




11. Energy use and emissions 86

SUMMARY

Future trends in road transport promise to support the reduction of energy consumption, 
air pollutant and CO2 emissions from the transport sector. Vehicle electrification has 
certainly played a major role in this respect, both in terms of contributions towards 
improving local air quality and overall energy consumption and CO2 emissions 
(including in-use and life-cycle perspectives). However, combined with the other trends, 
especially as regards an increase in vehicle activities, the net reduction in transport’s 
contribution to overall GHG emissions and energy consumption might turn out to be 
less pronounced than expected. Future transport governance will need to ensure that 
the transport sector will be able to deliver both in terms of higher efficiency and 
lower energy consumption. This chapter presents some implications of future vehicle 
technologies as regards energy use and emissions.
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ENERGY USE AND 
EMISSIONS 

Transport represents almost a quarter of Europe’s 
GHG emissions and, together with heating, is the 
main cause of air pollution in cities. The transport 
sector has not seen the same gradual decline 
in emissions as other sectors: emissions only 
started to fall in 2007 and still remain higher 
than in 1990 (Figure 31). Within the transport 
sector, road transport is by far the biggest 
emitter, accounting for more than 70 % of all 
GHG emissions from transport in 2014. Between 
2007 and 2013, there was a decline in emissions 
from road transport (-10 %) due – among other 
factors – to the economic downturn. However, 
since then they have been picking up and by 
2016, final energy consumption in transport was 
comparable to that in 2005. 

From the point of view of air-quality-related 
emissions (e.g. for nitrogen oxides – NO2, primary 
particulate matter), a downward trend can be 
observed in the period from 1990 to 2016 for 
the transport sector69. Nonetheless, air quality 
in cities is still an issue which is linked to the 
transport sector mainly for the increasing NO2 
concentration in urban areas.

Achieving the UN’s Sustainable Development 
Goals (SDGs) requires reducing the pressure 
from the transport sector on the environment 
(European Economic and Social Committee, 
2018). To this end, the EC defined a strategy 
and a series of practical legislative actions for 
the period 2016-2018 (European Commission, 
2016b; European Commission, 2017c; European 
Commission, 2017e; European Commission, 
2018b) (see Chapter 8 on legislation and 
standardisation), including new CO2 emission 

targets for LDVs and HDVs for the period post-
2020 (European Commission, 2017c; European 
Commission, 2018b)70. The strategy is complex 
and very comprehensive, requiring all actors 
involved, including cities and local authorities, to 
play their role in delivering it. 

On 28 November 2018, the Commission presented 
its strategic long-term vision for a prosperous, 
modern, competitive and climate-neutral economy 
by 2050 (European Commission, 2018a). The 
in-depth analysis in support of Communication 
COM(2018)773 ‘A Clean Planet for all – A European 
long-term strategic vision for a prosperous, 
modern, competitive and climate neutral economy’ 
indicates that, in 2017, transport emissions, 
excluding international aviation and maritime, 
represented close to 22 % of total emissions.  
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GHG emissions from transport continue to rise 
and, in 2017, were 20 % higher than in 1990 
(excluding international aviation and maritime). 
The strategy (European Commission, 2018a) 
makes the shift to a clean, safe and connected 
mobility one of the top strategic priorities 
to deliver on the Paris Agreement and to 
ensure a competitive and climate-neutral EU 
economy by 2050. It highlights the possibility 
of decarbonising the transport sector by using 
alternative means of transport, connected and 
automated driving combined with the roll-out of 
EVs and enhanced use of alternative fuels.

While it recognises that different types of 
transport will have different needs, the strategy 
identifies road transport as the mode where 
electrification could be most suitable  
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Figure 31: Greenhouse gas (GHG) emissions by source in the EU-28 in 2015 (above) and its evolution in the period 1990-2015 (below)
Note: �* land transport includes international aviation but excludes international maritime
Source: own elaborations based on European Environment Agency (2012) and the EC's Directorate-General for Climate Action website68 
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(in particular for cars and vans, but also for buses, 
powered two-wheelers and e-bikes, and possibly 
urban delivery).  

In 2016, liquid fossil fuels represented 95 % of 
the energy consumed in the transport sector: air 
transport and waterborne transport relied almost 
entirely on petroleum products, road transport 
depended on petroleum products for 95 % of 
its energy use, and rail transport for 30 % of its 
energy use. The EU share of renewable energy in 
transport reached 7.1 % in 2016. 

In 2017, for the first time, petrol cars became the 
most sold vehicles in the EU ahead of diesel cars, 
constituting almost 53 % of sales. 

The role of biofuels in driving down emissions is 
discussed in Box 10.

Biodiesel is the most widely used form of renewable 
energy in transport with 11 million tonnes of oil 
equivalent (Mtoe) in 2016, followed by bioethanol 
with 2.6 Mtoe. The consumption of biofuels has 
declined slightly since 2014 from the peak levels 
registered in 2012. 

Biofuel mandates in the EU and elsewhere in the 
world require either an increase in agricultural 
production or a reduction in feedstock 
consumption by other sectors. If feedstock is 
made available because the use of crops for food 
is reduced, there is no induced change in land use 
although there is a conflict with food security. If 
feedstock production rises across the system as a 
result of the policy on biofuels, this will generally 
come with an increase in land use for agriculture, 
causing land-use change either directly or indirectly. 

Biofuels enable a reduction in GHG emissions 
even though tailpipe emissions are the same 

as for fossil fuels. Their GHG emissions reduction 
capacity is linked to the notion of ‘biogenic carbon 
content’ which – simply put – means the carbon 
released during combustion is sequestered from 
the atmosphere while the feedstocks were growing. 
Nevertheless, biofuel supply chains are dependent 
on fossil fuels from feedstock cultivation (including 
fertiliser applications) for conversion into drop-in 
fuels and distribution to point of use. For biofuels 
to contribute to net emission reductions, the 
sum of the carbon released by biofuels at every 
stage of their production and conversion and 
any associated emissions of CO2eq GHG must 
be less than the carbon emitted by using fossil 
fuels such as gasoline and diesel. Considering the 
wide variety of feedstocks and the soils on which 
they are grown, the performance levels in terms 
of emission reduction potential are different, 
with some enabling a reduction in emissions 
and others not contributing to any net savings 
compared to fossil fuels.  

box 10. �Decarbonising road transport with biofuels
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In 2016, renewable electricity in transport 
represented 1.9 Mtoe, and its contribution 
has recently increased significantly, with the 
vast majority being consumed in rail transport 
(only around 2 % in road transport) (European 
Commission, 2018a).

The average specific fuel consumption of the 
EU’s passenger car fleet dropped from around 7.4 
litres/100km in 2005 to 6.9 litres/100km in 2015. 
However, the average CO2 emissions from a new 
car sold in the EU rose by 0.4 gCO2/km in 2017 
to 118.5 gCO2/km, according to provisional data 
published by the European Environment Agency 
(EEA) (European Environment Agency, 2018a). 

Going forward, the decarbonisation of road 
transport will be key to achieving the EU’s 
climate objectives.

The European Road Transport Advisory Council 
(ERTRAC) has carried out a study on the technical 
feasibility of European road transport CO2 emission 
reduction by 2050. Within its CO2 working group, 
ERTRAC experts identified detailed measures for 
improving vehicle efficiency, making transport 
smoother, and reducing transport, and assessed 

their potential impacts by 2050. They also defined 
four road-vehicle-fleet composition scenarios with 
different degrees of fleet electrification (HE - highly 
electrified, HEH – highly electrified + hydrogen, ME 
– moderately electrified, and Mix – mixed scenario). 
JRC’s DIONE fleet impact model was used to derive 
quantitative scenario results (Krause et al., 2019). 
Figure 32 shows the resulting real-world CO2 
emissions under the different fleet-composition 
scenarios. According to the study, ambitious 
reductions in CO2 emissions from road transport of 
more than 60 % compared to 1990 (black line in the 
figure), are technically achievable by 2050. In this 
case, a combined approach of fleet electrification 
and technical measures for improving vehicle 
efficiency, making transport smoother and reducing 
activity, is required. 

Given the current market share and existing 
projects, in the study, EVs mainly refer to BEVs. 
However, the same results (tank-to-wheel CO2 
emissions) would be achieved with FCEVs. 

Alongside the EC’s long-term strategy, in the 
Global Climate and Energy Outlook 2018 
(Keramidas et al., 2018) the JRC analysed GHG 
emissions in transport (not only road) looking at 
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a broader diversification in the fuel mix across 
modes (electrification, biofuels, hydrogen, natural 
gas, synthetic fuels) as well as technological 
fuel-efficiency gains and other operational 
improvements. The results of the study show 
that global GHG emissions in transport could be 
halved between 2015 and 2050, contributing to 
mitigation of global warming to 2 °C and below 
by the end of the century (Figure 33).

From all the scenarios analysed in the different 
studies, it is clear that a significant contribution 
to reducing CO2 emissions from transport will 
come from vehicle electrification. The new 
European CO2 targets for passenger cars set an 
ambitious 37.5 % reduction of CO2 emissions in 
2030 compared to 2020 levels – this cannot 
be achieved without a significant market share 
of PHEVs, BEVs and FCEVs. This will be possible 
thanks to a significant reduction in the vehicle 
price expected in the coming years (Gómez 

Vilchez et al., 2017; Arbib and Seba, 2017) and 
to the wide availability of recharging points for 
users (European Parliament and Council of the 
European Union, 2014). 

