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Executive summary 

For decades per- and polyfluoroalkyl substances (PFAS) have been employed in a variety of 

products intended for everyday use, such as cosmetics, food packaging, textiles and 

household products, as well as for specialised applications including mechanical components, 

electronics, medical devises, fire-fighting foams and biocides, which require unique chemical 

properties conferred by the extremely stable carbon-fluorine bond. They became a ubiquitous 

contaminant in different environmental matrices due mainly to intensive industrial production 

and inappropriate disposal. Chemical stability and mobility of PFAS have lead to their 

accumulation in soil, sediment, groundwater, surface water and atmosphere worldwide 

heavily impacting living organisms.  

The aim of this report is to increase the awareness of the public, scientific communities and 

policy makers on PFAS by providing scientific information on these “forever chemicals” and 

by presenting current state-of-the-art related to their presence in the aquatic environment. 

The report also describes initiatives under the umbrella of the European Green Deal that have 

been taken to mitigate the risk from PFAS as well as other actions at policy level to protect 

water, and indirectly human health, falling among the goals of the Water Framework Directive 

(WFD). 

Perfluoroalkyl acids (PFAA) and their anions constitute part of PFAS for which knowledge and 

regulatory guidelines are more complete. Among them, some compounds are greatly 

persistent while others are degraded to highly persistent congeners. Based on the number of 

carbon atoms in the alkyl chain, long-chain PFAA have been found to bioaccumulate in the 

environment and biota. Since the presence of PFAS was officially detected in human blood, 

the most toxic substances such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic 

acid (PFOA) have been gradually substituted by novel and supposedly less harmful PFAS, 

primarily short-chain PFAA. Further assessment proved their widespread environmental 

presence due to a high solubility in water and potential to long-term transport in aqueous 

matrices. Little information is available about perfluoroalkyl ethers which include 

hexafluoropropylene oxide dimer acid (HFPO-DA) and chlorinated polyfluorinated ether 

sulfonate (Cl-PFESA) produced as substitutes of the phased out PFOA and PFOS, however 

emerging evidence indicates that their environmental behaviour and human hazard are similar 

to the replaced substances. Additional threat is posed by branched isomers of PFAS generated 

as unwanted by-products when the intended linear isomers are synthesised using 

electrochemical fluorination (ECF). 

Among the wide range of adverse health effects observed in relation to PFAS, liver toxicity, 

imbalance in lipid metabolism and alterations in the immune system are more frequently 

described. Although concordant effects of PFAS exposure in humans and toxicological models 

have been reported for some of the legacy congeners, mode of action (MoA) and adverse 

outcome pathways (AOP) constitute major drawback for most PFAS in the evaluation of 

possible effects to organisms and humans. Other knowledge gaps which impede to perform a 

robust risk analysis, include the toxicity of PFAS in mixture with congeners and substances 

belonging to different chemical groups, their precursors and degradation products, especially 

considering sub-lethal and/or chronic effects. Available toxicological data are often 

noncongruent in terms of methodology and risk assessment approach. Moreover, the exact 

structure of many novel PFAS developed by the industry is unknown due to trade secret, while 

ecotoxicological data are still lacking for hundreds of commercially available and novel PFAS 

which substitute banned compounds.  

In the EU legislation, the recast of the Drinking Water Directive (DWD) included for the first 

time 20 PFAS to be analysed as two chemical parameters: the “sum of PFASs” intended as a 

sum of PFAS considered in the recast with the parametric (limit) value of 0.10 μg/L, and 
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“PFASs - total” meaning the “totality of per- and polyfluoroalkyl substances” with the threshold 

concentration of 0.50 μg/L. The monitoring of environmental waterbodies for PFAS under the 

WFD is only based on the concentrations of PFOS and its derivatives included among the 

Priority Substances (PS). The relative safety thresholds for those substances are defined by 

the environmental quality standards (EQS) established for surface waters and biota. 

Nevertheless, revision of current technical guidelines for EQS derivation is recommended to 

include also those endpoints which are based on molecular and genetic biomarkers. The use 

of specific in vitro bioassays complementary to standard PFAS detection methods would 

constitute an integrated approach taking into account the effects which result from co-

occurring substances in realistic samples. 

In future perspective, Chemicals Strategy for Sustainability towards toxic-free environments 

under the EU Green Deal will address PFAS and some of the related knowledge gaps. In 

particular, revisions of the current regulatory documents are aimed to reduce the emissions 

of PFAS to the environment and to establish their safety limits from dietary sources. Extending 

the assessment of PFAS as a group encompassing more substances instead of measuring 

chemicals one-by-one is expected to provide a better protection of human health and the 

environment. A coordinated mechanism at European level will be developed in order to 

simplify and synchronise the safety assessment of chemicals across various pieces of 

legislation, while further phasing out of PFAS for non-essential uses will be regulated under 

REACH. At global level, the concerns regarding the presence of PFAS in the environment will 

be targeted by the Basel and the Stockholm Conventions. 
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1. Introduction 

Per- and polyfluoroalkyl substances (PFAS) are a large group of organofluorine compounds 

including more than 4.700 synthetic substances (OECD, 2018) that since the mid-20th 

century have been widely used in commercial and industrial products due to their unique 

physical and chemical properties (ITRC, 2020), such as resistance to moisture, heat and 

stains. Recently, increasing body of scientific evidence has raised concerns regarding the 

threat posed to human and animal health by PFAS residues in the environment. While adverse 

effects of historically used PFAS are largely known, the toxic action of their novel substitutes 

is being suggested by the growing amount of data.  

Even though PFAS of major concern are well characterised, many others lack the CAS number, 

information about their physicochemical properties or harmonised data regarding their 

nomenclature which results in many synonym names. Moreover, the composition of certain 

PFAS is not clear which hampers performing risk assessment for individual compounds, 

therefore grouping of PFAS has been proposed to facilitate, in terms of time and costs, studies 

and determination of these substances in a wide range of matrices (Cousins et al., 2020). 

 

 

1.1 Properties and use of PFAS 

While some types of PFAS contain reactive sites, such as sulfonic or carboxylic acid groups 

(Figure 1), other types are considered chemically inert because they lack chemically active 

groups. The carbon-fluorine bond - a common feature of all PFAS - is the strongest one in 

organic chemistry (Natararajan et al., 2005) which makes these compounds extremely stable 

and resistant to degradation, both during their lifetime and in environmental settings. The 

latter feature has earned them the moniker “forever chemicals”, meaning that PFAS and their 

breakdown products, once discharged to surface waters, accumulate in the environment and 

may be transported over a long distance from the source of release. Removal of PFAS and 

their precursors through most conventional wastewater treatment processes is troublesome 

(Arvaniti and Stasinakis, 2015) and has been associated with increased PFAS concentrations 

in wastewater treatment plant (WWTP) effluent compared to influent (Post et al., 2012). High 

aqueous solubility of these compounds is of a serious concern as it facilitates their spread in 

water ecosystems, and in consequence exposure of aquatic biota and humans. Similarly, their 

high mobility in soil poses environmental risk due to accidental leakage and application of 

contaminated water or sludge in agricultural practice. The desirable physicochemical 

properties of PFAS, such as hydrophobicity and lipophobicity, chemical and thermal stability, 

surface tension lowering, dielectric properties, radiation and hot-acid resistance, confer them 

characteristics difficult to replace by surrogate compounds, therefore their extensive 

application in different fields has progressively increased over the years (OECD, 2013; ECHA, 

2018; ITRC, 2020). These characteristics are determined by a variable chemical composition 

and structure within PFAS category, which may occur together in one compound or, on the 

other hand, be a singular feature of a specific molecule. In result, many PFAS have a broad 

spectrum of applications, while others are specifically used in certain types of products. For 

example, some PFAS are commonly employed as emulsifiers, surfactants and coatings 

resistant to water, oil, grease, soil and dust, while other PFAS have the ability to create stable 

foams for fire extinguishers or are employed in the production of electronic equipment and 

components (KEMI, 2015; Concawe, 2016; OECD, 2018; ITRC, 2020). More examples of the 

main historical and current applications of PFAS in manufacture and commercial industries 

are briefly presented in Table 1, while description of their functionality in relation to 

commercial application is described in Table 2.  
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Table 1. List of the main applications of PFAS in industrial and consumer products. 

Industrial sector Type of material Use 

Automotive Raw materials for 

components and 

lubricants 

Wiring and fuel delivery tubing; low-friction 

bearings and seals; surface treatment for 

textiles (seats, carpets, leather and exterior 

surfaces); lubricants 

Aviation, aerospace 

and defense 

Mechanical 

components and 

hydraulic fluid 

additives 

Pipelines, seals, gaskets, cables, and insulators 

Cable and wiring, 

semiconductors 

and electronics 

Coating materials 

and insulators and 

raw materials for 

equipment 

Surface-treatment to protect from weather, fire 

and soil; working fluids in mechanical vacuum 

pumps; component material in cell phones, 

computers, speakers, etc. 

Building and 

Construction 

Coating materials 

and paint additives 

Additives in paint, ink, varnish, polish and 

coatings; film to cover solar collectors; surface-

treatment protection on fabrics, metals, stone, 

concrete, etc.; metal and plastic coating; 

adhesives and surface treatment agent 

Cosmetics and 

Personal Care 

Products 

Cleaning fluids, 

cosmetic and 

hygiene products 

 

Shampoos, hair conditioner, hand creams, nail 

polish, eye makeup, denture cleaners, dental 

floss and micro powders used in creams and 

lotions; oil and water repellent in sun creams 

and body lotions 

Fire-fighting Raw materials for 

components and 

equipment 

Fuel repellents, foam stabilizers and fire-

fighting foams; coating for fire-fighting 

equipment 

Food processing Food packaging 

materials and 

coating materials 

Oil /grease repellent on paper, cardboards and 

food packaging; Fast Food packaging; coating 

material in trays, ovens, grills 

Household products Nonstick coating 

materials and 

wetting agent in 

cleaning products 

Teflon production; floor polishing and cleaning 

agents 

Medical articles Raw materials and 

stain- and water-

repellents 

Surface-treatment protection on surgical 

textile; surgical patches; cardiovascular 

synthetic grafts and medical implants; video 

endoscopes; X-ray film 

Plant Protection 

Products 

Manufacture of 

biocides 

Active ingredients in plant growth regulators, 

herbicides and ants and termites baits; inert 

ingredients in pesticide formulations 
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Textiles and leather Raw materials for 

highly porous 

fabrics 

Surface-treatment oil, water and stain repellent 

on carpets, furniture, outdoor clothing, textile-

related articles and leather 

Data from CONCAWE, 2016, Appendix 1 in pp. 88-89; ITRC, 2020, table 2-4 in pp. 32-34; OECD, 2018, 
Table 1 and 2 in pp. 12-13.



 

 

9 

Table 2. Functionalities related to fluoropolymer commercial application. 

Commercial application 
Mechanical 

strenght 
Resistance to 

chemicals 

Nontoxic, biocompatible, 
biological degradation 

resistant 
Flexibility 

Low 
dielectric 
constant 

Resistance to 
photolysis, oxidation, 

hydrolysis 

Aerospace X X - X X X 

Automotive industry X X - X X X 

Medical devices X  X X - X 

Pharmaceutical manufacture X X X X - - 

Consumer outdoor apparel X  X X - - 

Technical clothing (military, 
firefighters, first responders, 
medical personnel) 

X X X X - X 

Consumer electronics X X - X X X 

Wireless communications X X - X X X 

Satellite navigation systems X X - X X X 

Semiconductor industry - X - - X - 

Building construction X - X X X X 

Energy production and storage X - - - X X 

Food and beverage production X X X X - X 

Food protection and packaging X X X X -  

Drinking water filtration - X X - - X 

Environmental protection - X X - - X 

Data adapted from Henri et al., 2018 
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1.2 Chemical structure and classification of PFAS 

The common feature of PFAS is the presence of perfluoroalkyl moiety CnF2n+1- with a variable 

number of repeats forming an aliphatic fluorinated carbon chain, in which all the hydrogen 

(H) atoms bound to the carbon (C) atom have been substituted by fluorine (F) atoms (Buck 

et al., 2011). This definition implies that at least one CH3- must be present in the molecule. 

More recently, OECD/UNEP (2018) described chemicals belonging to this class as every 

molecule containing the -CnF2n- group. Considering a rising concern related to the presence 

of PFAS in the environment, Buck et al. (2011) proposed an everyday-use terminology and 

classification of these compounds as a simplified alternative to standardized IUPAC or CAS 

nomenclature. Presently, PFAS are grouped in two main families encompassing:  

 perfluoroalkyl substances (‘‘perfluoro’’ and ‘‘perfluorinated’’ substances as 

previously described by Banks et al., 1994): aliphatic compounds with all H atoms 

of non-fluorinated precursor replaced by F atoms, with the exception of those H atoms 

whose replacement would change the nature of any functional groups present (Figure 

1A); 

 polyfluoroalkyl substances: aliphatic compounds in which not all H atoms bound to 

C atoms have been substituted by F atoms to form perfluoroalkyl moiety (Figure 1B). 

 

 
Figure 1. Skeletal structure of PFAS. Perfluoroalkyl substances (A), example of perfluorooctanoic acid 
(PFOA) exhibiting a full perfluoroalkyl moiety (blue frame) which may be present in other PFAS in a 

variable number. Polyfluoroalkyl substances (B), example of 6:2 fluorotelomer sulfonate (6:2 FTS) 
presenting hydrogen atoms (highlighted in bold) bound to the alkyl backbone. Besides the number of 
perfluoroalkyl moieties, different physicochemical properties may be conferred by the main variable 
functional groups (carboxylic or sulfonic, shaded fields) and by side groups or chains bound to selected 
perfluoroalkyl moieties. n: variable number of perfluoroalkyl moieties in PFAS molecules. 

 

Various ways of grouping PFAS exist following different aspects of their structure and 

properties. One of the most relevant ones is based on the presence or absence of repeated 

molecular units, according to which PFAS are classified in two respective sub-groups:  

 polymeric, composed of very long alkyl chains (e.g., reaching 180 000 C atoms in 

PTFE resins) including (i) fluoropolymers, (ii) side-chain fluorinated polymers and (iii) 

perfluoropolyethers. They are represented mainly by polytetrafluoroethylene (PTFE), 

fluorinated ethylene propylene (FEP), perfluoroalkoxy alkanes (PFA), ethylene 

tetrafluoroethylene (ETFE) (Henry et al., 2018). A more detailed overview of other 

different types of fluoropolymers is given by Gardinier, 2015. 
 

 non-polymeric, usually containing up to 13 C atoms in the alkyl chain and possible 

side chains, including (i) perfluoroalkane sulfonyl fluoride (PASF) and derivatives, (ii) 

perfluoroalkyl iodides (PFAI), fluorotelomer (FT) and based compounds, (iii) per- and 

polyfluoroalkyl ether (PFPE) and derivatives, and (iv) perfluoroalkyl acids (PFAA) 

including perfluoroalkyl carboxylic acids (PFCA), perfluoroalkane sulfonic acids (PFSA), 
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perfluoroalkyl phosphonic acids (PFPA) and perfluoroalkyl phosphinic acids (PFPIA) 

(Buck et al., 2011). 

