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Abstract 

This report presents the second version of the EU-wide individual farm level model for 

common agricultural policy (IFM-CAP), which aims to assess the impacts of the post-

2020 CAP reform on farm economics and the environment. The rationale for such a farm-

level model is based on the increasing demand for a microsimulation tool capable of 

modelling farm-specific policies and capturing farm heterogeneity across the EU in terms 

of policy representation and impacts. Based on Positive Mathematical Programming, IFM-

CAP seeks to improve the quality of policy assessment over existing aggregate and 

aggregated farm-group models and to provide an assessment of distributional effects on 

the EU farm population. To guarantee the highest representativeness of the EU 

agricultural sector, the model is applied to each EU-FADN individual farm (83 292 farms). 

This report provides a detailed description of the IFM-CAP model (IFM-CAP v.2) in terms 

of the design, the mathematical structure, data preparation, modelling of livestock 

activities, allocation of input costs, and the calibration process. The theoretical 

background, the technical specification and the outputs that can be generated from this 

model are also briefly presented and discussed. 
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Preface 

Building on the previous model documentation available in Louhichi et al. (2018b), this 

manual describes the IFM-CAP model and is written with three use cases in mind (Figure 

1):  

 First, it is addressed at readers who want to use and interpret the results of 

the model for evaluating a given policy. The aim is to obtain a general 

understanding of how the model functions (policy assumptions, data, calculations) 

without necessarily getting into too many details. Section 1 provides a brief 

summary of the model and is the most appropriate for those readers. 

 Second, it is addressed at readers who want to review and/or validate the 

model. These readers are mostly concerned with the theoretical underpinnings of 

the model (i.e. assumptions about farmers’ behaviour and general economic 

reasoning) and the reliability of the data used (validity of parameter estimation 

procedures, calibration). They should be able to find detailed information 

regarding these issues but without necessarily getting into the code 

implementation details. Section 2 is the most appropriate for those readers.  

 Finally, this manual is also intended to be useful for those who want to replicate, 

alter or contribute to the codebase of the model. It will enable them to 

understand how the various components glue together and to learn how to locate 

the different model components in the code. Section 3 provides all the low-level 

details related to the design of the code. 

  

 

Figure 1. IFM-CAP manual reader use-cases 
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At first glance, the suggested use-case typology may seem overlapping; someone who is 

interested in interpreting the results of the model will possibly need more details about 

its theoretical basis. In addition, reviewing and validating the model cannot be done 

without examining the code. However, the manual organisation will allow the reader to 

guide himself from the more general information to the more specific one. Section 1 

provides a brief summary of the model and corresponds to the first use-case (‘use the 

results of the model’). We briefly describe the motivation behind the model, its main 

assumptions, its core processes, and the necessary data required to run a policy 

scenario. All these issues are further analysed in Section 2, which provides all the 

theoretical details behind each model process and covers the requirements of the second 

reader use-case. Finally, Section 3 explains how the farm decision model and the 

database are translated into code.  
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1. A brief overview of the model 

 

Why a farm level model? 

In the past few decades, the Common Agricultural Policy (CAP) of the European Union 

has undergone a major shift from price support to support conditional on respecting 

specific environmental standards. At the same time, in an attempt to better address the 

heterogeneity of the agricultural sector within the EU, the approach to policy design has 

also changed significantly, moving from a ‘one-size-fits-all’ approach to measures 

targeting specific regions or farms. These developments have brought about an 

increased need for tools to model the various objectives of the CAP (income support, 

environmental sustainability, equity of direct payment distribution) at more disaggregate 

geographical scales, particularly at farm level. 

The first important change to the CAP, which required the application of farm modelling 

to analyse its impacts, was the introduction of farm-specific decoupled payments as part 

of the 2003 reform (i.e. the single payment scheme). Subsequent CAP reforms 

introduced additional changes to decoupled payments, including modulation and capping 

of payments to large farms, redistributive payments for the first hectares used by farms, 

the small farmers scheme, and additional payments for young farmers, new entrants and 

farms located in disadvantaged areas. All these changes further affected payment 

heterogeneity across farms. 

The need for farm-level models became more obvious after the 2013 CAP reform, which 

introduced greening as an additional conditionality layer of farm-specific obligations for 

receiving direct payments. Although several studies have attempted to model greening 

using more aggregated models (e.g. Gocht et al., 2017), the majority of studies about 

the 2013 CAP reform have been conducted using farm-level models. This reveals the 

suitability of such tools for ex ante policy analyses under the current CAP setting (e.g. 

Cortignani et al., 2017; Louhichi et al., 2018a; Solazzo and Pierangeli, 2016; Vosough-

Ahmadi et al., 2015). Despite their different modelling assumptions, data sets and 

regional focus, most of these studies utilising farm models were able to produce 

consistent results that showed a limited impact of greening across EU farms. However, 

among the important limitations of these models is that most of them covered only 

selected Member States (MSs) / regions or specific agricultural sectors (e.g. Cimino et 

al., 2015; Solazzo et al., 2014; Vosough-Ahmadi et al., 2015), and they lacked a 

modular structure that was easily transferable and generic. 

Furthermore, an important challenge for modelling tools in delivering a meaningful ex 

ante impact assessment is provided by the recent European Commission proposal for the 

CAP post 2020. This proposal aims to provide greater freedom for MSs to decide how 

best to meet the common objectives while responding to the specific needs of their 

farmers and rural communities (European Commission, 2018). The CAP post 2020 is the 

main support instrument envisaged to promote the transition to sustainable and inclusive 

agricultural production, as outlined in the European Green Deal and reflected in the farm-

to-fork and biodiversity strategies (European Commission, 2020a,b). The European 

Green Deal is a comprehensive policy approach promoting transformation of the EU food 

system to one that is environmentally friendly, socially responsible, able to preserve 

ecosystems and biodiversity and able to contribute to a climate-neutral European 

economy. It takes a holistic approach by targeting the whole EU food system from 

farmers to consumers by covering food production, transport, distribution, marketing and 

consumption, and global trade and global food sustainability standards. As the farming 

sector supplies primary inputs to the food system and uses land in the production 

process that covers almost 50 % of the EU territory, its adjustment is pivotal for the 

transition to sustainable food systems, as envisaged within the Green Deal. As a result, 

the Green Deal could have significant impacts on the farming sector, both directly, 

because it targets the production process and farming practices, and indirectly, because 

of the feedback effects channelled from other stages of the food supply chain targeted by 
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the Green Deal. To be able to analyse the economic, social and environmental impacts of 

the complex nature of the Green Deal’s policy objectives requires modelling approaches 

that capture detailed aspects of farmer decision-making and farm structural change, as 

well as the interactions between farmers and both biophysical factors and other actors of 

the food supply chain. 

The changes envisaged for the CAP post 2020, relate in particular to the objectives of  

1. rebalancing farm income support towards small and medium-sized family 

farms and reducing it for large farms through capping;  

2. stimulating farm structural change with respect to the entry of young farmers 

in the sector and improvement of intergenerational knowledge transfer;  

3. enhancing the provision of public goods, biodiversity, ecosystem services and 

climate change mitigation and adaptation either through mandatory 

requirements or through voluntary schemes;  

4. promoting greater requirements for EU agriculture to meet societal 

expectations on animal welfare, food quality, food safety and health issues; 

and  

5. designing more effective rural development measures to promote growth, job 

creation, social inclusion and business development in rural areas including 

the development of bioeconomy (European Commission, 2018). 

The analysis of these changes requires more detailed and flexible representation of 

policies in simulation models. The increased focus on agri-environmental interactions 

also requires better integration of biophysical and economic approaches, while the call 

for greater use of knowledge and innovation implies that farmers will be encouraged to 

invest in new production technologies. Assessing the impact of such policies calls for 

approaches that consider farm-level characteristics and alternative specifications for 

farmers’ behaviour and preferences. 

Given the above challenges, and because of the shortcomings of the agricultural policy 

modelling tools that use aggregated farms, the Joint Research Centre (JRC) developed an 

individual farm-level simulation model. The tool is called the Individual Farm Model for 

Common Agricultural Policy (IFM-CAP) and will be used for the ex ante assessment of 

medium-term adaptation of individual farmers to policy and market changes. The main 

expectations of this microsimulation tool are as follows: (i) it allows a more flexible and 

comprehensive assessment of a wide range of farm-specific policy measures that cannot 

be achieved with other models; (ii) it can be applied at EU-wide scale; (iii) it reflects the 

full heterogeneity of the EU commercial farm in terms of policy representation and 

impacts; (iv) it covers all the main agricultural production activities in the EU; (v) it 

permits a detailed analysis of different farming systems; and (vi) it enables the 

distributional impacts across the farm population to be estimated. 

 

The model in a nutshell 

IFM-CAP is a farm-level optimisation model of agricultural supply designed for the 

economic and environmental analysis of the European agricultural systems. It can be 

characterised as a template model. It consists of a number of individual farm models –

one for each of the 81 107 individual farms in the farm accountancy data network1 

(FADN), covering all EU. All individual farm models have the same structure but use 

different farm-specific parameters, which in turn determine farm eligibility for specific 

policy measures (i.e. activation of the respective model constraints). IFM-CAP includes all 

FADN activities for crops (arable crops, vegetables and permanent crops, fodder and 

                                           
(1) The FADN survey covers only those EU farms that, because of their size, could be considered commercial 

(the specific size threshold varies in each MS). 
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grassland, and fallow) and livestock (cattle, pigs, small ruminants and other animals). 

This means that the model provides EU-wide geographical and production coverage and 

that it is representative of the effects of CAP policy on the commercial farms of the EU. 

IFM-CAP simulates a farm’s decision to allocate resources to various crop and livestock 

activities as an optimisation problem. Each FADN farm selects the level of crop and 

livestock activities (in hectares and head of livestock, respectively) that maximises its 

expected utility of income. The expected utility of income for a farm is defined as the 

expected gross income (2) minus the risk premium, which represents the importance of 

uncertainty in the farm decision-making process. All CAP decoupled and coupled 

payments are part of a farm’s expected income, which also includes those payments that 

depend on eligibility rules and on compliance with specific environmental measures. 

The optimisation problem also includes technical constraints related to resource 

endowments, production relationships and policy. For example, the overall activity area 

of a farm cannot exceed the available land that the farm had in the reference year. 

Regarding livestock, a balance of the feed requirements with the feed supply (nutrient 

balances; minimum and maximum percentages of certain types of feeds) is also 

enforced. In addition, technical constraints are applied for modelling CAP in 2013–2020 

(greening) and post 2020 (enhanced conditionality and eco-schemes). 

The model uses data derived either directly from the FADN database or through 

estimation using the FADN and other variables. The observed crop and animal activity 

levels, subsidies and activity costs refer to the model’s base year (currently 2017), 

while time series data (2012–2016) are used to calculate expected yields and prices. 

Procedures also exist for the identification and correction of out-of-range values and 

outliers and handling missing values. 

Before IFM-CAP is used operationally for policy analysis, it needs to be calibrated. 

Calibration ensures that the farm optimisation problem, when solved for its base year, 

gives the same crop and livestock allocation as that observed. The reproduction of the 

observed activity levels is a critical issue for optimisation models of agricultural supply, 

and it is probably the most widely used validation criterion. The calibration of IFM-CAP 

relies on the principles of positive mathematical programming (PMP). The PMP approach 

used for IFM-CAP meets the calibration objective and it also ensures that the model 

response to parameter changes is consistent with exogenous information on price 

elasticities of supply. This last feature of the calibration process increases the probability 

that the model results will approximate the real-life adjustments that farms will make in 

response to the policies evaluated. 

IFM-CAP is a comparative static supply model, that is, it compares the supply side of 

the EU agricultural sector with and without a policy change, but it does not examine the 

specific trajectories that led to the policy change simulated. Rather than providing 

forecasts or projections, the model performs ‘what if’ analyses; it simulates how a given 

policy scenario, when compared with a reference situation, can affect a set of 

performance indicators that are important to both decision-makers and stakeholders 

(Figure 2). The reference situation is called the baseline and it represents a mid-term 

projection of the European farming sector under the current policy setting, that is, it 

includes CAP provisions introduced with the 2013 reform (greening measures, capping). 

The baseline of IFM-CAP is technically a policy scenario itself. It is created by solving the 

model using adjusted prices and yields that are calculated from trends to 2030, taken 

from the CAPRI model (Britz & Witzke, 2014). These trends are based on a set of 

plausible assumptions regarding macroeconomic conditions and other variables of 

interest and are consistent with the European Commission’s annual baseline projections 

                                           
(2) At the beginning of the production year the farm decides which activities to engage in. Because at that 

time yields and prices are uncertain, the decision on activity levels is based on the income that these 
activities are expected to generate. This expected income in turn depends on the yields and prices that 
the farm expects to hold at the end of the production year. 
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of agricultural commodity markets (3). A more detailed discussion on the generation of 

the IFM-CAP baseline is given in Section 0. 

 

 

Figure 2. Comparative nature of IFM-CAP 

 

All scenario specificities are modelled as changes over the baseline, which therefore 

serves as a counterfactual for scenario analysis. This may entail changing the value of 

some of the model’s parameters (e.g. level of individual farm payments, parameters 

related to thresholds for environmental practices), defining new variables, modifying 

existing constraints or even introducing new ones. An example of how a policy scenario 

can be constructed is provided by the implementation of voluntary measures. In this 

case, additional constraints are introduced, together with the appropriate number of 

binary variables that control compliance and link the choice of the farm to the payment 

accompanying the voluntary measure. This particular example is indicative of the model’s 

ability to simulate the self-selection of farms into voluntary measures and to provide 

estimates of adoption that are not possible with models operating at higher geographical 

scales. 

After reparametrising and adjusting the model according to the desired policy scenario, 

the optimisation problem is run for each farm in the FADN sample. The main simulation 

outputs of IFM-CAP are: 

1. land allocation to different crop activities (including fallow land); 

2. herd size of different livestock activities, volume of feeds used and livestock 

density; 

3. share of arable land in utilised agricultural area (UAA) and share of grassland in 

UAA; 

4. land use change and agricultural production; 

5. intermediate input use and intermediate input costs; 

6. CAP first and second pillar subsidies and adoption rates of voluntary measures; 

7. gross farm income and net farm income; 

8. environmental impacts (biodiversity, soil erosion risk, input use). 

Based on the resulting farm production choices, a set of production, economic and 

environmental indicators is calculated at farm level and aggregated using the FADN farm 

weights. These indicators are available both as averages at various aggregation levels 

(MS, farm type, economic size and any combination of these) and as distributions over 

the farm population or selected farm categorisations (e.g. distributions within a given 

type of farming). The effect of the policy scenario can be evaluated by comparing the 

                                           
(3) For more information on the CAPRI projections, see Blanco-Fonseca (2010), Britz and Witzke (2014) and 

Himics et al. (2013, 2014). 
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values of the indicators produced by the policy scenario against their values under the 

baseline situation. 

Some examples of questions that can be answered with IFM-CAP are ‘How is farm 

income affected by policy reforms?’, ‘Which farms would benefit and which would lose?’, 

‘Are the economic impacts equally distributed across all farms?’, ‘Are small farms more 

affected than large farms?’ and ‘What is the production specialisation of the farms that 

are most affected?’ 

Important examples of applications of IFM-CAP cover the analysis of the future pathways 

for the European agriculture sector (M’barek et al., 2017), the evaluation of the impact 

of CAP greening (Louhichi et al., 2017; Louhichi et al., 2018a) and the contribution to the 

impact assessment of the European Commission proposal for the CAP post-2020 

(European Commission, 2018b). 

In Table 1 and Figure 3 we provide a summary of the main features of the IFM-CAP 

model. 
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Table 1. Main features of IFM-CAP 

Model name Individual Farm Model for Common Agricultural Policy Analysis 

(IFM-CAP). 

Institution responsible 

for development and 

maintenance 

JRC.D.4 Economics of Agriculture Unit (in-house model 

development and maintenance) and Directorate-General for 

Agriculture and Rural Development (Directorate C, user 

feedback) 

Type of model Individual farm model running for the whole FADN sample (and 

therefore all EU regions and sectors) 

Methodology Comparative static and non-linear programming model 

Model calibration Calibrated to base year using PMP 

Objective function Farm utility maximisation (revenues – accounting 

costs + subsidies – PMP terms – risk premium) 

Revenues Production value by activity: price × yield × activity level 

(hectares or head of livestock)  

Accounting costs Operating costs per unit of each production activity 

Subsidies First pillar policies: decoupled payments (single payment 

scheme, single area payment scheme, basic payment scheme, 

basic income support for sustainability, greening payments and 

payments related to voluntary measures) and coupled 

payments (voluntary coupled support (VCS)) 

Second pillar policies: payments related to pillar 2 reported in 

the FADN are assumed to be unchanged and independent of the 

policy scenario simulated, unless explicitly stated otherwise by 

the scenario assumptions 

Risk premium Constant absolute risk aversion (CARA) coefficient multiplied by 

the variance of revenues (and hence income) due to price and 

yield variations 

Constraints 

Land constraint  Sum of area by activity less than or equal to total farm area 

endowment defined by type of use (arable and grassland) 

Labour, capital Captured by PMP terms 

Policy constraints Farm-specific measures: greening, voluntary agri-environmental 

pillar 1 measures, capping, modulation, regional ceiling for 

premiums, etc. 

Livestock Animal demography and livestock constraint, balancing feed 

demand and feed supply 

Other considerations 

Expected prices and 

yields 

Exogenous variables derived at farm level assuming adaptive 

expectations (based on past 5 years with declining weights) 

Subsidies Exogenous variables derived at farm level from the FADN for 

the base year  

Input costs by activity Input costs by activity are derived using econometric estimation 

(highest posterior density (HPD) estimation) 

Total farm area 

endowment 

Fixed at base year level 

Technological progress Yes, using an exogenous yield trend 

Structural change No 

Changes in 

management practices 

No 

Environmental 

indicators 

Crop diversity, soil erosion and input use proxies. Additional 

indicators, such as nutrient balance (nitrogen and phosphorus) 

and greenhouse gas emissions, are still under development 
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Input and output 

market interactions 

No  

Time horizon 2030 (extensive use of results from Aglink/CAPRI baseline 

work) 

Potential scenarios Any CAP scenario related to changes in payments and agri-

environmental obligations at farm level, or self-selection of 

farms into voluntary measures 

Model results 

Types of model results Production, land use, land allocation among activities, farm 

income, variable costs, subsidies, environmental impacts, 

distribution of income and CAP benefits among farmers for each 

scenario (base year, baseline and policy scenarios) 

Farm level Single farm units  

Farm group 

aggregation 

By farm typology, farm size or other relevant dimension by 

using farm weighting factors from the FADN  

Regional aggregation FADN regions, Nomenclature of Territorial Units for Statistics 

(NUTS), MSs, EU  

Data needs and other considerations 

FADN data 2012–2017 individual farm data  

Other supporting data Official statistical sources (e.g. Eurostat (regional statistics, 

Farm Structure Survey)), scientific literature and other model 

databases (e.g. CAPRI) 

Programming 

language 

General Algebraic Modelling System (GAMS), R language  

Visualisation and data 

analysis 

Graphical user interface (GUI) and Qlik 

(http://www.qlik.com/us/) 

http://www.qlik.com/us/
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Figure 3. Data, model specification and output indicators for IFM-CAP 

 

  

Data

FADN data

— UAA (arable and grassland)

— Set of crop and livestock 
activities

— Yields, prices and subsidies

— Observed activity levels

— Farm-level feed costs

— Farm weighting factor

— Land and milk quota rental 
prices (prior)

— Variance  matrix of activity 
revenues 

CAPRI data

— Prices and yields for 
fodder crops at MS level

— Feed prices at MS level

— Feed nutrient content

— Price and yield trends

— Animal feed requirement 
functions (prior)

— Elasticities for feed 
demand at NUTS2 level 
(prior)

— Supply elasticities for 
livestock

Eurostat data

— Carcass weights 

— Other data (prior) 

— Supply elasticities for 
crops at NUTS2 level 
(Jansson and Heckelei, 
2011)

Model

Model specification

— Comparative static and 
non-linear optimisation 
model

— Individual farm model 
running for each EU–FADN 
farm (≈ 81 000 farms)  

— Generic and modular set-
up

— Full coverage of European 
commercial farms

— Flexibility in aggregating 
results by farm types, 
economic size, region, MS 
and EU

Mathematical structure

Optimise farm’s 
objectives: 

expected utility 
maximisation = linear gross 
margin – quadratic 
behavioural function – risk 
component

Subject to:

— land constraints: arable 
and grassland

— policy constraints: CAP 
pillar 1 – decoupling, 
greening requirements

— feeding constraints: feed 
availability v. feed 
requirement, max. share of 
roughage and concentrates)

Estimation modules

— Accounting unit costs for 
crops

— Risk and behavioural 
function parameters

— Animal feed requirements 
and costs

Indicators

Economic 

— Activity levels 
(hectares and 
head of livestock)

— Production 
(tonnes)

— Land use 
(hectares)

— Input use

— Farm income 
(euro)

— Farm utility 
(euro)

— CAP 
expenditure 
(euro) ...