In addition to CO2, EVs will have an immediate 
effect on air quality as they come with no tail-
pipe emissions, even if non-exhaust emissions 
from traffic remain, and there could be a switch 
of emissions from cities to rural areas where 
energy is produced (depending on the mix of 
energy sources used). In any case, where there 
is maximum human exposure (namely in the city 
centres), EVs represent a plug-and-play solution 
to improve the current situation. The JRC studies 
highlight the potential for synergies between 
air quality and climate policy, both in the global 
context of the Paris Agreement (Vandyck et al., 
2018a, Kitous et al., 2017) and at the city level 
for the Covenant of Mayors (Rivas et al., 2015; 
Monforti-Ferrario et al., 2018).
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Returning to CO2, it is important to underline 
that the effectiveness of EVs in reducing overall 
CO2 emissions also depends on the energy mix 
used to produce electrical energy and on the 
CO2 emissions from vehicle production and end-
of-life (EoL) (namely from its entire life cycle). 
A recent study from the International Energy 
Agency shows that when analysing the current 
energy production mix in the 35 most-developed 
countries, on average, EVs are able reduce 
overall CO2 emissions by 25-30 % (International 
Energy Agency, 2018b). Bearing in mind the 
improvements that will also come from the 
electric energy production sector, it is expected 
that this improvement will be even higher in the 
future.

If the EV market evolves as expected, the future 
challenge will certainly be in the effective 
management of the electricity grid which will 
need to cope with peaks of increased demand 
when thousands of vehicles simultaneously 
request electric energy to recharge their 
batteries (Paffumi et al., 2015). Support for 
this problem may come from FCEVs, where the 
production of the energy carrier and refuelling the 
vehicle does not need to happen simultaneously, 
as is the case for grid-based recharging of EVs. 
Whether FCEVs will reach sufficient maturity to 
enter the vehicle market on a large scale and a 
reasonable price remains to be seen. 

Finally, in addition to a change in the vehicles’ 
power train, energy efficiency gains can come 
from the intensity of transport activities and 
vehicle operations. 

Reducing transport activities can be achieved 
either by promoting life and work models which 
are less dependent on physical displacement, 
such as teleworking, video- or teleconferencing, 
etc., or by combining the transport and mobility 
needs of goods and people to cut the number 
of vehicles used. Public transport systems, ride-
sharing and car-pooling are all initiatives moving 
towards reducing the number of vehicles required 

to serve the same transport demand. As already 
mentioned, the complexity of the transport 
sector may jeopardise the effect of some of the 
aforementioned strategies (e.g. as recent evidence 
has shown (Barrios et al., 2018), if ride-sharing 
services attract large numbers of people from 
public transport, they will lead to an increase 
in overall energy consumption and pollution). 
Therefore, a new and more comprehensive 
governance of the transport system will be 
needed which aims to optimise the number of 
vehicles to serve the overall transport demand. 
Interestingly, support for this may also come from 
EV deployment. Indeed, a recent survey (Donati 
et al., 2015) has shown that EV users tend to be 
more parsimonious than others about the choices 
they make (in terms of distance travelled and 
use of the car). As discussed previously, affecting 
users’ perception of freedom with respect to 
their private or individual vehicle and their 
travel choices is the first and most effective 
way to reduce car use and therefore the 
related negative impacts of transport. 

The way in which a vehicle is operated 
introduces a very high degree of variability 
and unpredictability into energy consumption 
calculations71. Lighter and more aerodynamic 
vehicles will have better fuel economy, as will 
better road infrastructures. Truck platooning, for 
example, can reduce the energy consumption of 
vehicles following each other closely by reducing 
the aerodynamic resistance of the vehicles in 
the platoon (Alam et al., 2015)72. In addition, it 
is well known that improvements in traffic flow 
have a positive effect on fuel consumption. In 
reality, this is true for the ICE. EVs have a totally 
different efficiency pattern, the effect of which 
is clearly shown in Figure 34. The two curves for 
ICE vehicles achieve a minimum fuel consumption 
of between 100 and 120km/h. However, the 
minimum energy consumption for EVs is achieved 
at a much lower speed (30-50km/h). Thus, any 
improvement in traffic flow will increase the 
electric energy consumption. 

929211. Energy use and emissions



By combining the different factors contributing to 
energy consumption, a recent study has found that 
the reduction in energy consumption of vehicles 
that are electric, connected and automated can 
be lower than normally expected (in the order 
of 9 % (Gawron et al., 2018)). This means that if 
CAVs increase road capacity and more vehicles are 
attracted to the road, CAVs’ overall impact on total 
energy consumption is likely be negative. Along 
these lines, a recent microeconomic study has shown 
that the additional travel demand induced by CAVs 
can generate a rebound effect able to increase the 
overall energy consumption in road transport by up 
to 30 % (Taiebat et al., 2019). Similar dynamics may 
arise from the introduction of new transport options 
for last-mile freight delivery services (such as drones 
and automated robots). In spite of their limited size 
and weight and their potential to take LCVs off the 
road, drones are forced to go back to their hive due 
to limitations in weight and range (e.g. up to 2.3 
kg and 16 km, according to Paddeu et al., 2019), 
which can lead to higher energy consumption than 
that of conventional diesel vehicles (Figliozzi, 2017). 
Clearly, it is important to consider future transport 
governance where all the actors and solutions must 
be coordinated to achieve a system as efficient 
as possible for both its quality of service and its 
environmental impacts.

    The additional 
travel demand 
induced by 
connected and 
automated vehicles 
can generate 
a rebound effect 
able to increase 
the overall energ y 
consumption in road 
transport by up 
to 30 %. 
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SUMMARY

Future road-based mobility trends will imply dramatic changes in the technologies used 
both at the vehicle level (e.g. car, truck, bus, vans, two-wheelers or totally new equipment) 
and at the infrastructure level (roads, communication infrastructure, charging stations, 
specialised parking areas, etc.). While transport will become progressively free of its 
dependency on fossil fuels, new technologies will rely intensively on a variety of raw 
materials. Some of these have been flagged as critical for the EU economy, as well as 
different speciality materials which are largely produced outside the EU. In many cases, 
the availability of such materials is currently limited and controlled by a few countries. 
After a long-lasting dependence on oil-producing countries, the EU risks becoming 
subsidiary to new countries controlling the mining and refining of raw materials. The 
real risk is that certain raw materials could become the ‘new oil’ (Simon, 2018). This 
chapter discusses a shift in the environmental impacts from the use phase of vehicles 
towards their manufacturing and end of life (EoL) stages, highlighting the importance 
of implementing a life-cycle thinking approach. The efficient and clean recycling of 
materials at the EoL will reduce the pressure of material supply risks and contribute 
to the sustainability of future mobility.
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SUSTAINABILITY  
OF MATERIAL  

SUPPLY 
In line with current EU raw materials policy73 and 
SDG objectives, future mobility will have to rely 
on a sustainable, continuous and adequate 
supply of raw materials. A sustainable supply 
means being able to meet the demands from the 
economic sectors, without compromising natural 
and social systems. Supply can be assured by 
materials extracted within the EU (e.g. opening 
new mines or ramping up existing ones), by the 
sustainable supply of materials from non-EU 
countries, and by the provision of secondary raw 
materials from recycling waste and products in 
stock (the so-called urban mining74). 

Access to materials at reasonable prices will be 
necessary to prevent them from becoming a 
bottleneck in the development of new technologies 
and ambitious future mobility scenarios in the 
EU (Blagoeva et al., 2016). Hence, a challenge 
for future mobility is to ensure a stable supply 
of materials to meet the demand arising from 
new transport technologies and services. Special 
materials are essential for several key functions 
and components of future mobility technologies, in 
particular: batteries (essential for electrification), 
magnets (for high-efficiency engines), electronics 
(for connectivity and sharing), sensors (for 
automation and connectivity), and lightweight 
structural parts (for electrification and overall for 
robust and efficient vehicles and infrastructures). 
Supply risks for mobility concern several materials 
(e.g. Co, B, In, Mg, Pt, Pd, Ta, Sc, V, graphite and 
rare-earth elements), which have already been 
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identified as ‘critical’ for the EU75. Other materials 
could become critical in the near future (e.g. 
Li, Mn, Ni, Zr) due to their increased use in new 
technologies. The supply risks associated with 
electrification are discussed in Box 11.