 

The present report will briefly describe four distinct groups which are abundant in the 

environment: perfluoroalkyl acids (PFAA), PFAA precursors, perfluoroalkyl ethers and 

branched PFAS.  

1.2.1 Perfluoroalkyl acids (PFAA) 

Perfluoroalkyl acids PFAAs and their anions are those for which knowledge and regulatory 

guidelines are more complete. They are divided in perfluoroalkyl carboxylic acids (PFCA) and 

perfluoroalkyl sulphonic acids (PFSA) and can also be classified as “long-chain” and “short-

chain” compounds depending on the number of C atoms in the fluorinated carbon chain (Table 

3). OECD (2013) defined non-polymeric long-chain PFAS as PFCA with ≥7 perfluoroalkyl 

carbons (or ≥8 total carbons), PFSA with ≥6 perfluorinated carbons (i.e. ≥6 total carbons) 

and also precursors of long-chain PFCAs or PFSAs. Short-chain PFAS include PFCA with seven 

or fewer perfluorinated carbons and PFSA - five or fewer perfluorinated carbons (Buck et al., 

2011; OECD, 2013; ITRC, 2020).  

Table 3. Examples of perfluoroalkyl acids (PFAA) divided into perfluoroalkyl carboxylic acids (PFCA) and 

perfluoroalkyl sulfonic acids (PFSA). Within each group, PFAA are divided in short-chain and long-chain 
substances (adapted from ITRC, 2020 and EFSA et al., 2020). 

PFCAs (perfluoroalkyl carboxylic acids) 

Chain type Acronym Chemical name CAS-number 

N. C atoms 

Tot. Perfl. 

Short-chain 

 

PFBA Perfluorobutanoic acid 375-22-4 4  3 

PFPeA Perfluoropentanoic acid 2706-90-3 5  4 

PFHxA Perfluorohexanoic acid 307-24-4 6  5 

PFHpA Perfluoroheptanoic acid 375-85-9 7  6 

Long-chain PFOA Perfluorooctanoic acid 335-67-1 8  7 

PFNA Perfluorononanoic acid 375-95-1 9  8 

PFDA Perfluorodecanoic acid 335-76-2 10  9 

PFUnDA Perfluoroundecanoic acid 2058-94-8 11  10 

PFDoA Perfluorododecanoic acid 307-55-1 12  11 

PFTrDA Perfluorotridecanoic acid 72629-94-8 13  12 
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PFSAs (perfluoroalkane sulfonic acids) 

Chain type Acronym Chemical name CAS-number 

N. C atoms

Tot.  Perfl. 

Short-chain PFBS Perfluorobutane sulfonic acid 375-73-5 4  4 

PFPeS Perfluoropentane sulfonic acid 2706-91-4 5  5 

Long-chain PFHxS Perfluorohexane sulfonic acid 355-46-4 6  6 

PFHpS Perfluoroheptane sulfonic acid 375-92-8 7  7 

PFOS Perfluorooctane sulfonic acid 2795-39-3 

(potassium salt); 

1763-23-1 (acid) 

8  8 

PFNS Perfluorononane sulfonic acid 68259-12-1 9  9 

PFDS Perfluorodecane sulfonic acid 335-77-3 10  10 

PFUnS Perfluoroundecane sulfonic acid 749786-16-1 11  11 

PFDoS Perfluorododecane sulfonic acid 79780-39-5 12  12 

PFTrDS Perfluorotridecane sulfonic acid N/A 13 13 

Tot.: total number of C atoms. Perfl.: number of perfluorinated C atoms. 

1.2.2 PFAA precursors 

PFAA precursors are polyfluoroalkyl substances with a perfluoroalkyl moiety and a 

nonfluorinated one, which degrade when released in the environment, leading to the 

formation of PFCA and PFSA (Houtz and Sedlak, 2012). Examples of PFAA precursors are 

reported in Figure 2. Among PFCA precursors, fluorotelomers are a group of molecules 

artificially synthesised through telomerisation which is a polymerisation reaction leading to a 

telomer, an oligomer of low molecular weight. Examples of fluorotelomers are fluorotelomer 

alcohol (FTOH), fluorotelomer acrylate (FTAC), fluorotelomer methacrylate (FTMAC), 

fluorotelomer sulfonates acid (FTSA), fluorotelomer carboxylic acid (FTCA), fluorotelomer 

unsaturated carboxylic acid (FTUCA), fluorotelomer mercapto dimethylamido sulfonate 

(FTSAS), fluorotelomer ethoxylate (FTEO), etc. Among PFSA precursors, the ones that can be 

transformed to PFOS are the most abundant and are represented by the class perfluorooctyl 

sulfonamides C8F17SO2NRR’ (Zhang et al., 2021). Examples of those compounds are N-methyl 

perfluorooctane sulfonamide (MeFOSA), N-ethyl perfluorooctane sulfonamide (N-EtFOSA), N-

methyl perfluorooctane sulfonamido ethanol (MeFOSE), N-ethyl perfluorooctane sulfonamido 

ethanol (EtFOSE), N-ethyl perfluorooctane sulfonamido acetate (EtFOSAA) and phosphate 

diesters EtFOSE-based (DiSAmPAP) (Zhang et al., 2021). 
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Figure 2. Fuorotelomers as PFAS precursors. 8:2 fluorotelomer alcohol (FTOH) is a precursor of 

pefluorooctanoic acid (PFOA), while N-ethyl perfluorooctanosulfonamidoeoethanol (N-EtFOSE) is a 
precursor of perfluorooctane sulfonic acid (PFOS). Each precursor is composed of fluorinated chain and 
nonfluorinated moiety (highlighted in red). 

 

1.2.3 Per- and polyfluoroalkyl acid substitute: perfluoroalkyl ethers as novel PFAS 

Per- and polyfluoroalkyether (PFAE) is a diverse group of PFAS exhibiting two perfluorocarbon 

chains combined by an ether-linkage which have been produced as substitutes of toxic phased 

out PFAS like PFOA and PFOS (Buck et al., 2012; Wang Z et al., 2013; FEON, 2015). Since 

the industry considers the information relative to new replacement compounds as confidential, 

little information is available on those molecules but emerging evidence indicates that their 

environmental behaviour and human hazard are similar to the substance they were produced 

to substitute. A recent working paper produced for the Nordic Council of Minister by Wang Z 

et al. (2020) discerns five groups of PFAE, the chemical structures of which are represented 

in Table 4: 

 Group 1: Perfluoropolyethers (PFPE). 127 CAS have been described belonging to this 

group (Wang Z et al., 2020). They are used as lubricants, emulsifiers in cosmetics and 

grease/waterproof paper. 

 Group 2: Perfluoropolymers made of perfluoroether and tetrafluoroethylene (TFE) or 

hexafluoropropylene (HPF).  They can be distinguished in 4 categories: Pefluoroalkoxy 

(PFA) resins, fluoroelastomers, perfluoroelastomers, and perfluorosulphonic acids.  

Wang Z et al. (2020), identified 57 CAS number for this group.  

 Group 3: Perfluoroethers non polymers with unsaturated bonds. Those are monomers 

used to produce polymers. Wang Z et al. (2020) listed 51 CAS numbers for this group, 

with uses among automobile industry, non-stick coatings for cookware, water resistant 

fabrics, flame retardant, fire-fighting foam, membrane in fuell cells. 

 Group 4: Perfluoroalkyl ether non polymers with saturated bonds. 152 CAS numbers 

were found by Wang Z et al., 2020. Some of the most known PFAE belonging to this 

group are HFPO-DA also known by its trade name Gen X (CAS 62037-80-3) a 

replacement of PFOA, F53 acid (CAS 754925-54-7), 9Cl-PF3ONS also known as 6:2 

Cl-PFESA or its trade name F53B acid (CAS Number 756426-58-1), F53B potassium 

salt (CAS 73606-19-6) and ADONA (CAS Number 958445-44-8), C604 ammonium 
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difluoro (CAS Number 1190931-27-1) and potassium difluoro{[2,2,4,5-tretrafluoro-5-

(trifluoromethoxy)-1,3-dioxolan-4-yl]oxy}acetate (CAS 1190931-39-5). These 

substances are employed for food contact materials, solar cells, cable and internet 

infrastructure, electrolyte for fuel cells and high-tech garment. 

 Group 5: Side-chain perfluoroether polymers. 7 CAS numbers for polymers without 

known chemical formula have been described so far (Wang Z et al., 2020). These 

substances are mainly used for coating applications in food packaging, photovoltaic 

panels, ceramic surfaces and textiles. Almost no information is available for this family 

of compounds. 

Some of the best known perfluoroalkyl ethers and their trade names are (Figure 3): 

 Hexafluoropropylene oxide dimer acid, ammonium salt (HFPO-DA) known as GenX, 

replacing PFOA in the production of PTFE;  

 Chlorinated polyfluorinated ether sulfonate (Cl-PFESA) commercialised under the 

name of F-53B; 

 Perfluoropolyether (PFPE) described by Wang Z et al., 2013 with undefined formula 

presenting ethyl and propyl groups variable in number between 0-2 and 1-4, 

respectively, which replaces PFNA; 

 Perfluoro{acetic acid, 2-[(5-methoxy-1,3-dioxolan-4-yl)oxy]} under the commercial 

name of cC604; 

 Ammonium 4,8-dioxa-3H-perfluorononanoate (ADONA). 

 

 

 

Figure 3. Chemical structures of the most common PFECAs used as replacement PFAS. HFPO-DA, GenX, 
Cl-PFESA (F-53B), PFPE with a variable number of ethyl (e) and propyl (p) groups1, cC604 and ADONA. 
Based on Lohman et al., 2020. 

                                                 

 
1 According to Wang Z et al., 2020. 
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Table 4. CAS number, chemical name and chemical structure of PFAE from Group 1 to Group 4 as reported for the Nordic Council of Minister 
by Wang Z et al., 2020. No chemical structure is available for Group 5 substances. 

CAS Chemical name Chemical structure 

Group 1: Perfluoropolyethers (PFPE) 

60164-51-4 

Poly[oxy[trifluoro(trifluoromethyl)-1,2-ethanediyl]], 

α-(1,1,2,2,2-pentafluoroethyl)-ω- 
[tetrafluoro(trifluoromethyl)ethoxy]- 

 

69991-67-9 1-Propene, 1,1,2,3,3,3-hexafluoro-, oxidised, polymd. 

 

Group 2: Fluoropolymers made of perfluoroether monomer (Group 3) and tetrafluoroethylene (TFE) 

26425-79-6 
Ethene, tetrafluoro-, polymer with 
trifluoro(trifluoromethoxy)ethene 

 

Group 3: Perfluoroether non polymers used to produce Group 2 substances 

1187-93-5 Trifluoro(trifluoromethoxy)-ethylene 
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13846-22-5 
1,1,2,2,3,3-Hexafluoro-1,3-bis[(trifluorovinyl)oxy]propane 

 

 

Group 4: Perfluoroether non-polymers with saturated carbon bond 

335-36-4 
2,2,3,3,4,4,5-Heptafluorotetrahydro-5- 

(nonafluorobutyl)furan 

 

2641-34-1 
2,3,3,3-Tetrafluoro-2-[1,1,2,3,3,3-hexafluoro-2-
(heptafluoropropoxy)propoxy]propionyl fluoride 
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1.2.4 Branched PFAS 

Branched PFAS have been produced as unwanted by-products when the intended linear 

isomers are synthesised using electrochemical fluorination (ECF). The telomerisation method 

adopted more recently assures nearly 100% of linear form compared to 70-80% for PFOS, 

80-85% for PFOA and 95% for PFHxS obtained with ECF (Schulz et al., 2020; Benskin et al., 

2010). While branched isomers of PFOS are widely studied and some information is available 

for PFOA and PFHxS (Schulz et al., 2020), other branched isomers also exist in the 

environment, such as FOSA (or PFOSA) (Chen X et al., 2015), EtFOSA (Zabaleta et al., 2018), 

EtFOSE, EtFOSAA (Liu J et al., 2019), etc. An example of linear and branched PFOS is shown 

in Figure 4. 

 

 

Figure 4. Linear structure of PFOS (A) and its branched isomer (B). 
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2. PFAS in the environment 

PFAS can be released to the environment directly as residues owing to products’ life cycle, 

residual raw materials or impurities from manufacturing, or from indirect sources by 

degradation of PFAS and their precursors. As pointed out in the recent EFSA report (EFSA et 

al., 2020), some PFAS are greatly persistent, others are degraded to highly persistent PFAS 

and other PFAS are easily degraded and assimilated in the environment and in humans. In 

particular, it regards perfluoroalkyl acids (PFAA) considered final degradation products of the 

most commonly used PFAS and their precursors alongside their direct emission from 

production sites and life cycle of certain fluoropolymers (Brendel et al., 2018; OECD, 2013). 

The short-chain replacement PFAS and the subclass of per- and polyfluoroalkylether 

carboxylic acids (PFECAs), initially considered less toxic, have been commonly found in 

environmental samples due to their properties of solubility and a higher potential for long-

range transport in water. On the other hand, long-chain PFAS have a higher tendency to 

adsorb to particles and to bioaccumulate in animals (Martin et al., 2009; Ahrens et al., 2010; 

Brendel et al., 2018; Hoisaeter et al., 2019; Li F et al., 2020). On this basis, biota and abiotic 

compartments such as sediments may act as a putative sink for PFAS. Table 5 describes 

differences between long- and short-chain PFAS revealed in aquatic environments. 

 

Table 5. Behaviour of short-chain vs. long-chain PFAS in the environment and organisms based on 
physicochemical properties. 

Physicochemical properties Short-chain PFAS Long-chain PFAS 

Water solubility Higher Lower 

Water/soil mobility Higher Lower 

Adsorption to soil and sediment Lower Higher 

Bioaccumulation potential in animals Lower Higher 

Bioaccumulation potential in plants Higher Lower 

Overall expected toxicity Lower Higher 

Adapted from AECOM, 2019. 