Environmental

— Biodiversity 
index

— Soil erosion

— Nitrate balance

— Greenhouse 
gas emissions 
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2. Model and data specification 

IFM-CAP is a constrained optimisation model that maximises an objective function 

subject to a set of constraints. It assumes that farmers maximise their expected utility of 

income at given yields, product prices and production subsidies. They are also subject to 

resource (arable land, grassland, and feed requirements) and policy constraints such as 

greening and other agri-environmental restrictions. Land constraints are used to match 

the available land that can be used in a production operation and the possible uses made 

of it by the different agricultural activities. Constraints involving feed availability and feed 

requirements are used to ensure that the total energy, protein and fibre requirements of 

livestock are met by own-produced and/or purchased feed. In addition, for certain animal 

categories, in order to represent more realistically their diet, additional minimum or 

maximum requirements by type of feeding are introduced. 

Section 2.1 presents in detail the farm optimisation problem, explains the underlying 

theoretical assumptions and provides a detailed mathematical representation of its 

objective function and the baseline constraints. An analytical presentation of how the 

model is parameterised is given in Section 2.2. This includes details of FADN data 

handling, estimation of costs and feed-related parameters, model calibration and 

generation of the baseline. 

 

2.1. The farm decision model 

Farmers’ expected utility of income is defined following the linear mean-variance (E-V) 

approach (Markowitz, 1952) which assumes an exponential utility function and a normal 

distribution of income (Freund, 1956; Pratt, 1964; Arribas et al., 2017). According to this 

approach, which posits constant absolute risk aversion (CARA) preferences, expected 

utility maximisation is equivalent to the maximisation of the certainty equivalent income 

(𝐶𝐸), in other words, the lowest income level — known with certainty — for which the 

farmer would be indifferent between accepting it and engaging in a risky production plan. 
Denoting farm income by 𝑧, the 𝐶𝐸 is defined as expected income minus the associated 

risk premium (the cost of risk bearing), which, in turn, is equal to the product of the 

income variance V[𝑧] and the CARA coefficient  𝜑: 

 𝐶𝐸 = E[𝑧] −
𝜑

2
V[𝑧] (1)  

The computational advantage of the selected E-V approach with CARA specification is 

one of the main reasons for its use in the IFM-CAP framework. We note that CARA is a 

rather restrictive behavioural assumption because it considers preferences of economic 

agents to be independent of the level of income (wealth). Nevertheless, it is widely 

employed in empirical agricultural research because of its mathematical simplicity, that 

is, the certainty equivalent income is defined as a linear function of the mean and 

variance of income. The resulting optimisation problem is a quadratic programming 

problem for which the literature provides several solution methods. More sophisticated, 

non-linear E-V specifications may consider the more plausible assumption of decreasing 

absolute risk aversion (DARA). (4). However, non-linear E-V models can become too 

difficult to evaluate numerically and may lead to non-convex programming problems 

(Hazell and Norton, 1986). 

Farmers’ expected income E[𝑧] is defined as the sum of expected activity gross margins 

and decoupled farm payments minus a non-linear implicit cost function. The activity 

gross margin is equal to the total expected activity revenue, including sales from 

agricultural products and coupled compensation payments, minus the accounting 

                                           
(4) See, for example, Coyle (1999), Petsakos and Rozakis (2015) and Sckokai and Moro (2006). 
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variable costs of production. The accounting variable costs include the costs of seeds, 

fertilisers, crop protection and feeding and other specific costs. The implicit cost function 

is a quadratic behavioural function introduced to calibrate the farm model to an observed 

base year with respect to activity levels and animal feeding practices, as is usually 

carried out for PMP models. It is intended to capture the effects of factors that are not 

explicitly included elsewhere in the model, for instance labour requirements, capital 

constraints, managerial capacity and other factors that may lead to increasing implicit 

marginal costs (5). 

The FADN database provides only total accounting costs per variable input category (e.g. 

seeds, fertilisers, pesticides, feed), without indicating the unit input costs for each 

activity (crop and animal), which is needed to capture policy impacts and to represent 

technologies in an explicit way. For crop activities, we overcome this lack of information 

by using a Bayesian econometric estimation of unit input costs based on the farm-level 

input costs per category reported in the FADN database, assuming a Leontief technology, 

as explained in detail in Section 2.2.1.9. Unit input costs are estimated for the whole 

2011–2016 period using cross-sectional data. For livestock activities, we use the farm-

level feeding costs reported in the FADN database and various external sources to 

estimate animal feed (nutrient) requirements and to balance feed requirements and feed 

availability at farm level, as described in Section 2.2.2. 

The separation of the Leontief production function (i.e. accounting variable costs) from 

the quadratic behavioural function was motivated by the fact that the primal technology 

representation through the Leontief production function has the following advantages: 

1. provides an explicit link between production activities and the total physical 

input use 

2. eases the link to calculating environmental indicators calculation and  

3. allows the simulation of policy measures linked to specific farm management 

According to Heckelei and Wolff (2003), the main disadvantage of this approach is the 

lack of rationalisation, as intermediate input uses are assumed to be independent of the 

unknown marginal costs captured by the quadratic behavioural function. 

Regarding the income variance, V[𝑧], most of the literature incorporates uncertainty in 

the gross margin per unit of activity (e.g. Cortignani and Severini, 2012; Jansson et al., 

2014) or in the revenues per unit of activity (Arata et al., 2017; Coyle, 1999; Paris and 

Arfini, 2000; Petsakos and Rozakis, 2015; Sckokai and Moro, 2006). In the former case, 

the authors assume that prices, yields and costs are stochastic. In the latter case, the 

authors argue that costs are non-random variables because in static decision models all 

costs are known when decisions are made (Antle, 1983; Petsakos and Rozakis, 2015) or 

because costs are less stochastic than revenues from the farmer’s perspective, so that 

the variance in the gross margin can be approximated by the variance in revenues 

(Jansson et al., 2014). In the IFM-CAP framework, we opted for the second approach by 

considering that uncertainty applies only to prices and yields (i.e. revenues) but without 

differentiating between sources of uncertainty. For each farm and activity, the expected 

revenue per hectare or per head given is calculated as the product of the expected yield 

and price assuming adaptive expectations (based on the past five observations with 

declining weights, that is, for 2011–2016). The same data are used to calculate the 

covariance matrix of activity revenues for each farm. Section 2.2.1.7 presents in detail 

the process for calculating these parameters. 

An identical model structure is applied for all modelled FADN farms to ensure uniform 

handling of all the individual farm models and their results. In other words, individual 

FADN farms are represented by individual farm models that have identical objective 

                                           
(5) In principle, any non-linear function that represents increasing marginal costs (or, equivalently, 

decreasing marginal productivity) can reproduce the base year solution. A quadratic (convex) cost 
function is the most popular non-linear behavioural function used in PMP models. 
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functions, constraints and variables to those in the generic format of IFM-CAP, although 

the values of their model parameters are farm specific. No cross-farm constraints or 

relationships are assumed in the current version of the model. 

 

2.1.1. Generic mathematical formulation 

The generic mathematical formulation of the expected utility maximisation problem for 

an individual farm is as follows: 

 

max
𝑥𝑖, 𝜁𝑖,𝑚≥0

E[𝑈] = ∑𝐸[𝑔𝑚𝑖]𝑥𝑖

𝑖

+ 𝑒 − ∑𝑥𝑖 (𝑑𝑖 + 0.5∑𝑄𝑖,𝑗𝑥𝑗

𝑗

)

𝑖

− ∑ 𝑥𝑖𝜁𝑖,𝑚 (𝑑𝑖,𝑚
𝐹 − 0.5∑ 𝑄𝑖,𝑚

𝐹 𝜁𝑖,𝑚

𝑚

)

𝑖 ∈ 𝑎𝑛𝑖𝑚𝑎𝑙𝑠

 

−0.5𝜑 ∑𝑥𝑖𝛺𝑖,𝑗𝑥𝑗

𝑖,𝑗

 

(2) 

subject to: 

 
∑A𝑛,𝑚,𝜈

𝐹 𝜁𝑖,𝑚

𝑚

⋚ 𝑏𝑖,𝑛,𝜈
𝐹  [𝜃𝑖,𝑛,𝑣

𝐹 ] 

where 𝑖 ∈  set of animal activities 

(3) 

 ∑ 𝐴𝑡,𝑖𝑥𝑖

𝑖

≤ 𝑏𝑡  [𝜃𝑡] (4) 

where indices 𝑖, 𝑗 denote the agricultural (crop and livestock) activities, 𝑚 denotes 

marketable commodities (i.e., feed purchased, and farm output sold in the market or 

used as animal feed),(6) 𝑡 the resource and policy constraints related to activities (e.g., 

agricultural land, greening obligations), while 𝜈 denotes animal feeding constraints and 𝑛 

the different types of nutrient or energy requirements. 𝑥𝑖 is the level of activity 𝑖 
(hectares and head), 𝜁𝑖,𝑚 is the amount of feed 𝑚 given to animal activity 𝑖 (tons per 

head), E[𝑔𝑚𝑖] is the expected gross margin for activity 𝑖 (EUR/ha or EUR/head), 𝑒 
denotes decoupled payments (EUR), 𝑑𝑖 is the intercept of the activity-specific behavioural 

(implicit cost) function (the linear PMP terms), 𝑄𝑖,𝑗 is its slope (the nonlinear PMP terms 

—a diagonal positive semi-definite matrix), 𝑑𝑖,𝑚
𝐹  is the linear term of the behavioural 

function related to animal feeding, 𝑄𝑖,𝑚
𝐹  is the nonlinear part of the same function (a 

diagonal positive semi-definite matrix), 𝜑 is the farmer’s CARA coefficient and 𝛺𝑖𝑗 is the 

covariance matrix of activity revenues per hectare or per head. Inequality (3) represents 

the general structure of the animal feeding constraints, where A𝑛,𝑚,𝜈
𝐹  is a matrix of 

coefficients representing the amount of nutrient 𝑛 in feed 𝑚, while 𝑏𝑖,𝑛,𝜈
𝐹  is the quantity 

limit of nutrient 𝑛 given to animal 𝑖 (lower or upper, or satisfied as equality), and 𝜃𝑖,𝑛,𝑣
𝐹  is 

the shadow price of the 𝜈-th feeding constraint. 𝐴𝑡,𝑖 are coefficients for resource and 

policy constraints, 𝑏𝑡 are available resource levels and upper bounds for policy 

constraints, while 𝜃𝑡 are their corresponding shadow prices.  

                                           
(6) Mathematically this means that the set of feeds in IFM-CAP, and the set of farm outputs, some of which 

can be used as feeds themselves, are subsets of the set of all marketable commodities included in the 
model. 
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The expected activity gross margin is defined as: 

 E[𝑔𝑚𝑖] = ∑𝑝𝑚(1 − 𝜉𝑚)𝑦𝑖,𝑚

𝑚

+ 𝑣𝑖 − 𝐶𝑖 (5) 

where 𝑦𝑖,𝑚 is the expected yield of output 𝑚 from activity 𝑖, 𝑝𝑚 denotes the expected 

price for commodity 𝑚 (including for feed and young animals), 𝜉𝑚 are estimated 

production losses, 𝑣𝑖 are coupled payments linked to activity 𝑖, and 𝐶𝑖 are the accounting 

variable costs. The calculation of variable costs differs between crop and animal 

activities. Specifically, for crops, 𝐶𝑖 = ∑ 𝑐𝑖,𝑘𝑘 , where 𝑘 are intermediate inputs (i.e. 

fertiliser, seeds, crop protection, etc.) and 𝑐𝑖,𝑘 are the per hectare costs of each input 

type. For animals, 𝐶𝑓,𝑖 = ∑ 𝑝𝑚𝜁𝑖,𝑚𝑚 ∈ 𝐹𝑒𝑒𝑑 , where feed 𝑚 given to animal activity 𝑖 is 

evaluated at price 𝑝𝑚. 

Note that the model assumes that all variance on income stems from prices 𝑝𝑚 and yields 

𝑦𝑖,𝑚, and that all other model parameters, including coupled payments, activity costs and 

all PMP terms (𝑑𝑖, 𝑄𝑖,𝑗, 𝑑𝑖,𝑚
𝐹  and 𝑄𝑖,𝑚

𝐹 ), are known with certainty. 

Expected prices, yields, accounting unit costs, subsidies, matrix of coefficients and land 

availability are derived from the FADN database or calculated in the data preparation 
step (see Section 2.2). The unknown parameters 𝑑𝑖, 𝑄𝑖,𝑗, 𝑑𝑖,𝑚

𝐹 , 𝑄𝑖,𝑚
𝐹  and 𝜑 are recovered 

simultaneously in each NUTS 2 during calibration (see Section 2.2.2 for a detailed 

presentation of the calibration approach). 

Below we provide the full specification of the farm decision problem in algebraic notation. 

 

2.1.2. Detailed mathematical formulation 

The objective function and the constraints of each farm model with all variables and 

parameters can be presented analytically as follows. 

Objective function 

∑ [𝑝𝑚 (∑𝑦𝑖,𝑚𝑥𝑖

𝑖∈𝐶

)]

𝑚∈𝑀

 Revenue of crop activities 

−∑∑𝑐𝑖,𝑘𝑥𝑖

𝑖∈𝐶𝑘

 Variable cost of crop activities 

+ ∑ [𝑝𝑚 (∑𝑦𝑖,𝑚𝑥𝑖

𝑖∈𝐴

)]

𝑚∈𝑀

 Revenue of livestock activities 

− ∑ [𝑝𝑚 (∑𝜁𝑖,𝑚𝑥𝑖

𝑖∈𝐴

)]

𝑚∈𝐹

 Cost of feed 

− ∑ [𝑝𝑚𝜉𝑚 (∑𝑦𝑖,𝑚𝑥𝑖

𝑖∈𝐼

)]

𝑚∈𝐹

 Cost of losses 

+(1 − 𝛽𝐷𝑃)∑(𝑣𝑖𝑥𝑖
𝑉)

𝑖∈𝑉

 

Voluntary coupled support, for that part of activity 𝑖 that is 

entitled coupled payments (𝑥𝑖
𝑉). Binary variable 𝛽𝐷𝑃 takes a 

value of 1 when the farm does not comply with the 

minimum requirements for receiving direct payments (see 

equation (13)) 
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+(1 − 𝛽𝐷𝑃) (𝑒𝑜𝑡ℎ𝑒𝑟 + ℎ𝑒𝑛𝑡 ∑𝑒𝑠

𝑠

) 

Decoupled payments related to mandatory farm measures. 

Parameter 𝑒𝑠 denotes the payment per hectare of eligible 

land (ℎ𝑒𝑛𝑡) related to mandatory measure 𝑠. Binary variable 

𝛽𝐷𝑃 takes a value of 1 when the farm does not comply with 

the minimum requirements for receiving direct payments 

(see constraint (13)) 

+(1 − 𝛽𝐷𝑃)𝛽𝐸𝐿𝑆 (ℎ𝑒𝑛𝑡 ∑𝑒𝑠
𝐸𝐿𝑆

𝑠

) 

Decoupled payments related to voluntary farm measures. 

Parameter 𝑒𝑠
𝐸𝐿𝑆 denotes the payment per hectare of eligible 

land (ℎ𝑒𝑛𝑡) related to voluntary measure 𝑠 Binary variable 

𝛽𝐷𝑃 takes a value of 1 when the farm does not comply with 

the minimum requirements for receiving direct payments 

[see constraint (13)]. Binary variable 𝛽𝐸𝐿𝑆 takes a value of 1 

if the farm adopts the voluntary measures (e.g., eco-

schemes) and therefore it is entitled to unitary payments 

𝑒𝑠
𝐸𝐿𝑆 (see constraint (43)) 

−∑ 𝑥𝑖𝑑𝑖

𝑖∈𝐼

 Linear PMP terms for production activities 

−
1

2
∑ ∑𝑥𝑗𝑄𝑖,𝑗𝑥𝑖

𝑗∈𝐼𝑖∈𝐼

 Quadratic PMP terms for production activities 

−∑ ∑ 𝑥𝑖𝑑𝑖,𝑚
𝐹 𝜁𝑖,𝑚

𝑚∈𝐹𝑖∈𝐴

 Linear PMP terms for feed to calibrate the feed input 

coefficient 𝜁𝑖,𝑚 

−
1

2
∑ ∑ 𝑥𝑖𝜁𝑖,𝑚𝑄𝑖,𝑚

𝐹 𝜁𝑖,𝑚

𝑚∈𝐹𝑖∈𝐴

 
Quadratic PMP terms for feed 

−
𝜑

2
∑ ∑𝑥𝑗𝛺𝑖,𝑗𝑥𝑖

𝑗∈𝐼𝑖∈𝐼

 
Risk premium 

− ∑ 𝜂𝑖
𝐶𝑇𝐶𝑐𝐶𝑇𝐶

𝑖 ∈ 𝐶𝑇𝐶

 

Costs for introducing additional catch crop cover area, 

beyond what farms do by default in the base year. This 

additional cover may be needed to comply with 

greening/environmental requirements. For greening (2013 

CAP), the additional catch crop areas are explained in 

constraints (28)–(31). For eco-schemes (post-2020 

CAP2020), they relate to the winter cover obligation and are 

explained in equations (39)–(42) 

− ∑ 𝜂𝑖
𝑃𝐸𝑅𝑀𝑐𝑃𝐸𝑅𝑀

𝑖 ∈ 𝑃𝐸𝑅𝑀

 

Costs for introducing additional cover area between tree 

rows, beyond what farms do by default in the base year. 

The additional cover area may be needed to comply with 

mandatory or voluntary obligations (eco-schemes) for 

CAP2020+. They are explained in equations (36)–(38) 

  

Land constraint 
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 ∑𝑥𝑖

𝑖∈𝐶

= ℎ𝑡𝑜𝑡 (6) 

The land constraint is specified as an equality so that non-productive activities such as leaving land 

fallow are now part of the constraint. This specification will always return a non-zero shadow price 
for land.  

Constraints related to animal feeding 

∀𝑖 ∈ 𝐴, 
∀𝑛 ∈ 𝑁+ 

∑ 𝜁𝑖,𝑚 ∙ 𝛿𝑛,𝑚

𝑚∈𝐹

≥ 𝑏𝑖,𝑛
𝐹  (7) 

This constraint ensures that the sum of different types of feed 𝑚 given to animal 𝑖 (sum of variable 

ζ𝑖,𝑚 over 𝑚) covers the minimum requirement for nutrient 𝑛. This minimum requirement is given by 

parameter 𝑏𝑖,𝑛
𝐹 . 

∀𝑖 ∈ 𝐴, 
∀𝑛 ∈ 𝑁𝑜 

∑ 𝜁𝑖,𝑚 ∙ 𝛿𝑛,𝑚

𝑚∈𝐹

= 𝑏𝑖,𝑛
𝐹  (8) 

This constraint ensures that the sum of different types of feed 𝑚 given to animal 𝑖 (sum of variable 

ζi,𝑚 over 𝑚) exactly satisfies the requirement for nutrient 𝑛. This requirement is given by parameter 

𝑏𝑖,𝑛
𝐹 . 

∀𝑖 ∈ 𝐴 ∑ 𝜁𝑖,𝑚 ∙ 𝛿𝑚
𝐷𝑀

𝑚 ∈ 𝐹𝐺+

≥ 𝑏𝑖,𝐹𝐺+
𝐷𝑀  (9) 

This constraint ensures that the contribution to dry matter of feeds belonging to the specific feed 

type 𝐹𝐺+ must be greater than the minimum allowed, 𝑏𝑖,𝐹𝐺+
𝐷𝑀 . 

∀𝑖 ∈ 𝐴 ∑ 𝜁𝑖,𝑚 ∙ 𝛿𝑚−
𝐷𝑀

𝑚 ∈ 𝐹𝐺−

≤ 𝑏𝑖,𝐹𝐺−
𝐷𝑀  (10) 

This constraint ensures that the contribution to dry matter of feeds belonging to the specific feed 
type 𝐹𝐺− must be less than the maximum allowed, 𝑏𝑖,𝐹𝐺−

𝐷𝑀 . 

Constraints related to voluntary coupled support (VCS): 

∀𝑖 ∈ 𝑉 𝑥𝑖
𝑉 ≤ 𝑥𝑖 (11) 

The part of a production activity receiving coupled support (𝑥𝑖
𝑉) cannot exceed the overall level of 

that production activity in the farm (𝑥𝑖). 

 ∑𝑥𝑖
𝑉

𝑖∈𝑉

≤ 𝑏𝑚𝑎𝑥
𝑉  (12) 

This constraint ensures that the sum of activities receiving a specific type of coupled support 
cannot exceed a predefined maximum level (𝑏𝑚𝑎𝑥

𝑉 ). 

Constraints related to direct payments 

The minimum requirements for receiving direct payments differ among MSs as follows. 
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1. In some MSs, a farm is eligible for direct payments only if payments exceed a certain value 

threshold (in euro). 

2. In other MSs, the threshold refers to a minimum eligible area (in hectares). 

(a) A farm receives direct payments if it has more eligible hectares than the threshold. 