There is also a high risk that materials strategic 
for the transition to low-carbon mobility will fuel 
conflicts in the world. In 2016, 55 % of the world’s 

cobalt was mined by the Democratic Republic of 
the Congo (DRC)77, including cobalt which was 
also mined illegally there. It is likely that the DRC 
will remain the main cobalt supplier in the future 
(Alves Dias et al., 2018). Since cobalt mining in 
the DRC has so often been linked to violence, the 
mineral has been dubbed the “blood diamonds of 
this decade” (Church et al., 2018). Despite the low 
percentage (below 5 % of global supply), illegal 
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The electrification of mobility will redefine, 
in particular, the market in traction batteries. 
The demand for lithium, cobalt and graphite 
is expected to increase exponentially in the 
coming decades (especially if the current battery 
technology is maintained). Future demand for 
several rare-earth elements (e.g. neodymium, 
praseodymium and dysprosium) will also grow as 
a result of their use in permanent magnets for 
electric motors (assuming the adoption of current 
technologies). On the other hand, the demand for 
some materials, such as platinum and palladium 
used in catalytic converters, is expected to decline 

(Lenson, 2016). Based on 2030 forecasts for the 
market penetration of EVs, it is estimated that 
the demand for lithium, cobalt and graphite will 
increase by about 25 times, and the demand 
for rare-earth elements by 10 times (Figure 35). 
These growth rates may be even higher if based 
on latest and more ambitious scenarios describing 
the uptake of EVs in 2030 and beyond76. However, 
the estimated demand for raw materials needed 
for developing electrification could be lower than 
expected if, for example, greater vehicle sharing 
in future mobility scenarios leads to significantly 
fewer EVs being used.

box 11. �Material supply in electrified mobility

Figure 35: Demand forecast in the EU for selected critical raw materials for the BEV, PHEV and HEV sectors
Source: European Commission (2018e)
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cobalt in the supply chain has greatly concerned 
battery end-users, mainly due to the corporate 
social responsibility impact on their businesses 
(Oxford Institute for Energy Studies, 2018). In 
future, sustainable manufacturing will avoid 
producing efficient and comfortable vehicles at the 
cost of social impacts on other countries. On the 
contrary, for future mobility to be environmentally 
and socially sustainable, the supply of critical 
materials should represent an opportunity for 
growth in several developing countries. 

The development of new shared mobility 
services could unlock new and more resource-
efficient solutions. For example, used traction 
batteries can be removed from EVs to be 
remanufactured and reused again in new vehicles. 
Alternatively, used batteries can be repurposed 
for stationary energy-storage applications (e.g. in 
residential or office buildings) to reduce the costs 
of storing energy systems in buildings, especially 
those equipped with renewable energy plants 
(Podias et al., 2018). Used batteries can also be 
extracted from vehicles for material recycling.

Reused solutions (for batteries or other vehicle 
parts) will ensure a more efficient use of raw 
materials overall. Remanufacturing, in particular, 
already represents a resource-efficient practice for 
reusing mechanic and mechatronic components. 
The 30 million spare parts remanufactured for 
cars and trucks each year represent more than 
50 % of spare parts overall, and have a market 
value of about EUR 12 billion (Weiland, 2012). In 
future, more remanufacturing processes are 
expected for electronic components, batteries 
and permanent magnet motors. These parts 
can be directly reused provided that design-for-
disassembly strategies are adopted to facilitate 
their extraction from EoL vehicles.

Overall, if vehicles and systems are well designed, 
such resource-efficient solutions are likely to 
partially reduce pressure on the supply of raw 
materials. Currently, this potential is only being 
exploited in part as these strategies are only 

beginning to emerge in the EU. However, they 
still have huge potential, especially for future 
big mobility companies managing large fleets of 
vehicles. 

Stocks of EV batteries in the EU (red arrows  
in Figure 36) could increase dramatically by 2030 
as the result of higher sales, remanufacturing 
and second uses. Although extending the lifetime 
of batteries (through remanufacturing and 
repurposing) could ensure more efficient use 
of raw materials, it might significantly delay 
the availability of secondary raw materials 
such as cobalt and lithium (Bobba et al., 2019).  
Reuse and recycling practices will have to 
be synergistically optimised since reused 
components will have to be recycled when their 
performance becomes too low. In the coming 
decades, it is expected that recycling processes  
for batteries will rapidly develop in order to 
optimise the recovery of raw materials (including 
fractions currently being lost) and the production 
of high-quality secondary raw materials  
(Mathieux et al., 2017).

The demand for novel raw materials combined 
with the progressive abandoning of fossil fuels for 
operating our future mobility will imply a shift in 
the environmental impact from direct emissions 
during the use phase of vehicles (as discussed 
in Chapter 11) towards their manufacturing and 
EoL stages, as well as to indirect impacts (due 
to e.g. electricity production). As anticipated in 
Chapter 11, the adoption of life-cycle thinking78 
allows for consideration of all the environmental 
impacts arising along the entire supply chain 
– from the extraction of raw materials to their 
processing during manufacturing, to the use 
phase up to vehicle disposal. This approach avoids 
future mobility shifting environmental impacts 
from one life stage to another or from one type 
of impact (e.g. climate change) to another (e.g. 
human toxicity). Life-cycle thinking implies taking 
into account all the different impacts that can 
arise from mobility, such as the potential effects 
on, among others, climate change, air quality, 
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human toxicity, eutrophication, resource and land 
use. Life-cycle thinking is also closely connected 
to the closing-the-loop target to achieve a 
circular economy (European Commission, 2015b). 
Synergistically applied, these concepts enable 
the identification and optimisation of the above-
mentioned resource-efficient solutions to reduce 
the overall impacts of future mobility.

Following a life-cycle approach, research was 
done into the environmental impacts of current 
EU mobility and future scenarios up to 2030 (Sala 
et al., 2019). This analysis assumed an increase 
in the future transport demand with constant 
material efficiency within the mobility system. 
The study concluded that the share of the impacts, 
for life-cycle stages other than the use stage (i.e. 
vehicle production, EoL, infrastructure production), 
could increase up to 220 %, depending on the 
type of impact considered. Among the emerging 
concerns, the growing use of critical and precious 
raw materials (such as gold used in sophisticated 
electronics for control, power conversion and 
battery management systems) was identified. 
If these additional material consumptions are 
achieved, they would provoke an increase of more 

than 30 % of the life-cycle impact on mineral and 
metal resource consumption79 and freshwater 
eutrophication. However, considering that future 
mobility may entail more efficient and circular 
use of materials in the vehicles’ life cycle, there 
may be potential benefits. Indeed, the improved 
efficiency of future mobility could reduce the 
overall impact of transport. For example, a 
recent study (Gawron et al., 2018) estimated that 
CAV subsystems could increase vehicle primary 
energy use and GHG emissions by 3–20 % (due to 
increases in power consumption, weight, drag, and 
data transmission). However, when the potential 
operational effects of CAV systems are included, 
the net result is a reduction of up to 9 % in energy 
and GHG emissions in the baseline case.

Another study (Soo et al., 2015) investigated how 
measures to reduce vehicle emissions in the use 
phase (as lightweight materials and multi-material 
components) have consequently created long-
term problems in terms of difficult recycling of the 
waste using current technologies. To improve the 
resource efficiency of future vehicles, additional 
efforts should be focused on better designs 
for disassembly and recycling solutions, such 
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Figure 36: Modelling of traction battery stocks and flows in the EU in 2030 taking into account a high development scenario 
for repurposing; the arrows’ thickness is proportional to battery flows
Note: the arrows’ thickness is proportional to battery flows
Source: own elaborations based on Bobba et al. (2019) 
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as reducing the use of metal accessories and 
fasteners, and facilitating the dismantling and 
recycling of interior and exterior trims (Tian  
and Chen, 2014). 

The production of traction batteries will also be 
key for the sustainability of future mobility. For 
example, Li-ion battery manufacturing (using 
composite cathode material for PHEVs) was 
relevant for all the impact categories assessed 
(Cusenza et al., 2019), while recovery of valuable 
materials (e.g. cobalt and nickel sulphates) and 
other metal fractions (e.g. aluminium and steel) 
are particularly relevant for several impact 
categories.

To summarise, the transition towards sustainable 
mobility in EU should be based on two pillars. 
First, greater attention should be paid to making 

production and vehicle EoL more efficient and 
reducing the related environmental impacts. 
Secondly, these benefits should not be nullified 
by more demand for mobility services. Greater 
impacts resulting from the manufacturing of new 
and more technologically advanced vehicles can 
be offset by improving the resource efficiency 
of the transport sector by means of more reuse 
and recycling. To benefit all those concerned, 
future automated, connected, decarbonised 
and shared mobility will need to address the 
social and environmental impacts due to the 
sourcing of raw materials for the vehicles. It will 
also have to be circular and optimised from the 
life-cycle perspective for the vehicles. It is only 
under these conditions that future automated, 
connected, low-carbon and shared mobility will 
be able to contribute positively to achieving the 
SDGs’ high targets.
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SUMMARY

Research into the wider impacts of CAVs is still at an early stage, especially as regards 
their implications for society and its values. CAVs are expected to reduce travel costs, 
increase accessibility, change land-use patterns and location choices as well as induce 
sustainability-oriented modal shifts in mobility (Milakis, 2019). CAVs may be beneficial in 
terms of social equity, providing access to private mobility for user groups currently not 
able to access it, such as the elderly or disabled. At the same time, CAVs and other new 
mobility solutions raise issues in terms of privacy, democracy and equity. As CAVs utilise 
multiple sources and sets of digitally stored personal data, keeping both personal and 
proprietary information safe is a key issue. CAVs will impact social hierarchies as they will 
change the use of public space, land-use patterns, living and working location choices, 
etc. They can either offer or limit physical mobility to specific social or identity groups. 
Their behaviour will not be fully predictable, thereby raising concerns of accountability 
and transparency, to mention but a few. Responsible innovation and good governance 
of CAVs must address the complexity of the issues at stake and try to create versatile 
mobility ecosystems that disrupt the monoculture of ‘automobility’ and respond to the 
potential benefits of other forms of sustainable and quality-of-life-focused mechanised 
and non-mechanised personal mobility. A network of European living labs can enable 
the introduction of new transport opportunities with the direct engagement of citizens 
to verify their usefulness in achieving the transport improvements they promise. This 
chapter sheds some light on the social dimension of the transition to CAM.
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PRIVACY, DEMOCRACY 
AND SOCIAL

FAIRNESS 
Technologies, including self-driving ones, are not 
autonomous – they (are made to) shape the worlds 
they are embedded in. CAVs are permeated with 
visions of the world in which they are deployed. 
As previous research has shown (Urry, 2004), 
automobility is a self-organising, non-linear 
‘technosocial system’ that spreads the world over 
and includes cars, drivers, non-drivers, roads and 
roadside infrastructure, petroleum and electric 
supplies, multifold artefacts, technologies, signs 
as well as regulatory apparatus. It also has 
profound impacts on the social aspects of work, 
entertainment and family. Suburbanisation, 
for instance, has been one impact of the car 
culture: the automobility culture has had wider 
social effects beyond providing seamless and 
effective mobility. It has created the automobile 
city, transforming the time-space ‘scapes’ of the 
modern urban/suburban dweller (Sheller and Urry, 
2000) as well as the automobile ‘subject’, together 
with his desires and performance of status, man/
womanhood and power (Böhm et al., 2006).