Based on the OECD data, it has been estimated that most PFAS present in the environment 

and biota can be classified as linear isomers and non-polymers, and constitute potential 

precursors to PFAA (Goodrum et al., 2020). The same study concluded that the majority of 

PFAS with putative biological activity are fluorotelomer-related substances, followed by PFAAs 

and PFAA precursors. Such precursors degrade biotically or abiotically to PFAS constituting 

their indirect source.  

Some precursors are not necessarily introduced to waters, as is the case for HFO-1234yf – a 

replacement of the phased-out HFC-134a, both fluorinated compounds used as refrigerants. 

Even though not classified as PFAS, these substances degrade to trifluoroacetic acid (TFA) in 

the atmosphere which further precipitates at increasing rates to soil and surface waters in 

rainfall (Pickard et al., 2020). 
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2.1 PFAS in soil and aqueous environment 

The widespread use of PFAS in concert with their high persistence have led to the ubiquitous 

occurrence of this group of chemicals in the environment. Being highly soluble in water, PFAS 

are distributed worldwide in the ambient mainly by waste streams of industrial production 

sites (e.g., sewage sludge or wastewater), fire-fighting foam training sites (Dauchy et al., 

2017), due to inefficient wastewater treatment (OECD, 2013; ITRC, 2020; EFSA et al., 2020) 

or to landfill leachate leading to contamination of the surrounding groundwater (Hepburn et 

al., 2019) (Figure 5). The latter shows an abundant presence of PFOA, other short-chain PFAA 

and PFAA precursors reflecting the shift from long-chain PFAS after restrictions in their 

industrial production and use (Hamid et al., 2018). Estimations of the USEPA within the 

National Sewage Sludge Survey shown that in the USA the sum of PFAS in biosolids was 2749-

3450 kg/year, of which approximately 1375-2070 kg were applied on agricultural land 

(Venkatesan and Halden, 2013).  Contaminated soil due to the application of sewage sludge 

has been indicated as a significant reservoir of PFAS from which the substances migrate to 

surface waters, surface sediments and groundwaters as recently concluded based on the 

global analysis of environmental PFAS concentrations (Brusseau et al., 2020). Especially, 

long-term retention of PFAS was observed in the vadose zone where leaching to groundwater 

occurs frequently (Brusseau et al., 2020). The analysis of the US EPA monitoring data 

revealed that PFAS concentrations in groundwaters are often higher than those determined 

in surface waters with increasing trends over time (Guelfo and Adamson, 2018).  

Even though the industrial production of PFOA and PFOS have been halted, the release of 

long-chain PFAS to waterbodies will continue in future due to the degradation of PFAS 

precursors from sediment, soil and ice (Ahrens 2011). It means that novel PFAS currently in 

production, for example per- and polyfluoroalkyl ethers, may constitute a future source of 

pollution if not contained upon disposal, due to their decade-scale half-lives (Washington et 

al., 2019). PFOS, a C8 fluorocarbon, is one of the long-chain PFAS present to the major extent 

in the environment with a high potential of biomagnification, reason for which its detection in 

biota is significantly higher than PFOA, a C7 fluorinated substance. While they are found at 

similar concentration in invertebrates, fish, birds, reptiles and mammals, PFOS can be up to 

three orders of magnitude higher than PFOA (Ahrens and Bundshun, 2014). Long-chain PFAS 

(up to C13) are also present in the environment and their concentrations increase depending 

on geographic area and trophic level (Sturm and Ahrens, 2010). Similar to other 

anthropogenic pollutants, PFAS have been detected in remote areas, such as the Arctic and 

Africa (EU-strategy, 2019; EFSA et al., 2020). C9 to C12 perfluorinated acids have been found 

in the Arctic and North Atlantic Ocean at concentrations below 1 ng/L, presumably being the 

products of volatile precursors following oxidation (Joerss et al., 2020). In Africa, 

contamination of water bodies happens mainly through WWTP, solid waste dumpsites and 

urban centres (Arinaitwe et al., 2016; Groffen et al., 2018; Ibor et al., 2020) facilitated by 

tropical temperature and high humidity favouring PFAS volatilisation and consequent 

deposition (Rankin et al., 2016; Ssebugere et al., 2019). The presence of C8-C12 PFAS has 

been assessed in rivers and lakes in Kenya, Ethiopia, Uganda, Nigeria, South Africa and Ghana 

(Ssebugere et al., 2020).  

The short-chain PFAS, including perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid 

(PFHxA) and pefluorobutanoic acid (PFBA), are giving evidence of environmental and health 

threats (Conder et al., 2008; Giesy et al., 2012; Houtz et al., 2013; Du et al., 2015) and 

result to be more persistent than the long-chain ones they substitute such as PFOA and PFOS 

(Brendel et al., 2018). They adsorb less to soil and sediment compared to the long-chain 

molecules which results in decreased mobility in groundwater (Brendel et al., 2018; Hoisaeter 

et al., 2019). Concerning linear and branched isomers, the first ones sorb easily to soil and 

sediment, while their branched forms tend to be more mobile in water (Schulz et al., 2020). 

Surface sediments, based on their characteristics, showed a more variable spatial distribution 
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of overall PFAS compared to water (Joerss et al., 2019). Sedimentation areas proved to 

contain emerging PFAS such as 6:6 and 6:8 perfluoroalkyl phosphinic acids (PFPIA) (Joerss 

et al., 2019). 

Polyfluorinated substances containing 4, 5, 6, and 7 carbon atoms are the most abundantly 

found in the environment, with PFBS and PFBA accounting for more than 50% of the total. 

The short-chain molecules are already present in the air (Ahrens et al. 2011), land and waste 

(O’Connel et al., 2012; Yan et al., 2012), surface water and groundwater (Backe et al., 2013; 

Yao et al., 2014; Banzhaf et al., 2017) and ocean (Kwok et al., 2015). Worldwide, their 

presence has been detected in the Arctic (Cai et al., 2012), China (So et al., 2007; Zhou et 

al., 2013), India (Yeung et al., 209), Canada and US (Keller et al., 2005; Washington et al., 

2010; Ahrens et al., 2011) and in Europe in the Rhine river (Moller et al., 2010). As 

summarised by Li et al., 2020, the concentrations of the most represented short-chain 

molecules in drinking water are quite uniform, varying from 10-104 ng/L for PFBA, 10-80 ng/L 

for PFBS, 10-324 ng/L for PFHpA, 10-318 ng/L for PFHxA and 10-191 ng/L for PFPeA. For 

river water, maximum concentrations are of 335 ng/L for PFBA and 153 ng/L for PFBS, while 

the levels of PFHpA, PFHxA and PFPeA are one order of magnitude lower. In sea water, all 

short-chain PFAS are three orders of magnitude less concentrated since they reach a 

maximum of few hundreds of pg/L, while in the atmosphere their presence ranges from few 

to less than 200 ng/L. 

In the aquatic environment, PFAS cross the cell membrane of algae through a mechanism 

that is more pronounced for long-chain compounds (Latala et al., 2009). Consequently, they 

impact filtering and grazing invertebrates that feed on those autotrophic organisms and 

successively elicit effects in all vertebrates. Biomagnification through the food web depends 

not only on the chain length but also on the functional group; sulphonate for example has a 

higher accumulation tendency and uptake than the carboxylate group (Ahrens et al., 2016; 

Verhaert et al., 2017) which makes molecules such as PFOS much more abundant than PFOA 

in fish and higher predators. Biomagnification of long-chain PFAS has been proven in 

freshwater in France (Munoz et al., 2017; Simmonet-Laprade et al., 2019), Hong Kong (Loi 

et al., 2011) and China (Fang et al., 2014). 

Fate and transport of PFAS after their release to the environment and their potential risk on 

living organisms are extremely influenced by physicochemical properties of these compounds. 

Moreover, surfactant characteristics favour the concentration of PFAS on air-water or non-

aqueous phase liquid (NAPL)-water interfaces (Sima and Jaffé, 2021). In addition to PFAS 

chemical composition and structure (e.g., length of chain), factors such as natural 

characteristics of the site to which PFAS have been released (e.g., soil properties, type of 

water body, atmospheric conditions) highly influence partitioning, transport pathway, 

transformation and assimilation by biota, plants and humans (ITRC, 2020). 

 

2.2 PFAS in the atmosphere 

PFAS residues can also be spread via the atmosphere (exhaust gases, volatilisation, dust) and 

contaminate soil and water environments following precipitation (Figure 5). Besides PFAS 

production sites, landfill ambient air has been recently indicated as a potential source of 

atmospheric PFAS due to high concentrations of PFAA, particularly their semi-volatile 

precursors (Hamid et al., 2018). The presence of trifluoroacetic acid (TFA) in rainwater and 

fogwater has been reported over last decades at concentrations reaching 8.8 x 103 ng/L (Chen 

H et al., 2019; Tanivasu et al., 2008; Römpp et al., 2001; Wujcik et al., 1999). A recent 

modelling of PFAS air emission and atmospheric transport showed that 5% of total emitted 

PFAS and 2.5% of GenX may deposit within about 150 km from the production facility and 

reach nearly 0.1 and 10 ng/m3 of respective concentrations at 35 km downwind (D’Ambro et 

al., 2021). A range of other new PFAS has been reported in precipitations (Scott et al., 2006). 
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Being extremely volatile, very short fluorinated chain cannot be removed by filters commonly 

used in industrial plants, as is the case for trifluoromethane (CHF3), a gas 12400 times more 

dangerous than CO2 for global warming potential (Mihre et al., 2013). 

 

 

Figure 5. PFAS circulation in the environment. PFAS generated in industrial setting generally follow 

three environmental pathways: i) emission to air with exhaust gasses, volatilisation and dust from where 
they precipitate to surface waters and soil, and further infiltrate to groundwater; ii) direct discharge to 
surface waters being the source of exposure for aquatic wildlife and aquaculture species; iii) incomplete 
removal during treatment process in wastewater treatment plants (WWTP) with resulting discharge to 
surface water as WWTP effluent and leachate from contaminated sludge disposed in landfill. The latter 
source, alongside direct application of PFAS-containing biosolids, may be uptaken by plants including 
those intended for food production and/or infiltrate to surface water ecosystems and groundwater. 

 

2.3 Environmental distribution and behaviour of branched versus linear 

PFAS 

Branched PFAS are produced as an undesirable outcome when linear PFAS are synthesised 

using electrochemical fluorination (ECF) instead of telomerisation. Even though the different 

isomers have diverse behaviour, their mixtures effects have been considered as cumulative 

assuming equal health risk (Schulz et al., 2020). 

In the environment, linear isomers bind preferentially to sediment and soil compared to the 

branched ones (Yu et al., 2013) probably due to a reduced hydrophobicity respect their 
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branched counterparts (Benskin et al., 2007, Gao et al., 2019) (Figure 6). This could explain 

the lower percentage of linear PFOS in lakes than in rivers as water currents may limit its 

potential to sorb to sediments (Ma et al., 2018). In a similar study in Swedish rivers, Ahrens 

et al., 2018, found that where both linear and branched PFOS were present, their 

concentrations in water were similar even though ECF produces up to 80% of linear PFOS. 

A study on groundwater by Gao et al., 2019, showed that also linear PFOA and PFHxA sorb 

preferentially to soil compared to the branched form. In the ocean, branched isomers tend to 

be more present in the bulk water than in the surface microlayer (28% and 18%, respectively) 

possibly because of a lower surface activity caused by branching (Johansson et al., 2019). 

For what concerns bioaccumulation in organisms, the majority of studies in humans show a 

preference in bioaccumulation of branched isomers, while animal studies show the opposite 

trend (Beeson and Martin, 2015) (Figure 6). In particular, human serum seems to 

bioaccumulate slightly more branched PFOS isomers (Karrman et al., 2007). In chickens, 

linear PFOS accumulation was higher in liver and yolk from chicken grown closed to a chemical 

facility (Briels et al., 2018), indicating facilitated concentration of linear PFOA, PFOS and 

PFHxA (Wang F et al., 2019). The same trend has been observed in nestling of white-tailed 

eagles (Løseth et al., 2019) and in carps from French rivers (Zhong et al., 2019). Moreover, 

branched PFAS were associated with decreased serum globulin and amplified beta-cell 

function, positively linked to TSH level, negatively correlated with non-HDL cholesterol and 

maintained the ratio between mother and infant (Liu HS et al., 2018; Reardon et al., 2019; 

Jain and Ducataman, 2018; Gyllenhmmar et al., 2018). A more exhaustive summary of the 

presence of branched PFAS in humans is given by Schulz et al., 2020. 

 

  
Figure 6. Schematic fate of linear and branched PFOS in the environment. The synthesis of linear PFAS 
by electrochemical fluorination (ECF) generates 30% of branched by-products which affect humans and 
biota. Adapted from Schultz et al. 2020.
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3. Analytical methods and techniques for PFAS determination in 
environmental samples 

Even though analytical methods for PFAS detection in multiple environmental media are being 

developed worldwide (Nakayama et al., 2019; Lorenzo et al., 2018), few of them have been 

validated. The regulatory frameworks of the European Union (EU) still lack standardised 

protocols and guidelines for monitoring PFAS and related substances in environmental 

samples (ECHA, 2018; EU-Strategy, 2019) which calls for urgent advancements in adopting 

or developing suitable strategies. In a draft document on the monitoring of PFAS in 

groundwater across the EU, Rüdiger et al. (WFD CIS, 2020) highlight the need for each 

Member State (MS) to adopt a state-of-the-art detection methodology to reduce variability 

among limits of quantification (LOQ) which differ greatly based on the employed technique. 

The authors also stress on the importance of designing standardised methods for a much 

wider number of PFAS. 

In the USA, two standardised quantitative methods for determination of PFAS in drinking 

water have been established by the United States Environmental Protection Agency (USEPA): 

Method 537.1 (Shoemaker and Tettenhorst, 2020) and Method 533 (USEPA, 2019b). The 

method 537.1 can determine 12 PFAA and 6 precursors, while method 533 can detect 16 

PFAA and 9 precursors including PFHxA, PFHpA, PFOA, PFOS, perfluorononanoic acid (PFNA), 

perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA or PFUnDA), 

perfluorododecanoic acid (PFDoA or PFDoDA), perfluorobutane sulfonic acid (PFBS) and 

perfluorohexane sulfonic acid (PFHxS). However, the latter method requires twice as long for 

the extraction protocol as the 537.1 method (ITRC, 2020; USEPA, 2020; USEPA, 2019b;). A 

third test method, SW-846 Method 8327, which minimizes sample transfer and extraction, 

has been validated for detection of 24 PFAS compounds in aqueous samples (groundwater, 

surface water and wastewater) (ITRC, 2020; USEPA, 2020a). Furthermore, the SW-846 

Method 8328, based on isotope dilution is under validation as a robust approach for complex 

non-drinking aqueous matrices such as wastewater influents, biosolids, fish tissues, soils and 

sediments (USEPA, 2020b).  