(b) When a farm does not have the required level of eligible hectares, it can still 
receive payments if the level of CAP direct payments is above a given threshold 
and the farm receives at least EUR 1 in VCS payments related to animals. 

Note: Cases (1) and (2) are mutually exclusive. 

Source: European Commission (2019b). 

 (𝑒𝑜𝑡ℎ𝑒𝑟 + ℎ𝑒𝑛𝑡 ∙ ∑𝑒𝑆

𝑠

) + 𝑍+ ∙ 𝛽𝐷𝑃 ≥ 𝑏𝑚𝑖𝑛
𝐷𝑃  (13) 

This constraint corresponds to case (1) described above. If the farm’s total value of direct 
payments is lower than 𝑏𝑚𝑖𝑛

𝐷𝑃 , then the binary variable 𝛽𝐷𝑃 takes a value of 1 (𝑍+ is a random big 

number), indicating that the farm is not eligible to receive direct payments. When the direct 
payments that the farm can receive are greater than 𝑏𝑚𝑖𝑛

𝐷𝑃 , then 𝛽𝐷𝑃 can take a value of either 0 or 

1, as both values will satisfy the constraint. However, as 𝛽𝐷𝑃 = 0 increases the value of the 

objective function, it will always be selected as the optimal solution. 

 

 ℎ𝑒𝑛𝑡 + 𝑍+ ∙ 𝛽𝐷𝑃 ≥ 𝑏𝑚𝑖𝑛
𝑒𝑛𝑡  (14) 

This constraint corresponds to case (2a) described above. If the farm’s total eligible area is smaller 
than 𝑏𝑚𝑖𝑛

𝑒𝑛𝑡 , then the binary variable 𝛽𝐷𝑃 takes a value of 1 (𝑍+ is a random big number), indicating 

that the farm is not eligible to receive direct payments. When the eligible area is greater than 𝑏𝑚𝑖𝑛
𝑒𝑛𝑡 , 

then 𝛽𝐷𝑃 can take a value of either 0 or 1, as both values will satisfy the constraint. However, as 

𝛽𝐷𝑃 = 0 increases the value of the objective function, it will always be selected as the optimal 

solution. 

 

 ∑ (𝑣𝑖 ∙ 𝑥𝑖
𝑉)

𝑖 ∈ (𝑉 ∩ 𝐴)

+ 𝑍+ ∙ 𝛽𝐷𝑃 ≥ 𝑏𝑚𝑖𝑛
𝐷𝑃  (15) 

This constraint corresponds to case (2b) described above and applies to farms whose total eligible 
area is smaller than 𝑏𝑚𝑖𝑛

𝑒𝑛𝑡 , but which engage in animal activities that can potentially receive some 

VCS payments. The constraint works exactly like constraint (13). If the VCS payments are lower 
than the minimum value defined by 𝑏𝑚𝑖𝑛

𝐷𝑃 , then the binary variable 𝛽𝐷𝑃 takes a value of 1 (𝑍+ is a 

random big number), indicating that the farm is not eligible to receive direct payments. When the 
VCS payments for the farm’s animal activities are greater than 𝑏𝑚𝑖𝑛

𝐷𝑃 , then 𝛽𝐷𝑃 can take a value of 

either 0 or 1, as both values will satisfy the constraint. However, as 𝛽𝐷𝑃 = 0 increases the value of 

the objective function, it will always be selected as the optimal solution. 

Constraints related to crop diversification (CAP 2013) 

 ∑ 𝑥𝑖

𝑖 ∈ 𝐴𝑅𝐴𝐵

≤ 10 + 𝑍+ ∙ 𝛽10 (16) 

Binary variable 𝛽10 controls whether the total area of arable crops is greater than 10 ha. If this 

condition is not satisfied, 𝛽10 becomes 0 (𝑍+ is a random big number) and the farm is exempted 

from the 75 % diversification constraint in inequality (18)). 
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 ∑ 𝑥𝑖

𝑖 ∈ 𝐴𝑅𝐴𝐵

≤ 30 + 𝑍+ ∙ 𝛽30 (17) 

Binary variable 𝛽30 controls whether the total area of arable crops is above 30 ha. If this condition 

is not satisfied, 𝛽30 becomes 0 (𝑍+ is a random big number) and the farm is exempted from the 

95 % diversification constraint in inequality (19)). 

 

∀𝑖 ∈ 𝑅 𝑥𝑖 − 0.75 ∑ 𝑥𝑖

𝑖 ∈ 𝐴𝑅𝐴𝐵

≤ (1 − 𝛽10) ∙ 𝑍+ + (𝛽𝐴 + 𝛽𝐺) ∙ 𝑍+ (18) 

Article 44(1), paragraph 1, of Regulation (EU) No 1307/2013 (European Parliament and Council, 
2013) states that: 

Where the arable land of the farmer covers between 10 and 30 hectares and is not entirely 
cultivated with crops under water for a significant part of the year or for a significant part of 

the crop cycle, there shall be at least two different crops on that arable land. The main crop 
shall not cover more than 75 % of that arable land. 

If a farm has less than 10 ha of arable land (exempted from diversification), then 𝛽10 = 0 and the 

inequality always holds because the value of the left-hand side will always be lower than 𝑍+ (a 

random big number). If a farm has more than 10 ha of arable land (not exempted from 
diversification due to land size), then 𝛽10 = 1 and no single crop 𝑖 can occupy more than 75 % of 

the total area under diversification. 

Binary variables 𝛽𝐴 and 𝛽𝐺 control exemptions to diversification stemming from the selected crop 

mix. They are defined in constraints (20)–(22) and (23)–(25), respectively. If any of these two 
binary variables is equal to 1, then the inequality is satisfied regardless of the value of the left-
hand side. 

 

∀𝑖, 𝑗 ∈ 𝑅 𝑥𝑖 + 𝑥𝑗 − 0.95 ∑ 𝑥𝑖

𝑖 ∈ 𝐴𝑅𝐴𝐵

≤ (1 − 𝛽30) ∙ 𝑍+ + (𝛽𝐴 + 𝛽𝐺) ∙ 𝑍+ (19) 

Article 44(1), paragraph 2, of Regulation (EU) No 1307/2013 (European Parliament and Council, 
2013) states that: 

Where the arable land of the farmer covers more than 30 hectares and is not entirely 
cultivated with crops under water for a significant part of the year or for a significant part of 
the crop cycle, there shall be at least three different crops on that arable land. The main 
crop shall not cover more than 75 % of that arable land and the two main crops together 

shall not cover more than 95 % of that arable land. 

If a farm has less than 30 ha of arable land, then 𝛽30 = 0 and the inequality always holds because 

the value of the left-hand side will always be lower than 𝑍+ (a random big number). If a farm has 

more than 30 ha of arable land, then 𝛽30 = 1 and two crops 𝑖 and 𝑗 can never occupy more than 

95 % of the total area under diversification. In this case, the 75 % diversification constraint (18)) 
is also satisfied. Note that a farm with 𝛽30 = 0 may still be subject to the 75 % diversification 

constraint. 

Binary variables 𝛽𝐴 and 𝛽𝐺 control exemptions to diversification stemming from the selected crop 

mix. They are defined in constraints (20)–(22) and (23)–(25), respectively. If any of these two 

binary values is equal to 1, then the inequality is satisfied regardless of the value of the left-hand 
side. 

 

 𝑥𝐹𝐴𝐿𝐿 + 𝑥𝑀𝐴𝐼𝐹 + 𝑥𝑂𝐹𝐴𝑅 − 0.75 ∑ 𝑥𝑖

𝑖 ∈ 𝐴𝑅𝐴𝐵

≥ (𝛽𝐴 − 1) ∙ 𝑍+ (20) 

Article 44(3)(a) of Regulation (EU) No 1307/2013 (European Parliament and Council, 2013) states 
that: 
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[Crop diversification constraints] shall not apply to holdings: 

(a) where more than 75 % of the arable land is used for the production of grasses or other 
herbaceous forage, is land lying fallow, or is subject to a combination of these uses, 

provided that the arable area not covered by these uses does not exceed 30 hectares; 

This condition is modelled as follows. If the total area of fallow land (FALL), fodder maize (MAIF) 
and other fodder on arable land (OFAR) is greater than 75 % of the total arable area, and the 
arable area occupied by any remaining activities is less than 30 ha, then the farm is exempted 
from the diversification requirements (𝛽𝐴 = 1). This last condition is controlled by binary variable 

𝛽𝐴30 in constraints (21) and (22). 

 

 ∑ 𝑥𝑖

𝑖 ∈ 𝐴𝑅𝐴𝐵

− (𝑥𝐹𝐴𝐿𝐿 + 𝑥𝑀𝐴𝐼𝐹 + 𝑥𝑂𝐹𝐴𝑅) ≤ 𝑍+ ∙ 𝛽𝐴30 + 30 (21) 

The binary variable 𝛽𝐴30 controls the 30 ha condition for the exemption defined in constraint (20). 

This condition is modelled as follows. If the difference between total arable area and total area of 
FALL, MAIF and OFAR is greater than 30 ha, then 𝛽𝐴30 = 1 and the farm is not exempted. In this 

case 𝛽𝐴 becomes 0. If the difference between total arable area and total area of FALL, MAIF and 

OFAR is less than 30 ha, then 𝛽𝐴30 can take a value of either 0 (exemption) or 1 (non-exemption), 

as both values will satisfy the constraint. However, if the binary variable 𝛽𝐴 also takes a value of 1 

because of equation (20), then 𝛽𝐴30 will be forced to take a value of 0. 

Binary variable 𝛽𝐴30 is linked to binary value 𝛽𝐴 by equation (22). 

 

 

 𝛽𝐴 ≤ (1 − 𝛽𝐴30) (22) 

Binary variables 𝛽𝐴 and 𝛽𝐴30 cannot take a value of 1 at the same time. 

 

 𝑥𝑃𝐺𝑅𝐴 + 𝑥𝑅𝐺𝑅𝐴 + 𝑥𝑂𝐹𝐴𝑅 + 𝑥𝑀𝐴𝐼𝐹 + 𝑥𝑃𝐴𝑅𝐼 − 0.75 ∙ ℎ𝑒𝑛𝑡 ≥ (𝛽𝐺 − 1) ∙ 𝑍+ (23) 

Article 44(3)(b) of Regulation (EU) No 1307/2013 (European Parliament and Council, 2013) states 
that: 

[Crop diversification constraints] shall not apply to holdings: 

(b) where more than 75 % of the eligible agricultural area is permanent grassland, is used for 
the production of grasses or other herbaceous forage or for the cultivation of crops under water 
for a significant part of the year or for a significant part of the crop cycle, or is subject to a 
combination of these uses, provided that the arable area not covered by these uses does not 
exceed 30 hectares; 

This condition is modelled as follows. If the total area of permanent grassland (PGRA), rough 
grazing (RGRA), OFAR, MAIF and paddy rice (PARI) is greater than 75 % of the UAA (ℎ𝑒𝑛𝑡), and if 

the arable area occupied by any remaining activities is less than 30 ha, then the farm is exempted 
from the diversification requirements (𝛽𝐺 = 1). This last condition is controlled by binary variable 

𝛽𝐺30 in constraints (24) and (25). 

 

 ∑ 𝑥𝑖

𝑖 ∈ 𝐴𝑅𝐴𝐵

− (𝑥𝑂𝐹𝐴𝑅 + 𝑥𝑀𝐴𝐼𝐹 + 𝑥𝑃𝐴𝑅𝐼) ≤ 𝑍+ ∙ 𝛽𝐺30 + 30 (24) 

The binary variable 𝛽𝐺30 controls the 30 ha condition for the exemption defined in constraint (23). 

This condition is modelled as follows. If the difference between total arable area and total area of 
OFAR, MAIF and PARI is greater than 30 ha, then 𝛽𝐺30 = 1 and the farm is not exempted. In this 

case 𝛽𝐺 becomes 0. If the difference between total arable area and total area of OFAR, MAIF and 
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PARI is less than 30 ha, then 𝛽𝐺30 can take a value of either 0 (exemption) or 1 (non-exemption), 

as both values will satisfy the constraint. However, if binary variable 𝛽𝐺 is also 1 because of 

equation (23), then 𝛽𝐺30 will be forced to take a value of 0. 

Binary variable 𝛽𝐺30 is linked to binary 𝛽𝐺 by equation (25). 

 

 𝛽𝐺 ≤ (1 − 𝛽𝐺30) (25) 

Binary variables 𝛽𝐺 and 𝛽𝐺30 cannot take a value of 1 at the same time. 

Constraints related to permanent grassland preservation 

 𝑥𝑃𝐺𝑅𝐴 + 𝑥𝑅𝐺𝑅𝐴 ≤ (1 − 𝑤𝐺𝑅𝐴𝑆)(𝑥̅𝑃𝐺𝑅𝐴 + 𝑥̅𝑅𝐺𝑅𝐴) (26) 

Grassland areas (PGRA and RGRA) cannot decrease by more than (𝑤𝐺𝑅𝐴𝑆) % compared with the 

reference land allocation. The greening requirements for the 2013–2020 CAP require that 𝑤𝐺𝑅𝐴𝑆 =
0.05. As the measure applies at NUTS 2 level, or for a group of NUTS 2 regions, this constraint is 

activated in a second model run, after having calculated the unconstrained change in grassland 
areas. Specifically, if grassland decreases by more than (wGRAS) % at regional level, then the farms 

that exceed this threshold solve again but with the additional grassland constraint. 

 

 𝑥𝑃𝐺𝑅𝐴 + 𝑥𝑅𝐺𝑅𝐴 ≤ 𝑥̅𝑃𝐺𝑅𝐴 + 𝑥̅𝑅𝐺𝑅𝐴 (27) 

For farms in Natura 2000 regions, the model does not allow any decrease in grassland areas (PGRA 
and RGRA). 

Constraints related to ecological focus areas (EFA CAP 2013 – greening) 

 
𝑍+ ∙ 𝛽15 ≥ ( ∑ 𝑥𝑖

𝑖 ∈ 𝐴𝑅𝐴𝐵

− 15) ∙ (1 − 𝜓) (28) 

This constraint controls whether the arable area of a farm is of adequate size to comply with the 
ecological focus area (EFA) requirements, while also considering possible exemptions because of 
large forest areas (𝜓 = 1 means exemption). If 𝜓 = 0 and the farm has more than 15 ha of arable 

land, the constraint is satisfied when 𝛽15 = 1, which means that the farm needs to comply with the 

EFA requirements. 

 

 
0.05 ∑ 𝑥𝑖

𝑖 ∈ 𝐴𝑅𝐴𝐵

≤ [ ∑ 𝑥𝑖 ∙ 𝑤𝑖
𝐸𝐹𝐴

𝑖 ∈ 𝐸𝐹𝐴

+ ∑ 𝑔𝑖
𝐶𝑇𝐶 ∙ 𝑤𝑖

𝐸𝐹𝐴

𝑖 ∈ 𝐶𝑇𝐶

] + (1 − 𝛽15) ∙ 𝑍+ + (𝛽𝐴 + 𝛽𝐺) ∙ 𝑍+ (29) 

If the farm has more than 15 ha of arable land (𝛽15 = 1) and is not exempted from greening 

obligations for other reasons related to types of crop activities (𝛽𝐴, 𝛽𝐺 = 0 means non-exemption), 

then the sum of crop activities that count towards EFA requirements and the area under cover 
need to be greater than 5 % of the farm’s arable land. 

The EFA contribution of crop areas (𝑥𝑖) and of the areas covered by catch crops (𝑔𝑖
𝐶𝑇𝐶) is weighted 

by 𝑤𝑖
𝐸𝐹𝐴. These weights are specified in Commission Delegated Regulation (EU) 639/2014 

(European Parliament and Council, 2014a). In the case of IFM-CAP, they correspond to 0.3 for all 

green cover and nitrogen-fixing crops, and to 1 for fallow land. 
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∀𝑖 ∈ 𝐶𝑇𝐶 𝑔𝑖
𝐶𝑇𝐶 ≤ 𝑥𝑖 (30) 

The total area of crop 𝑖 that is under green cover from catch crops (𝑔𝑖
𝐶𝑇𝐶) cannot exceed the total 

area allocated to crop 𝑖 (𝑥𝑖). 

 

∀𝑖 ∈ 𝐶𝑇𝐶 𝑔𝑖
𝐶𝑇𝐶 = 𝑥𝑖 ∙ 𝜌𝑖

𝐶𝑇𝐶 + 𝜂𝑖
𝐶𝑇𝐶 (31) 

The total area of crop 𝑖 that is under green cover from catch crops (𝑔𝑖
𝐶𝑇𝐶) is defined as the sum of 

the default cover share applied by the farmer (𝜌𝑖
𝐶𝑇𝐶), plus any additional cover (𝜂𝑖

𝐶𝑇𝐶), which is 

accompanied by costs, as shown in the last term of the objective function. 

Constraints related to crop rotation (post-2020 CAP) 

∀𝑖 ∈ 𝐴𝑅𝐴𝐵 𝑥𝑖 ≤ 𝑤0
𝑅𝑂𝑇 ∑ 𝑥𝑗

𝑗 ∈ 𝐴𝑅𝐴𝐵

 (32) 

This is the mandatory crop rotation measure. Crop rotation of 𝑋 years is modelled as a requirement 

to grow a crop 𝑖 in an area that is no more than 𝑁/𝑋 of the total arable area, where 𝑁 is the 

number of times a crop can appear over a sequence of 𝑋 years. The 𝑁/𝑋 fraction is given by 

parameter 𝑤0
𝑅𝑂𝑇. 

 

∀𝑖 ∈ 𝐴𝑅𝐴𝐵 𝑥𝑖 − 𝜖𝑖
𝑅𝑂𝑇 ≤ 𝑤1

𝑅𝑂𝑇 ∑ 𝑥𝑗

𝑗 ∈ 𝐴𝑅𝐴𝐵

 (33) 

This is the voluntary crop rotation measure. Crop rotation of 𝑋 years is modelled as a requirement 

to grow a given crop in an area that is no more than 𝑁/𝑋 of the total arable area, where 𝑁 is the 

number of times a crop can appear over a sequence of 𝑋 years. The 𝑁/𝑋 fraction is given by 

parameter 𝑤1
𝑅𝑂𝑇. 

Variable 𝜖𝑖
𝑅𝑂𝑇 represents the area by which the farm overshoots the rotation requirement at the 

optimum (𝜖𝑖
𝑅𝑂𝑇 = 0 suggests that the farm applies the rotation correctly; in other words, it adopts 

the rotation measure). Variable 𝜖𝑖
𝑅𝑂𝑇 is linked to the binary variable 𝛽𝐸𝐿𝑆 in the objective function 

through constraint (43), which controls the adoption of voluntary measures. 

As 𝑤1
𝑅𝑂𝑇 < 𝑤0

𝑅𝑂𝑇 (the voluntary constraint is more demanding than the mandatory constraint), 

equation (32) is also automatically satisfied when the farm adopts the rotation eco-scheme.  

 

Constraints related to landscape elements (post-2020 CAP) 

 

𝑥𝐹𝐴𝐿𝐿 ≥ 𝑤0
𝐹𝐴𝐿𝐿 ( ∑ 𝑥𝑗

𝑗 ∈ {𝐴𝑅𝐴𝐵 ∪ 𝑃𝐸𝑅𝑀}

) (34) 

The mandatory area allocated to landscape elements is modelled as a fallow land share constraint. 

The constraint calls for the area of fallow land to be greater than, or equal to, a share (parameter 
𝑤0

𝐹𝐴𝐿𝐿) of the UAA (the sum of arable and permanent crops).  

 

 

𝑥𝐹𝐴𝐿𝐿 ≥ 𝑤1
𝐹𝐴𝐿𝐿 ( ∑ 𝑥𝑗

𝑗 ∈ {𝐴𝑅𝐴𝐵 ∪ 𝑃𝐸𝑅𝑀}

) − 𝜖𝐹𝐴𝐿𝐿 (35) 
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The voluntary additional area allocated to landscape elements (eco-scheme) is also modelled as a 

fallow land share constraint. The constraint calls for the area of fallow land to be greater than, or 
equal to, a share (parameter 𝑤1

𝐹𝐴𝐿𝐿) of the UAA (the sum of arable and permanent crops). 

If the farm does not adopt the eco-scheme, 𝑥𝐹𝐴𝐿𝐿 is lower than is needed and the control variable 

𝜖𝐹𝐴𝐿𝐿 becomes positive to satisfy the constraint. Variable 𝜖𝐹𝐴𝐿𝐿 is linked to the binary variable 𝛽𝐸𝐿𝑆 

in the objective function through constraint (43), which controls the adoption of voluntary 
measures. 

As 𝑤1
𝐹𝐴𝐿𝐿 > 𝑤0

𝐹𝐴𝐿𝐿 (the voluntary constraint is more demanding than the mandatory constraint), 

equation (34) is also automatically satisfied when the farm adopts the eco-scheme.  