Therefore, transition to CAVs, as well as any 
transformation in the transport sector, should take 
into consideration social science findings about 
the challenges and impacts of an automobility-
dominated urban environment. CAVs may make 
demands on building new infrastructures, 
improvements and redesign of roads, regulation and 
human behaviour. They will also demand new skills 
and responsibilities from both users and non-users. 
Responsible innovation and good governance of 

CAVs must address these challenges while trying to 
create versatile mobility ecosystems that disrupt 
the monoculture of automobility and address the 
potential benefits of other forms of sustainable 
and quality-of-life-focused mechanised and 
non-mechanised personal mobility. Beyond the 
arguable benefits that CAVs will bring, reflecting 
on the transition must address questions about 
how CAVs will be embedded in society, as well as 
anticipating the social impacts beyond transport 
issues. Innovation and policy dealing with future 
transport challenges should create a responsive 
ecosystem involving and engaging different 
stakeholders who will be impacted by unforeseen 
changes in the social constellations created by new 
transport arrangements. 
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This chapter considers the possible implications 
of future mobility solutions on privacy, democracy 
and equity. As will be discussed, when considering 
the potential issues at stake, the creation of 
regulatory sandboxes and living labs is advised 
where new technologies and mobility solutions 
can be tested with the engagement of citizens and 
other stakeholders, allowing them to observe and 
influence any possible implications. 

 13.1 Privacy

CAVs and other connected mobility options 
collect, store and use data in multiple ways. The 
principles of ‘privacy-by-design’80, and ‘privacy-
by-default’81 should apply without any manual 
input from the end-user. The application of such 
principles must be reassessed time and again to 
fit both the societal expectations of privacy and 
developments in data applications in technology. 
Privacy-by-design should apply to broad sets of 
data, including personal identification, location- 
based service (LBS) data (location and time, 

destinations, travel time, etc.), LBS derivatives 
(habits or characteristics based on LBS data), 
video and audio surveillance and derivatives, 
pass-through (e.g. emails, photos, passwords, 
websites, music, videos, etc.), to name but a few. 
The principles of privacy must apply to a broad 
number of stakeholders who provide, use and 
store such data, including users, manufacturers, 
operating systems/control and application systems 
developers, mobility-as-a-service providers, 
maintenance and repair companies, insurance 
companies, enforcement agencies and regulatory 
bodies, once again to name but a few.

To keep up with innovation in CAVs, traditional 
automotive manufacturers are transforming their 
business models. Besides hardware, they are also 
producing innovative software that leverages 
the immense amount of data CAVs will generate 
to continuously improve CAV services for users. 
Under the EU’s General Data Protection Regulation 
(GDPR), any entity processing personal data on 
behalf of data controllers will also have direct 
obligations to safeguard privacy and data use. 
Stakeholders across the CAV value chain will need 
to enter into carefully structured agreements 
which identify each party’s obligations regarding 
the use and protection of personal data and the 
apportionment of risk where data breach may 
occur. This is particularly important as authorities 
can impose fines of up to 4 % of annual global 
turnover for breaches of principles governing data 
processing and data subjects’ rights under the 
GDPR.

Gaining the trust of stakeholders is key to 
the successful transition to CAVs. If users do 
not trust the fact that their personal data is 
protected and adequate safeguards have been 
put in place to ensure security and privacy, they 
will opt out of data use and sharing. This would 
significantly restrict the improvement of CAVs and 
the usability of their services. Stakeholders will 
conduct comprehensive data-protection impact 
assessments, analyse any potential exposure 
under the applicable data-protection legislation 
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and implement appropriate measures to ensure 
ongoing compliance. Such measures are to be 
applied as early as possible in the development of 
new CAV technologies, as privacy-by-design is an 
essential part of the GDPR.

As CAVs are fully connected to the world around 
them, the risk of hacking and security breaches 
is growing. This is important as it is not only 
personal data that may be compromised but lives 
may also be put at risk. During the process of CAV 
transition, manufacturers and other players across 
the CAV value chain must work closely together 
with regulators, certification entities, other key 
stakeholders and user organisations to establish 
a clear set of guidelines over the short to medium 
term and a formal set of regulations over the 
long term. Regulatory sandboxes may be applied 
to experiment with more flexible regulatory 
arrangements. 

 13.2 Democracy

Democracy is usually defined as a political 
system that provides the opportunity to choose 
and replace a government through free and fair 
elections; the active participation of the people, 
as citizens in political and civil life; protection of 
the human rights of all citizens; and a rule of law 
in which the law and procedures apply equally 
to all citizens (Diamond, 1999; Diamond, 2004). 
This may be translated into technology and 
mobility transitions as special attention to political 
and social fairness, social inclusion, privacy 
and human rights, as well as the transparency 
and accountability of all processes related to 
innovation and mobility.

Automobility has been dominated by economic 
visions of competitiveness and efficiency as well 
as social imaginaries of status, independence 
and comfort. It has arguably added social 
benefits while, at the same time, creating serious 
inequalities, social uncertainties and negative 
environmental impacts. (Re)creating a connected, 
automated and omnipresent car-dominated 

mobility ecosystem may impact citizens in multiple 
ways. Point-to-point CAM will limit situations of 
social inclusion by using ever-more public space 
for mobility infrastructure. Efficient and seamless 
transport systems may limit participation in the 
political process by hindering the access of specific 
cultural or social groups (either by pricing them out 
of using such systems or because they lack the 
skills to use them), as well as severely restricting 
the availability and use of public spaces for 
social and political interaction. 

As vehicles will be fully connected and users will 
not be driving, CAVs may also increase access 
to politically and socially relevant information 
through social media and other social platforms 
increasing the challenges posed by ‘filter bubbles’ 
(the intellectual isolation that can occur when 
platforms use algorithms to select information 
it is assumed a user wants to see), further 
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assisting the spread of a post-truth and post-
trust political culture (Bozdag and van den Hoven, 
2015). Therefore, innovation, development 
and the deployment of CAVs must anticipate 
and respond to potential social impacts on 
democratic principles such as accountability, 
transparency, trust and social inclusion.

At the opposite end of the spectrum, the 
benefits of future mobility, enhanced access, the 
declining social exclusion of vulnerable groups, 
connectedness, and sharing, may enhance political 
participation, engagement, and political inclusion, 
thereby widening the democratic process (Vecchio, 
2017).

To avoid the traps of policy push and regulatory 
blockage, regulatory sandboxes and living labs 
should be created in which innovators, citizens 
and other stakeholders may experiment together 
with new technologies. Involving and engaging 
knowledge of diverse stakeholders will ensure that 
innovation in CAVs includes complex social impacts 
and uncertainties. Regulators will learn and adjust 
regulatory regimes since CAV deployment requires 
constant regulatory adaptation. 

Beyond ethical considerations, societies have 
not yet found ways to meet societal concerns 
and expectations when developing new 
technologies that include machine learning, AI and 
multidimensional connectivity. For example, CAVs 
use machine learning to address the complexities 
of driving in different environments, terrains and 
social settings. In this sense, CAVs are not finalised 
products or fully formed technologies, nor will 
they ever be. The algorithms that drive CAVs are 
continuously updated with new data to handle any 
eventuality that may arise on the move. Machine 
learning in specific CAVs may be a fleet learning 
– any information that helps the system to better 
understand eventualities will be shared with all 
other CAVs within a specific, privately owned fleet 
rather than across the entire mobility system. One 
of the challenges to the democratic process lies in 
this ‘privatisation of learning’, which jeopardises 

both public trust and the potential long-term 
benefits of CAVs discussed in previous chapters. 

The politics of algorithms, also in transport 
technologies, is key for the future of democracy. 
In many ways, algorithms tend to be ‘black boxes’: 
devices which can be viewed in terms of inputs 
and outputs but without any knowledge of their 
internal workings. In addition, as algorithms that 
enable CAVs to navigate the complexities of 
their environments become more specialised and 
complex, even their creators may no longer be able 
to understand them. Algorithmic accountability 
in terms of the legibility of algorithms is a major 
challenge. Algorithms in CAVs are tasked with 
engaging with uncertain and complicated 
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environments, the complexities of which cannot 
be captured by a set of simple and formal rules. 
Therefore, a ‘right to explanation’ (Goodman 
and Flaxman, 2016) is required as algorithmic 
decisions may have a profound impact on  
people’s lives. 