Due to major concerns regarding PFOS and PFOA, the ISO 25101:2009 method has been 

established for determining the concentrations of these compounds in unfiltered water 

samples (drinking water, groundwater and surface fresh and marine water) employing high-

performance liquid chromatography-tandem mass spectrometry (HPLC‑MS/MS) (ITRC, 2020). 

At national level, the German Institute for Standardisation (Deutsches Institut für Normung 

DIN) established standard methods DIN 38407-42 and DIN 38414-14 (2011) for quantitative 

determination of selected perfluorinated compounds (PFC) by HPLC/MS-MS following solid 

phase extraction (SPE), in unfiltered water samples (drinking water, groundwater, surface 

waters and sewage) and in soil samples (sludge, compost and soil), respectively.  

The above-mentioned protocols are based on quantitative methods which permit to measure 

the concentrations of specific PFAS. Such methods may employ particular technologies 

targeting different groups of organofluorine compounds (Table 6). However, their application 

is problematic due to the lack of reference materials for many PFAS and unavailability of 

suitable standards. Furthermore, they require equipped laboratories and highly qualified 

professionals to quantify PFAS at lower detection limit (Concawe, 2016).  

The overall content of PFAS in environmental matrices may be determined through qualitative 

techniques, such as Total Oxidisable Precursor assay (TOP or TOPA), Total Organofluorine 

(TOF) assay and Extractable or Adsorbable Organic Fluorine (EOF/AOF) method (Concawe, 

2016; Cousins et al., 2020; ITRC, 2020). The TOP assay, applicable to both aqueous and soil 

matrices (ITRC, 2020), is a method that determines a difference between the concentrations 

of perfluoroalkyl acid precursors and PFAS resulting from the degradation of precursors, 
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showing the presence or absence of total PFAS in a sample (Cousins et al., 2020), while the 

TOF and EOF/AOF assays determine the content of all organofluorine substances. These 

methods can be performed using Combustion Ion Chromatography (CIC) (Concawe, 2016; 

Cousins et al., 2020; ITRC, 2020), Particle-Induced Gamma-ray Emission (PIGE) spectroscopy 

or through X-ray Photoelectron Spectroscopy (XPS) (Cousins et al., 2020). Unlike quantitative 

methods, they allow to detect a wide range of fluorine compounds, among which PFAS, 

providing relatively less specific results (Table 6). This approach can be used considering the 

precautionary principle in environmental monitoring by detecting the presence or absence of 

PFAS (Concawe, 2016; Bokkers et al., 2018; EU strategy, 2019; Cousins et al., 2020).  

At present, analytical methodology capable of analysing branched and linear PFAS at the same 

time is not available as well as commercial calibration standards. Benskin et al. (2010) first 

summarised methods applied for branched PFAS quantification while more recently Pellizzaro 

et al. (2018) quantified 14 linear PFAA and 10 branched isomers of PFOA and PFOS employing 

LC-MS/MS coupled to the solid-phase extraction (SPE). 

The important issue regarding either quantitative or qualitative methods is a high possibility 

of false positive results due to the presence of PFAS in glassware and plasticware used during 

analytical procedure and to the cross-contamination by contact or/and adsorption, especially 

from Teflon (degassers, SPE cartridges) waterproof or polytetrafluoroethylene (PTFE) 

coatings, etc.2 The official protocol 8327 from USEPA states that “careful selection of reagents 

and consumable is necessary”3 since trace levels of PFAS would alter the analytical result. For 

a good quality assurance, the use of PFAS-free sampling materials and laboratory equipment 

is recommended in order to avoid accidental enrichment of PFAS fraction in a sample (ITRC, 

2020; Rodowa et al., 2020). 

                                                 

 
2 https://www.aphl.org/aboutAPHL/publications/lab-matters/Pages/ABCs-of-PFAS.aspx 
3 https://www.epa.gov/sites/production/files/2019-

06/documents/proposed_method_8327_procedure.pdf 

https://www.aphl.org/aboutAPHL/publications/lab-matters/Pages/ABCs-of-PFAS.aspx
https://www.epa.gov/sites/production/files/2019-06/documents/proposed_method_8327_procedure.pdf
https://www.epa.gov/sites/production/files/2019-06/documents/proposed_method_8327_procedure.pdf


 

 

25 

Table 6. Quantitative and qualitative methods for determination of PFAS in environmental and biological samples. Examples of recent studies 
describing the application of selected analytical methods are provided for each sample type. 

 
Sample Compounds Analytical method Matrix (country) Reference 

Q
u

a
n

ti
ta

ti
v
e
 m

e
th

o
d

s
 

Air 

Small volatile molecules, 
e.g., FTOH, FASA, FASE 

GC-MS Indoor air (Norway) 
Padilla-Sanchez et al., 
2017 

Ionic PFAS, e.g., PFCA 
and PFSA 

HPLC-MS/MS Outdoor air (Czech Republic) Paragot et al., 2020 

Water 

PFCAs, PFSAs, 

precursors, emerging 
PFAS 

UHPLC-MS/MS 
Wastewater, surface water, groundwater and 
drinking water (Italy) 

Ciofi et al., 2018 

HRMS (Orbitrap, TOF-MS) Drinking water (UK) Harrad et al., 2019 

Larger polar molecules, 
e.g., PFCA and PFSA 

LC-MS/MS River water (Spain) Navarro et al., 2020 

Small volatile molecules GC-MS or MS/MS River water and wastewater (Spain) Portolés et al., 2015 

Abiotic solids 
PFCA, PFSA, and 
precursors 

GC-MS or MS/MS Wastewater, soil and sludge (France) Dauchy et al., 2017 

UHPLC-MS/MS  Dust (Greece) Besis et al., 2019 

HPLC-MS/MS or Sediment (Italy) Pignotti and Dinelli, 2018 

HRMS (Orbitrap, TOF-MS) Dust (UK) Harrad et al., 2019 

Biological 
PFCA, PFSA, precursors, 
emerging PFAS 

UHPLC-MS/MS 
River water and fish (Finland) Junttila et al., 2019 

Breast milk (Spain) Beser et al., 2020 

HPLC-MS/MS Fish (Italy) Mazzoni et al., 2019 

 Unknown PFAS UHPLC-HRMS Soil (Germany) Kotthoff et al., 2020 

Q
u

a
li

ta
ti

v
e
 m

e
th

o
d

s
 

Various 
environmental 
and biological 

PFAA precursors as 
result of PFAS 
degradation 

TOP assay 

Wastewater (USA) Houtz et al., 2016 

Soil (Germany) Janda et al., 2019 

Water, soil, biota (France) 
Simonnet-Laprade et al., 
2019a 

Organofluorine 
compounds, e.g., PFAS 

AOF assay River water, groundwater, wastewater (Germany) Willach et al., 2016 

EOF assay River water, sediments, biota (Norway) Langberg et al., 2020 

TF assay Serum, (Sweden) Miaz et al., 2020 

TOP: Total Oxidisable Precursor; AOF: Adsorbable Organic Fluorine; EOF: Extractable Organic Fluorine; TF: Total Fluorine 
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4. PFAS-related concerns 

4.1 Health and environmental risk 

PFAS are considered high-priority hazardous substances due to their environmental 

persistence, bioconcentration4, bioaccumulation5 and biomagnification6 in aquatic and 

terrestrial food chains, which poses a high risk to the ecosystems and in turn may cause 

adverse health effects in humans (OECD, 2013; EU-strategy, 2019). In case of perfluorinated 

acids (PFCAs and PFSAs), the rate of bioconcentration/bioaccumulation seems to directly 

correlate with the length of the fluorinated carbon chain (Conder et al., 2008). Functional 

groups may further enhance this relationship as described for PFSAs which appear more 

bioaccumulative than PFCAs with the same number of C atoms. However, non-polymeric PFAS 

are of greatest concern due to major mobility compared to their polymeric counterparts and 

to major diversity of properties resulting in a wide range of effects in organisms (Henry et al., 

2018). 

PFAS have been detected globally in humans and wildlife as reported in a large number of 

epidemiological studies. One of the most striking examples is the presence of PFOS and other 

PFAS in the human blood serum of 99% samples collected across the USA over the period 

1999-2012 (USEPA, 2019). Associations of PFAS concentrations in biological liquids with 

suggested effects of exposure in humans has been listed in a recent review (Chohan et al., 

2020). Also recently, juvenile seabirds from American coasts showed traces of PFOS in liver 

even after years from its ban, along with the presence of novel PFAS (Robuck et al., 2020). 

Even though knowledge regarding the uptake of PFAS by organisms is increasing, research is 

still needed for determination of sensitive species. 

Exposure-related effects of PFAS in several species include liver toxicity, imbalance in the lipid 

metabolism, immune system dysfunctions and developmental toxicity (EU-strategy, 2019; 

EFSA et al., 2020; Fenton et al. 2020). Among PFAS, PFOS and PFOA are classified in Europe 

as suspected carcinogens (EU-strategy, 2019), however evidence on the causal association 

between exposure to PFAS and cancer is insufficient (ITRC, 2020). Major and less frequent 

putative effects of PFAS on human health are shown in Figure 7.  

Recently, EFSA et al. (2020) indicated diet as the primary source of PFAS exposure, in 

particular fish, fruits, eggs and processed products derived from these ingredients as well as 

drinking water. Importantly, tap water samples collected worldwide showed the presence of 

newly-identified PFAS, among which cyclic and ultrashort-chain substances (Kaboré et al., 

2018; Mak et al., 2009). Dust ingestion and indoor air inhalation were identified among the 

main non-dietary PFAS exposure sources (Sunderland et al., 2019). Primary exposure 

pathways and sources of PFAS are shown in Figure 8.

                                                 

 
4 Concentration of a substance in an organism due to the environmental exposure. 
5 Concentration of a substance in certain tissues of an organism through intake, absorption via the 

oral/contact route or by environmental exposure. 
6 Concentration of a substance in an organism in relation to the chemical concentration in its diet. 
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Figure 7. PFAS toxicity endpoints in humans. In addition to adverse health effects which can be elicited in adults, PFAS can have negative 
impact on pregnancy and alter the development of children with consequences in adulthood. Effects with high certainty of evidence are indicated 
by bold characters. Adapted from EEA, 2019.
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Figure 8. Main pathways of human exposure to PFAS. From manufacture settings, PFAS may spread in 
the environment through the application of industrial products, incomplete removal during waste 
treatment processes or through direct discharge. Environmental contamination may become a source 
of PFAS through the main three ways: the systems exploiting groundwater to provide drinking water, 
surface water and soil used for agri-food production as well as air and dust inhaled indoor. Consumer 
products constitute a source of PFAS exposure through contact and absorption, and contribute to 

worsening the quality of domestic air due to their half-life.  

 

It is hard to estimate the range of PFAS spread in the environment because influenced by 

characteristics of individual compounds. Especially persistence, solubility and mobility, may 

determine whether PFAS spread in multiple environmental settings impacting very large areas 

or follow specific transport pathways which can form complex routes of diffusion between 

interconnected ecosystems. Predicting long-term effects of PFAS in organisms due to 

bioaccumulation is troublesome even with standardised methods which might show no acute 

toxicity while chronic effects may occur upon prolonged exposure to low doses (von der Trenck 

et al., 2018). 

 

 

4.2 Gaps in the scientific evidence and monitoring data 

Current frameworks regulating organofluorine compounds are based on studies limited to a 

subset of PFAS for which more complete scientific data are available, while effects of less-

studied PFAS co-occurring in environmental matrices remain generally unaddressed. Likewise, 

most human biomonitoring data are relative to the levels of PFOS and PFOA in biological 

liquids, mostly blood, breast milk and umbilical cord blood (ECHA, 2018; EU-strategy, 2019; 

EFSA et al., 2020). Moreover, studies describing effects to human health are based on cohorts 

composed of chemical workers and communities near to industrial sites which employ PFAS 

or to areas with contaminated municipal drinking water, where exposure is increased due to 

extremely high PFAS concentrations (EFSA et al., 2019; ITRC, 2020). Animal studies are 
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usually based on one-species data accounting for direct effects in one generation, while fewer 

studies exist on PFAS transfer to further generations and to other species in the food chain. 

Missing ecotoxicological data for the vast majority of PFAS and the heterogeneity of 

organofluorine compounds as a group is linked to insufficient information on real 

environmental concentrations of PFAS and background levels. Even less is known about 

combined effects of PFAS in chemical mixtures and the occurrence of PFAS substitutes 

(Brandsma et al., 2019). Environmental monitoring of PFAS and determination of their routes 

in the ecosystems are complicated because of many possible PFAS sources, many of which 

have multiple mechanisms of release. The monitoring relying on PFOS and PFOA, once the 

most commonly used PFAS, became inadequate since their ban and introduction of novel 

compounds as alternative substitutes which may pose risk to humans and wildlife. Among 

such substitutes, short-chain PFAS have been considered less bioaccumulative, however 

scientific evidence regarding their safety is limited to a small number of compounds. Their 

degradation into extremely persistent forms, increased solubility and mobility in water 

compared to long-chain PFAS may favour contamination of groundwater (Wang Z et al., 2015; 

Rankin et al., 2016) and the uptake by plants, including food crops (Ghisi et al., 2019; Kim H 

et al., 2019; Liu Z. et al., 2019). It has been observed that low PFOS concentrations in soil 

(0.23-4 mg/kg soil) may increase the bioaccumulation factor (BCF) for vegetable and wetland 

plants, which then tends to decrease at 40 mg PFOS/kg soil concentration (Lal et al., 2020; 

Qiao et al., 2021). For PFAA, a positive relationship between initial concentrations and 

bioaccumulation in plants was observed (Zhang D et al., 2019). Once in plant roots, the 

transfer of PFAS to shoots is not entirely reversible (Müller et al., 2016; Wang TT et al., 2020) 

and occurs more easily for short-chain PFAS (Zhang L et al., 2019), while long-chain PFAS 

bioaccumulate in roots rather than being transported to other plant tissues (Gredelj et al., 

2020; Sharma et al., 2020; Zhang L et al.,2019). Recently, the ubiquitous presence of TFA in 

plants has been highlighted, pointing at the same time at limited data available for the uptake 

of PFAA precursors, ultrashort-chain and emerging PFAS, such as GenX or fluorinated ethers, 

by agricultural plants (Lesmeister et al., 2020). 