Constraints related to cover crops between tree rows (post-2020 CAP) 

 
∑ 𝑔𝑖

𝑃𝐸𝑅𝑀

𝑖 ∈ 𝑃𝐸𝑅𝑀

≥ 𝑤0
𝑃𝐸𝑅𝑀 ( ∑ 𝑥𝑖

𝑖 ∈ 𝑃𝐸𝑅𝑀

) (36) 

The total area of permanent crops that is under green cover according to the measure ‘cover crops 
between tree rows’ (sum of 𝑔𝑖

𝑃𝐸𝑅𝑀) must be greater than, or equal to, a share of the total area 

allocated to permanent crops, given by parameter 𝑤0
𝑃𝐸𝑅𝑀.  

 

∀𝑖 ∈ 𝑃𝐸𝑅𝑀 𝑔𝑖
𝑃𝐸𝑅𝑀 ≤ 𝑥𝑖 (37) 

This equation ensures consistency for permanent crop cover. The green area of permanent crop 𝑖, 
which is under green cover according to the measure ‘cover crops between tree rows’, cannot be 
greater than the area of that permanent crop. 

 

∀𝑖 ∈ 𝑃𝐸𝑅𝑀  𝑔𝑖
𝑃𝐸𝑅𝑀 = 𝑥𝑖 ∙ 𝜌𝑖

𝑃𝐸𝑅𝑀 + 𝜂𝑖
𝑃𝐸𝑅𝑀 (38) 

This is a balance equation for permanent crop cover. The green area cover related to permanent 
crop 𝑖 (𝑔𝑖

𝑃𝐸𝑅𝑀) is defined as the sum of the default cover share applied by the farmer (𝜌𝑖
𝑃𝐸𝑅𝑀) and 

any additional cover (𝜂𝑖
𝑃𝐸𝑅𝑀), which is accompanied by costs, as shown in the last term of the 

objective function. 

Constraints related to winter cover crops (post-2020 CAP) 

 ∑ 𝑔𝑖
𝑊𝐼𝑁𝑇

𝑖 ∈ 𝑊𝐼𝑁𝑇

≥ 𝑤0
𝑊𝐼𝑁𝑇 ∑ 𝑥𝑖

𝑖 ∈ 𝑊𝐼𝑁𝑇

 (39) 

The total area covered by winter crops that counts towards compliance with the mandatory 

obligation for winter crop cover (sum of 𝑔𝑖
𝑊𝐼𝑁𝑇) must be greater than a percentage of the areas of 

those crops for which the measure may apply (e.g. spring wheat is in set 𝑊𝐼𝑁𝑇, whereas winter 

wheat is not). This percentage is given by parameter 𝑤0
𝑊𝐼𝑁𝑇. 

 

 ∑ 𝑔𝑖
𝑊𝐼𝑁𝑇

𝑖 ∈ 𝑊𝐼𝑁𝑇

≥ 𝑤1
𝑊𝐼𝑁𝑇 ∑ 𝑥𝑖

𝑖 ∈ 𝑊𝐼𝑁𝑇

− 𝜖𝑊𝐼𝑁𝑇 (40) 

This equation defines a voluntary, more demanding obligation for winter cover (eco-scheme). As in 
equation (39), the total area covered by winter crops that counts towards compliance with the 

winter crop cover eco-scheme must be greater than a percentage of the areas of those crops for 
which the measure may apply (e.g. spring wheat is in set 𝑊𝐼𝑁𝑇, whereas winter wheat is not). For 
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the eco-scheme case, this percentage is given by parameter 𝑤1
𝑊𝐼𝑁𝑇, for which 𝑤1

𝑊𝐼𝑁𝑇 > 𝑤0
𝑊𝐼𝑁𝑇. 

If the farm does not respect the constraint, the total value of the green area is lower than that 
required for compliance and the control variable 𝜖𝑊𝐼𝑁𝑇 becomes positive to satisfy the constraint. 

Variable 𝜖𝑊𝐼𝑁𝑇 is linked to the binary variable 𝛽𝐸𝐿𝑆 in the objective function through constraint (43), 

which controls the adoption of voluntary measures. 

As 𝑤1
𝑊𝐼𝑁𝑇 > 𝑤0

𝑊𝐼𝑁𝑇, equation (39) is also automatically satisfied when the farm adopts the eco-

scheme. 

 

∀𝑖 ∈ 𝑊𝐼𝑁𝑇 𝑔𝑖
𝑊𝐼𝑁𝑇 ≤ 𝑥𝑖 (41) 

This equation ensures consistency for permanent crop cover. The area of crop 𝑖 that is under green 

cover during winter (𝑔𝑖
𝑊𝐼𝑁𝑇) cannot be greater than the area of that crop. 

 

∀𝑖 ∈ 𝑊𝐼𝑁𝑇 𝑔𝑖
𝑊𝐼𝑁𝑇 = 𝜂𝑖

𝐶𝑇𝐶 + 𝑥𝑖 ∙ 𝜌𝑖
𝐶𝑇𝐶 + +𝑥𝑖 ∙ 𝜌𝑖

𝑀𝑈𝐿𝐶𝐻 + +𝑥𝑖 ∙ 𝜌𝑖
𝑊𝐼𝑁𝑇  (42) 

This is a balance equation for winter cover. The total green area under winter cover is equal to the 
default areas with (i) catch crops, (ii) mulching and (iii) winter cover crops, plus any additional 
green area (𝜂𝑖

𝐶𝑇𝐶) that is needed to satisfy the farm obligation, which is accompanied by costs, as 

shown in the last term of the objective function. This additional area under winter cover is 
assumed to be covered by catch crops. 

The default (base year) areas with catch crops, mulching and winter cover are defined as a share 
of the area allocated to the appropriate crops, where the shares are given by parameters 𝜌𝑖

𝐶𝑇𝐶, 

𝜌𝑖
𝑀𝑈𝐿𝐶𝐻 and 𝜌𝑖

𝑊𝐼𝑁𝑇, respectively. 

 

Constraint controlling adoption of eco-schemes (post-2020 CAP) 

 
( ∑ 𝜖𝑖

𝑅𝑂𝑇

𝑖 ∈ 𝐴𝑅𝐴𝐵

) + 𝜖𝐹𝐴𝐿𝐿 + 𝜖𝑊𝐼𝑁𝑇 ≤ (1 − 𝛽𝐸𝐿𝑆) ∙ 𝑍+ (43) 

Controlling the adoption of eco-schemes is based on the requirement that the farm adopts all the 
previously defined eco-schemes (rotation, landscape elements and winter soil cover). If any of the 

control variables do not take a value of 0 (i.e. the left-hand side of the equation), then the binary 
variable 𝛽𝐸𝐿𝑆 becomes 0 to satisfy the constraint and the farm cannot receive the corresponding 

eco-scheme payment. Otherwise, if the left-hand side takes a value of 0, then 𝛽𝐸𝐿𝑆 can become 

either 0 or 1, as both values will satisfy the constraint. However, as 𝛽𝐸𝐿𝑆 = 1 increases the value of 

the objective function, it will always be selected as the optimal solution. 

Sets 

𝐼 Set of all production activities 

𝐴 Set of animal activities (𝐴 ⊂ 𝐼) 

𝐶 Set of crop activities (𝐶 ⊂ 𝐼) 

𝐸𝐹𝐴 Set of EFA crops (𝐸𝐹𝐴 ⊂ 𝐶) 

𝐴𝑅𝐴𝐵 Set of arable crops (𝐴𝑅𝐴𝐵 ⊂ 𝐶) 

𝑃𝐸𝑅𝑀 Set of permanent crops (𝑃𝐸𝑅𝑀 ⊂ 𝐶) 



 

28 
 

𝑊𝐼𝑁𝑇 Set of crops that can be covered during winter (𝑊𝐼𝑁𝑇 ⊂ 𝐶) 

𝐶𝑇𝐶 Set of crops that can receive green area cover by catch crops (𝐶𝑇𝐶 ⊂ 𝐶) 

𝑉 Set of activities receiving VCS (𝑉 ⊂ 𝑃) 

𝑀 Set of marketable outputs/commodities 

𝐹 

Set of outputs/commodities (produced on farm or purchased) that can be used 
as animal feed (𝐹 ⊂ 𝑀) 

𝐹𝐺+ 
Set of feed groups (e.g. concentrated and rough types of feed) that must 
provide at least a minimum quantity of dry matter (𝐹𝐺+ ⊂ 𝐹) 

𝐹𝐺− 
Set of feed groups (e.g. concentrated and rough types of feed) that cannot 

provide more than a maximum quantity of dry matter (𝐹𝐺− ⊂ 𝐹) 

𝑁𝑜 
Set of nutrients corresponding to feeding requirements that must be satisfied 

as equality  

𝑁+ 
Set of nutrients corresponding to feeding requirements that must be satisfied 

as inequality  

 

Continuous variables 

𝑥𝑖 Level of activity 𝑖 (ha or head of livestock) 

𝑥𝑖
𝑉 Level of activity 𝑖 receiving VCS (ha or head of livestock) 

𝑞𝑚 Amount of output 𝑚 under quota (tonnes) 

𝜁𝑖,𝑚 Amount of feed 𝑚 given to animal activity 𝑖 (kg fresh weight) 

𝑔𝑖
𝐶𝑇𝐶 Total area of crop 𝑖 that is under cover by catch crops (ha) 

𝜂𝑖
𝐶𝑇𝐶 

Additional area of crop 𝑖 that is under cover by catch crops – beyond base year 

default cover (ha) 

𝑔𝑖
𝑃𝐸𝑅𝑀 Total area of permanent crop 𝑖 that is under green cover (ha) 

𝜂𝑖
𝑃𝐸𝑅𝑀 

Additional area of permanent crop 𝑖 that is under green cover (the ‘cover crop 

between tree rows’ measure) – beyond base year default cover (ha) 

𝑔𝑖
𝑊𝐼𝑁𝑇 Total area of crop 𝑖 that is under green winter cover (ha) 

𝜖𝑖
𝑅𝑂𝑇 Area by which the farm overshoots the rotation obligation for crop 𝑖 (ha) 

𝜖𝐹𝐴𝐿𝐿 
Area by which the farm overshoots the eco-scheme (voluntary) obligation of 

providing additional areas for fallow land and preserving landscape elements 

(ha) 

𝜖𝑊𝐼𝑁𝑇 
Area by which the farm overshoots the eco-scheme (voluntary) obligation of 

providing winter cover area (ha) 
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Binary variables 

𝛽𝐷𝑃 
Takes a value of 1 if a farm does not satisfy the minimum requirements for 

receiving direct payments 

𝛽𝐸𝐿𝑆 
Takes a value of 1 if a farm adopts voluntary farm measures (e.g. eco-

schemes) 

𝛽𝐺 

Takes a value of 1 if a farm is exempted from greening measures because more 

than 75 % of the eligible agricultural area is permanent grassland, is being used 

for the production of grasses or other herbaceous forage or is being used for 

the cultivation of crops under water for a significant part of the year or for a 

significant part of the crop cycle, or is subject to a combination of these uses, 

provided that the arable area not covered by these uses does not exceed 30 ha 

𝛽𝐴 

Takes a value of 1 if a farm is exempted from greening measures because more 

than 75 % of the arable land is used for the production of grasses or other 

herbaceous forage, is lying fallow or is subject to a combination of these uses, 

provided that the arable area not covered by these uses does not exceed 30 ha  

𝛽𝐴30 
Takes a value of 1 if the arable land of the farm covers more than 30 ha and 

more than 75 % of the arable land is covered by grasses or other herbaceous 

forage or is lying fallow (farm not exempted from diversification) 

𝛽𝐺30 

Takes a value of 1 if the arable land of the farm covers more than 30 ha and is 

not entirely cultivated with crops under water for a significant part of the year 

or for a significant part of the crop cycle (farm not exempted from 

diversification) 

𝛽30 Takes a value of 1 if the arable land of the farm covers more than 30 ha 

𝛽10 Takes a value of 1 if the arable land of the farm covers more than 10 ha 

𝛽15 Takes a value of 1 if the arable land of the farm covers more than 15 ha 

 
 

Parameters 

𝑦𝑖,𝑚 Yield of activity 𝑖 in output 𝑚 (tonnes/ha or head of livestock) 

𝑝𝑚 Market price for output 𝑚 (euro/tonne) 

𝑝𝑚
𝑄
 Quota price for output 𝑚 (euro/tonne) 

𝑐𝑖,𝑘 Expenses for input 𝑘 in activity 𝑖 (euro/ha) 

𝜉𝑚 Percentage of losses of output 𝑚 (%) 

𝑐𝐶𝑇𝐶 Cost related to introducing additional catch crop green cover area (euro/ha) 

𝑐𝑃𝐸𝑅𝑀 
Cost related to introducing additional green cover area between tree rows 

(euro/ha) 
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𝑑𝑖 Linear PMP terms for production activities 

𝑄𝑖,𝑗  Non-linear PMP terms for production activities. It is a diagonal 𝐼 × 𝐼 matrix 

𝑑𝑖,𝑚
𝐹  Linear PMP terms for feed  

𝑄𝑖,𝑚
𝐹  

Non-linear PMP terms for feed. 𝑄𝑖,𝑚
𝐹  represents a diagonal 𝑀 × 𝑀 matrix for each 

individual 𝑖 animal activity 

𝜑 CARA coefficient 

Ω𝑖,𝑗  Covariance matrix of activity profits 

𝑣𝑖  Unitary value of VCS for activity 𝑖 (euro/ha or head of livestock) 

𝑒𝑠 
Unitary value for each decoupled payment type 𝑠, linked to mandatory farm 

measures (euro/ha) 

𝑒𝑠
𝐸𝐿𝑆 

Unitary value for each decoupled payment type 𝑠, linked to voluntary farm 

measures (euro/ha)  

𝑒𝑜𝑡ℎ𝑒𝑟  Sum of any other payments received by the farm, e.g. pillar 2 (euro) 

ℎ𝑒𝑛𝑡 

Total area eligible to receive decoupled payments (ha). The eligible area in MSs 

implementing the single payment scheme is equal to the amount of the farm’s 

entitlements, whereas in MSs that implement the single area payment scheme 

it is equal to the total agricultural area 

ℎ𝑡𝑜𝑡 Total UAA (ha) 

𝛿𝑛,𝑚 Content of nutrient 𝑛 in feed 𝑚 (kg of nutrient/kg of feed) 

𝛿𝑚
𝐷𝑀 Dry matter content in feed 𝑚 (kg of dry matter/kg of feed) 

𝑏𝑖,𝑛
𝐹  Requirement of nutrient 𝑛 for animal activity 𝑖 (kg/head of livestock) 

𝑏𝑖,𝐹𝐺
𝐷𝑀  

Dry matter requirements for animal activity 𝑖 from feed group 𝐹𝐺 (kg/head of 

livestock) 

𝑏𝑚𝑎𝑥
𝑉  Maximum activity levels to receive VCS (ha or head of livestock) 

𝑏𝑚𝑖𝑛
𝐷𝑃  Minimum payment value for becoming eligible to receive direct payments (euro) 

𝑏𝑚𝑖𝑛
𝑒𝑛𝑡  

Minimum entitlements for becoming eligible to receive direct payments 

(hectares) 

𝑍+ A large number, used in some equations that contain binary variables  

𝜓 
Binary parameter for exemption from EFA requirements because of large forest 

area (0 = not exempted, 1 = exempted). This parameter is relevant for farms 

in Scandinavian and Baltic MSs 

𝑤𝑖
𝐸𝐹𝐴 Weight of the green share of crop 𝑖 that counts towards EFA requirements (%) 

𝜌𝑖
𝐶𝑇𝐶  Default share of the area allocated to crop 𝑖 that is under cover by catch crops 
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in the base year (%) 

𝜌
𝑖
𝑃𝐸𝑅𝑀 

Default share of the area of permanent crop 𝑖 that is under green cover in the 

base year (%) 

𝜌𝑖
𝑀𝑈𝐿𝐶𝐻 

Default share of the area of arable crop 𝑖 that is under mulching in the base 

year (%) 

𝜌
𝑖
𝑊𝐼𝑁𝑇 

Default share of the area of arable crop 𝑖 that is under green winter cover in the 

base year (%) 

𝑤𝐺𝑅𝐴𝑆 Permitted reduction in percentage of grassland (%) 

𝑤0
𝑅𝑂𝑇 Required share of each crop under a mandatory rotation scheme (%) 

𝑤1
𝑅𝑂𝑇 

Required share of each crop under a voluntary rotation scheme (%). As 

voluntary farm obligations (eco-schemes) are defined as being stricter than 
mandatory obligations, 𝜌0

𝑅𝑂𝑇 < 𝜌1
𝑅𝑂𝑇 

𝑤0
𝐹𝐴𝐿𝐿 

Required share of mandatory fallow land for the ‘fallow land and landscape 

elements’ measure (%) 

𝑤1
𝐹𝐴𝐿𝐿 

Required share of additional voluntary fallow land for the ‘fallow land and 

landscape elements’ measure (%). As voluntary farm obligations are defined as 
being stricter than mandatory obligations, 𝑤0

𝐹𝐴𝐿𝐿 < 𝑤1
𝐹𝐴𝐿𝐿 

𝑤0
𝑃𝐸𝑅𝑀 

Required share of mandatory permanent crop area under green cover for the 

‘cover crops between tree rows’ measure (%) 

𝑤0
𝑊𝐼𝑁𝑇 Required share of mandatory winter cover area (%) 

𝑤1
𝑊𝐼𝑁𝑇 

Required share of additional voluntary winter cover area (%). As voluntary farm 

obligations (eco-schemes) are defined as being stricter than mandatory 
obligations, 𝑤0

𝑊𝐼𝑁𝑇 < 𝑤1
𝑊𝐼𝑁𝑇 
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2.2. The model database 

Most of the model’s data are derived either directly or by data operations on the FADN 

database. More specifically: 

1. Farm and crop activity data. The model’s data is based on the 2017 FADN 

dataset. All farms represented in the FADN sample of that year (81 107 farms), 

are included in the model. However, to parameterise some aspects of the model, 

past observations (2012–2016) are also required. Consequently, we load and 

process data for FADN 2012 to 2017. FADN contains mostly farm specific data 

while the model requires activity level data. For this, several estimations are 

performed. First, yields, product prices, production subsidies and accounting unit 

costs for all crop and animal activities in each farm need to be derived. Out-of-

range (i.e., negative, outliers) or zero values for prices and yields are identified 

during the data screening process (see Section 2.2.1.5) and they are corrected 

using simple rules of thumb. Data on accounting unit costs for crops (i.e., specific 

costs related to seeds, fertilisers, crop protection and other crop-specific costs) 

are estimated using a Bayesian approach with prior information on input–output 

coefficients from the DG AGRI input allocation module (see Section 2.2.1.9). 

Costs for labour, energy, water, and capital resources are not explicitly included 

in the current version of the model. Instead, we assume that they are captured by 

the behavioural function (i.e., PMP terms). Based on the time-series data for 

prices and yields (assuming costs to be fixed), we obtain the expected gross 

margins for activities and the covariance matrix of activity revenues. In certain 

cases, for example, when individual farm-level data are missing from the FADN 

database, or when outliers are detected, we use the aggregated FADN data at the 

level of the farm type to replace missing values or outliers. 

2. Livestock activity data. Livestock activities are inherently more complex than 

crop activities. For this, we have developed a dedicated livestock module. 

Sections 2.2.2.1 and 2.2.2.2 explains in detail the rationale behind the livestock 

modelling and the data pre-processing in IFM-CAP. Section 2.2.2.3 describes the 

mapping of the original FADN data on the IFM-CAP livestock activities. Section 

2.2.2.4 describes the feeding costs estimation. They are estimated using a 

Bayesian approach with prior information on animal feed requirements from 

CAPRI and data on farm-level feed costs, feed prices, feed nutrient contents and 

fodder yields from FADN, CAPRI and Eurostat. 

3. Calibration data. After estimating and imputing the necessary activity-level 

data, certain parameters that are included in the objective function allow the 

model to calibrate (i.e. to replicate the base year situation). We recover these 

parameters during the model’s calibration process, as described in detail in 

Section 2.2.3. 

4. Baseline data. IFM-CAP is a static comparative model and this requires the 

estimation of a baseline. Section 2.2.4 describes in detail the assumptions and the 

construction of the baseline model. 
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2.2.1. Farm and crop activity data 

 

2.2.1.1. Farm-level data 

The data that are readily available in the FADN database are the available farmland (i.e. 

total UAA, arable land and grassland), structural characteristics (e.g. production 

specialisation, organic farming and belonging to a Natura 2000 area) and entitlements 

for receiving direct payments. We use these data for setting lower and upper bounds for 

resource and policy constraints and/or for defining exemptions from specific constraints. 

They are directly available from the FADN database and no transformation is required. 

They mainly include data from Tables A, B and E in the FADN database (Table 2). 