In addition, incorporating social and ethical 
values, as well as other societal concerns must be 
reflected in the design of CAVs as AI systems. For 
CAVs to be safe, trusted and accepted, AI should 
be designed to take up ethical considerations 
and moral consequences in an accountable, 
responsible and transparent way82. This may 
include ethical considerations beyond privacy 
and data security, including ethical dilemmas in 
different road-use situations impacting different 
stakeholders. Similar to privacy-by-design, ‘values-
in-design’ (Friedman et al., 2006 in Zhang and 
Galletta, 2006) methodologies are to be applied 
that have human values as their main focus. This 
process is a theoretically grounded approach to 
technology design that accounts for human values 
in a principled, systematic and comprehensive 
manner.

Following the principles of accountability, 
responsibility and transparency (ART) in 
algorithmic decision-making that enable CAVs 
to operate, special attention must be paid to 
democratising the process of (social) learning. 
Advances in machine learning should be made 
public and shared across the whole system and 
must not remain proprietary to just one company 
or technology provider. Frameworks and processes 
of responsible research and innovation (RRI) (Von 
Schomberg, 2013 in Owen et al., 2013) should be 
applied, paying attention not only to the risks and 
challenges of new technologies but also to public 
concern as to how and why specific innovations 
happen in autonomous mobility systems.

It is also interesting to note that disruptive 
technologies, CAVs included, claim to offer 
solutions to past social pathologies of 
technological development, such as inequality, 

social exclusion or ethical dilemmas. Innovation 
in CAVs suggests a special form of ‘solutionism’ 
that frames the present as deficient as regards 
a specific mobility technology fix that will provide 
an appropriate, technologically and socially 
beneficial solution – a situation referred to as 
‘technopoly’ by Postman (Postman, 1992). This 
is exemplified by claims that CAVs can provide 
a solution to human driving mistakes. While the 
number and gravity of accidents will probably 
be reduced, other problems, ethical challenges 
and social contingencies will emerge. Institutions 
and individuals need to build and develop an 
appropriate reflexive capacity to diverge from 
a technology-fix approach and focus on social 
learning, complex assessments of impacts and 
responsiveness to challenges thereof, both in 
the sense that people learn and assess impacts 
socially and that societies learn, reflect and 
respond constantly.

 13.3 Social fairness

CAVs are also discussed as vehicles for social 
improvement (Bilger, 2013). They are promoted 
as offering social benefits beyond efficiency, 
sustainability and connectivity. It is suggested 
that automation technologies practically remove 
the barriers to driving. They may enhance the 
potential mobility of those who are prevented 
from driving, such as the elderly or underaged 
population, people with medical conditions or 
those without a driving licence. Existing in-vehicle 
autonomous technologies, such as collision 
warning, lane-departure warning, parking assist, 
navigation assist, etc., are beneficial to older and 
less-experienced drivers, helping them to avoid 
accidents and improving their comfort. Such 
technologies can enable the elderly to use cars 
safely by compensating for the decline or loss of 
functional abilities (Eby et al., 2016). However, 
these user groups also have special needs when 
it comes to interacting with new technologies and 
tend to avoid or even reject them due to a lack of 
skills, ability or desire (digital divide) (Simões and 
Pereira, 2009). In addition, new pricing models 
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which attempt to address greater demand (both in 
terms of general road use and peak-hour use) may 
also adversely impact poorer user groups who 
may be priced out of accessing these new modes 
of mobility. 

A transport system is fair if, and only if, it 
provides a sufficient level of accessibility to all 
under most circumstances (Martens, 2017). In 
this respect, during the transition to CAVs, special 
care and attention should be given to vulnerable 
groups in accordance to the principles of justice 
which argue that social and economic inequalities 
must be arranged to the greatest benefit of the 
least advantaged. Insufficient or a lack of transport, 
as well as the lack of skills to use versatile and 
affordable means of transport, are the primary 
cause of people’s inability to escape poverty, find 
jobs, meet daily subsistence needs, including the 
social needs of spending time with family and 
friends. This is especially relevant in gendered 
contexts causing specific harm to women in need. 

In addition to CAVs, future transport will see 
the emergence of new mobility opportunities 
increasing the access of specific social groups to 
efficient and affordable public transport options. 
The wide availability of last-mile options, however, 
may hinder the choice of more active transport 
modes, such as walking or cycling, with negative 
impacts on public health. In addition, if new 
transport opportunities enter into competition 
with public transport and eventually contribute 
to reducing its efficiency, they can further limit 
accessibility for poorer social groups and thereby 
reduce transport equity. Interventions in the 
transport system are only socially legitimate 
as long as they have no detrimental impact on 
the accessibility levels experienced by those 
who already experience poor accessibility 
levels. One problem is that transition to CAVs 
requires major investments in roadside and other 
transport infrastructure. The high costs of new 
infrastructure may adversely impact vulnerable 
groups. Limited resources will cause the diversion 
of funds from enhancing traditional, public modes 
of transport, will reduce investment in new 
forms of public transport and infrastructure for 
traditional modes of transport, like cycling, and 
will obstruct the creation of urban environments 
that help reduce mechanised mobility and invest in 
non-mechanised mobility, such as improving the 
pedestrian infrastructure.

An additional risk in terms of equity lies in the 
optimisation of the system. Research results 
suggest that the traffic management systems 
that utilise data from CAVs can maximise the 
capacity of the transport system through dynamic 
congestion pricing, capping the number of vehicles 
using the system at any given moment, or even 
limiting vehicle ownership (Belov, 2017). This may 
also adversely impact poorer user groups who may 
be priced out of high-demand travel time slots. 
The traffic management system would be able to 
know the identity, position and transport activity 
of every vehicle user, at any given moment, 
including their history and their expected future 
behaviour. While technical solutions based on 
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CAVs may maximise the total benefit for society, 
the risk is that the cost of accessing the system 
would be regressive, becoming proportionally too 
high for the lower-income population and thus 
actually hurting vulnerable social groups. The 
combination of equity and privacy issues with the 
potentially higher degrees of automation in traffic 
management raises the question of democracy in 
transport activity. While the current conventional 
transport system allows for anonymous access to 
all, new solutions based on CAVs will highlight 
the trade-offs between individual freedom and 
system efficiency. 

As for privacy and democracy, and for equity 
and fairness, too, the complexity of the issues 
at stake makes it very difficult to anticipate all 
the possible implications of new mobility options. 
Setting up a network of European living labs 
where new mobility solutions can be tested with 
the direct engagement of citizens can help both 
public and private entities to ensure that the 
new options will be financially sustainable while 
simultaneously contributing to improving the 
transport system. 

Some ethical considerations are discussed in Box 12.
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A recent article published in Nature (Awad et al., 
2018) explored moral decision-making as regards 
AVs. The investigation presented volunteers 
worldwide with scenarios involving AVs and 
unavoidable accidents with pedestrians and 
passengers. Participants had to decide which 
lives the vehicle would either spare or take based 
on factors such as gender, age, fitness and even 
species of the potential victims. The results 
suggest that while there are some universal moral 
preferences across the globe (saving the largest 
number of lives, prioritising the young, and valuing 
humans over animals), ethics varied significantly 
between different cultures, sometimes leading 
to controversial moral preferences (e.g. 
discriminating against overweight or homeless 
people). The answer to the question whether the 
behaviour of AVs conflicts with the moral values of 
society can be a decisive factor for user acceptance. 

In Germany, an Ethics Commission on CAVs was 
established in September 2016, with experts 
from academia, society, the automotive industry 
and the digital technology sector. In June 2017, 
they delivered a report with 20 ethical rules as 
initial guidelines for policymakers and lawmakers, 
setting out special requirements in terms of 

safety, human dignity, personal freedom of choice 
and data autonomy (German Federal Ministry  
of Transport and Digital Infrastructure, 2017).

In the US, Google’s algorithms misidentified 
images of people with dogs and black people as 
gorillas. As AI expert Vivienne Ming explained, 
machine-learning systems often reflect biases 
in the real world. Some systems struggle to 
recognise non-white people because they 
were trained on internet images which are 
overwhelmingly white (Barr, 2015).

CAVs are made possible by major advances 
in AI and machine learning. However, in CAV 
advancement, the so-called Moravec’s paradox 
(named after Hans Moravec, an early robotics 
expert), seems particularly important. According to 
him “[T]he hard problems are easy and the easy 
problems are hard” (Pinker, 1995). The challenge 
that is particularly hard is that while driving is a 
relatively simple task, it is easy to create a set 
of rules that see driving as an engineering task 
so CAVs are then optimised to solve these tasks. 
However, the world of mechanised mobility is also 
a social world with many social and behavioural 
uncertainties.

box 12. �New ethical issues in transport
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SUMMARY

Transport and land use have a strong historical relationship. A disruption in the transport 
sector will have strong impacts on urban and land-use development. Without an active 
policy by local authorities, the reduced costs of travelling enabled by the new trends 
and technology options may put the vehicle back at the centre of urban mobility and 
intensify the problems that have affected urban living over the last century. At the same 
time, new technologies provide the tools to achieve a new comprehensive governance 
of the mobility options available in the city. Shared and individual transport, public 
transport and soft transport options should all help to satisfy peoples’ mobility needs 
in a sustainable and equitable way. City administrations must ensure that instead of 
competing for profit, all actors in the mobility landscape will cooperate in achieving 
this overarching goal. In addition to transport governance, cities have the option to 
rethink the urban fabric in order to reduce the need for mobility. In Europe, there 
are important initiatives and platforms to support the work of urban planners and 
promote the exchange of information and best practices. This chapter addresses ways 
in which cities can support the transition towards sustainable urban mobility.
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THE URBAN  
ROAD CONTEXT 

Mobility and urban development have always 
been strongly linked. Medieval cities were limited 
in size by the distance one could travel on foot. 
In the 18th and 19th centuries, urban expansion 
typically followed the paths of tram links (Xie 
and Levinson, 2010). The last major revolution in 
urban mobility began in 1885 when Karl Friedrich 
Benz received the first patent for an automobile 
powered by an ICE83. Some years later (1908), 
the Long Island Motor Parkway opened “the 
world’s first road designed and built for daily use 
of the automobile” (Patton, 2008). Since then, the 
private automobile has become an omnipresent 
component of the urban fabric and arguably has 
influenced the development of the modern city in 
ways far beyond any other single technology. 