Since the implication of short-chain PFAS in harmful effects on human health and environment 

are uncertain, concerns about their employment as replacement for long-chain PFAS have 

been raised (Wang Z et al., 2013; Scheringer et al., 2014; Blum et al., 2015). It has been 

recently pointed out that despite hazard quotients (HQ) calculated for the majority of PFAS 

detected in the environment (i.e., below their predicted no-effect concentrations) could reach 

values <1, knowledge gaps related to new PFAS along with their mixture toxicity, precursors 

and degradation products make risk analysis incomplete, especially considering sub-lethal 

and/or chronic effects (Sinclair et al., 2020). Available toxicological data are often 

noncongruent in terms of methodology and risk assessment approach. Moreover, the exact 

structure of many replacement PFAS is covered by trade secret. Mode of action (MoA) and 

adverse outcome pathways (AOP) constitute major knowledge gaps for most PFAS that 

impede robust assessment of PFAS-related effects in realistic samples (i.e., mixture effects) 

(Goodrum et al., 2020).  

In addition to knowledge gaps, current technical guidelines for EQS derivation require revision 

to cover endpoints targeted by PFAS which involve molecular and genetic biomarkers. 

Although the extent to which biomarkers are able to provide unambiguous and ecologically 

relevant indicators of exposure to toxicants or their effects is still under debate, and 

interpretation of the biomarkers response requires full understanding of environmental, 

physiological, and toxicological factors (Forbes et al., 2016), ecologically relevant biomarkers 

such as behaviour, reproduction, growth, energy metabolism, lysosomal integrity, 

immunotoxicity, along with genotoxicity biomarkers appear as promising candidates to 

improve ecological risk assessment and to support regulatory decisions (Mouneyrac and 

Amiard-Triquet, 2013). In particular, biomarkers’ responses may help in understanding the 
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mechanisms underlying effects observed at higher levels, provide important insights 

regarding the mechanisms of toxicity and how organisms deal with toxic chemicals, and 

generate testable hypotheses in carefully controlled studies that lead to unravelling the 

mechanistic bases of chemical effects on whole organisms (Forbes et al., 2006). 

 

 

4.2.1 PFAS-related modes of action and adverse outcome pathways 

Information on the mode of action (MoA) is particularly useful in the assessment of PFAS 

safety based on intermediate effects, including those substances for which toxicological data 

are incomplete, and their combined action in mixtures, especially when considering a group 

of molecules with a wide range of possible effects. The MoA indicates a causal chain of events 

at different levels of biological complexity, from exposure to the final outcome. 

Hitherto, the unique MoAs among PFAS have been established for PFOS and PFOA providing 

a causal explanation of liver tumour development in rodents through activation of peroxisome 

proliferator-activated receptor α (PPARα) upon exposure to these compounds, with a possible 

relevance for effects in humans (Fenton et al., 2020). Nonetheless, other effects independent 

from PPARα or the same effect elicited through different pathways cannot be precluded. The 

MoA associated with the majority of health effects of PFAS have not been fully characterised 

in animal models and humans (ATSDR, 2021). 

Except PFOS and PFOA, studies aimed at determining the MoA of PFAS have been performed 

for only a few compounds. Among a range of molecular targets shown to be activated by PFAS 

as initiating events are the nuclear receptors, mainly peroxisome proliferator-activated 

receptors (PPARα, PPARγ and PPARβ/δ), pregnane X receptor (PXR), liver X receptor (LXR), 

constitutive androstane receptor (CAR) and estrogen receptor subunit alpha (ERα) (Behr et 

al., 2020; Bijland et al., 2011; Bjork et al., 2011; Li C-H et al., 2019; Rosen et al., 2017, 

Rosenmai et al., 2017). Established receptor-mediated MoAs are limited to hyperplasia and 

carcinogenic effects in liver specific to animal models (Butenhoff et al., 2012; Corton et al., 

2018; Elcombe et al., 2012), while few studies addressed other critical effects such as 

developmental toxicity, immune suppression or lipid metabolism (Andersen et al. 2007; Jones 

et al. 2003; Pouwer et al. 2019; Tan et al. 2013; Xu HE et al. 1999; Temkin et al. 2020). 

Concentration addition of PFAS in mixture suggests similar MoAs with shared molecular 

targets (Godfrey et al., 2017; Kar et al., 2018) but with different potency between PFAS and 

their analogues, partly explained by unequal excretion and kinetics of protein interaction (Wolf 

et al., 2008; Zeilmaker et al., 2018). When assessing cytotoxicity of novel PFAS in human 

liver HL-7702 cell line, Cl-PFESA and HFPO homologues bound to the human liver fatty acid 

binding protein (hL-FABP) with unique modes and higher binding energy than PFOS and PFOA 

(Sheng et al., 2017).  

Currently used standard detection methods to detect PFAS are independent of their MoAs, 

thereby unable to detect related effects. Specific effect-based methods (EBMs) are being 

developed to overcome this gap, such as in vitro bioassays which are complementary to the 

analytical methods and permit to avoid more complex in vivo testing. Besides EBMs based on 

PPAR-mediated signaling, PFAS-CALUX bioassay is able to detect cumulative effects of PFAS 

by assessing thyroid hormone competitive binding to transthyretin receptor (TTR) using 

human U2OS cell line stably transfected to express thyroid receptor β (TRβ) (Collet et al., 

2019). Additionally, it was possible to establish relative potency factors (RPF) for 23 PFAS in 

water and food samples expressed as PFOA equivalence (Bil et al., 2021) (as further described 

in section 4.2.2.1). 
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4.2.2 Combined effects of PFAS in mixture with other substances 

Despite differences in solubility and mobility among PFAS, shared distribution patterns have 

been observed in the environment (Bil et al., 2021) leading to co-occurrence in various 

ecosystems (surface water, groundwater, soil), drinking water and food (Brandsma et al. 

2019; Ghisi et al., 2019; Hopkins et al., 2018; Joerss et al., 2019; Li P et al., 2019) which 

constitutes conditions for exposure to multiple PFAS simultaneously. Nevertheless, a handful 

of literature is available on combined effects elicited by PFAS and even less studies provide 

approaches for the risk assessment of PFAS mixtures. Moreover, complex PFAS mixtures have 

been included in few studies. 

Different effects depending on the composition and concentrations of PFAS and other 

compounds in mixtures have been reported in model organisms (Figure 9). Recently, liver 

injury along with increased risk of cardiovascular disease were observed in mice exposed to 

a binary mixture of PFOS and polychlorinated biphenyl PCB126 but not to single compounds 

(Deng et al., 2020). Additive effects of PFOS and PFOA were observed in acute toxicity tests 

on American bullfrog (Rana catesbeiana), although some effects on frog development were 

elicited by single compounds (Flynn et al., 2019). Recent studies found correlations between 

levels of selected neurotransmitters in Northern leopard frog brains and exposure to a mixture 

of PFAS commonly found in sites contaminated by AFFF and major PFAS bioaccumulation 

when compared to PFOS exposure (Foguth et al., 2020). Contrarily, a mixture of six PFAS 
was less potent in inducing behavioural toxicity in zebrafish (Danio rerio) embryos than 

individual compounds, with the greatest toxic potential attributed to long-chain PFAS and 

sulfonate active group and major bioaccumulation of short-chain PFAS (Menger et al., 2019). 

Similarly, prediction based on computational modelling showed the following trends in toxicity 

of theoretical halogenated mixtures containing PFAS on zebrafish embryos: single chemical > 

binary mixture > tertiary mixture (Kar et al., 2018). Upon a 78-hour in vivo exposure to the 

mixture containing PFOS, PFHxA and PCB126, zebrafish embryos showed modified expression 

of genes involved in the PCB126 toxicity-related pathway (Blanc et al., 2017). Alterations in 

dopaminergic signaling and endocrine function (i.e. 17β-estradiol level) were induced by 

exposure of Atlantic cod (Gadus morhua) juveniles to a mixture of PFAS and polycyclic 

aromatic hydrocarbons (PAHs) (Khan et al., 2019). In vitro testing coupled to in silico 

modelling based on the generated data to predict the effects of theoretical mixtures showed 

increased cytotoxicity of amphibian fibroblast cell line when exposed to binary mixtures of 

common PFAS (PFOS, PFOA, PFHxS and PFHxA) with additive effects except for PFOS and 

PFOA (Hoover et al., 2019). 

In humans, the Health Outcomes and Measures of Environment (HOME) study provided 

outcomes on prenatal and early life exposure to relevant environmental chemicals, among 

which PFAS, in an American prospective cohort. Among others, the effect of PFAS on the 

endocrine system quantified in blood and urine of pregnant women along with other endocrine 

disrupting chemicals (EDCs) (PCBs, polybrominated diphenyl ethers and organochlorine 

pesticides) was associated with lower birth weight (Woods et al., 2017). A mixture approach 

adopted to assess combined PFAS effects on maternal and neonatal thyroid function by 

measuring thyroid hormones and PFAS concentrations in plasma supported the hypothesis of 

PFAS mixture effects due to prenatal exposure, however exposure concentrations and long-

term impact were not evaluated (Lebeaux et al., 2020; Preston et al., 2020). In other studies, 

mixture effects of six PFAS, including PFOA substitute (F-53B), were positively associated with 

levels of estrogen hormones in Chinese newborns (Liu Z. et al., 2020). A cumulative risk 

assessment of 17 PFAS employing the hazard index approach showed the association of 

blood/serum PFAS levels with hepatotoxicity or reproductive toxicity in a subgroup of general 

Swedish population exposed to PFOS through diet (contaminated fish) (Borg et al., 2013). 

The same endpoints assessed in a professionally exposed population toxic effects due to PFOA 

and/or combination of its congeners (Borg et al., 2013). After assessing the concentrations 
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of 17 PFAS in maternal plasma and serum during gestation, no association with spontaneous 

preterm birth was detected, however link with biochemical pathways of inflammation was 

suggested due to altered monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-

8) levels (Liu X. et al., 2020). 

 

 
Figure 9. Effects of PFAS as single substances and in mixture. When present individually, various 

chemicals may elicit acceptable effects without exceeding the safety threshold. In combination with 
other substances of the same class, such as mixture of PFAS, or with chemicals eliciting similar effects 
through a different mode of action (MoA), such as polychlorinated biphenyls (PCB), may to the 
exceedance of the safety value. In some cases, the effects of certain substances (substance X) may be 
enhanced by co-occurring compounds. 

 
4.2.2.1 Establishing safety thresholds for cumulative effects of PFAS 

In the scientific evaluation of the risks to human health related to the presence of PFAS in 

food, EFSA (2020) established a threshold of 4.4 ng/kg body weight as tolerable weekly intake 

(TWI) referred to the sum of PFOA, PFNA, PFHxS and PFOS, which takes into account possible 

mother-to-child bioaccumulation upon long-term exposure (Figure 10). The substances were 

selected due to similar toxicokinetic properties, accumulation and long half-lives in humans, 

as well as the contribution of ~50% to the overall exposure to 17 PFAS included in the risk 

assessment. The estimate was based on the decreased response of the immune system to 

vaccination considered the most critical effect observed in animals and humans. The key study 

(Abraham et al., 2020) showed that only for PFOA there was a significant association with 

antibody titres against three different vaccines. For PFOS, PFHxS and PFNA this was not 

observed. However, the association was also significant for the sum of the four PFASs. 
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Therefore, assuming equal potencies for the four PFAS, the health based guidance value 

(HBGV) was derived considering the lowest benchmark dose level (BMDL10) of 17.5 ng/mL for 

the sum of the four PFASs in serum identified for 1-year-old children in a human study 

(Abraham et al., 2020). Using physiologically-based pharmacokinetic (PBPK) modelling, this 

serum level of 17.5 ng/mL in children was estimated to correspond to long-term maternal 

exposure of 0.63 ng/kg bw per day. Since a decreased vaccination response is regarded as a 

risk factor for disease rather than a disease itself, and since the study was based on infants 

which appear to be a vulnerable population group, no additional assessment factors for 

potential intraindividual differences in toxicokinetics and toxicodynamics were deemed 

necessary. Therefore, EFSA established a group tolerable weekly intake (TWI) of 7 x 0.63 = 

4.4 ng/kg bw per week, in order to take into account the long half-lives of these PFASs (EFSA, 

2020).  

 

 

Figure 10. Schematic representation of the derivation of the EFSA’s tolerable weekly intake (TWI). The 

established value of 4.4 ng/kg body weight (bw) per week is referred to the sum of PFOA, PFNA, PFHxS 
and PFOS (EFSA, 2020). 

 

A relative potency factor (RPF) approach previously applied to other classes of chemicals, 

including dioxins and dioxin-like polychlorinated biphenyls (PCB) (Zeilmaker et al., 2018; 

Bosgra et al., 2009, Boon et al., 2008; Van den Berg et al., 2006), has been proposed as a 

screening tool for the assessment of dietary cumulative exposure to PFAS (Bil et al., 2021). 

This approach does not rely on grouping substances depending on their mode of action (MoA) 

but rather on their target organ. The evaluation was based on literature data reporting liver 

toxicity in male rat after oral exposure to 14 PFAA and 2 PFAA precursors, with reference to 

PFOA as the most toxic PFAS (PFOA equivalence). For each PFAS, benchmark dose (BMD) was 

first established according to the EFSA guidance on the use of the benchmark dose approach 

in risk assessment (EFSA, 2017) and then applied to derive RPF with 90% confidence interval. 

When considering chain length, the study showed that the potency of PFCA and PFSA with 7 

to 12 perfluorinated carbon atoms is equal to or higher than the potency of PFOA. Among the 

assessed PFAS, perfluoroalkyl ether carboxylic acids (HFPO-DA and ADONA) and 

fluorotelomer alcohols (6:2 FTOH and 8:2 FTOH) resulted less potent than the reference 

compound. Moreover, the RPF approach allowed to determine the exceedance of safety limits 

by PFOA equivalents in dietary exposure to PFAS through a specific food category (fish). In 

this way, the RPF approach becomes useful also in estimating the risk associated with 

cumulative exposure to PFAS resulting from food or drinking water intake (Bil et al., 2021). 