Table 2. FADN tables 

Table Related data 

A General information on the holding 

B Type of occupation 

C Labour 

D Assets 

E Quotas and other rights 

F Debts 

G Value added tax 

H Inputs 

I Crops 

J Livestock production 

K Animal products and services 

L Other gainful activities directly related to the farm 

 

2.2.1.2. Times series data 

One related issue when constructing aggregate time series from FADN data is the 

continuity of Eurostat’s NUTS 2 nomenclature from 2010 to 2017. Although the FADN 

database provides a relatively continuous FADN region nomenclature, the NUTS 

nomenclature is used when we need to combine data with data from other Eurostat 

databases. The NUTS nomenclature is revised regularly (7) and this may pose challenges 

when constructing time series at a NUTS level spanning several years. In addition, the 

FADN database may adopt a different Eurostat classification of NUTS in each of the 

survey years. Both issues are shown in Table 3, in which the percentage of unique 

NUTS 2 codes in the FADN database that match with the different NUTS 2 classifications 

is presented for each survey year between 2010 and 2017. From these percentages, it is 

clear that, in 2017, the FADN database adopted the Eurostat NUTS 2 classification for 

2016. In fact, 100 % of the unique NUTS 2 codes used in 2017 in the FADN database 

could be matched to the 2016 NUTS 2 codes. In 2014–2016, 100 % of the NUTS 2 codes 

used in the FADN database matched those of the NUTS 2 classification of 2013 instead. 

From 2010 to 2013, given the relatively high percentages of matching codes (99.6 %, 

99.6 %, 100 % and 100 %, respectively), it appears that the FADN database adopted 

the 2010 classification. These percentages reveal both that FADN adopts different 

Eurostat classifications in different survey years, and that Eurostat classifications change 

over time. 

                                           
(7) https://ec.europa.eu/eurostat/web/nuts/history 

https://ec.europa.eu/eurostat/web/nuts/history
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Table 3. Percentage of NUTS 2 codes in the FADN database that match Eurostat classifications by 

survey year 

FADN 

survey year 

Eurostat 

2016 

Eurostat 

2013 

Eurostat 

2010 

Eurostat 

2006 

2017 100.0 83.8 79.0 70.3 

2016 85.0 100.0 93.8 85.0 

2015 85.0 100.0 93.8 85.0 

2014 85.0 100.0 93.8 85.0 

2013 80.2 93.8 100.0 87.2 

2012 80.0 93.8 100.0 87.6 

2011 80.7 94.6 99.6 87.0 

2010 80.7 94.6 99.6 87.0 

In order to construct time series data at NUTS level for IFM-CAP that address both issues 

at once, we built an artificial NUTS nomenclature that preserves continuity for the 

required time range, similarly to what was carried out by Baldoni and Ciaian (2021). 

Specifically, for regions that have changed NUTS name/code over time, we maintained a 

common name/code throughout the period. For regions that changed shape, reshaping 

was necessary. This involved either spatial aggregation or disaggregation of NUTS 

regions at different hierarchical levels. 

2.2.1.3. Crop activities 

The extraction of data from FADN regarding crop activities is relatively straightforward. 

The details that we present in this and the subsequent sections are referring to crop 

activities. For livestock activities, section 2.2.2 provides the relevant details. 

In Table 4, we provide in detail the crop activities modelled in IFM-CAP. In total, we 

model 42 crop activities, which cover the vast majority of the FADN original activities (8). 

Although the model uses more aggregated activities (see the ‘IFM-CAP2 code’ column) 

than the FADN ones, the detection and correction of outliers and the imputation of 

missing values were performed on the more detailed FADN activity nomenclature, (see 

‘FADN code’ column). This provides better estimates, as the original FADN data set 

contains more homogeneous activities. For example, in IFM-CAP the PULS activity 

contains three original FADN activities, that is, peas, field beans and sweet lupins 

(10210), lentils, chickpeas and vetches (10220) and other protein crops (10290). 

Checking for yield outliers in these original activities is more convenient, as the yield of 

each category is expected to have a lower dispersion. 

The crop activity-related information that is readily available includes the total area and 

the irrigated area, the opening and closing valuation of any stocks, the quantities and the 

value of sales, the value of the farm household consumption, and the value of production 

that was used as an input for the holding, for example animal feed. Prices and yields are 

not reported directly and need to be calculated (see Section 2.2.1.4). 

For activities that report by-products (wine, grapes and olives), the values of the by-

products are allocated to the value of the main product. For some activities that are 

composed of very heterogeneous products (flowers and ornamental plants; nurseries; 

other permanent crops; aromatic and medicinal plants; mushrooms), we express the 

production as the output value and set the price to 1. 

 

                                           
(8) We do not model the following activities in Table I of the FADN database: land ready for sowing leased to 

others (11300), kitchen gardens (20000), growth of young plantations (40800), unutilised agricultural 
land where no agricultural use is intended (50100) and wooded area (50200). 
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Table 4. Land use activities (crops) 

Category 

FADN code 

IFM-CAP2 
code 

Crop name Comments 
Up to 2013  

2014 and 
after 

(1) Cereals 

120 10110 SWHE Common wheat and spelt  

121 10120 DWHE Durum wheat  

122 10130 RYEM Rye Includes mixtures of rye and other cereals sown in the autumn (meslin). 

123 10140 BARL Barley  

124 10150 OATS Oats Includes mixtures of oats and other cereals sown in the spring. 

126 10160 MAIZ Grain maize Excludes sweet maize cobs for human consumption. 

127 10170 PARI Rice Excludes cereals and maize harvested green for animal feed (including silage). 

128 + 125 10190 OCER Other cereals for the production of grain Includes cereals harvested dry for grain and not recorded under previous items (other 
cereal mixes, millet, triticale, buckwheat, sorghum and canary seed). 

NB: Excludes cereals and maize harvested green for animal feed (including silage) 

(2) Pulses 

360 10210 PULS Peas, field beans and sweet lupins  

361 10220 Lentils, chickpeas and vetches Also includes chickling vetch. 

330 10290 Other protein crops  

NB: Crops sown and harvested mainly for their protein content and for the production of grain. Excludes leguminous crops harvested green, those grown as vegetables and oil protein 
crops. 

(3) Oilseeds 

331 10604 RAPE Rape and turnip rape Crops grown for the production of oil, harvested as dry grains. 

332 10605 SUNF Sunflower Crops harvested as dry grains. 

333 10606 SOYA Soya Crops harvested as dry grains. 

364 10607 OOIL Linseed (oil flax) Varieties grown for producing oil, harvested as dry grains. 

334 10608 Other oilseed crops Other crops grown for their oil content, harvested as dry grain. Includes mustard, poppy, 
safflower (Carthamus), sesame seed, earth almond, peanuts, pumpkins for oil, flax other 

than fibre flax 

(4) Other arable 130 10300 POTA Potatoes (including early and seed) Includes early and seed potatoes (i.e. propagation material). 
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131 10400 SUGB Sugar beet (excluding seeds) Excludes seeds and seedlings 

144 10500 OCRO Fodder roots and brassicas (excluding 
seeds) 

Includes mangolds, swedes, fodder carrots, fodder turnips, forage kale, half-sugar 
mangolds, fodder parsnips, other fodder roots and brassicas. Includes swede, Jerusalem 

artichoke, yam and manioc when used for fodder. Excludes seed crops. 

134 10601 TOBA Tobacco  

347 10603 TEXT Cotton  

133 10602 OIND Hops  

373 10609 Flax Varieties grown for producing fibre. 

374 10610 Hemp Other plants grown for their fibre content, not mentioned elsewhere. Includes jute, abaca 
(Manila), sisal and kenaf 

Part of 348 10611 Other fibre plants  

345 10612 Aromatic plants, medical and culinary 
plants 

Plants or parts of plants used for pharmaceutical purposes, perfume manufacture or 
human consumption. Excludes chicory and tea and coffee 

346 10613 Sugar cane  

Part of 348 10690 Other industrial crops not mentioned 
elsewhere 

Includes chicory and miscanthus. 

(5) Vegetables and flowers 

136 10711 VGOF Open field fresh vegetables, melons and 
strawberries 

Crops grown in rotation with field-scale crops. The harvested production is generally used 
for industrial processing rather than directly for fresh consumption.  

137 10712 VGMG Market gardening fresh vegetables, melons 
and strawberries 

Crops grown under short rotation with other horticultural crops, with almost continuous 
occupation of the land and several harvests per year. The harvested production is generally 

used for fresh consumption rather than industrial processing. 

138 10720 VGUG Under glass fresh vegetables, melons and 
strawberries 

Crops grown under shelter (greenhouses, permanent frames, accessible plastic tunnels) 
during the whole or for the predominant part of the growing season 

140 10810 FLOW Flowers and ornamental plants (outdoors)  

141 10820 Flowers and ornamental plants (under 
glass) 

 

NB: This category includes cauliflower and broccoli, lettuce, tomatoes, sweet maize for human consumption, onions, garlic, carrots, strawberries and melons. It also includes pineapple, 
sweet maize and leguminous crops grown as vegetables (e.g. green beans and peas). It includes vegetables grown for roots, bulbs or tubers (e.g. Jerusalem artichokes, sweet potatoes, 
yam, manioc, turnips and swedes for human consumption). It excludes potatoes and mushrooms and nurseries. 

(6) Fodder activities 

147 10910 OFAR Temporary grass (harvested green) Grass plants for grazing, hay or silage included as a part of a normal crop rotation, lasting at 
least 1 crop year and less than 5 years. Includes mixtures of predominantly grass plants and 

other forage crops, grazed, harvested green or as dried hay 

Part of 
(327 + 328) 

10922 Leguminous plants Leguminous plants grown and harvested green as the whole plant mainly for forage. 
Includes various species of clover (annual or perennial, e.g. crimson, red, white, Egyptian, 
Persian, different types of lucerne/alfalfa) and other leguminous plants grown for fodder 

(e.g. sainfoin, sweet clover, vetches, trefoil, melilot, sweet lupins, serradella, fenugreek and 
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sulla). 

Part of 
(327 + 328) 

10923 Other plants harvested green not 
mentioned elsewhere 

Other arable crops intended mainly for animal fodder, harvested green and not mentioned 
elsewhere. Includes annual crops – cereals, ray grasses, sorghum, certain graminaceous 
plants (e.g. meadow grass), plants belonging to other families (cruciferous), plants not 

mentioned elsewhere (e.g. rape, California bluebell) – if harvested green. 

142 + 143 11000 Arable land seed and seedlings Includes seeds and seedlings of vegetables, flowers, horticultural plants and arable crops 
other than cereals, dry pulses, potatoes and oilseed crops. 

148 11100 Other arable land crops Includes arable crops not mentioned elsewhere and typically of low economic importance. 

326 10921 MAIF Green maize All forms of maize not harvested for grain (whole cob, parts of or whole plant). 

150 30100 PGRA Pasture and meadow, excluding rough 
grazing 

Includes grassland grown for 5 years or more on cultivated land. Excludes pastures and 
meadow not in use 

151 30200 RGRA Rough grazing Includes low yielding permanent grassland (generally uncultivated and unfertilised land, 
including scrub, used as poor-quality pasture). 

314 30300 Permanent grassland not used for 
production and eligible for subsidies 

Areas of permanent grassland and meadows no longer used for production purposes that, 
in line with Council Regulation (EC) No 73/2009 or, where applicable, the most recent 

legislation are maintained in good agricultural and environmental condition and are eligible 
for financial support. 

NB: Includes all ‘green’ arable crops intended for animal feed and/or renewable energy production, grown in rotation with other crops and occupying the same parcel for less than 
5 years (annual or multiannual fodder crops). It includes cereals, industrial plants and other arable land crops harvested and/or used green (including dried hay). It excludes fodder roots 
and brassicas. 

(7) Permanent 

Part of 349 40111 APPL Apples  

Part of 349 40112 Pears  

Part of 350 40113 PEAC Peaches and nectarines  

Part of 350 40114 OFRU Other fruit of temperate zones Includes fruit tree plantations that are traditionally cropped in temperate climates for 
producing fruits, such as quinces, medlars, apricots, cherries (including sour cherries), 
plums (including mirabelle plums, greengages and damsons) and other stone fruit not 

specified elsewhere (e.g. sloes and loquats) 

353 + part of 
182 

40115 Fruit of subtropical or tropical zones Includes fruit tree plantations that are traditionally cropped in subtropical or tropical 
climates for producing fruits such as annona, pineapples, avocados, bananas, lychees, 

papaya, mangos, guava, passion fruit, figs, other fruits of woody plants (e.g. dates, 
persimmons and pomegranate), prickly pear and kiwi. 

Part of 352 40120 BERR Berry species Berry plantations that are traditionally cropped both in temperate and in subtropical 
climates for producing berries. Includes blackcurrants, redcurrants and white currants, 
raspberries, gooseberries, blackberries, blueberries and cranberries. Mulberry trees, 

elderberries and sea buckthorn are also included. 

351 40130 NUTS Nuts Nut tree plantations that are traditionally cropped in temperate and subtropical climates. 
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Includes walnuts, hazelnuts, almonds, dulcis, chestnuts and other nuts not otherwise 
specified (e.g. pine seeds and pistachio nuts). 

354 40210 CITR Oranges  

355 40220 Tangerines, mandarins, clementines and 
similar 

Includes tangerines, mandarins, clementines, satsumas, mandarins’ oranges, kings and 
hybrids (e.g. fortune, ortanique, Clemenvilla/Nova and Nadorcott/Afourer). 

356 40230 Lemons  

357 40290 Other citrus fruit Includes other citrus fruit not mentioned elsewhere (e.g. bitter orange, bergamot, fingered 
citron, acid limes and fortunella). 

281 40310 TABO Table olives Plantations of varieties grown for producing table olives. 

282 40320 OLIV Olives for oil production (sold as fruit) Olive plantations grown for oil production but sold as fruit. 

283 40330 Olive oil  

284 40340 Olive by-products  

289 40411 TWIN Quality wine with a protected designation 
of origin (PDO) 

Wine from grape varieties normally grown for the production of wines with a PDO. 

294 40412 Quality wine with a protected geographical 
indication (PGI) 

Wine from grape varieties normally grown for the production of wines with a PGI. 

295 40420 Other wines Wine without a geographical indication. Grape varieties normally grown for the production 
of wines other than PDO and PGI wines, including varietal wines. 

    

286 40451 Grapes for quality wine with a PDO Grape varieties grown for the production of grapes for PDO wines 

292 40452 Grapes for quality wine with a PGI Grape varieties grown for the production of grapes for PGI wines. 

293 40460 Grapes for other wines Grapes varieties grown for the production of wine without a geographical indication. 

285 40430 TAGR Table grapes Grape varieties grown for the production of fresh grapes. 

291 40440 Raisins Grape varieties grown for the production of raisins. 

157 40500 NURS Nurseries Includes plants grown in the open air for subsequent transplantation: (a) vine and 
rootstock nurseries; (b) fruit tree and berry nurseries; (c) ornamental nurseries; (d) 
commercial nurseries of forest trees (excluding those for the holding’s own requirements 
grown within woodland); (e) trees and bushes for planting in gardens, parks, at the 
roadside and on embankments (e.g. hedgerow plants, rose trees and other ornamental 
bushes, and ornamental conifers), including in all cases their stocks and young seedlings.  

158 40600 OCRO Other permanent crops Includes osier willow, bamboo, rush, rattan, carob trees, tea, coffee and truffles. 

156 40700 Permanent crops under glass 
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139 60000 Mushrooms 
 

(8) Fallow land 

315 11210 FALL Fallow land without any subsidies Fallow land for which no financial aid or subsidy is paid. Excludes areas of arable land taken 
out of production for more than 5 years, or under 5 years when the farmer clearly states 

that it is taken out of production (not only for resting) 

316 11220 Fallow land subject to the payment of 
subsidies, no economic use 

Fallow land for which the holding is entitled to financial aid or subsidies 

NB: FADN codes are given both for the data set up to 2013 and for the data set from 2014 onwards. 

Source: European Commission document RI/CC 1680 v.6  
accessible from https://circabc.europa.eu/sd/a/56ed82b0-9e19-4f92-893d-238919294204/RICC_1680_v2.0_accounting_year_2015.pdf 

 

https://circabc.europa.eu/sd/a/56ed82b0-9e19-4f92-893d-238919294204/RICC_1680_v2.0_accounting_year_2015.pdf
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2.2.1.4. Prices and yields 

Yields are relatively straightforward to calculate from the production quantity: 

𝑌 = 𝑃𝑅𝑄/𝐴  

where 𝑌 is yield, 𝑃𝑅𝑄 is production quantity (tonnes) and 𝐴 is the production area (9) 

(ha). 

Calculating prices is less straightforward. In the previous version of IFM-CAP, prices were 

calculated as the quotients of the total output value to the production quantity: 

 𝑝1 = 𝑇𝑂/𝑃𝑅𝑄  

 𝑇𝑂 = 𝑆𝐴𝑉 + 𝐹𝐶𝑉 + 𝐹𝑈𝑉 − (𝑂𝑉 − 𝐶𝑉)  

where 𝑝 is price, 𝑇𝑂 is the total output value, 𝑃𝑅𝑄 is the production quantity, 𝑆𝐴𝑉 is the 

sales value, 𝐹𝐶𝑉 is the farm consumption value, 𝐹𝑈𝑉 is the farm use value, 𝑂𝑉 is the 

opening stock value and 𝐶𝑉 is the closing stock value. The opening and the closing stocks 

were valued at the beginning and at the end of the production year, respectively; these 

values may be different from prices at the time of sale. 

In the FADN data set from 2014 onwards, the sales quantities are explicitly reported and 

thus the calculation of prices becomes more straightforward: 

𝑝2 =
𝑆𝐴𝑉

𝑆𝐴𝑄
 

where 𝑆𝐴𝑄 is the sales quantity. 

The two price definitions are equal when the ratio of the sales value to the total output 

equals the ratio of the sales quantity to the production quantity: 

𝑝1 = 𝑝2 ⇒
𝑆𝐴𝑉

𝑆𝐴𝑄
 =  

𝑇𝑂

𝑃𝑅𝑄
⇒

𝑆𝐴𝑉

𝑇𝑂
 =  

𝑆𝐴𝑄

𝑃𝑅𝑄
 

Still, often the sales quantities are not present or there are data inconsistencies, 

especially for the years close to 2014. For those reasons, we applied a hybrid approach 

(between the total output and the sales quantity) for calculating the prices. We use the 

following algorithm: 

1. Calculate the price using Sales Quantity: 

IF { [Sales Quantity] > 0.01 AND [Sales Value] >0 }  

THEN [Price1]= [Sales Value] / [Sales Quantity] 

2. Calculate the price using the Total Output Value: 

IF { [Production Quantity] >0 AND [Total Output] >0 }  

THEN [Price2]= [Total Output] / [Production Quantity] 

3. If only [Price1] or only [Price2] is available (e.g. Production quantity is higher 

than zero and Sales quantity is zero), then use the one that is available 

4. If both [Price1] and [Price2] are available, then take the minimum10. 

 

                                           
(9) The exact definition of this variable is ‘main crop area, excluding follow-up crops’. Note that the 

production variable contains the production of both the main crop and the follow-up crops. This implies 
that, for a specific crop, we assign the production of both the main crop and the follow-up crops to the 
main crop area. We do this because, first, it was impossible to distinguish between the production 
quantity of the main crop and that of the follow-up crops and, second, there were many inconsistencies 
between the area of the ‘main crop’ and the areas of the ‘follow-up’ crops. 

10 This makes sense, since the [TO]/[PRQ] is an overestimation of the actual price. In reality  
PRICE x (OQ+PRQ)=SV+FCV+FUV+CV  
=> PRICE = (SV+FCV+FUV+CV)/(OQ+PRQ) ≥ (SV+FCV+FUV+CV)/(PRQ) 
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2.2.1.5. Outliers 

The purpose of FADN data screening was to remove aberrations and to check the extent 

to which the data need to be adjusted to meet the IFM-CAP modelling requirements. The 

key data that were screened were yields and product prices. The outlier procedure was 

applied to the 2010–2017 time series. 

Outliers are observations that are numerically distant from the assumed distribution of 

the data. In this case, outliers concern prices and yields and may arise for the following 

reasons. 

 Prices and yields are derived from other FADN data (based on the total production 

value, production quantity and areas), so their values in some farms may deviate 

significantly from the rest of the sample if the underlying data do not contain 

sufficient information to identify their true values (e.g. because of high carry-over 

stock combined with high prices). 

 Yields of, and prices achieved for, specific activities included in a given 

aggregated activity group (e.g. flowers, other cereals, other vegetables), as well 

as for crops whose yields are strongly dependent on climatic conditions or the 

variety cultivated (e.g. tobacco, potatoes, olive trees), are highly heterogeneous. 

 Yields and prices may have been recorded under exceptional circumstances that 

cannot be considered ‘normal’, for example during adverse weather conditions or 

outbreaks of pests. In this case production is minimal or zero. 

 It is possible that a farmer may have entered incorrect information in the FADN 

farm returns, in particular for output quantity and/or output value. 

For prices and yields, we carried out normality tests and, for consistency reasons, we 

used the interquartile range (IQR), a non-parametric method, to determine the outliers. 