In light of this, any revolution in both the mobility 
paradigm and transport system may generate 
a deep transformation of urban and land-use 
development. One of the main arguments is that 
the new technologies help to reduce generalised 
transport costs, and congestion in particular. 
This would cause a significant increase in the 
accessibility of many areas, favouring expansion, 
and would “render public transport superfluous 
except for dense urban areas” (Meyer et al., 
2017). To avoid this problem, it is very important 
that cities shape their needs in order to integrate 
new technologies in their overall transport 
system (Legacy et al., 2019). If they fail to meet 
that challenge, the risk is that vehicles rather 
than people will once again be at the centre of 
the mobility revolution, and any positive impacts 
potentially coming from the new technologies 
could be completely lost (Freudendal-Pedersen 
and Kesselring, 2016; Fraedrich et al., 2018). 

More urban challenges are addressed in  
the JRC report entitled ‘The Future of Cities’ 
(Vandecasteele et al., 2019).

The need for more sustainable and integrative 
planning processes to deal with the complexity of 
urban mobility has been widely recognised. New 
approaches to urban mobility planning emerge as 
local authorities seek to develop strategies that 
can stimulate a shift towards cleaner and more 
sustainable modes of transport.

Policies at the city level which favour the use 
of multimodal transport, increasing the density 
of services and promoting relocation close to 
working places, while limiting car access, will 
reduce the need for car-based transport in cities 
and hence transport-related negative impacts. 
Regulating access to parts of the city (through 
pricing or advanced traffic management systems) 
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is crucial in a traveller’s decision whether to drive, 
take public transport, cycle or walk.

There are several measures in which cities can 
invest to help the transition to sustainable urban 
mobility. 

Optimising public transport
The first and most important measure towards 
sustainable urban mobility is the correct 
optimisation of public transport.

To compete with the car, public transport must 
be fast, frequent and easily accessible. This may 
require action to ensure that buses and trams are 
not hindered by congestion. 

Cities can also promote denser (re)development 
close to high-frequency public transport stops. 
The network length (in road, as regards bus travel) 
required per person declines with population 
density (Figure 37). This means that the denser 
a city, the more cost-effective and efficient the 
public transport can be (i.e. fewer stops). Figure 37 
also shows that there is an optimal density, in the 
order of 1 000 people/km2, above which there is 
no significant further reduction in network length. 

Optimising public transport also implies efficient 
integration between the different available 
modes, so that they can be accessed and priced in a 
seamless and coordinated way. Online platforms can 
help a lot as a means of integrating the different 
transport options. Ride-sharing and ride-hailing 
services can both help to better connect the existing 
modes and solve the last-mile connection, which 
is usually the most important factor preventing 
the use of public transport. Online platforms can 
also offer their users other important incentives as 
they increase the perceived reliability of the service 
by providing real-time information on congestion, 
vehicle arrival times and occupancy rates. 

The optimisation of public transport faces many 
challenges. Highly subsidised public transport 

systems have always represented a significant 
cost for urban administrations. Security, safety, 
tidiness and comfort are other elements that 
discourage the use of public transport in favour 
of individual mobility options. Without integration 
into the urban mobility plan, new mobility services, 
such as car sharing, ride sharing and ride-hailing, 
can attract users from public transport thereby 
threatening its financial sustainability. The 
MaaS concept originates from the importance 
of avoiding such competition and integrating 
all the available options to make car ownership 
unnecessary. Governance of the system also plays 
a crucial role here. If MaaS means that users can 
always take a taxi, then the negative impact of 
traffic will not be reduced. The case of Helsinki in 
Finland is presented in Box 13.

    Any revolution  
in both 
the mobility 
paradigm and 
transport system 
may generate a deep 
transformation of 
urban and land-use 
development. 
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Figure 37: Population density and observed network length per person in European cities
Note: PT = public transport
Source: own elaborations based on Kompil et al. (2018)
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In the Finnish capital (and in a few other cities), 
companies offer the option to take out a monthly 
subscription to local transport, car sharing, bike 
sharing, car rental and taxi in order to make car 
ownership unnecessary in the city. The system 
provides city dwellers with different mobility 
alternatives that are easy to use, cheap, 
flexible and well-coordinated, competing with 
owning a private car. Users interact through 
a smartphone app that acts as both a journey 
planner and payment transaction platform. It is 
planned to expand the system to even further 
modes of transport such as ferries and other 
mobility solutions. 

The system’s main success is in the coordination 
of the different operators working in Helsinki. The 
process is not simple which is why it is still ongoing. 
In addition, from a public governance perspective, 
a few issues still need to be addressed. Without 
proper governance, such a system, which is 
based on a monthly subscription, may encourage 
the shift to individual mobility options (such as 
car sharing/rental or taxi), increasing the number 
of kilometres travelled and urban congestion. In 
addition, accessing the transport system requires 
a mobile phone and a credit card, which may 
represent a major barrier for some segments of 
the urban population.

box 13. �Case study: Helsinki (Finland) plans to make car ownership a thing of the past84
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Incentivising alternative modes of transport
In Europe, while car use has grown on average, in 
cities people have been making more use of other 
modes of transport. Capital cities have the lowest 
rates of residents using cars, with large variations 
between countries, ranging from more than 70 % 
in Nicosia to less than 10 % in Paris. Walking and 
cycling, for example, are important alternative 
transport modes in European cities. Some cities 
have been extremely successful in promoting 
these, with more than half the trips made on foot 
or by bike. Many other cities could boost walking 
and cycling by making such trips more attractive 
and convenient. An increasing number of cities are 
banning cars from certain areas of, or the whole 
city centre, freeing up the space taken by the 
road network and parking for alternative modes 
of personal travel (cycling, walking, personal 
light EVs), and additional public space for more 
creative uses (see the case of Pontevedra in Spain 
presented in Box 14). Cities are incentivising  

the use of multimodal transport and new 
alternative modes of transport (shared e-bikes, 
scooters, walking) by making them easier to use. 
Apps help to find the best way of getting from place 
to place, and bicycle-sharing points are already 
increasingly popular in cities of all sizes. In future, 
new transport governance enabled by CAVs could 
increase the number of options available to urban 
mobility planners. The infrastructure may be made 
available dynamically depending on the time of 
day and/or specific conditions. Vehicle access can 
be granted until an acceptable traffic density is 
reached. The key challenge for urban authorities is 
to acquire the necessary competences and tools to 
properly manage multimodal traffic. 

Reducing overall travel demand 
While new transport technologies have the potential 
to cut travel time and increase the convenience of 
travel, some alternatives applied at the city level 
may reduce the overall need for personal travel. 
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According to the philosophy of the mayor of this 
small city (80 000 inhabitants) in north-western 
Spain, “owning a car doesn’t give you the right 
to occupy the public space... People don’t like 
being told they can’t drive wherever they want, 
but while people claim it as a right, in fact what 
they want are privileges.” Cars were banned from 
the city, street parking was removed in favour of 
underground parking lots, surface parking lots 
were closed in the city centre and moved to the 
periphery, and roundabouts replaced traffic lights. 
Public spaces were redesigned, adding more 
green spaces, benches, playgrounds and enlarging 
pavements. And a metro-style pedestrian map 
was published to encourage walking in the city. 

Since these measures were implemented, benefits 
on safety, emissions, health, urban growth and 
the economy have been accrued: from 30 deaths 

in traffic accidents in the period 1996-2006, to 3 
in the subsequent 10 years, and zero since 2009. 
CO2 emissions are 70 % lower. Almost three-
quarters of the former car journeys are now made 
by walking or cycling. The city has gained  
12 000 new inhabitants. Small businesses in 
the city have benefited over large commercial 
centres85. Among the negative impacts, citizens 
complain about congestion on the periphery and 
a lack of parking spaces and public transport 
services from the periphery to the centre. Five-
minute parking areas to drop off children at school 
also appear to be missing.

This is an example of a policy that puts users 
at the heart of the city, as opposed to the 
conventional city model that focuses on private 
motorised vehicles. Other cities are now joining 
the car-free movement (Garfield, 2018).

box 14. �Case study: Pontevedra (Spain), ‘A Humanized City’ (Global Site Plans - The Grid, 2014)
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In particular, the future trend is going towards 
redesigning cities to decrease the need for travel. 
New urban developments are promoting higher-
density housing, thereby making public transport 
more efficient whilst also promoting a new ‘work, 
live, play’ urban model where all the necessary 
services/housing/entertainment are within walking 
distance.