A schematic representation of the RPF methodology is shown in Figure 11. 
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Figure 11. Schematic representation of the relative potency factor (RPF) methodology. The RPF is 

defined as the ratio of the benchmark dose (BMD) of the PFAS index compound (i.e., PFOA) and the 
BMD of any other PFAS (PFASi). The individual PFAS concentrations (Ci) per sample are then multiplied 
by their corresponding RPF to obtain the concentration in PFOA equivalents. The sum of all PFOA 

equivalents can then be compared to an available drinking water concentration limit or fish consumption 
limit (Bil et al., 2021). 

 
Recently, an approach for prioritisation and characterisation of PFAS mixtures from surface 

water sites with a history of aqueous film-forming foams (AFFF) use was developed for 

realistic scenarios based on heterogeneous ecotoxicological data quality (East et al., 2020). 

 

4.2.3 Environmental presence and effects of novel PFAS and PFOS/PFOA substitutes 

While the identity of few hundreds of new compounds developed and introduced to substitute 

the PFAS of major concern (Table 9 listing the PFAS proposed as chemical parameter for the 

revised Drinking Water Directive) is now known, very few information on their toxicity and 

behaviour in the environment is available. Thus far, a range of newly-identified anionic, 

cationic, zwitterionic, non-ionic and partially fluorinated PFAS with different chain lengths and 

cyclic/linear structures have been reported in environmental samples and aqueous film-

forming foams (AFFF) (Place and Field, 2012; Xiao, 2017). A summary of novel PFAS detected 

in the environment is presented in Table 7. For the purposes of this review, the reliability of 

the reported studies was not further assessed according to guidance recommendations (EC, 

2018). 

It has been reported that some of these compounds may be transformed to PFAA and/or 

fluorotelomer sulfonates during biological and photolytic degradation (D’Agostino and Mabury, 

2017; Mejia-Avendaño et al., 2016; Moe et al., 2012). In landfills, the release of PFAS to 

leachate is mainly due to biodegradation processes, especially the methanogenic phase, 

however little is known about PFAA precursors including semi-volatile compounds and their 

degradation products (Hamid et al., 2018). PFCA precursors constitute up to 75% of all PFAS 

identified in sludge samples from the European Nordic territories and their presence, alongside 

ultrashort-chain PFAS and a mix of PFAS classes, was detected in wastewater treatment plant 

(WWTP) effluent samples (Kärrman et al., 2019). Moreover, the aquatic environment has 

been suggested as a possible ultimate sink of newly-identified PFAS given their solubility in 

water and moderate hydrophobicity coupled to ionic or ionizable properties and nonvolatile 

characteristics (Xiao, 2017). Among them, ultrashort-chain PFAS have been detected in a 

variety of water samples with up to 40% of total PFAS in rainwater (Yeung et al., 2017), even 

though general literature on their environmental presence is scarce which might be due to 

analytical limitations and consideration of these compounds as less bioaccumulative than 
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long-chain PFAS. Bioaccumulation factor (BAF) estimated in fish for perfluoro-4 

ethylcyclohexane-sulfonate (PFECHS), an emerging cyclic PFAS detected in 86% of samples 

from the Baltic Sea (Joerss et al., 2019), exceeded BAF value of PFOA (2.8 vs. 2.1, 

respectively) (De Silva et al., 2011), while BAF calculated for F-53B was almost equal to that 

of linear PFOS (Wang Y et al., 2016). Although environmental concentrations of F-53B have 

been determined in various water samples, aquatic organisms and human biological liquids 

(Munoz et al., 2019), very few biomonitoring reports are available for other trademarked 

PFAS. 

It is still uncertain to which extent the novel PFAS affect human health, however their adverse 

effects have been reported in organisms. Growth inhibition and antioxidant responses to 

PFECHS, F-53B and GenX were observed in Chlorella sp. at environmentally relevant 

concentrations (Niu et al., 2019). In northern pike (Esox lucius) collected upstream and 

downstream a wastewater treatment plant (WWTP), altered tissue-specific expression of 

toxicity response-related genes was associated with PFECHS concentrations (Houde et al., 

2013). The potential of PFECHS as endocrine disrupting chemical was suggested by the 

outcomes in Daphnia magna based on immune-specific assay for vitellogenin (Vtg) content 

and relative gene expression (Houde et al., 2016). Chronic exposure of zebrafish to F-53B 

resulted in the PFAS accumulation in liver resulting in hepatotoxicity and altered gene 

expression involving organism development in male sex and metabolic processes in female 

fish through PPAR signalling pathway (Shi G et al., 2019c). Mice orally exposed to 0.02-0.5 

mg/kg/d of hexafluoropropylene oxide trimer acid (HFPO-TA) showed altered expression of 

genes involved in PPAR and chemical carcinogenesis pathways which proved higher potential 

to elicit hepatotoxic effects and to bioaccumulate than PFOS (Sheng et al., 2018). Other 

studies on animal models and humans estimated the bioaccumulation potential of HFPO-TA 

to be higher than that of PFOA but lower compared to BAF calculated for PFOS and F-53B 

(Pan et al., 2017; Cui et al., 2018). 

When considering ultrashort-chain PFAS, former combined algal toxicity tests upon exposure 

to trifluoroacetic acid (TFA) showed growth inhibition, however a threshold of 0.1 mg/L could 

be established as safe for aquatic ecosystems (Berends et al., 1999). Other studies showed 

no risks due to lower TFA concentrations (Russell et al., 2012; Solomon et al., 2016; Wiegand 

et al., 2000) even in mixture with trichloroacetic acid (TCA) assessed in aquatic microcosms 

(Hanson et al., 2002), although a low increase of glutathione-S transaminase (GST) was 

observed. Even though C2-C4 PFAS are frequently detected in surface waters and WWTP 

effluents, their long-term effects on humans and biota are unknown (Kärrman et al., 2019). 

The effects in model organisms due to degradation products of short-chain PFAS with relative 

lethal and effect concentrations have been recently reviewed by Peshoria et al., 2020. Other 

effects of novel and non-legacy PFAS assessed in recent years are reported in Table 7. 
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Table 7. Effects of emerging PFAS on aquatic biota based on recent scientific literature. 

Compound  Species Effect  Reference 

6:2 FTOH Zebrafish embryos (Danio rerio) Mortality: LC50=830μM 

2-fold increased expression of tgfb1a and bdnf 

genes. Behavioural assay: increase in distance 

travelled and velocity. 

Annunziato et al., 

2019 

6:2 FTAA Zebrafish (Danio rerio) Not detected in adult tissue and offspring.  

Mixture effects in chronic toxicity test with 6:2 

FTAB: decreased average number of egg 

production, increased malformation and mortality 

in offspring. Changes in endocrine hormones, 

sex-bias. 

Shi G et al., 2019a 

6:2 FTAB 

(major 

component of 

Forafac®1157) 

Zebrafish (Danio rerio) 

 

Detected in adult tissue and offspring.  

Mixture effects with in chronic toxicity test with 

6:2 FTAA: decreased average number of egg 

production, increased malformation and mortality 

in offspring. Changes in endocrine hormones, 

sex-bias. 

Extensively metabolised in fish, whereas 6:2 

FTAB and 6:2 FTAA co-exposure disrupted the 

adult endocrine system and impaired offspring 

development. 

Shi G et al., 2019a 

Acute toxicity test: LC50=43.73±3.24 mg/L (6:2 

FTAB appeared to be less toxic than PFOS). No 

effect on hatching percentage and live embryos 

hatched. The malformation percentage increased 

at higher concentrations. Up-regulated 

transcriptional levels of certain genes related to 

apoptosis and immunotoxicity. Accumulation of 

ROS and changes in antioxidant enzymes. 

Shi G et al., 2018 

6:2 FTCA Zebrafish embryos (Danio rerio) 

 

Survival: 72 h-LC50=25.1±1.5 mg/L, 120 h-

LC50=7.33±0.50 mg/L (lower compared to PFOA, 

thus indicating higher toxicity for zebrafish). 

Reduced hatching success, survival and erythroid 

Shi G et al., 2017 
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cell numbers at both the transcriptional and 

protein levels. Increased embryo malformations.  

6:2 FTSA Zebrafish embryos (Danio rerio) Survival: 72 h-LC50=25.1±1.5 mg/L, 120 h-

LC50=7.33±0.50 mg/L 

Reduced hatching success and erythroid cell 

numbers at transcriptional and protein levels. 

Increased embryo malformations rate. 

Shi G et al., 2017 

6:2 Cl-PFESA 

(F-53B) 

Aquatic biota (seawater 

samples): six benthic 

invertebrates, ten fish species, 

one seabird and one marine 

mammal 

Increased BAF in gastropod compared to PFOS 

but the difference was not observed in other 

species. The trophic magnification factor 

(TMF)=3.37 in the marine food web, indicating 

biomagnification potential along the marine food 

chain. 

Chen H et al., 2018 

Zebrafish embryos (Danio rerio) BCF=125−358 (113−193 for PFOS). Exposure 

did not significantly affect hatching rate, 

mortality, larval body weight and body length. 

The yolk sac area was significantly reduced in the 

high exposure. Affected both metabolic transcript 

level and organismal metabolic phenotype.  

Tu et al., 2019 

No significant acute toxicity on mortality, hatch 

and malformation to zebrafish larvae. Observed 

hepatic steatosis. Changes in lipids profile: 

increased total cholesterol and triglycerid levels, 

and decreased LDL level. Abnormal regulation on 

gene expressions. 6:2 Cl-PFESA mediated the 

lipid metabolism in a similar mode and to a 

comparable extent as PFOS. 

Yi et al., 2019a 

No significant acute toxicity on mortality, 

morphology or body length to zebrafish embryos, 

only decrease in body weight at higher dose. 

Concentration in whole-body burdens increased 

in a concentration-dependent manner. Increased 

reactive oxygen and decreased antioxidant 

response. Induced oxidative stress in early 

Wu Y et al., 2019 
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developing zebrafish (changes at the levels of 

activity, mRNA and protein of antioxidant genes). 

Zebrafish adults (Danio rerio) In adult zebrafish LC50=15 mg/L (at 96 h), 

similar to that of PFOS (17 mg/L), in zebrafish 

larvae LC50=13.77 mg/L, lower compared to 

PFOS (54 mg/L). 

Induced decrease in growth and reproductive 

capability in adult F0 zebrafish. Altered TH levels 

and gene expression in the F1 and F2 

generations during different developmental 

periods which reflected the transgenerational 

thyroid-disrupting capacity of 6:2 Cl-PFESA in 

zebrafish. 

Shi G et al., 2019b 

Rainbow trout (Oncorhynchus 

mykiss) 

Comparable bioaccumulative potencies and 

similar distribution tendencies to PFOS. 

Yi et al., 2019b 

Green algae (Scenedesmus 

obliquus) 

Total log BAF=4.66. Algal growth IC50=40.3 mg/L 

(as reference per PFOS was 112 mg/L). 

Changes in algal growth rate and chlorophyll a/b 

contents were observed at 11.6 mg/L and 13.4 

mg/L, respectively. Exposure inhibited the algal 

growth in a concentration-dependent manner and 

induced adverse effects on the membrane 

property and oxidative stress. 

Liu W et al., 2018 

8:2 diPAP Gilt-head bream (Sparus aurata) Distribution: accumulates in liver, plasma and 

gills, and to a lesser extent in muscle, bile and 

brain.  

Analysis of metabolites in tissues and biofluids: 

the major metabolite in all tissues/biofluids 

except for bile where PFOS was dominating. 

Zabaleta et al., 

2017 

Cl-PFOS Zebrafish larvae (Danio rerio) No significant acute toxicity (7 days) on mortality 

and hatching or malformations. Observed hepatic 

steatosis and changes in lipids profile: increased 

total cholesterol and triglycerid levels, decreased 

LDL level. Abnormal regulation on gene 

expressions. Lipid metabolism mediated in a 

Yi S et al., 2019a 



 

 

39 

similar mode and to a comparable extent as 

PFOS. 

Rainbow trout (Oncorhynchus 

mykiss) 

Comparable bioaccumulative potencies and 

similar distribution tendencies as PFOS. 

Yi S et al., 2019b 

HPFO-DA 

(GenX) 

Blue spot goby (Pseudogobius 

sp.) 

Dietary bioaccumulation (21 days uptake period 

+ 42 days depuration period) not detected 

indicating either a lack of uptake or rapid 

elimination (<24 h). GenX did not appear to 

bioaccumulate in benthic, sediment‑associated 

estuarine fish species. 

Hassell et al., 2020 

OBS Zebrafish embryos (Danio rerio) BCF=20−48 (113−193 for PFOS). Exposure did 

not significantly affect hatching rate, mortality, 

larval body weight and body length. Several 

metabolic endpoints were differentially affected 

at the organismal level. Metabolic disruption 

elicited only at higher concentrations. 

Tu W et al., 2019 

Zebrafish adults (Danio rerio) No dysbiosis in gut microbiota or disturbance of 

hepatic metabolism in adult male zebrafish at 

low-dose exposure (7-21 days). 7 

Wang C et al., 2020 

Crucian carp (Carassius 

carassius) 

Distribution in fish tissues was similar to PFOS.  

Log BAF=3.70 (lower bioaccumulation than 

PFOS). Bioaccumulation potential and binding 

affinity with specific proteins. 

Shi Y et al., 2020 

PFECHS Invertebrates (Daphnia magna) Acute LC50=186.61 mg/L.  

Under-regulation of Vtg-related genes (VTG1) 

and upregulation of genes related to cuticle. No 

effects on survival, molting frequency, growth or 

reproduction at the individual/population level. 

Endocrine disruption effect only at concentrations 

higher than levels reported in the aquatic 

Houde et al., 2016 

                                                 

 
7 OBS LC50=25.5 mg/L for zebrafish, indicating low toxicity [United Nations, 2011. Globally Harmonized System of Classification and Labelling 

of Chemicals (GHS). (ST/SG/AC.10/30/rev.4)]. 
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environment (concentrations detected in surface 

water samples 1.04-1.38 ng/L). 

PFO3OA, 

PFO4DA, 

PFO5DoDA 

Zebrafish embryos (Danio rerio) Endpoint: uninflated swim bladders (5 dpf) 

EC50=1227.4±66.8 mg/L (PFOA=251.5±24.2 

mg/L). Toxicity increased in the order PFO5-

DoDA>PFO4DA>PFOA>PFO3OA. Log Kow=3.94 

for PFO3OA (4.81 for PFOA). Results suggested 

thyroid disruption effect that may cause swim 

bladder malformation. 