The IQR is a measure of statistical dispersion, being equal to the difference between the 

upper quartile and the lower quartile: 

 𝐼𝑄𝑅 =  𝑄3 −  𝑄1

 

 

More precisely, it is a trimmed estimator, defined as the 25 % trimmed mid range, and is 

the most significant basic robust measure of scale. It is the third quartile of a box and 

whisker plot minus the first quartile. An outlier is defined as any value that lies more 

than 1.5 times the length of the IQR from the first quartile (lower outlier) or the third 

quartile (upper outlier). Therefore: 

 
𝐼𝑓 𝑋𝑖 < (𝑄1 − 1.5 × 𝐼𝑄𝑅) > 𝑙𝑜𝑤𝑒𝑟 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 

𝐼𝑓 𝑋𝑖 > (𝑄3 + 1.5 × 𝐼𝑄𝑅) > 𝑢𝑝𝑝𝑒𝑟 𝑜𝑢𝑡𝑙𝑖𝑒𝑟

 

 

Detection of outliers was conducted at NUTS 0 level for all FADN crops except fallow land 

and grasslands, as information on prices and yields is not reported for these crops. To 

calculate IQRs, prices and yields that were either zero or missing were not considered. 

The values that were flagged as outliers were replaced with NUTS 2 imputed values (see 

Section 2.2.1.6). In Table 5, we provide an example of IQR outlier detection for cereal 

crops; the yield ranges before IQR outlier detection and after IQR outlier detection and 

the subsequent removal of outlier yields are provided. 

 

http://en.wikipedia.org/wiki/Trimmed_estimator
http://en.wikipedia.org/wiki/Mid-range
http://en.wikipedia.org/wiki/Robust_measures_of_scale


 

42 
 

Table 5. Yield ranges before and after IQR outlier detection for cereal crops 

 

Common wheat Durum wheat Barley Oats Rye Rice Grain maize Other cereals 

 

Before After Original After Original After Original After Original After Original After Original After Original After 

Belgium 1–13.5 6.6–13.5 
  

0.6–60 6.1–13.2 1–10.5 3.8–10.5 1–8.1 2.9–8.1 
  

0.7–84.1 10.1–20.9 0.8–11.4 4.1–11.4 

Bulgaria 0.1–44 2.7–9 0.7–8.7 2.4–7 0.1–21.6 2.4–8.8 0–14.7 1.2–5.7 0.2–10.1 1–4.3 2.1–9.2 3–9.2 0–43.3 3.4–15 0.1–14.8 1.6–7.8 

Czechia 0.2–10.7 4.2–10.7 0.6–8.7 3.3–8.7 0.2–10.6 3.8–9.2 0.1–9 2.8–7.5 0.5–9.2 3.6–9.2 
  

0.3–38.8 5.8–16.3 0.3–10.8 3.3–10.8 

Denmark 0–11.9 5.7–11.9 
  

0–11.7 4.6–10.3 0–10.4 3.9–10.4 0–11.6 4.5–11.6 
  

0–14.9 4.3–14.9 0.7–10 3.2–10 

Germany 0.1–36.1 5.6–13.8 0.1–19 3.5–10.7 0.1–14.8 5-13 0.1–22.6 3.5–10.4 0.1–26 3.8–13.7 
  

0–24.1 7.3–17.6 0.2–22.4 4.6–12.6 

Estonia 0–9.5 1.9–8.4 
  

0–8.3 1.8–8.3 0–9.1 1.6–6.6 0.2–9 1.5–7.9 
    

0.1–8 1.1–8 

Ireland 0–13.5 6.8–13.5 
  

0–15.9 5.7–11.7 0–10.7 5.2–10.7 0.8–3 1.1–3 
    

1–17.3 1–7.5 

Greece 0.1–20 2.2–6.3 0–40 1.9–7.8 0.1–61.7 1.8–7 0.1–27.1 1.3–6.7 0.2–19.4 1.8–4.2 0.5–13.2 6.3–13.2 0.2–110.2 9.5–20.8 0–12 1.5–5 

Spain 0.1–50.3 2.1–10.7 0.1–45.8 1.7–6.1 0–20.1 1.6–8.2 0–384 1.1–7.6 
0.1–

14 444 
1.2–5.8 0.2–18.4 6–12 1–1 365.8 9.6–21.8 0–34.4 1.1–6.7 

France 0.1–17.8 4.8–14.8 0–11.9 3.4–11.9 0.1–12.8 4.4–12.8 0.1–19.2 2.7–10.1 0.1–11.2 2.9–10.2 1.4–8.4 3.7–8.4 0–34.4 6.3–19.1 0.1–27.1 3.2–11.3 

Croatia 0.4–10 3.7–10 6.7–6.7 6.7–6.7 0.3–9.2 2.9–9.2 0.3–10 2.4–6.3 1.8–6.4 3.1–6.4 
  

0.1–50 5.5–16.8 0–32.1 3–9.5 

Italy 0.2–82 4.1–11.3 0.2–202.4 2.7–8.6 0–25.3 2.7–10 0.1–10.1 2.1–5.9 0.2–21.8 2.3–9.1 1.4–12 5.8–9.6 0–225 7.8–20.8 0.1–56.6 2–13.5 

Cyprus 0.3–55.6 1.1–5.8 0.1–48.6 1.4–7.7 0–15.2 1.3–6.7 0.1–6.7 1.4–6.7 
    

3.3–20 5.5–20 0.5–15.6 3–3.8 

Latvia 0.1–10.3 2.2–9.1 
  

0.1–9.6 1.8–7.1 0.1–10 1.8–5.7 0.2–8.7 1.8–8 
    

0–8.9 1.3–7 

Lithuania 0.3–12.5 2.5–11.8 
  

0.2–10.6 2.1–8.7 0.2–7.8 1.6–6 0.1–9.4 1.6–6 
  

0.5–11 2.2–11 0.1–12.6 1.6–9.2 

Luxembou
rg 

0.9–40 4.6–10 4.4–4.7 4.7–4.7 0.5–9.8 3.9–9.8 0.3–9.4 3.2–9.4 0.3–12.5 3.5–9.8 
  

0.8–18.6 4.5–18.6 0.8–9.6 4.2–9.6 

Hungary 0.3–10 3.4–10 1.1–8 3.4–8 0–10.7 2.9–9.7 0.1–8 1.8–7 0.1–12.5 1.7–7.2 1–6.4 2.3–6.4 0.1–15.1 4.2–15.1 0.3–10 2.8–8.2 

Netherlan
ds 

0.8–15.1 6.9–15.1 
  

0.1–11.6 5.2–11.6 1.7–12.5 3.1–12.5 0.6–7.6 1.4–7.6 
  

3.4–99.9 9.4–18.2 0.8–8.3 2.1–8.3 

Austria 0.4–82.6 3.9–12.5 0.6–8.9 3.3–8.9 0.2–23.2 3.5–11.7 0.4–20.7 2.7–10 0.2–10.5 2.3–10.5 
  

0–84.8 7.3–22.5 0.1–74 2.9–13.1 

Poland 0–94.2 3.7–11 4.9–4.9 4.9–4.9 0.1–104.1 3.3–8.8 0.1–203.8 2.5–7.2 0.1–300.3 2.3–7.7 
  

0.2–208.5 6.1–18.4 0.1–391 3–9.2 

Portugal 0.1–6.6 0.9–4.4 1.1–6 2-6 0–6 0.9–6 0.1–30 0.7–3.8 0.2–6 0.8–2.2 0.3–9 3.7–9 0.4–60 1.7–21.2 0.5–9.6 0.6–1 

Romania 0.3–1 920 2.8–8.2 0.8–6.6 2.8–6.6 0.3–11.5 2.6–7.8 0.5–15 1.6–7 1–7.4 2.2–7.4 1.2–5.8 3.5–5.8 
0.1–

2 773.3 
3.5–11.4 0.2–10.9 2.8–8 

Slovenia 0.3–20.7 3.4–12.1 
  

0.3–48.4 3.2–11.7 0.3–40 2.2–10 0.3–8.1 2.2–8.1 
  

0.1–870 5.6–25 0.2–15.6 2–10.2 

Slovakia 0.1–12.3 2.6–11.2 0.7–9.5 2.7–9.5 0–10.5 2.2–10.5 0–8 1.3–6.9 0.3–11.8 1.7–8 
  

0–19 3.6–16.6 0.4–17 2–7.4 

Finland 0.1–8.2 2.9–8.2 
  

0–8.1 2.6–7.8 0.2–10.5 2.3–7.8 0.3–8.5 1.7–8.5 
  

4.3–4.3 4.3–4.3 0.1–11.5 0.3–3.8 

Sweden 0.1–13.7 3.9–13.7 
  

0.1–11.4 3–9.9 0.1–9.7 2.8–9.7 0.4–11.2 3.6–11.2 
  

1-20 5–9.5 0.5–10 2.8–8 

EU 0–1920 0.9–15.1 0–202.4 1.4–11.9 0–104.1 0.9–13.2 0–384 0.7–12.5 
0–

14 444.4 
0.8–13.7 0.2–18.4 2.3–13.2 0–2 773.3 1.7–25 0–391 0.3–13.5 
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2.2.1.6. Imputing missing or incomplete data 

Imputing missing or outlier yields and prices 

The presence of at least one missing yield or price in a farm’s data would require 

removing the farm completely from the model. Thus, in order not to exclude a significant 

number of farms, we replace outlier and missing prices and yields (e.g. when production 

quantity and sales quantity were unavailable) with existing non-missing and non-outlier 

data. 

For this, we follow a cascading procedure in which we replace a missing data point with 

the median value for the year at the farm’s NUTS 3, NUTS 2, NUTS 1, NUTS 0, 

neighbouring countries or EU level, depending on whether the number of observations is 

more than a certain threshold (11). In case the cascading procedure cannot find a valid 

data point, we replace the missing data point with the median value of the NUTS 0 and 

EU data points for the crop across all years. 

For example, if the yield for barley is missing for a farm that belongs to EL432 for 2017, 

if there are more than three non-missing and no outlier observations in EL432 for that 

crop in 2017, we assign the median yield of those observations. If not, if there are more 

than four non-missing observations at the NUTS 2 level of the farm for 2017, we use the 

median of those observations, and so on. If we cannot find a median value from the 

neighbouring countries for that year, we replace the missing data point with the median 

value at the NUTS 0 level (EL) across all years and, if this is not available, we replace it 

with the EU median value for that crop across all years. At the end of this procedure 

there are no missing values. 

In Table 6, we show the number of values that were either missing or flagged as outliers 

and had to be imputed. Around 21% of the yield data points and 23% of the price data 

points were imputed.  

Table 6. Numbers of yield and price observations with imputed values for 2010–2017 

Y
ie

ld
s
 

Missing/outlier data 

points 
526 964 
(21 %) 

P
ri
c
e
s
 

Missing/outlier data 

points 
574 537 
(23 %) 

N
u
m

b
e
r 

o
f 

re
p
la

c
e
m

e
n
ts

 f
ro

m
 

NUTS 3 

(yearly) 
320 848 

N
u
m

b
e
r 

o
f 

re
p
la

c
e
m

e
n
ts

 f
ro

m
 

NUTS 3 

(yearly) 
335 143 

NUTS 2 

(yearly) 
52 578 

NUTS 2 

(yearly) 
71 750 

NUTS 1 

(yearly) 
22 617 

NUTS 1 

(yearly) 
26 325 

NUTS 0 

(yearly) 
28 760 

NUTS 0 

(yearly) 
37 011 

Neighbouring 

NUTS0(yearly) 
38 317 

Neighbouring 

NUTS0(yearly) 
37 933 

NUTS 0 (all 

years) 
29 500 

NUTS 0 (all 

years) 
64 660 

EU (all years) 34 342 EU (all years) 1 715 

                                           
(11) This threshold was three observations at NUTS 3 level, four at NUTS 2 level, seven at NUTS 1 and NUTS 0 

levels, and nine at the neighbouring NUTS 0 level. 
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Grassland production 

For grassland-related activities12, production values are missing in the vast majority of 

cases and need to be imputed. For this, we use the CAPRI database. 

The CAPRI database contains two grassland activities: extensive (GRAE) and intensive 

(GRAI). We use the prices directly; GRAE corresponds to CRG activities and GRAI to 

CGRSXRG activities in the FADN database. 

For yields, we observed that CAPRI values overestimate the observed grassland 

yields (13) and so we applied a correction procedure at the NUTS 2 level. First, we 

retrieved the mean grassland yield from which the CAPRI GRAE and GRAI yields were 

computed: 

𝑦𝑖𝑒𝑙𝑑𝐺𝑅𝐴𝐸 = 0.6 ∙ 𝑦𝑖𝑒𝑙𝑑𝑚𝑒𝑎𝑛

𝑦𝑖𝑒𝑙𝑑𝐺𝑅𝐴𝐼 = 1.4 ∙ 𝑦𝑖𝑒𝑙𝑑𝑚𝑒𝑎𝑛
}  𝑦𝑖𝑒𝑙𝑑𝑚𝑒𝑎𝑛 =

𝑦𝑖𝑒𝑙𝑑𝐺𝑅𝐴𝐸 + 𝑦𝑖𝑒𝑙𝑑𝐺𝑅𝐴𝐼

2
 

𝑦𝑖𝑒𝑙𝑑𝐺𝑅𝐴𝐸

𝑦𝑖𝑒𝑙𝑑𝐺𝑅𝐴𝐼

=
0.6 ∙ 𝑦𝑖𝑒𝑙𝑑𝑚𝑒𝑎𝑛

1.4 ∙ 𝑦𝑖𝑒𝑙𝑑𝑚𝑒𝑎𝑛

⇒ 𝑦𝑖𝑒𝑙𝑑𝐺𝑅𝐴𝐸 = 0.428 ∙ 𝑦𝑖𝑒𝑙𝑑𝐺𝑅𝐴𝐼 

Then, given this mean yield, for the yields of the FADN CRG and CGRSXRG activities, it 

holds that 

𝑦𝑖𝑒𝑙𝑑𝑚𝑒𝑎𝑛 = 𝑦𝑖𝑒𝑙𝑑𝐶𝑅𝐺 ∙ 𝑠ℎ𝑎𝑟𝑒𝐶𝑅𝐺 + 𝑦𝑖𝑒𝑙𝑑𝐶𝐺𝑅𝑆𝑋𝑅𝐺 ∙ 𝑠ℎ𝑎𝑟𝑒𝐶𝐺𝑅𝑆𝑋𝑅𝐺 

𝑦𝑖𝑒𝑙𝑑𝑚𝑒𝑎𝑛 = 0.428 ∙ 𝑦𝑖𝑒𝑙𝑑𝐶𝐺𝑅𝑆𝑋𝑅𝐺 ∙ 𝑠ℎ𝑎𝑟𝑒𝐶𝑅𝐺 + 𝑦𝑖𝑒𝑙𝑑𝐶𝐺𝑅𝑆𝑋𝑅𝐺 ∙ 𝑠ℎ𝑎𝑟𝑒𝐶𝑅𝐺 

𝑦𝑖𝑒𝑙𝑑𝐶𝐺𝑅𝑆𝑋𝑅𝐺 =
𝑦𝑖𝑒𝑙𝑑𝑚𝑒𝑎𝑛

0.428 ∙ 𝑠ℎ𝑎𝑟𝑒𝐶𝑅𝐺 + 𝑠ℎ𝑎𝑟𝑒𝐶𝐺𝑅𝑆𝑋𝑅𝐺 ∙
 

where 𝑠ℎ𝑎𝑟𝑒𝐶𝑅𝐺 and 𝑠ℎ𝑎𝑟𝑒𝐶𝐺𝑅𝑆𝑋𝑅𝐺 are the shares of CRG and CGRSXRG in the total 

grassland area in a NUTS 2 region. 

 

 

Straw production 

We calculate straw production using the residue-to-crop ratio (RCR) as a function of crop 

yield. The RCR indicates how much residue is produced as a function of the main 

agricultural crop produced measured on a total dry matter basis. The RCR can vary 

widely, depending, for example, on the type of crop, crop productivity, crop mix, crop 

variety, climate conditions and agricultural practices. Based on a review of the literature, 

Scarlat et al. (2010) reported an RCR of between 0.6 and 2.8, depending on the crop 

type and the study reviewed. Edwards et al. (2005) estimated a cereal RCR function for 

the EU based on a wide range of studies. Their estimated ratio ranged between 0.62 and 

0.94 and was negatively correlated with the cereal yield. Koopmans and Koppejan 

(1997) reported RCRs for 13 crops of between 0.2 and 4, depending on the crop and the 

study reviewed. Furthermore, this literature implies that the amount of residue produced 

can be linked to crop productivity and can be approximated by a functional form 

(negatively) depending on the crop yield (Edwards et al., 2005; Scarlat et al., 2010). 

Following Scarlat et al. (2010), we assume the following relationships between RCR and 

yield: 

 

1. 𝑅𝐶𝑅𝑤ℎ𝑒𝑎𝑡  =  1.6057 − 0.3629 ln(𝑌𝑖𝑒𝑙𝑑𝑤ℎ𝑒𝑎𝑡) 

                                           
(12)  CRG: Rough grazing; CGRSXRG: Pasture and meadow. 
(13) Although the majority of the production values for CGRSXRG are missing, there are a number of data 

points that can be used to estimate yields at country level. 
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2. 𝑅𝐶𝑅𝑟𝑦𝑒 =  1.5142 − 0.3007 ln(𝑌𝑖𝑒𝑙𝑑𝑟𝑦𝑒) 

3. 𝑅𝐶𝑅𝑜𝑎𝑡𝑠 =  1.3002 − 0.1874 ln(𝑌𝑖𝑒𝑙𝑑𝑜𝑎𝑡𝑠) 

4. 𝑅𝐶𝑅𝐵𝑎𝑟𝑙𝑒𝑦 =  1.3796 − 0.2751 ln(𝑌𝑖𝑒𝑙𝑑𝐵𝑎𝑟𝑙𝑒𝑦) 

5. 𝑅𝐶𝑅𝑚𝑎𝑖𝑧𝑒  =  1.3373 − 0.1807 ln(𝑌𝑖𝑒𝑙𝑑𝑚𝑎𝑖𝑧𝑒) 

6. 𝑅𝐶𝑅𝑟𝑖𝑐𝑒  =  3.845 − 1.2256 ln(𝑌𝑖𝑒𝑙𝑑𝑟𝑖𝑐𝑒) 

7. 𝑅𝐶𝑅𝑠𝑢𝑛𝑓𝑙𝑜𝑤𝑒𝑟  =  3.2189 − 1.1097 ln(𝑌𝑖𝑒𝑙𝑑𝑠𝑢𝑛𝑓𝑙𝑜𝑤𝑒𝑟) 

8. 𝑅𝐶𝑅𝑟𝑎𝑝𝑒𝑠𝑒𝑒𝑑  =  2.0475 − 0.452 ln(𝑌𝑖𝑒𝑙𝑑𝑟𝑎𝑝𝑒𝑠𝑒𝑒𝑑) 

9. 𝑅𝐶𝑅𝑜𝑡ℎ𝑒𝑟 𝑐𝑟𝑜𝑝𝑠 =  2.0311 − 0.5118 ln(𝑌𝑖𝑒𝑙𝑑𝑜𝑡ℎ𝑒𝑟 𝑐𝑟𝑜𝑝𝑠). 

 

where 𝑌𝑖𝑒𝑙𝑑𝑖 is yield (tonnes/ha) for crop i. Note that the coefficient corresponding to the 

RCR for other crops is calculated as the average coefficient value over all crops. 

The straw yield, StrawYieldi, for crop i is obtained by multiplying the RCR calculated in 

no 1-9 by crop yield (in fresh weight per year) and the collection rate, CollRatei: 

 

10. 𝑆𝑡𝑟𝑎𝑤𝑌𝑖𝑒𝑙𝑑𝑖  =  𝐶𝑜𝑙𝑙𝑅𝑎𝑡𝑒𝑖  𝑅𝐶𝑅𝑖 𝑌𝑖𝑒𝑙𝑑𝑖  

 

The actual residue collection rate varies depending on a number of factors, such as 

collection equipment used, crop variety, harvest height, yield and environmental 

requirements. Studies provide estimates of crop collection rates of between 30 % and 

75 % (Bakker, 2013; Scarlat et al., 2010). Following Scarlat et al. (2010), we assume 

collection rates as reported in Table 7. 

Note that in official statistical sources (e.g. Eurostat and the Food and Agriculture 

Organization), crop yields are usually not recorded on a dry matter basis. Instead, they 

are recorded in the form in which the crops are harvested (fresh or wet weight). As a 

result, the straw yield calculated in equation 10 is not measured on a dry matter basis 

but contains the moisture level of the grain crop (i.e. between 15 % and 20 % depending 

on the crop). 

 

Table 7. Crop residue collection rates 

 Collection rate, Collrate(%) 

Wheat 40 

Rye 40 

Oats 40 

Barley 40 

Maize 50 

Rice 50 

Sunflower 50 

Rapeseed 50 
Source: Scarlat et al. (2010) 

 

2.2.1.7. Revenue expectation and variance 

As defined in the model’s objective function, farmers are assumed to maximise their 

expected utility of income, that is, farmers’ decision-making is based on expected 

prices and yields for given costs (i.e. only revenue is assumed to be stochastic). 