Bringing services to the people
An increasing number of workers can now 
work away from the office. In 2017, in urban 
Europe, 14 % of the population teleworked 
at least once a week, reducing the need to 
commute. Online shopping has also increased 
dramatically recently, leading to fewer ‘shopping 
trips’. However, fewer requirements for 
personal transport were offset by more trips 
performed by last-mile delivery vehicles. The 
use of electric drones for last-mile delivery could 
replace traditional delivery trucks and reduce 
congestion and emissions (although in terms of 
energy consumption they will probably lead to 
an increase when compared to traditional diesel-

powered LCVs). Recent research has identified 
that up to 7.5 % of the EU-28 population 
could have access to home-delivery services 
(dispatched from drone beehives) if such services 
were legally authorised (Figure 38).

The EC promotes sustainable urban mobility and 
greater use of clean and energy-efficient vehicles 
through a number of initiatives. The 2013 
Urban Mobility Package sets out a concept for 
sustainable urban mobility plans (SUMPs) that 
has emerged from a broad exchange between 
stakeholders and planning experts across the 
EU. The concept describes the main features of 
a modern and sustainable urban mobility and 
transport plan. The European Platform on SUMPs 
supports the transition towards competitive and 
resource-efficient mobility systems in European 
cities by:

•	 �Supporting the further development  
of the SUMP concept and the tools required 
for its successful application by local planning 
authorities;

113113

Figure 38: �Percentage of population potentially covered by drone services and estimated return of drone delivery hives per country
Source: own elaborations based on Aurambout et al. (2019)
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•	 �Providing the Mobility Plans portal86  
to disseminate relevant information, 
publications and tools; and 

•	 �Facilitating coordination and cooperation 
across the different EU-supported actions 
through a coordinating group.

SUMP 2.0 has been driving the creation of new 
EU SUMP guidelines with respect to societal and 
technological developments and insights gained 
since 2013 in the implementation of SUMPs. 
Ultimately, SUMP 2.0 is helping to close the gap 
between urban planning and urban mobility. 

In addition to the European Platform on SUMPs, 
the EC helps European cities to tackle urban 
mobility challenges by:

•	 �Supporting exchange and capacity building on 
sustainable urban development through, among 
others, the European URBACT programme; 

•	 �Improving the quality and availability  
of data and statistics for urban transport 
systems, operations and decision-making at 
local, regional, national and EU level; and 

•	 �Providing financial support for urban 
mobility projects through EU Cohesion Policy, 
H2020, the Connecting Europe Facility (CEF), 
as well as other financial instruments.

The CIVITAS Initiative also helps cities across 
Europe implement and test innovative and 
integrated strategies that address energy, 
transport and environmental objectives. Almost 
60 European cities have been co-funded by the 
EC to implement innovative measures in clean 
urban transport – an investment amounting 
to well over EUR 300 million. The larger 
CIVITAS Forum Network comprises almost 200 
cities that are committed to implementing 
and integrating sustainable urban mobility 
measures.

11411414. The urban road context





THE WAY  
FORWARD

Technological drivers and new sharing trends 
are revolutionising transport. Policymakers must 
use this opportunity to ensure that the future 
of transport is cleaner and more equitable than 
today’s car-centred approach.

New technologies and new business models 
are transforming not only our vehicles but 
everything about how we get around and how 
we live our lives. 

However, on their own, new transport 
technologies will not spontaneously make our 
lives better without upgrading our transport 
systems and policies to the 21st century. 

Transport systems are extremely complex and 
their elements often influence each other in 
unexpected ways. New technologies alone may 
make traffic worse by reducing costs and raising 
demand, while also increasing overall energy use.

Uncoordinated competition among service 
providers and a lack of leadership by transport 
authorities could lead to more traffic problems 
and an unbalanced provision of capacity.

Under current trends, road transport will continue 
to be the main mode of transport in the future, 
with private cars having a dominant role and 
generating unacceptable costs for society. 

Thus, reducing the role of private cars has the 
potential to significantly reduce the impact of 
the transport sector without relinquishing our 
transport needs.

To ensure that the future of transport is 
cleaner and more equitable than today’s car-
centred approach, policymakers must improve 
governance systems and involve citizens in the 
roll-out of innovative mobility solutions.

Public authorities must define and coordinate 
all actors in the public interest to establish 
efficient and equitable governance for complex, 
multimodal transport systems.

EU policymakers should establish a network of 
European living labs where innovative mobility 
solutions are tested and rolled out with the direct 
involvement of citizens.

The massive changes on the horizon represent 
an opportunity to move towards a transport 
system that is more efficient, safer, less 
polluting and more accessible to larger parts 
of society than the current car-centred one.

15. The way forward 116





	 Endnotes 118118

  1 	� The term externalities refers to negative road transport side effects such as accidents, emissions, congestion, noise, etc.

 2	 �The development of a mass production and consumption economic model was initiated by the revolution in vehicle 

production processes. This economic model is also referred to as Fordism: https://www.britannica.com/topic/Fordism

 3	 �Thus, this contributes to achieving the UN’s Sustainable Development Goals (SDGs) (European Economic and 

Social Committee, 2018). In particular, Goal 11 (Make cities and human settlements inclusive, safe, resilient and 

sustainable), Target 11.2 says “by 2030, provide access to safe, affordable, accessible and sustainable transport 

systems for all, improving road safety, notably by expanding public transport, with special attention to the needs 

of those in vulnerable situations, women, children, persons with disabilities and older persons”. (Indicators and a 

Monitoring Framework, Launching a data revolution for the Sustainable Development Goals site, available at:  

http://indicators.report/goals/goal-11/ (last accessed 7 March 2019)).

 4	 European Commission’s site on biofuels: https://ec.europa.eu/energy/en/topics/renewable-energy/biofuels 

 5	 MaaS alliance: https://maas-alliance.eu/ 

 6	 �In 2021, 4-10 times cheaper per mile when considering investment and operation and 2-4 times cheaper when only 

considering vehicle operation with regard to individually owned vehicles today (Arbib and Seba, 2017). 

 7	 Baseline data used by the European Commission (2018a).

 8	 �The total cost of road congestion for the EU is estimated at 1 % of GDP but can exceed 2 % of GDP for some highly 

urbanised regions (Christidis and Ibáñez Rivas, 2012).

 9	 �Currently, there are over 2 000 FP7 and H2020 projects in the Transport Research and Innovation Monitoring and 

Information System (TRIMIS) database (https://trimis.ec.europa.eu/) which provides support for the Strategic Transport 

Research and Innovation Agenda (STRIA).

 10	 �In 2018, major companies collectively drove around 2 million miles in AV mode in California (McCarthy, 2019). There 

are varying levels of maturity across the available systems, with performances ranging from below one mile driven 

per disengagement (i.e. cases where a car’s software detects a failure or the driver perceives a failure, resulting 

in control being seized) to more than 11 000 miles (McCarthy, 2019). Making a conservative assumption that an 

accident would only occur in 10 % of the disengagements, the best-performing AV model would have an accident 

approximately every 100 000 miles. According to the US Bureau of Transport Statistics (https://www.bts.gov, last 

accessed on 21 March 2019) the current rate for normal cars is 1 accident every 500 000 miles. This shows that 

many years of continuous development may be necessary before all AVs become safer than normal cars.

 11	 �Road Safety: new rules clear way for clean, connected and automated mobility on EU roads, 13 March 2019, 

available at: https://ec.europa.eu/transport/themes/its/news/2019-03-13-c-its_en

 12	 �European Commission’s site on Cooperative, Connected and Automated Mobility (CCAM), Cooperation on cross-border 

testing of CCAM, Annex: Discussion within the European ITS Committee on Cross-border testing:  

https://ec.europa.eu/transport/themes/its/c-its_en  

 13	 �Vehicles with level-4 automation will represent a turning point at which the reference would be to car users rather 

than car drivers. As there will be no requirement to pay attention to driving (at least at specific conditions for level-4 

and at any condition for level-5 automation), the vehicle user will be free to use the travelling time for other activities.  

 14	 �Environmental Engineering news, Electric buses to connect Geneva airport: https://environmentalengineering.org.uk/

news/electric-buses-to-connect-geneva-airport-2993/

 15	 �JRC Powertrain Technology Transition Market Agent Model (PTTMAM): https://ec.europa.eu/jrc/en/pttmam and JRC-EU-

Times model: https://ec.europa.eu/jrc/en/scientific-tool/jrc-eu-times-model-assessing-long-term-role-energy-technologies
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 16	 �40 % of users in the 25-34 years age group compared to 23.4 % in the 45-54 years age group. Elderly people seem 

to prefer driving-assistance functionalities over partial or full automation (Abraham et al., 2016).

 17	 �Abraham et al. (2016) and Abraham et al. (2017) conducted a similar survey in two moments in time, to analyse 

users’ concerns about full automation.  

 18	 �In the context of this study, urban is defined as settlements of over 250 000 inhabitants.

 19	 �The number of vehicles might decrease significantly but these vehicles would be used more intensely (e.g. new 

users such as the elderly or disabled, empty vehicle travelling, and shifts from other modes).

 20	 �Among others, it is worth mentioning the UK Smart Mobility Living Lab (https://www.smartmobility.london/), the 

Slovenian AV Living Lab (http://avlivinglab.com/), the Catalonia Living Lab (http://catalonialivinglab.com/services/

public-roads/) and the JRC Living Lab for Future Mobility Solutions, currently under development. In addition to 

living labs, proving grounds for testing advanced vehicle functionalities in a safe and realistic environment are 

also being developed. The most advanced proving grounds are Astazero (http://www.astazero.com/) and ZalaZone 

(https://zalazone.hu/).