Wang J et al., 2020 

BCF: bioconcentration factor. Vtg: vitellogenin. 
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5. Legal frameworks for PFAS restriction  

5.1 EU directives and regulations 

Several EU legislations provide a means to control PFAS pollution as protection measures for 

the environment and human health (Figure 12). The presence of PFAS in aquatic 

environments is regulated by the Water Framework Directive (WFD, 2000/60/EC) and related 

legislation. The EU Industrial Emissions Directive (IED) sets the management of the PFAS 

emissions from industrial sources (Directive 2010/75/EU), while Waste Treatment Plants 

(WTP) are regulated by the Waste Framework Directive (Directive 2008/98/EC) and the 

Sewage Sludge Directive (Council Directive 86/278/EEC).  

In the European Union (EU), regulation No 850/2004 on POPs implemented the Stockholm 

Convention as for their use, reduction, elimination and related actions, however PFAS were 

not specifically addressed. Following the OECD studies (OECD, 2002) and risk assessment by 

the Scientific Committee on Health and Environmental Risks (SCHER, 2005) classifying PFOS 

as very persistent, very bioaccumulative and toxic, but agreed on their use in critical fields 

which appear not to pose significant environmental risk when release to the environment is 

minimised. PFOS ban in the majority of finished and semi-finished products was then 

specifically addressed by the EU Directive 2006/122/EC, with the threshold of 50 mg/kg for 

exempted products (i.e., wetting agents for electroplating systems, substances employed in 

photolithography processes, photographic coatings, mist suppressants for hard chromium 

plating and hydraulic fluids for aviation). The threshold was subsequently lowered by 

regulation (EC) No 757/2010 amending the regulation on POPs, including restriction of PFOS 

content to the threshold of 10 mg/kg in substances and preparation for industrial products 

exempted from the phase-out. 

In 2009, after including PFOS in annex B of the Stockholm Convention, the EU further 

restricted the industrial use and manufacturing of PFOS and then PFOA under REACH 

regulation (No 1907/2006, No 522/2009, Commission Regulation 2017/1000). The REACH 

regulation includes the Candidate List of Substances of Very High Concern (SVHC) for 

authorisation which contain chemical substances attaining at least one criterium for the 

following adverse effects in organisms/environments or properties: carcinogenic, mutagenic 

and toxic for reproduction (CMRs); persistent, bioaccumulative and toxic (PBT) or very 

Persistent and very Bioaccumulative (vPvBs). On 4 July 2020, based on the SVHC Candidate 

List, restrictions on the use, import and production of PFOA, its salts and derivatives came 

into effect with thresholds specific to their applications (No 2019/1021, No 2020/784). The 

Candidate List includes other PFAS (PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA and PFTDA) due 

to their vPvB or PBT properties (EU-strategy, 2019; ECHA, 2020; ECHA 2020b) which might 

also be considered candidates for including in the Stockholm Convention (ECHA, 2020). 

Other EU frameworks have been established to limit the exposure to PFAS from dietary 

sources due to migration from Food Contact Materials (FCMs) (EC, No 1935/2004 and No 

10/2011). The Annex I of the regulation includes a list of substances allowed for use as plastic 

additives for packaging materials and articles in contact with food. Although such applications 

are banned for PFOS, PFNA and PFHxS, other PFAS can be employed as additives, polymer 

production aid (PPA) agents, monomers or polymers (Bokkers et al., 2018). An Action Plan 

within the "EU-strategy" (2019) in collaboration with the European Food Safety Authority 

(EFSA) recommended to "Phase out the use of all PFASs in all types of FCMs" through the 

REACH regulation and to remove PFAS from the positive list (i.e., list of substances allowed 

for use in FCMs) of the Framework Regulation No 1935/2004 (EU-strategy, 2019). 
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Figure 12. Main legislative documents posing restrictions on PFAS in the EU, USA and at global level. Since the detection of PFAS in human blood and 
environmental samples, European directives and regulations ensured indirect protective measures by establishing general rules for a range of substances 
(light blue). Further, the EU legislative restrictions including amendments of previous frameworks as well as future strategies specifically mentioned PFAS 
(dark blue). The USEPA included several PFAS already in the first Significant New Use Rule (SNUR) in 2002 and in subsequent amendments until 2020 
(orange). At global level, the Stockholm Convention remains the main international provision restricting PFAS after the first review in 2009 (green). SVHC: 

Substance of Very High Concern
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PFHxA and PFHxS, the latter used as alternative to PFOA, have been proposed as candidates 

for the list under the REACH restrictions. Two more PFAS were proposed for eventual inclusion 

in the restriction Annex XIV of REACH within the SVHC Candidate List: PFBS and 2,3,3,3-

tetrafluoro-2-(heptafluoropropoxy)propionic acid, its salts and acyl halides (HFPO-DA), which 

have been used as substitutes of PFOS and PFOA, respectively (ECHA, 2020; ECHA, 2020b). 

Recently, a REACH initiative called for evidence and information on the use and production of 

PFAS by companies in order to evaluate harmful effects in a broad PFAS restriction scenario8. 

Further safety measures to protect from hazardous substances, including PFOA, PFNA, PFDA 

and ammonium pentadecafluorooctanoate (APFO), have been established by the 

Classification, Labelling and Packaging (CLP) regulation (No 1272/2008) that aligns the 

European system of classification and labelling rules to the Globally Harmonised System 

(GHS). 

In a future perspective, the Chemicals Strategy for Sustainability towards toxic-free 

environments under the European Green Deal dedicated special attention to PFAS considering 

numerous cases of environmental contamination, among which drinking water, large impact 

on human health with a full spectrum of illnesses having high economic and social footprint 

(COM(2020) 667 final) (Figure 13). Therefore, the strategy adopted a PFAS group approach 

under relevant legislation for water as well as for ban in fire-fighting foams and other uses 

not essential for the society. Further aims include enhanced policy dialogues and international 

fora on a global scale, support for development of innovative remediation methodologies and 

safe PFAS substitutes. 

                                                 

 
8 https://eurovent.eu/?q=articles/reach-initiative-call-evidence-broad-pfas-restriction-gen-113700 

https://eurovent.eu/?q=articles/reach-initiative-call-evidence-broad-pfas-restriction-gen-113700
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Figure 13. Timelines of ongoing and future actions addressing PFAS under the Chemicals Strategy for Sustainability. Several revisions of the current 
European legislation documents are foreseen to reduce the emissions of PFAS to the environment and to establish their safety thresholds from dietary 
sources. The assessment of PFAS as a group is expected to encompass more substances instead of measuring chemicals one-by-one in order to better 
protect human health and the environment. “One substance, one assessment” approach will simplify and synchronise the safety assessment of chemicals 

across various pieces of legislation through a EU coordinated mechanism, an expert group and the Public Administration Coordination Tool. Additionally, 
the REACH regulation will provide legislative basis for phasing out PFAS for non-essential uses until 2024 with predicted entry into force in 2025. At 
global level, the concerns regarding the presence of PFAS in the environment will be targeted by the Basel and the Stockholm Conventions. IED: 
Industrial Emissions Directive. EQSD: Environmental Quality Standards Directive. GWD: Groundwater Directive. FCCR: Food contaminants Commission 
Regulation. SSD: Sewage Sludge Directive. REACH: Registration, Evaluation, Authorisation and Restriction of Chemicals.
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5.2 PFAS under the Water Framework Directive, Drinking Water Directive 
and Groundwater Directive  

The European Union Water Framework Directive (WFD) (2000/60/EC) was established with 

the aim to protect and improve the quality of EU water bodies (including surface, inland, 

rivers, lakes, transitional and underground waters as well as coastal waters out to one nautical 

mile) based on quality standards defined in terms of chemical, hydrological and biological 

status. To achieve a good chemical status of water bodies and to define levels above which 

actions reducing the emissions, discharges and losses of harmful compounds as well as 

measures determining phase out of the most hazardous chemicals, the Environmental Quality 

Standard Directive (EQSD, 2008/105/EC) established safety thresholds for 33 priority 

substances that may pose a potential risk to the water environment and aquatic organisms. 

Among those substances, perfluorooctane sulfonic acid (PFOS) and its derivatives were 

included as PFAS representatives. The Directive 2013/39/EU, which amended the WFD and 

the EQSD, provided harmonised guidelines for risk assessment and monitoring of 45 priority 

substances and other substances of concern. However, no other PFAS have been considered 

among priority hazardous substances.  

The EQS values for PFOS and its derivatives, derived from data on ecotoxicological effects, 

high-quality monitoring data and risk assessments, are summarised in Table 8. The EQS were 

derived following the methodology described in the Technical Guidance for Deriving 

Environmental Quality Standards (EC, 2011a). The EQS parameter for long-term exposure to 

PFOS expressed as the annual average value (AA-EQS) was proposed as 6.5 × 10 –4 μg/L for 

surface inland surface water and 1.3 × 10-4 μg/L for other surface waters (rivers, lakes, and 

artificial or heavily modified water bodies). The maximum allowable concentration (MAC-

EQS), as acceptable concentration for acute exposure, was established at 36 μg/L for inland 

surface water and 7.2 μg/L for other surface waters. In relation to human consumption of 

fishery products, the EQS biota considered as safe for aquatic organisms was set up at 9.1 

μg/kg wet weight. At the time of writing, the above-described EQS values for PFOS and its 

derivatives are under revision.  

 
Table 8. Environmental Quality Standards (EQS) of PFOS as Priority Substance under the amended 

Water Framework Directive (2013/39/EU). 

Substance AA-EQS 

Inland 

surface 

waters 

[μg/L] 

AA-EQS 

Other 

surface 

waters 

[μg/L] 

MAC-EQS  

Inland 

surface 

waters 

[μg/L] 

MAC-EQS 

Other 

surface 

waters 

[μg/L] 

EQS Biota 

[μg/kg wet 

weight] 

Perfluorooctane 

sulfonic acid (PFOS) 

and its derivatives 

6.5 × 10–4 1.3 × 10–4 36 7.2 9.1 

 AA: annual average; MAC: maximum allowable concentration 

 
Other EU legislations complementing the WFD are the Groundwater Directive (GWD) 

(2006/118/EC), which supplements on the procedures for assessing the chemical status of 

groundwater, and the Drinking Water Directive (DWD) (98/83/EC) that specifies criteria to 

ensure the quality of water intended for human consumption. Additionally, EU Member States 

have set up national regulations to further restrict PFAS concentration limits in water 

(Concawe, 2016; OECD, 2013). 
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The European Commission is currently reviewing the annexes of the Groundwater Directive, 

and PFAS is one of the three main groups of substances proposed to be included9. The process 

builds on the voluntary groundwater watch list mechanism, which supported a study with 

monitoring data from 11 European countries. The review process also considers the DWD 

recast.   

Regarding the DWD (98/83/EC), the revised directive of 16 December 2020 established a list 

of 20 PFAS (Table 9) with limit values for two chemical parameters: the “sum of PFASs” 

intended as a sum of 20 PFAS considered in the recast with the parametric value of 0.10 μg/L, 

and “PFASs - total” meaning the “totality of per- and polyfluoroalkyl substances” with the 

threshold concentration of 0.50 μg/L (Directive (EU) 2020/2184). Decision to use one or both 

parameters for monitoring in drinking water is left to the Member States (MS), however, 

technical guidelines regarding the analytical methods, in particular detection limits and the 

frequency of sampling, are not defined so far and are to be established by the Commission 

by 2024. 

 
Table 9. List of PFAS proposed as a chemical parameter in the recast of the Drinking Water Directive 
(DWD) (EU) 2020/2184. The number of total carbon (C) atoms and classification according to the length 
of alkyl chain are shown. 

Name Acronym 
Total C 
atoms 

Chain* CAS 
Other 

acronyms 

Perfluorobutanoic acid PFBA 4 Short-chain 375-22-4  

Perfluorobutanesulfonic acid PFBS 4 Short-chain 375-73-5  

Perfluoropentanoic acid PFPA 5 Short-chain 2706-90-3 PFPeA 

Perfluoropentane sulfonic acid PFPS 5 Short-chain 2706-91-4 PFPeS 

Perfluorohexanoic acid PFHxA 6 Short-chain 307-24-4  

Perfluorohexanesulfonic acid PFHxS 6 Long-chain 355-46-4  

Perfluoroheptanoic acid PFHpA 7 Short-chain 375-85-9  

Perfluoroheptane sulfonic acid PFHpS 7 Long-chain 357-92-8  

Perfluorooctanoic acid PFOA 8 Long-chain 335-67-1  

Perfluorooctanesulfonic acid PFOS 8 Long-chain 1763-23-1  

Perfluorononanoic acid PFNA 9 Long-chain 375-95-1  

Perfluorononane sulfonic acid PFNS 9 Long-chain 68259-12-1  

Perfluorodecanoic acid PFDA 10 Long-chain 335-76-2  

Perfluorodecane sulfonic acid PFDS 10 Long-chain 335-77-3  

Perfluoroundecanoic acid PFUnDA 11 Long-chain 2058-94-8  

Perfluoroundecane sulfonic acid  PFUnDS 11 Long-chain 749786-16-1 PFUnS 

Perfluorododecanoic acid PFDoDA 12 Long-chain 307-55-1 PFDoA 

Perfluorododecane sulfonic acid  PFDoDS 12 Long-chain 79780-39-5 PFDoS 

Perfluorotridecanoic acid PFTrDA 13 Long-chain 72629-94-8  

Perfluorotridecane sulfonic acid  PFTrDS 13 Long-chain NA  

NA: not available. * OECD, 2013. 

 

                                                 

 
9 https://ec.europa.eu/environment/water/fitness_check_of_the_eu_water_legislation/index_en.htm 

https://ec.europa.eu/environment/water/fitness_check_of_the_eu_water_legislation/index_en.htm
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5.3 Historical steps towards regulatory frameworks for PFAS at global level 

The early production and use of PFAS was not restricted by any legal regulation. Over the 

years, the number of studies evaluating the potential risk posed by PFAS exposure to 

environmental and human health increased (OECD, 2015). In the 1970s, PFAS have already 

been detected in the blood in chemical company workers and in various environmental media 

(Figure 8). However, nothing changed in the regulatory context because scientific results were 

mostly generated as internal reports of producing companies undisclosed for the public and 

based on the analytical technology unable to reliably determine PFAS compounds resulting in 

the lack of robust evidence on PFAS toxicity (Lindstrom et al., 2011; OEDC, 2015).  