Although the E-V framework dictates that expected values for these parameters are the 

mean of the respective distribution for each farm, many authors consider this 

assumption to be unrealistic and suggest alternative methods of calculating farmer 
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expectations (e.g. Brink and McCarl, 1978; McCarl and Spreen, 2003). The formulation of 

expectations for the calibration of the IFM-CAP model is based on the theory of adaptive 

expectations, which results in expectations being a weighted average of past 

observations. Expected prices and yields are constructed at the level of the farm type or 

NUTS 2 region. Subsequently, the individual farm-level expectation is constructed to 

account for farm-specific factors. 

The adaptive expectations theory assumes that expectations are revised based on past 

forecasting error. This corresponds to expected prices being equal to the weighted 

average of past prices with geometrically declining weights (Nerlove, 1958). Alternative 

formulations, such as naive expectations, in which expected values are set as equal to 

the last observed prices, or future prices, were considered. However, based on the 

available empirical literature, a statistical test based on FADN data and data 

limitations (14), a simplified version of the adaptive expectation approach was considered. 

This approach (i.e. covering only five periods in the past) can be applied to all products 

and is believed to provide the best solution for the IFM-CAP model. 

Ideally, the model would generate expected prices at the individual farm level to account 

for farm-specific transaction costs and quality differences across farms. However, as not 

all activities and products are observed at all farms or in each of the past 5 years, an 

approach for generating farm-specific expected prices for every product is proposed. In 

the first step, average expected prices are generated for each farm type in each NUTS 2 

region, consisting of the weighted average over the past 5 years of prices at farm type 

level. The weights approximate geometrically declining weights, that is, recent 

observations get a higher weight than observations made in the past (15). 

In the second step, the average farm-specific deviation from the average price for that 

farm type is calculated for each product based on the actual farm-specific prices 

observed in the past (i.e. over the period 2012–2016). This deviation is then added or 

subtracted from the average for the farm type to obtain an individual farm-specific 

expected price. Note that this farm-specific deviation is assumed to remain constant over 

time. As such, it will not influence the expected prices in the baseline or other scenarios 

(i.e. each farm within the same farm level and region will experience the same absolute 

price change in the scenarios). Below, the different steps in the construction of the 

expected prices and, accordingly, yields and unit costs are described in detail. 

                                           
(14) The empirical literature on different models of price expectations is inconclusive, without a clear 

preference for backward-looking prices (naive or adaptive expectations), (quasi-)rational expectations, 
future prices or monthly prices (Chavas, 2000; Haile et al., 2016; Kenyon, 2001; Nerlove and Bessler, 
2001; Shideed and White, 1989). Chavas et al. (1983) found that future prices may correspond better to 
the price formation process for some crops, but future price information is not available for all activities 
and farmers in all countries (Chavas, 2000), which complicates implementation of future prices in the 
IFM-CAP model. In contrast, backward-looking expectations can be homogeneously constructed for all 
IFM-CAP farms using FADN data. We performed a simple econometric test (comparing R2 and the root 
mean square error) to compare the use of different types of backward-looking expectations with regard to 
the supply response of wheat and maize in the Netherlands and France. There were no significant 
differences in the results obtained using expectations based on past prices at the individual, farm-type or 
regional level, naive expectations or a (weighted) combination of past prices (adaptive expectations). 
Therefore, our choice of the use of a simplified formula of adaptive expectations is driven mainly by 
pragmatic arguments related to data error and availability; using a weighted combination of farm-type or 
regional-level prices for the last 3 years prior to the base year of 2012 allows smoothing of some potential 
errors in the data compared with the use of naive prices. In the current version of the model, policy-
related price changes (e.g. sugar reform) that could have influenced price expectations for specific crops 
over the period examined are not considered.  

(15) The weights used correspond to those used in the CAPRI expectations module. They correspond to an 
adaptive expectations model with a correction factor of 0.55. To make sure that the sum of the weights 
equals 1, the weights on observations in (t – 2) and (t – 3) are slightly higher than would be the case if 
prices further back in time were included as well. This results in weights of 0.55, 0.30 and 0.15 for 
observations 1, 2 or 3 years ago, respectively. If only two observations in the past 3 years are available, 
these weights are adjusted in an ad hoc way, that is, to 0.67 for the more recent observation and 0.33 for 
the later observation. 
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Generation of adaptive expected prices at farm type level 

After the exclusion of outliers in the price data, for each product the expected price at 

farm type level is constructed as the weighted average of prices in the past 3 years prior 

to the base year of 2017 (i.e. 2016, 2015 and 2014). If expected prices for a farm type 

cannot be constructed, the expected price is calculated at NUTS 2 level instead. If 

regional-level prices are also missing, expected prices are generated at MS level, or at 

EU level if needed. 

For fodder crops, if information is missing from the FADN database or if the difference 

between FADN and CAPRI values is greater than ± 25 % at MS level, we use annual 

prices and yields at national level from the CAPRI database. 

More specifically, the following forms of adaptive expectations are constructed at farm 

type level for each MS, going back three years prior to the base year: 

 𝑝𝐹𝑇𝑖𝑡
𝑒 = ∑ 𝑤𝑡−𝑛

5
𝑛=1  𝑝𝐹𝑇,𝑖,𝑡−𝑛 with 𝑤𝑡−1 = 0.55, 𝑤𝑡−2 = 0.30, 𝑤𝑡−3 = 0.15, 𝑤𝑡−4 = 0.05, 𝑤𝑡−5 =

0.01, 

where FT is farm type, i is product t is year and p is the average price for the 

farm type if data exist in the three successive years; 

 𝑝𝐹𝑇𝑖𝑡
𝑒 = ∑ 𝑤𝑡−𝑛

2
𝑛=1  𝑝𝐹𝑇,𝑖,𝑡−𝑛 with 𝑤𝑡−1 = 0.67, 𝑤𝑡−2 = 0.33, 

if data exist in only two of the three successive years, in which case all the 

combinations are implemented; 

 𝑝𝐹𝑇𝑖𝑡
𝑒 = ∑ 𝑝2016

𝑡=2014 𝐹𝑇,𝑖,𝑡
/𝑁, 

if data exist in only one of the three years previous years (which occurs in 

only a few cases). 

In the final case we also include prices from 2013 and 2012 if available. N is the number 

of years (between 2012 and 2016) with available data. 

The regional-level expected prices for each MS are calculated following a similar formula, 

with the index FT (standing for farm type) being replaced by the index r (standing for 

NUTS 2 region). 

Generation of the farm-specific deviation from the farm-type or regional average 

For each individual farm and for each product, we then calculate the farm-specific 

deviation from the weighted average price by year for that farm type and take the 

average over all years between 2012 and 2016 for which price data are available 
(𝑑𝑒𝑣_𝐹𝑇𝑓𝑖). If the farm was observed only in the 2017 sample, the deviation is based on 

2017 only. 

𝑑𝑒𝑣_𝐹𝑇𝑓𝑖 =
1

𝑁
∑ (

𝑡=2012 to 2016

𝑝𝑓𝑖𝑡 −  𝑝𝐹𝑇𝑖𝑡) 

In the same way, for each product, the average farm-specific deviation from the regional 

(NUTS 2) average price is calculated (𝑑𝑒𝑣_𝑅𝑓𝑖). For products not produced at the farm in 

2012–2016, the farm-specific deviation is set to zero. 

Generation of farm-specific expectations 

Finally, for each product, the farm-specific expected price is constructed as follows: 

o 𝑝𝑓𝑖𝑡
𝑒  =  𝑝𝐹𝑇𝑖𝑡

𝑒 + 𝑑𝑒𝑣_𝐹𝑇𝑓𝑖, if farm-type expectations are available; 

o 𝑝𝑓𝑖𝑡
𝑒  =  𝑝𝑟𝑖𝑡

𝑒 + 𝑑𝑒𝑣_𝑅𝑓𝑖, if farm-type expectations are missing but expectations are 

available at the NUTS 2 level; 

o 𝑝𝑓𝑖𝑡
𝑒  =  𝑝𝑀𝑆𝑖𝑡

𝑒 , if both farm-type and NUTS 2 expectations are missing; 

o 𝑝𝑓𝑖𝑡
𝑒  =  𝑝𝐸𝑈𝑖𝑡

𝑒 , if, at MS level, expectations are also missing. 
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For the baseline and simulation scenarios, the formulation of expectations is based on 

projected prices and yields, to which the individual farm-specific deviation is applied 

according to the formulas above. 

2.2.1.8. Subsidies and payments 

We rely on subsidy data available in the FADN database for 2017, which correspond to 

the 2014–2020 CAP. The data cover both decoupled and coupled CAP payments. 

For the case of pillar 1 and pillar 2 payments, data extraction is relatively straightforward 

(Table 8).  

Table 8. Extraction of pillar 1 decoupled and pillar 2 coupled payments from the FADN database 

FADN variable Payment 

Pillar 1 

2007–2013 CAP  

SSPSN Single payment scheme (normal) 

SSPSPERMGRS Single payment scheme (grassland) 

SSPSS Single payment scheme (special entitlements) 

2014–2020 CAP  

SBPS Basic payment scheme 

SSAPS Single payment scheme 

SPRCTCLIMENV 
Payment for agricultural practices beneficial for the climate and 
the environment 

SANC Payment for areas with natural constraints 

SPS1300 Redistributive payments 

SYF Payment for young farmers 

SSFS Small farmers scheme 

Pillar 2 

SINVSUB Rural development investment subsidies 

SA1OTHSUB Other axis 1 payments 

SAEAWSUB Agri-environment and animal welfare payments 

SORGSUB Organic farming subsidy 

SN2000SUB Natura 2000 payments, excluding forestry 

SNHNDMNTSUB 
Natural handicap payments to farmers in mountain and other 
area 
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FADN variable Payment 

SFRSUB Payments for forestry, including Natura 2000 payments  

SA2OTHSUB Other axis 2 payments 

SRDOTHSUB Other payments for rural development 

 

However, a problem arises with extracting the share of payment that comes from the EU 

budget. More specifically, a payment may belong to one or more of the three categories: 

(i) EU-financed payments, (ii) EU and MS co-financed payments and (iii) MS financing. 

For pillar 1 decoupled payments, the data clearly pertains to the first category (i.e. 

decoupled payments are 100% EU financed payments). However, for pillar 2 payments, 

some payments belong to the co-financed and some others to the MS-financed 

categories. Since it is impossible to distinguish the share of EU financing and as pillar 2 

payments are not endogenously modelled, we sum both financing categories and assume 

that they are related to the pillar 2 CAP policy. 

For coupled payments, the data extraction and the corresponding modelling are much 

more complex. The implementation of coupled support is MS specific, varies from one 

production year to another and has payment requirements (e.g. related to minimum and 

maximum numbers of animals, intensity of production and crop variety). In addition, the 

FADN coupled support payment categories are too generic to be attributed to the MS-

specific coupled support measures (Table 9). 

See, for example, excerpts from the 2019 coupled payments for Bulgaria and Czechia. 

 

Source: MS communication of coupled support to the Directorate-General for Agriculture and Rural 
Development for claim year 2019 (European Commission, 2019c). 

In Bulgaria, support is given for a small herd of milk cows in a mountain area in one case 

and for milk cows under a specific animal management mode in another case. In 

Czechia, support is provided for fruit species with very high labour intensity in one case 

and for fruit species with high labour intensity in another case. 

Consequently, there are two potential approaches for modelling coupled payments: 

1. disregard the FADN coupled payment data and instead try to use the payment 

unit values from the external data source for MS implementation and link the IFM-

CAP activities to those; 

2. use the FADN coupled payment data for each individual farm, linking IFM-CAP 

activities to FADN coupled payment categories. 

We used the second approach for two reasons. First, IFM-CAP model is not detailed 

enough to capture the different aspects of MS implementation. For example, there is no 

information on the plant or animal variety, no spatial information on the fam location, 

etc.. Second, the FADN-reported coupled payments received by each farm represent 

implicitly the various implementation details of the MS that the farm belongs to. For 

example, if a farm has fruit species that indeed use high labour intensity methods and is 

eligible to receive a payment, this will be reflected in the amount received in one of the 
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FADN coupled payment categories. If the farm has eligible fruit species but is not using 

high labour intensity methods, the FADN coupled payment category will not have any 

amount registered for the farm. 

Thus, we map the various categories of FADN coupled payments to IFM-CAP activities, 

using as auxiliary information the MS implementation details. An example of the mapping 

for cereals is provided in Table 10. For example in the first line, the ‘coupled support for 

cereals’ (SCOPSUBCER) is mapped to durum and soft wheat for Greece and Lituania, to 

durum wheat for France and Italy and to barley and rye for Latvia. 

The steps for mapping FADN coupled payment categories and IFM-CAP activities at MS 

level are as follows. 

1. For each MS, we compute the number of farms that have received each type of 

FADN coupled payment (NUNUTS0,c) 

2. For MSs where NUNUTS0,c = 0, the unit value of the coupled payment is zero for all 

activities (UVNUTS0,c,a = 0). 

3. For MSs where NUNUTS0,c > 0, we try to link the specific payment to one or more 

IFM-CAP activity. We do this based on the three criteria below: 

(i) the MS implementation details, 

(ii) index A1, for each MS, coupled payment c and activity a: 

𝐴1𝑁𝑈𝑇𝑆0,𝑐,𝑎 =  
Number of farms with payment 𝑐 and activity 𝑎

Number of farms with payment 𝑐
, 

(iii) index A2, for each MS, coupled payment c and activity a: 

𝐴2𝑁𝑈𝑇𝑆0,𝑐,𝑎 =  
𝑁umber of farms with payment 𝑐 and activity 𝑎

Number of farms with activity 𝑎
. 

 
Considering the values of A1 and A2 (higher values mean a higher 

probability that an activity is linked to the coupled payment) and 

considering the implementaion details, we manually assign IFM-CAP 

activities to coupled payments at MS level. 

4. After the mapping of activities and coupled payments in each MS is completed 

(MAPNUTS0,c,a), we estimate the coupled payment unit value at country level (16). 

For each coupled payment, the estimated unit value multiplied by the activity 

level should return the payment value reported in the FADN database: 

∑(𝑈𝑉𝑁𝑈𝑇𝑆0,𝑐 ∙ 𝑥𝑓,𝑎)

𝑓,𝑎

= 𝐵𝑈𝐷𝐺𝐸𝑇𝑐  ∀𝑀𝐴𝑃𝑁𝑈𝑇𝑆0,𝑐,𝑎  

where f are the farms of a NUTS 0, a represents the activities connected to 

payment c, and 𝑈𝑉𝑁𝑈𝑇𝑆0,𝑐 is the unit value of coupled payment c. Note that in this 

way we asume that, for coupled payments that may be granted for more than one 

activity, the unit payment is equal for all connected activities. 

In order to include the specifications of the maximum areas eligible for coupled 

payments that are often found in MS implementations, we set the observed activity level 

of a farm as the maximum activity for which the coupled payment can be received. The 

farm can attain a higher activity level than this but without receiving a coupled payment. 

 

                                           
(16) We assume that the coupled payment unit value at country level is the same for all farms that receive the 

payment; this assumption is in line with the way that coupled payments are implemented in CAP. 
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Table 9. FADN coupled payment variables 

FADN code FADN coupled payment category 

 

FADN code FADN coupled payment category 

SANIMNODEFSUB Animals, not defined 

 

SCRPINDSUBFLAX Industrial crops subsidy: flax 

SANIMSUBDPOTH 
Animal subsidy: other coupled payments not mentioned 
elsewhere 

 

SCRPINDSUBLEG Industrial crops subsidy: grain legumes 

SARACRPNODEFSUB Arable crops, not defined 

 

SCRPINDSUBHEMP Industrial crops subsidy: hemp 

SCATLSUB Cattle, not defined  SCRPINDSUBHOP Industrial crops subsidy: hops 

SCITRPLTSSUB Citrus plantations  SCRPINDSUBRICE Industrial crops subsidy: rice 

SCOPSUBOIL COP subsidy: oilseeds 

 

SCRPINDSUBSUGCN Industrial crops subsidy: sugar cane 

SCOPSUBPROT COP subsidy: protein crops 

 

SNRPCOTNSUB 
National restructuring programme for the 
cotton sector subsidy 

SBEFSUB Coupled support, animals: beef and veal 

 

SPLTSOILSUB Olive plantations 

SDAIRSUB Coupled support, animals: dairy 

 

SCRPINDOTHSUB Other industrial crops subsidy 

SPIGPLTRSUB Coupled support, animals: pigs and poultry 

 

SCRPPERMSUBBERRY Permanent crops subsidy: berries 

SSHEPGTSUB Coupled support, animals: sheep and goats 

 

SCRPPERMSUBNUT Permanent crops subsidy: nuts 

SCOPSUBCER Coupled support, cereals, EU financed 

 

SPERMGRSSUB Permanent grassland 

SCRPPERMNDEFSUB 
Coupled support: permanent crops not mentioned 
elsewhere 

 

SPMSFSUB Pome and stone fruit 

SSCOTNSUB Crop-specific payment for cotton subsidy 

 

SPOTSUB Potatoes 

SDRYFODSUB Dried fodder subsidy 

 

SSSEDSUB Seed production subsidy 

SFLWLNDSUB Fallow land 

 

SSUGBTSUB Sugar beet 

   

SVEGSUB Vegetables 

   

SPLTVINSUB Vineyards 
NB: COP refer to ‘cereals, oilseeds and protein crops’. 
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Table 10. Excerpt from the correspondence between FADN coupled payment codes and IFM-CAP activities 

Coupled payment Financed Bulgaria Czechia Ireland Greece Spain France Croatia Italy Latvia Lithuania Luxembourg Hungary Poland Portugal 

SCOPSUBCER EU 
  

 
DWHE, 
SWHE  

DWHE 
 

DWHE 
BARL, 
RYEM 

SWHE, 
DWHE  

 
  

SCOPSUBCER Co 
  

 
     

 
  

 
  

SCOPSUBCER MS 
  

 
     

 
  

 
  

SCOPSUBOIL EU 
  

 
 

SUNF, 
RAPE, 
OOIL 

SOYA 
 

SOYA, 
SUNF, 
RAPE 

RAPE 
  

 
  

SCOPSUBOIL Co 
  

 
     

 
  

 
  

SCOPSUBOIL MS 
  

 
     

 
  

 
  

SCOPSUBPROT EU 
PULS, 
OFAR, 
SOYA 

OFAR  
PULS, 
OFAR 

PULS PULS 
 

OFAR, 
PULS 

PULS, 
OFAR 

PULS PULS OFAR 
PULS, 
OFAR  

SCOPSUBPROT Co 
  

 
   

OFAR 
 

 
  

 
  

SCOPSUBPROT MS 
  

PULS 
     

 
  

 
  

SARACRPNODEFSUB EU 
  

 
     

 OFAR 
 

 
 

PGRA 

SNRPCOTNSUB EU 
  

 
 

TEXT 
   

 
  

 
  

SSCOTNSUB EU TEXT 
 

 TEXT TEXT 
   

 
  

 
  

SSCOTNSUB MS 
  

 
 

TEXT 
   

 
  

 
  

NB: Co, co-financed. 
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2.2.1.9. Input unit costs 

 

Activity-specific unit input costs enter the expected utility maximization of farmers, 

expressed by equation (2), through gross margins. However, FADN collects the monetary 

value of inputs at the farm level without distributing them over specific farm activities. 

Therefore, to parametrize the farmers’ utility function, activity-specific unit input costs 

need to be estimated from available FADN information through a process of statistical 

allocation.  

Four variable input categories are considered in the model: seeds, fertilisers, plant 

protection and other specific inputs. The definition of these input categories is in Table 

11. 

Table 11. Key for allocating input costs developed by DG AGRI 

Cost item IFM-CAP code FADN code 

Seeds and seedlings SEED 
SE290 (home-gown)  

+ F72 (purchased) 

Fertiliser NITF SE295 

Crop protection PLAP SE300 

Other crop specific costs CSPE SE305 

We use FADN farm-level data of the year 2017, i.e. the base year, to perform this 

statistical allocation and obtain activity-specific, farm-level unit input costs for the four 

input categories considered. Input-output coefficients are estimated separately for all 

farming types17 included in the FADN at NUTS2 level using the High Posterior Density 

(HPD) estimation proposed by Heckelei et al. (2005, 2008). This approach requires 

assumptions about the production technology, the specification of the HPD objective 

function, and the definition of prior information. Post-estimation corrections are then 

applied to the estimated input-output coefficients to ensure that the sum of estimated 

costs equals the reported FADN costs. 

Literature Review 

There is considerable literature on the allocation of farm-level input costs across farm 

activities. This literature have evolved over time and used a variety of statistical 

approaches, from linear regression models to more sophisticated Bayesian estimation 

methods. Early studies in the EU have either use linear programming or regression 

approaches (Ray, 1985; Errington, 1989). However, results were often considered 

unacceptable due to corner solutions or zero values, or due to the non-negativity of the 

estimated coefficients (Louhichi et al., 2012; Moxey and Tiffin, 1994; Mindmore, 1990). 