 21	 �For the sake of simplicity in the report, the term capacity is used to identify both the maximum number of vehicles 

a road segment can accommodate and the maximum number of vehicles a road network can serve in a given 

amount of time, which is usually referred to as network productivity.

 22	 �Travel costs, referred to as generalised cost of travel, are a combination of travel time, related monetary costs and 

other factors that can affect user’ preference for one route over another.

 23	 �This is defined as “user equilibrium” or “selfish Wardrop equilibrium” from the seminal work of John Geln Wardrop 

(Wardrop and Whitehead, 1952a and 1952b).

 24	 �A Braess-like network with one origin-destination (OD) pair and three routes is used in the study. Such a type of network 

has been widely used in the literature to show elementary phenomena related to traffic assignment and equilibrium.

 25	 �For example, the German Low Emission Zones (LEZ), Umweltzone, forbid vehicles with pollutant emissions over the 

limits set by the Air Quality Directive (Directive 1999/30/EC) from entering certain city areas.

 26	 For example, the Uber surge pricing algorithm. 

 27	 For example, the Solar Smart Charging project: https://smartsolarcharging.eu/en/

 28	 �The term V2X indicates different communication flows among different entities: vehicle to vehicle (V2V), vehicle to 

infrastructure (V2I), vehicle to pedestrian (V2P) and other possible flows. 

 29	 C-ROADS Platform website: https://www.c-roads.eu/platform.html

 30	 3GPP, Release 14: http://www.3gpp.org/release-14 

 31	 �European Commission’s site on CCAM: https://ec.europa.eu/transport/themes/its/c-its_en  

 32	 �Road Safety: new rules clear way for clean, connected and automated mobility on EU roads, 13 March 2019, 

available at: https://ec.europa.eu/transport/themes/its/news/2019-03-13-c-its_en

 33	 �Schaub (2017). For UK, see Automated and Electric Vehicles Act 2018, available at: http://www.legislation.gov.uk/

ukpga/2018/18/contents/enacted.

 34	 �Europe on the Move: Commission completes its agenda for safe, clean and connected mobility, 17 May 2018, 

available at: https://ec.europa.eu/transport/modes/road/news/2018-05-17-europe-on-the-move-3_en 

 35	 �Explanatory Memorandum (European Commission, 2018d).

 36	 �Art. 11 (European Commission, 2018d). 

 37	 �Directive 2007/46/EC on the approval of motor vehicles (Article 20) to be replaced by Regulation (EU) No. 

858/2018 on vehicle approval and market surveillance) (Article 39) from 1 September 2020 (European Parliament 

and Council of the European Union, 2018). 

 38	 �Guidelines on the exemption procedure for the EU approval of automated vehicles, 9 April 2019, available at:  

http://ec.europa.eu/growth/content/guidelines-exemption-procedure-eu-approval-automated-vehicles_en

 39	 �Road Safety: new rules clear way for clean, connected and automated mobility on EU roads, 13 March 2019, 

available at: https://ec.europa.eu/transport/themes/its/news/2019-03-13-c-its_en 
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 40	 �REFIT review of the Motor Insurance Directive, available at: https://ec.europa.eu/info/law/better-regulation/initiatives/

ares-2017-3714481_en. In this respect, see also European Commission (2018c).

 41	 �Call for expert on liability and new technologies, 2018, available at: https://ec.europa.eu/growth/content/call-experts-

group-liability-and-new-technologies_en 

 42	 �Public consultation on Recommendation on Connected and Automated Mobility (CAM), October 2018, available at: 

https://ec.europa.eu/info/consultations/public-consultation-recommendation-connected-and-automated- 

mobility-cam_en

 43	 �Most of the sources provide similar results for what concerns the impact that AVs have on VoT. According to the 

literature, VoT measures the willingness to pay for a unit of travel time (i.e. euros/hour), thus it represents the cost 

spent on driving. It appears that VoT is lower for AVs than for conventional vehicles since AVs offer travellers the 

opportunity to regain time formerly lost to driving as productive time (working, eating, sleeping). In this sense, 

the time spent in a car is less costly because of the opportunity to use travel time for leisure or economically 

productive tasks.

 44	 �European Alternative Fuels Observatory (EAFO), available at: http://www.eafo.eu

 45	 �Assuming an average battery size of 12 kWh for PHEVs and 40 kWh for BEVs, an import share of 95 % and a 

conversion rate equal to 0.86 USD/€.

 46	 �European Battery Alliance site: https://ec.europa.eu/growth/industry/policy/european-battery-alliance_en

 47	 �A video is available here: https://www.electrive.net/2018/11/13/altmaier-europa-soll-30-der-akkuzell- 

nachfrage-decken/

 48	 �If automation in the freight road transport sector leads to all goods being transported by road, the road transport 

system might collapse as a result of the higher demand for road space (Paddeu et al., 2019). This calls for an 

integrated approach among different modes of transport with the support of policymakers (Paddeu et al., 2019).

 49	 �Transport sector defined as the sum of economic sectors: C29, C30, H in NACE Rev. 2 classification.

 50	 �These data refer to the EU-28 aggregate calculated on the basis of available data from MS. JRC preliminary 

estimations suggest the BERD in the transport sector will reach up to EUR 42 billion in 2015 (Grosso et al., 2019).

  51	 �As defined in the context of the Energy Union Research, Innovation and Competitiveness priorities and the 

integrated Strategic Energy Technology Plan.

 52	 �Most recent year for which data for an assessment for the private sector can be provided.

 53	 �China’s plans for the electrified, autonomous and shared future of the car, 4 April 2019: https://www.economist.

com/briefing/2019/04/06/chinas-plans-for-the-electrified-autonomous-and-shared-future-of-the-car. 

 54	 �The term ‘patent’ refers to patent families, which include all documents (supplementary applications, or 

applications to different authorities) relevant to a single invention, to avoid multiple counting.

 55	 �Codes and subsets of Y0T 10/6xx, Y0T 10/7xx, Y0T 90/1xx, Y04S 30/1xx of the CPC classification.

 56	 �JRC SETIS (Joint Research Centre Strategic Energy Technologies Information System), Data collection and analysis 

on R&I investments and patenting trends in support of the State of the Energy Union Report, JRC.C7 Knowledge for 

Energy Union, 2018.

 57	 Number of firms per million people.

 58	 �From the World Economic Forum's global competitiveness report 2018 (World Economic Forum, 2018, as cited  

in KPMG International, 2019)

 59	 �NACE (Nomenclature statistique des Activités économiques dans la Communauté Européenne) Rev.2 (Eurostat, 

2008) two digits’ level. 

 60	 � Eurostat Labour Force Survey (LFS) data: http://ec.europa.eu/eurostat/data/database?node_code=lfsi

 61	 � European Jobs Monitor (EJM) database from Eurofound: https://www.eurofound.europa.eu/es/observatories/ 

emcc/european-jobs-monitor
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 62	 �The relative wage position indicator reflects the percentile that each sector occupies in a country’s wage structure. 

The wage indicator used is the median hourly wage in each occupation-by-sector combination in each country, 

a measure derived from European Earnings Structure Survey 2010 and European Labour Force Survey data. 

For more details, see: https://www.eurofound.europa.eu/publications/report/2017/occupational-change-and-wage-

inequality-european-jobs-monitor-2017 

 63	 �European Jobs Monitor (EJM) database from Eurofound: https://www.eurofound.europa.eu/es/observatories/emcc/

european-jobs-monitor 

 64	 �Land transport sector dependency on ICT-based and specialised equipment and products will increase in the 

future (CEDEFOP, 2014).

 65	 �European Jobs Monitor (EJM) database from Eurofound: https://www.eurofound.europa.eu/es/observatories/emcc/

european-jobs-monitor 

 66	 �European Jobs Monitor (EJM) database from Eurofound: https://www.eurofound.europa.eu/es/observatories/emcc/

european-jobs-monitor.

 67	 �European Commission’s site on Employment, social affairs and inclusion: https://ec.europa.eu/social/main.

jsp?langId=en&catId=782 

 68	 �EC’s Directorate-General For Climate Action website: https://ec.europa.eu/clima/policies/transport_en

 69	 �EEA National Emission Ceiling Directive Data viewer: https://www.eea.europa.eu/data-and-maps/ 

dashboards/necd-directive-data-viewer-1 

 70	 �Agreement between the Council and Parliament on the first-ever HDV CO
2
 emission reduction targets achieved on 

19 February 2019: https://www.consilium.europa.eu/en/press/press-releases/2019/02/19/heavy-duty-vehicles-eu-

presidency-agrees-with-parliament-on-europe-s-first-ever-co2-emission-reduction-targets/ The 2030 target for HDVs 

is a reduction of 30 % in CO
2
 compared to 35 % for LDVs for the same period.

 71	 �For a thorough review, please refer to Zacharof et al. (2016) and Fontaras et al. (2017).

 72	 �In reality, it seems that some manufacturers are cutting back their plans in this context given the lack of evidence 

regarding actual fuel savings (Campbell, 2019). 

 73	 �See Pillar 1 of Annex 2 ‘Strategic Action Plan on Batteries’ (European Commission, 2018a).

 74	 ��See, for example, the H2020 project ProSUM: http://www.prosumproject.eu/
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