Only in the 2000s, the USA paved the way towards progressive removal of the most toxic 

PFAS from production and use (Figure 10). The USEPA coordinated a voluntary phase-out of 

PFOS by world leading manufacturer of PFOS-based compounds and issued a series of 

Significant New Use Role (SNUR) documents that limited the employment of 183 PFAS to 

highly specific technical applications to which no alternatives were available (USEPA, 2002a 

and 2002b; ITRC, 2020). In 2006, eight major PFAS industries were invited to participate in 

the Stewardship Program 2010/2015 aiming at a 95% reduction and ultimately the 

elimination of PFOA and related chemicals from emissions and products in the USA by 2015 

(USEPA, 2006). Further measures, including the amendment of the Toxic Substances Control 

Act (TSCA) led to the requirement of reporting planned new uses, such as surface coatings, 

of PFOA and related chemicals as well as long-chain PFAS that have been phased out (USEPA 

2013, 2015 and 2020c). For drinking water, USEPA issued lifetime health advisory 

recommending the notification of PFOS and PFOA levels exceeding 70 ppt (combined) in 

community water supplies (USEPA, 2016). However, in order to better protect against cancer 

and non-cancer effects including the impact on the immune system and liver toxicity, single 

States established lower notification levels, which for the State of California equal 5.1 ppt for 

PFOA and 6.5 ppt for PFOS when detected separately, being far lower than response levels of 

10 ppt for PFOA and 40 ppt for PFOS (OEHHA, 2019). 

At global level, the Stockholm Convention on Persistent Organic Pollutants (POPs) imposed in 

2009 restrictions on the use of PFOS, its salts and perfluorooctane sulfonyl fluoride (PFOSF) 

in specific products (decision SC-4/17), and in 2019 included PFOA, its salts and related 

compounds for elimination from specific uses, except fire-fighting foams for which at present 

there are no valid alternatives (IISD, 2019). Perfluorohexane sulfonic acid (PFHxS), its salts 

and related compounds have been proposed for listing in the Annex A to the Convention 

without specific exemptions (Stockholm Convention, 2019). Potential toxicity of PFAS 

precursors has also been highlighted by the OECD (OECD, 2007). 

 

5.4 Measured Environmental Concentrations (MEC) in European inland 
surface water 

 
In the EU, the presence of several PFAS in inland surface water, groundwater and drinking 

water is confirmed by measurements from the Member States (MS). As shown in Figure 14, 

some of the substances are common to all three compartments. 
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Figure 14. PFAS monitored in inland surface water, groundwater and drinking water in the EU. The 
number of monitored substances is indicated in brackets for each water compartments. For drinking 
water, 20 PFAS are determined according to the recast of the Drinking Water Directive (DWD) (EU) 
2020/2184. Disaggregated monitoring data are available only for inland surface water from the 
prioritisation exercise undertaken in 2014-2016 (Carvalho et al., 2016). Three of listed compounds 
(PFDS, PFHpS and PFHxS), although having the same acronyms, refer to either sulfonic acid or sulfonate.  

To evaluate PFAS exposure in EU inland surface waters, the JRC performed an analysis of 

measured environmental concentrations (MEC) of PFAS based on data from the prioritisation 

dataset collected by the JRC in 2014 (Carvalho et al., 2016)10. This dataset combines records 

from five datasets (SoE of the European Environmental Agency, MSDAT, EMPODAT, IPCHEM 

of the JRC, JDS3) and includes quantified and non-quantified measurements (estimated 

concentrations are below limit of quantification, LOQ) from the EU MS gathered during 2006-

2014 period. Each of non-quantified samples in the prioritisation dataset is set to half LOQ11 

                                                 

 
10 The report is available in CIRCABC https://circabc.europa.eu/w/browse/52c8d8d3-906c-48b5-a75e-53013702b20a. 

11 Under the QA/QC Directive and EQS Directive, MS are required to replace the non-quantified samples 

by half LOQ to assess compliance with the EQS for individual substances, however the amended EQSD 
mentions that "when the calculated mean value of a measurement, when carried out using the best 

available technique not entailing excessive costs, is referred to as “less than limit of quantification”, and 
the limit of quantification of that technique is above the EQS, the result for the substance being 
measured shall not be considered for the purposes of assessing the overall chemical status of that water 
body". 
 

https://circabc.europa.eu/w/browse/52c8d8d3-906c-48b5-a75e-53013702b20a
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of applied analytical method as stipulated in Directive 2009/90/EC. The quality of monitoring 

data in this dataset is checked and verified according criteria described in Carvalho et al., 

2016.  

 

Data availability 

In the prioritisation dataset compiled by the JRC in 2014, totally 53595 samples for 15 

compounds of PFAS family, including PFOS (a priority substance), are available from 13 MS. 

The observations were collected at 1191 sites across the EU. Detailed information about the 

number of reporting MS, number of monitoring sites, overall number of samples and number 

of quantified samples (given as % of the total) for each of the considered 15 compounds is 

shown in Table 10. In case of perfluorotridecanoic acid (PFTrDA), only one sample from one 

MS is available in the dataset, hence this substance was excluded from the analysis, although 

it is shown for completeness in the tables and figures below. The number of reported samples 

for the other substances vary from 296 (PFTrDA) to 8822 (PFOA). Abundant data (8580 

samples) are available for perfluorononanoic acid (PFNA). Six substances (PFOA, PFNA, 

PFHpA, PFDA, PFHxA and PFBS) were monitored in at least 8 MS, with PFOA being the most 

intensely monitored PFAS among MS. 

 

 
Table 10. List of PFAS for which monitoring data are available in the prioritisation dataset. Statistical 

information about the number of reporting Member States (MS), number of monitoring sites, overall 

number of samples and number of quantified samples (% of the total for each substance) is provided 

for each PFAS. 

CAS Substance Acronym MS Sites Samples 

Quantified 
samples  

(% of the 
total) 

#1763-23-1 Perfluorooctanesulfonic acid PFOS 5 500 4926 42.20 

#2058-94-8 Perfluoroundecanoic acid PFUnDA 5 443 1763 23.65 

#2706-90-3 Perfluoropentanoic acid PFPeA 2 303 3720 29.25 

#307-24-4 Perfluorohexanoic acid PFHxA 8 386 3848 40.46 

#307-55-1 Perfluorododecanoic acid PFDoDA 4 323 1320 15.91 

#335-67-1 Perfluorooctanoic acid PFOA 13 945 8822 40.65 

#335-76-2 Perfluorodecanoic acid PFDA 8 564 4712 12.03 

#335-77-3 Perfluorodecanesulfonic acid PFDS 1 86 510 0.00 

#355-46-4 Perfluorohexanesulfonic acid PFHxS 3 317 3794 19.87 

#375-22-4 Perfluorobutanoic acid PFBA 2 300 3562 32.85 

#375-73-5 Perfluorobutanesulfonic acid PFBS 8 349 3714 41.76 

#375-85-9 Perfluoroheptanoic acid PFHpA 10 465 4027 23.79 

#375-92-8 Perfluoroheptanesulfonic acid PFHpS 1 69 296 0.00 

#375-95-1 Perfluorononanoic acid PFNA 11 452 8580 16.78 

#72629-94-8 Perfluorotridecanoic acid PFTrDA 1 1 1 0.00 
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Data quality 

The quality of MEC is essential for making a proper risk assessment analysis. The quality of 

PFAS data is verified according to the rate of quantification (percentage of quantified samples 

from all for a given substance) and range of LOQs for non-quantified samples (for which 

estimated concentrations are below LOQ). 

For instance, considering data from all MS together, the quantification rates of individual PFAS 

(see Table 10) vary from zero (PFDS and PFHpS; these two substances were monitored only 

in one MS and have lower numbers of samples) up to 42.2% (PFOS) with an average of 24.2% 

for the considered 14 substances.  

In addition, Figure 15 shows the range of LOQs for reported non-quantified samples for each 

monitored PFAS. The majority of non-quantified samples were taken with LOQs in the range 

of 0.001 – 0.1 µg/L. In this context, the quality of available monitoring data for PFAS in the 

prioritisation dataset of the JRC is acceptable, except for PFTrDA, and questionable for PFDS 

and PFHp. 

 

 
Figure 15. Range of limits of quantification (LOQs) for reported non-quantified samples (for which 
estimated concentrations are below LOQ) for every PFAS in the prioritisation dataset (JRC 2014) 
considering together data from all reporting MS. The overall number of non-quantified samples per 
substance are indicated at the bottom of the plot. 
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Measured environmental concentrations (MEC) 

The summary statistics of measured environmental concentrations (MEC) across Europe, 

including minimum, average, median, 90th percentile (P90), 95th percentile (P95) and 

maximum, considering together the data from all MS is presented in Table 11. Regarding the 

nine substances which have been monitored in 4 and more MS, the analysis showed median 
concentrations from 0.001 µg/L to 0.012 µg/L (average ~0.0056 µg/L), mean concentrations 

from 0.0024 µg/L to 0.053 µg/L (average ~0.018 µg/L), while the 95th percentiles (P95) of 

MEC ranged from 0.005 µg/L to 0.14 µg/L (average ~0.059 µg/L).  

 
Table 11. Basic statistics of measured environmental concentrations (µg/L) across Europe (jointly data 

from all countries) for PFAS in the prioritisation dataset of the JRC, including minimum, average, median, 
90th percentile (P90), 95th percentile (P95) and maximum values. 

CAS Substance Acronym Min Mean Median P90 P95 Max 

#1763-23-1 Perfluorooctanesulfonic acid PFOS 5.00E-07 2.42E-02 1.16E-02 3.60E-02 6.30E-02 5.00E+00 

#2058-94-8 Perfluoroundecanoic acid PFUnDA 1.00E-06 1.51E-02 1.00E-03 2.52E-02 1.00E-01 1.18E+00 

#2706-90-3 Perfluoropentanoic acid PFPeA 1.50E-04 1.12E-02 5.00E-03 1.80E-02 3.80E-02 9.74E-01 

#307-24-4 Perfluorohexanoic acid PFHxA 2.00E-04 1.76E-02 5.00E-03 2.80E-02 6.50E-02 8.92E-01 

#307-55-1 Perfluorododecanoic acid PFDoDA 2.00E-05 2.43E-03 1.00E-03 5.00E-03 5.00E-03 1.00E-01 

#335-67-1 Perfluorooctanoic acid PFOA 1.00E-06 5.34E-02 1.20E-02 6.80E-02 1.40E-01 1.20E+01 

#335-76-2 Perfluorodecanoic acid PFDA 1.00E-06 8.18E-03 5.00E-03 5.00E-03 1.25E-02 2.50E+00 

#335-77-3 Perfluorodecanesulfonic acid PFDS 5.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 

#355-46-4 Perfluorohexanesulfonic acid PFHxS 2.00E-07 7.58E-03 5.00E-03 1.00E-02 2.10E-02 9.80E-01 

#375-22-4 Perfluorobutanoic acid PFBA 5.00E-04 2.08E-01 5.00E-03 2.30E-02 5.23E-02 2.35E+02 

#375-73-5 Perfluorobutanesulfonic acid PFBS 1.50E-04 2.26E-02 5.00E-03 2.99E-02 5.73E-02 4.33E+00 

#375-85-9 Perfluoroheptanoic acid PFHpA 2.50E-04 1.17E-02 5.00E-03 1.60E-02 8.24E-02 1.00E+00 

#375-92-8 Perfluoroheptanesulfonic acid PFHpS 2.50E-03 4.97E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 

#375-95-1 Perfluorononanoic acid PFNA 4.00E-07 4.91E-03 5.00E-03 5.00E-03 8.00E-03 3.20E-01 

#72629-94-8 Perfluorotridecanoic acid PFTrDA 1.25E-03 1.25E-03 1.25E-03 1.25E-03 1.25E-03 1.25E-03 

 
 

In addition, Figure 15 gives more detailed picture (box-plots) of MEC for each of the PFAS 

with available measurements in the prioritisation dataset of the JRC when considering 

together data from all reporting MS. Regarding PFBA, there are several very high 

concentrations in the range of outliers. Higher MEC have been observed for PFBA, PFBS, 

PFHpA, PFHxA, PFOA, PFOS, PFPeA and PFUnDA (for all substances the mean concentration 

≥0.01 µg/L). 

Finally, the 95th percentiles (P95) of monitored concentrations of the considered 15 PFAS, for 

which measurements were available in the prioritisation dataset of the JRC, are presented in 

Figure 17. Higher P95 (P95≥0.04 µg/L) have been observed for the aforementioned eight 

PFAS (PFBA, PFBS, PFHpA, PFHxA, PFOA, PFOS, PFPeA and PFUnDA). 
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Figure 16. Box-plots of measured environmental concentrations (MEC), considering together data from 
all reporting MS, for each of the PFAS with available measurements in the prioritisation dataset of the 
JRC. The lowest line of the figure shows the overall numbers of samples. 

 

  
Figure 17. 95th percentile (P95) of measured concentrations, considering together data from all 
reporting Member States (MS), for each of the PFAS with available measurements in the prioritisation 
dataset. The lowest line of the figure shows the overall numbers of samples for each substance. 
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6. Conclusions 
The growing global concern over PFAS urges the need of more (eco)toxicological data to 

investigate risks of PFAS exposure and to better protect health, environment and natural 

resources from persistent and mobile chemicals. Moreover, there is no legislation covering 

all PFAS, therefore a new approach which would consider the PFAS as a group, would 

envisage to target classes of PFAS. Figure 18 shows the knowledge gaps which have been 

identified to improve their detection and risk assessment in the environment.  

 

 

 
Figure 18. Knowledge and assessment gaps relative to PFAS in the environment. 

 

The steps towards filling the knowledge gaps regarding PFAS have been undertaken by the 

Chemicals Strategy for Sustainability (COM(2020) 667 final) under the European Green 

Deal. Scientific evidence points at the need to include a comprehensive set of PFAS 

compounds and classes, their precursors and possibly degradation products in 



 

 

54 

environmental assessments based on clear selection criteria. The grouping approach and 

“One substance, one assessment” for synchronised legislation regulating their monitoring 

during production process, in final products and in various environmental compartments 

will partly cover this demand. However, defining how to report the sum of PFAS as a group 

in relation to the environmental quality standards (EQS) remains the main challenge.  

Increased efforts to reduce PFAS emissions and to obtain more monitoring data are 

necessary to assess the effective concentrations and profiles of these compounds in the 

environment. In long-term perspective, phasing out and substitution with environmentally-

friendly alternative substances as part of eco-innovation and bioeconomy is highly 

recommended to meet the objective of the Green Deal agenda. Considering persistence 

properties, bioremediation remains a valid large-scale solution for the effective removal of 

PFAS which accumulated in environmental matrices over decades. 
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