research, South Africa 

CV Calibration Value 

DSM Direct Sunlight Method 

DSR Differential Spectral responsivity 

DSSC Dye Sensitized Solar Cell 

DTU  Denmark Technical University, Denmark 

DUT Device under Test 

EKO EKO Instruments B.V., The Netherlands 

EMPR European Metrology Research Programme 

EMPIR European Metrology Programme for Innovation and Research 

ENEA Italian National Agency for New Technologies, Energy and Sustainable 

Economic Development 

ESTI European Solar Test Installation 

EURAMET The European Association of National Metrology Institutes 

FDIS Final Draft International Standard 

GSM Global Sunlight Method 

HIT Heterojunction With Intrinsic Thin Layer 

IEC International Electrotechnical Commission 

IEC TC 82 IEC Technical Committee 82 
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INTA National Institute of Aerospace Technology, Spain 

IPC International Pyrheliometer Comparison 

FhG-ISE Fraunhofer Institute for Solar Energy Systems, Germany 

ISFH Institute for Solar Energy Research in Hamelin, Germany 

ISO International Organization for Standardisation 

ISRC International Spectroradiometer Comparison 

ITRPV International Technology Roadmap for Photovoltaic 

JRC Joint Research Centre 

KCRV Key Comparison Reference Value 

LED Light Emitting Diode 

MJ Multi-junction (PV device) 

NIR Near Infrared light 

NMI National Metrology Institute 

NPC National Pyrheliometer Comparison 

NREL National Renewable Energy Laboratory, USA 

OPV Organic Photovoltaics 

PMOD Physikalisch-Meteorologisches Observatorium Davos, Switzerland 

PERC Passivated Emitter Rear Cell 

PERL Passivated Emitter Rear Locally-Diffused 

PERT Passivated Emitter Rear Totally-Diffused 

PSC Perovskite Solar Cell 

PTB Physikalisch-Technische Bundesanstalt, Germany 

PV Photovoltaic(s) 

RR Round Robin 

RSE Ricerca sul Sistema Energetico S.p.A., Italy 

SERIS Solar Energy Research Institute of Singapore, Singapore 

SI International System (of units) 

SR Spectral Responsivity 
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SSM Solar Simulator Method 

STC Standard Test Conditions 

TC Temperature Coefficient 

TÜV Technischer Überwachungsverein, Germany 

UC Uncertainty 

UCY University of Cyprus, Cyprus 

UEX Universidad de Extremadura, Spain 

UV Ultraviolet light 

VIS Visible light 

WPVS World Photovoltaic Scale 

WRC World Radiation Centre 

WRR World Radiometric Reference 

WSG World Standard Group 

WTO World Trade Organisation 
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