Thus, new approaches started to emerge based on statistical methods capable of easily 

incorporating prior knowledge on the parameters into the estimation framework and 

effectively constrain coefficients’ estimates (Moxey and Tiffin, 1994). Lance and Miller 

(1998a,b) and Leon et al. (1999) proposed the use of Generalized Maximum Entropy 

(GME) (Jaynes, 1957a,b; Golan et al., 1996; Paris and Howitt, 1998) to the estimation of 

activity specific input costs incorporating external prior knowledge on the parameters. In 

the presence of informative priors (Lance and Miller, 1998a; Paris and Caputo, 2001), 

these entropy-based methods were both able to perform well in recovering activity-

                                           
(17) We use the TF14 FADN classification to define farming types. 
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specific costs (Louhichi et al., 2012), and suitable for dealing with the issues of 

singularities, non-negativity constraints, and zero-observations (Leon et al., 1999).  

Still, to tackle some of the limitations of entropy-based methods, Heckelei et al. (2005, 

2008) proposed the High Posterior Density (HPD) estimation, a fully Bayesian approach 

to the estimation of underdetermined systems of equations. HPD was able to incorporate 

prior information more transparently than entropy-based approaches and was 

computationally simpler in terms of number of equations and parameters to be estimated 

(Louhichi et al., 2012; Heckelei et al., 2008). Louhichi et al. (2012), using informative 

priors for activity-specific input costs on a sample of French farms, compared the 

performance of GME and HPD methods and concluded that the two methods were able to 

produce equivalent results. 

Leontief technology specification for intermediate inputs 

For the estimation of unit input costs, we assume a linear Leontief technology for 

intermediate inputs (i.e. different inputs increase proportionally to each other and 

increase linearly with production activity levels). The linear technology in input costs and 

output values is defined as follows:  

 𝐳 = 𝐀𝛉 + 𝐮 (44) 

where 𝐳 is the (FK x 1) vector of input costs, 𝐀 is the (FK x KN) block-diagonal matrix of 

output values, 𝛉 is the (KN x 1) vector of input-output coefficients, and 𝐮 is the (FK x 1) 

error vector. This relationship can be expressed by farm and input category as follows: 

 
𝑧𝑓,𝑘 = ∑𝑎𝑓,𝑖𝜃𝑘,𝑖

𝑖

+ 𝑢𝑓,𝑘 (45) 

where 𝑧𝑓,𝑘 is the cost of input category k (k=1,..,K) for farm f (f=1,…,F), 𝑎𝑓,𝑖 is the value 

of activity i (i=1,…,N) for farm f,  𝜃𝑘,𝑖 is the input-output coefficients, and 𝑢𝑓,𝑘 is the 

error term. It is assumed that farms within the same NUTS2 region and the same 

farming type have a common technology and therefore the same input–output 

coefficients 𝜃𝑘,𝑖 .  

This assumption on the functional form of the technology may be considered restrictive. 

However, this form of input demand equation has been assumed widely in the literature 

(e.g. Léon et al., 1999; Kleinhanss, 2011) and, it is a convenient way to both include 

behavioural assumptions in the estimation framework and to obtain unit input costs per 

hectare using available data. 

This linear technology embeds the behavioural assumption that total revenues equal 

total costs at the farm level. Following Léon et al. (1999), this is achieved by introducing 

a residual input category ‘value added’ defined as the difference between the total 

revenues and the sum of all variable input costs considered18, and by imposing the 

following restriction on the input-output coefficients for each activity i: 

 
∑ 𝜃𝑘,𝑖

𝑖

= 1 (46) 

                                           

(18) Similarly to other input categories, value added is restricted to be positive, assuming that, for each 

type of output i averaged (across all farms), total cost cannot exceed total revenue.  
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Moreover, this linear technology allows to derive a farm-specific, activity-specific input 

cost per activity level using the following formula:  

 
𝑐∗

𝑓,𝑖,𝑘  =  𝜃𝑘,𝑖  
𝑎𝑓,𝑖

𝑥𝑓,𝑖
 (47) 

where 𝑐∗
𝑓,𝑖,𝑘 is the estimated cost per activity level of input k used by farm f to produce 

output i, 𝜃𝑘,𝑖 is the estimated input-output coefficient, and 𝑎𝑓,𝑖 𝑥𝑓,𝑖⁄  is the unit value per 

activity level of activity i (Kleinhanss, 2011). 

High posterior density estimation 

The HPD approach minimises the normalised least square deviation between the 

estimated input–output coefficients and the prior information subject to technology 

constraints. Model parameters are treated as stochastic outcomes. In this context, the 

method distinguishes between the prior density 𝐩(𝛉), which summarises a priori 

information on parameters, and the likelihood function 𝐋(𝛉|𝐀), which represents 

information obtained from the data in conjunction with the assumed model. The 

combination of the prior density and the likelihood function results in a posterior density 

(e.g. Zellner, 1971, p. 14), which can be expressed as: 

 𝐳(𝛉|𝐀)  ∝ 𝐩(𝛉) 𝐋(𝛉|𝐀) (48) 

where 𝐳 denotes posterior density, ∝ is the proportionality, 𝛉 are the parameters to be 

estimated and 𝐀 is the matrix of output values. This approach is extensively discussed in 

Heckelei et al. (2008). This leads to the following estimation problem: 

 min HPD = [𝛉 − 𝛉̅]′Σ−1[𝛉 − 𝛉̅] 

Subject to: 

𝐳 = 𝐀𝛉 + 𝐮 

𝐈′𝛉 = 𝟏 

(49) 

where 𝛉̅ is the (KN x 1) vector of prior values and HPD is the prior density function of the 

form 𝛉 ~ N(𝛉̅,∑). The prior values 𝜃̅𝑘,𝑖 are the mean input–output coefficients by NUTS2 

region and farm type. The covariance matrix Σ is set equal to a diagonal matrix with, as 

elements, twice the standard deviation of the prior input–output coefficients squared, 

(2σh)².  

Prior input-output coefficients 

The priors of the input-output coefficient are obtained as weighted averages of the farm-

level ratios between total input cost for input category K and total output value of the 

relevant productions. For farm f, this ratio for input category k is represented by: 

 
𝑟𝑓,𝑘 = 

𝐶𝑓,𝑘

∑ 𝑎𝑓,𝑖𝑖
 (50) 

where 𝐶𝑓,𝑘 represents the input cost of input category k for farm f, and ∑ 𝑎𝑓,𝑖𝑖  represents 

the sum of the relevant output values of farm f. In the case of fertilizers, pesticides, and 

other specific costs, the relevant productions includes all crop activities. For seeds costs, 

relevant productions excludes permanent crops whose seeds costs are assumed to equal 

to zero. This farm-level ratio applies equally to each of the activity of the farm. 



 

56 
 

The activity-specific prior for each of the input categories at NUTS2-TF14 level are then 

obtained as weighted averages of these farm-level ratios19. The averages are calculated 

only using farms that belong to the relevant NUTS2-TF14 and using FADN sampling 

weights for aggregation. The activity-specific prior for a generic NUTS2-TF14 combination 

is obtained as follows: 

 
𝜃̅𝑘,𝑖 = 

∑ 𝑤𝑓 ∗ 𝑟𝑓,𝑘 𝑓

∑ 𝑤𝑓 𝑓
 (51) 

where index i identifies the farm activity and the index k identifies the input category, 

and 𝑤𝑓  is the FADN sampling weight of farm f20.  

Unit input cost correction 

The linear technology imposes equality of total revenues and total costs at the farm 

level. However, this does not imply that estimated farm-level input costs exactly equal 

FADN accounting costs for each input category k. To ensure that total estimated input 

costs equal total accounting costs at the farm-level reported in FADN, we apply a post-

estimation correction to the input-output coefficient. For each farm, we allocate the 

remaining non-distributed costs proportionally across the different activities, leading to a 

farm-specific corrected input–output coefficient 𝜃̃𝑓,𝑖,𝑘: 

 
𝜃̃𝑓,𝑖,𝑘 = 𝜃𝑘,𝑖

𝑧𝑓,𝑘

∑ 𝑎𝑓,𝑖𝜃𝑘,𝑖𝑖
 (52) 

Based on these corrected coefficients, 𝜃̃𝒇,𝒊,𝒌, and the value of production per observed 

activity level, 𝑎𝑓,𝑖 𝑥𝑓,𝑖⁄ , the corrected input costs per activity level of activity i, 𝑐𝑓,𝑖,𝑘, can 

be computed as follows: 

 𝑐𝑓,𝑖,𝑘 = 𝜃̃𝑓,𝑖,𝑘  
𝑎𝑓,𝑖

𝑥𝑓,𝑖

 (53) 

 
 
  

                                           
(19) Ratios that exceeds the value of one, i.e., they are not consistent with the behavioral assumptions, are 

excluded from the calculations. 
(20) Because the farms included in the relevant NUTS2-TF14 combination will each have a different mix of 

activities, and because each farm-level ratio is applied to all the activities of the farm, the prior obtained is 
also indexed by activity i. 
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2.2.2. Livestock activities 

2.2.2.1. Literature review on modelling livestock activities at farm level 

Livestock production systems are complex systems composed of biological, economic, 

environmental, social and behavioural elements. The main components of livestock 

production systems can be grouped under four main categories: (i) biological processes; 

(ii) herd demography/dynamic; (iii) livestock–crop interactions that consists of (a) 

feeding, grazing and nutritional demand and supply, and (b) manure production and 

application; and (iv) economic behaviour of the farmers or farm managers. Incorporating 

these four elements in models along with their interactions is crucial in accurately 

capturing the behaviour of the whole livestock system. 

Among these elements, inclusion of herd demography in models, particularly in static 

optimisation models, is challenging. An important reason for this is that characteristics of 

the livestock life cycles make the production activities highly interlinked and dynamic 

processes; changes in one component can affect the other components of the livestock 

production systems. Moreover, explicit modelling of herd demography and its dynamic 

requires detailed data and information on various technical and biological parameters of 

livestock systems that are often not accessible for a broad range of farming systems. 

Two main types of models that are used in mathematical programming literature and 

have attempted to incorporate livestock activities and their demography/dynamic are 

biophysical models and economic models. These model types are briefly introduced and 

discussed below (Louhichi et al., 2018b). 

Biophysical models 

Biophysical models usually attempt to identify optimal farm practices by endogenously 

defining biological parameters such as animal replacement rate, lactation length, 

slaughter weight, milk yield, etc. Herd dynamic is featured in many biophysical models 

(e.g. Gartner, 1982; Kristensen, 1992; Koots and Gibson, 1998; Nielsen et al., 2005; 

Cabrera, 2012; Kalantari et al., 2014). At the core of biophysical models are specific 

livestock categories for which herd dynamic and optimal management choices are 

analysed. For example, key parameters determining herd dynamic in dairy cow models 

are replacement decisions and reproductive performance of the herd. Both parameters 

are key drivers of how the herd evolves over time and have a significant impact on the 

productivity and profitability of dairy farming. 

The typical and most widely used biophysical models are single-component models that 

consider only one animal category, such as dairy cows, suckler cows, breeding sows or 

breeding sheep, whereas other on-farm livestock categories are treated in a simplified 

way, for example by assuming unlimited supply of replacement heifers and sale of calves 

after calving in dairy cow models (Nielsen et al., 2005; Cabrera, 2012; Kalantari et al., 

2014). Extensions of the single-component models consider multiple livestock categories 

that are regarded as multiple-component models (Gartner, 1982; Kristensen, 1992; 

Koots and Gibson 1998). The structure of the herd is endogenous in biophysical models 

and the model parameters determine the optimal herd demography. Livestock categories 

are defined by a set of characteristics (e.g. lactation period, milk production level, 

calving period, weight, etc.) and often define management practices used to identify 

optimal choices in a particular production system. 

Economic models 

In contrast to biophysical models, in economic models all or the majority of the 

parameters (e.g. lactation period, milk production level, calving period, weight, etc.) are 

exogenously determined and therefore productivities of different animal categories are 

exogenously defined. Explicit modelling of herd dynamic of individual farms in economic 

models also poses challenges, as it requires detailed information on various technical 

parameters of livestock systems. The central element in many economic models that 

incorporate livestock dynamic is animals’ reproductive characteristics. For example, 
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replacement rate is the key parameter that determines the herd dynamic of dairy and 

breeding suckler cow systems. A common assumption in many economic models is that 

cows are replaced by heifers raised on the farm (e.g. Lelyon et al., 2010). Some models 

also allow for purchase of replacement heifers alongside their own raised heifers 

(Veysset et al., 2005). Other livestock categories are derived from the number of cows 

based on reproductive performances of the herd. This is defined either exogenously by 

parameters such as calves per cow (i.e. shares) or cow replacement rate or 

endogenously by management practices. Another important management decision 

determining the herd dynamic is the choice of sales and purchases of different livestock 

categories. 

This modelling approach implies that the demography of reproductive animals (e.g. dairy 

or breeding suckler cows) is fully endogenous, whereas the rest of the livestock activities 

can vary from being fully exogenous to fully endogenous. The herd composition and size 

are co-determined by the herd reproductive performance (e.g. cow replacement rate, 

calf per cow, etc.) and animal sale and purchase decisions. One possible extreme 

situation is when sale and purchase activities are not modelled, implying that all non-cow 

livestock categories (i.e. demography) are exogenous and are determined exclusively by 

the number of adult cows observed by the herd reproductive performance (Thorne et al., 

2009). The other extreme situation is when sale and purchase activities are allowed for 

all livestock categories. In this case, the herd composition is fully endogenous and 

depends on the relative return of various livestock activities. Between these two extreme 

situations, there are many possibilities for partially endogenous herd dynamics. In fact, 

most of the applied economic models consider partially endogenous herd dynamics. The 

type of livestock farm modelled largely defines the behaviour of herd dynamic and 

possible livestock activities. The static characteristics of many economic models reflect 

the steady-state equilibrium of the modelled farms. The equilibrium solutions reflect the 

full adjustments of herd demography to the simulated economic and policy shocks. 

Economic models can be categorised under normative and positive approaches. 

Normative models usually refer to linear programming models typically result in a wide 

divergence between the simulated results of considered activities, including livestock 

numbers and the on-farm observed values. The inclusion of a risk term may improve the 

model performance, but still may not fully reproduce the actually observed activity level. 

Despite this weakness, there are many applications of normative models, including 

livestock modelling. The main focus of these models is on analysing the difference 

between the simulated scenarios rather than on the accuracy of reproducing the 

observed livestock activities in the baseline simulations. 

From the methodological point of view of incorporating livestock herd dynamic in 

mathematical programming models, normative models tend to explicitly represent the 

herd dynamic. They often explicitly represent intergenerational dependences or links and 

the flows between different livestock categories as well as herd reproduction parameters, 

such as cow replacement rate, that are key drivers of livestock herd dynamism (e.g. 

Nicholson et al., 1994; Ramsden et al., 1999; Visagie and Ghebretsadik, 2005; Ducros et 

al., 2005; Veysset et al., 2005; Havlík et al., 2006; Crosson et al., 2006; Acs et al., 

2010; Lelyon et al., 2011; Jones and Salter, 2013). The main characteristics of the 

normative models used in the cited studies are summarised In Annex A. 

Regarding positive models, PMP has been the preferred method of many scientists and 

policy makers in calibrating models that generate the actually observed activities and 

outcomes for farmers. In other words, PMP assumes that farmers’ choice of combination 

of activities is optimal. This provides a reliable tool to simulate policy scenarios and 

predict future changes. Although the PMP approach does not require an explicit 

representation of the herd dynamic or management practices regarding the sale and 

purchase activities for different animal categories, the use PMP for livestock activities 

may not be as straightforward as for other activities, such as crops. An important reason 

for this is the intergenerational dependences or the linkages between adult animals and 

their youngstock, which may be retained to replace the breeding animals or may be sold 
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in the market. As stated earlier, most of the livestock systems and related herd 

demography follow a cyclical pattern that implies the importance of dynamism in these 

systems. Incorporating this dynamism into static PMP models such as IFM-CAP, 

therefore, requires certain considerations and assumptions. The main characteristics of 

the positive models reviewed for the purpose of further development of IFM-CAP model 

are summarised Annex A. 

2.2.2.2. Modelled livestock activities in IFM-CAP 

In the current version of the IFM-CAP, as in the approach used in modelling crop 

activities, PMP terms have been estimated for each livestock category, that is, adult 

animals and their youngstock separately, without explicitly modelling intergenerational 

dependences. All livestock activities, therefore, are endogenously determined by the 

model. The advantage of this approach, compared with the earlier version of the IFM-

CAP (where the numbers of young animals were determined by shares of adult animals), 

is that the number of youngstock is not fully dependent on the number adult animals; 

this can, therefore, represent real farm management practices. A potential disadvantage, 

however, may be that the simulated effects for the livestock sector will depend mainly on 

the sale and purchase prices of animal outputs and this may not reflect the livestock 

management systems actually practised by farmers. As a result, it may be possible for 

the model to react differently from the patterns observed in reality, for example 

drastically reducing the number of young animals. We envisage that this is not likely to 

be the case, but, if this behaviour were observed, then an additional constraint linking 

adult and young animals will be added and their levels (i.e. shares of youngstock) will be 

introduced exogenously to adults. In the current version of the model, sale and purchase 

activities of various livestock categories are not explicitly modelled and therefore these 

are implicitly captured by PMP terms for each activity (i.e. only animal products can be 

sold). 

2.2.2.3. Definition of livestock activities and outputs 

Four categories of livestock activities are modelled in IFM-CAP: cattle (dairy and beef), 

pigs, small ruminants (sheep and goats) and other animals. For certain categories (e.g. 

cattle and small ruminants) two different systems can be considered: raising and 

fattening systems. 

FADN data are used to identify the predominant livestock activities across regions of the 

EU. Table 12 describes the set of livestock activities included in IFM-CAP and the rules 

used for extracting their numbers (i.e. activity level) by animal category from FADN 

(Table D) for the base year period. The set of livestock outputs modelled in IFM-CAP are 

the following: beef, cow milk (for feeding and sales), milk from sheep and goats (for 

feeding and sales), meat from sheep and goats, poultry meat, pork and young animals 

(male and female calves and piglets). Table 13 presents the list of livestock outputs and 

the rules used to define their values. Figure 4 and Figure 5 present graphically the 

relation between each animal activity and outputs. Table 14 compares the total EU 

livestock production between IFM-CAP and Eurostat and shows that the IFM-CAP 

production quantities are close to those reported in Eurostat. 

 

Table 12. Livestock activities  

Livestock activity name 
IFM-CAP 
activity 

FADN code   

2013 and before 2014 and after 

Cattle    

Dairy cows DCOW 30AV LCOWBUFDAIR 

Heifers breeding HEIR 28AV + MIN(26AV,28AV) 
LHEIFFAT+MAX(0,LBOV1_2F-
LHEIFBRE) 

Raising male calves CAMR MAX(0,(24AV-28AV)) MAX(0,LBOV0-LHEIFBRE) 

Raising female calves CAFR MIN(28AV,24AV) MIN(LHEIFBRE,LBOV0) 
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Note: For 2014 and after, LBOV0 and LBOVFAT are computed from LBOV1, as they are discontinued 

 

Other cows SCOW 32AV LCOWOTH 

Heifers fattening HEIF 29AV + MAX (0,26AV-28AV) 
LHEIFFAT+MAX(0,LBOV1_2F-
LHEIFBRE) 

Male adult cattle BULF 25AV + 27AV LBOV1_2M+LBOV2 

Fattening male calves CAMF 0.5*23AV 0.5*LBOVFAT 

Fattening female calves CAFF 0.5*23AV 0.5*LBOVFAT 

Pigs    

Pig fattening PIGF 45AV + 46AV LPIGFAT  + LPIGOTH 

Pig breeding SOWS 44AV LSOWBRE 

Goats and sheep    

Milk ewes and goats SHGM 38AV + 40AV LEWEBRE+ LGOATBRE 

Sheep and goat fattening SHGF 39AV + 41AV LSHEPOTH + LGOATOTH 

Other animals    

Laying hens HENS 48AV/1 000 LHENSLAY 

Poultry fattening POUF (47AV + 49AV)/1 000 LPLTRBROYL + LPLTROTH 

Other animals OANI 50AV+ 22AV LRABBRE+LEQD 
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Table 13. Definition of outputs for livestock activities 

Output / activity Activity Output  Extraction rule 

Female/Male calves produced/dairy 

cow 
DCOW YCAF,YCAM 

0.5*LBOV1_SN*(DCOW_AN/(DCOW

_AN+SCOW_AN))/DCOW_AN 
Female/Male calves 
produced/suckler cow 

SCOW YCAF,YCAM 
0.5*LBOV1_SN*(SCOW_AN/(DCOW
_AN+SCOW_AN))/SCOW_AN 

Beef produced/dairy cow DCOW BEEF DCOW_SN*CW/DCOW_AN 

Beef produced/suckler cow SCOW BEEF SCOW_SN*CW/SCOW_AN 

Beef produced/bull BULF BEEF BULF_SN*CW/BULF_AN 

Beef produced/heifer fattening HEIF BEEF 

(HEIF_SN*CW/HEIF_AN) + 

(max(0,LBOV1_2F_SN-
LHEIFBRE_SN)*CW/max(0,LBOV1_2
F_AN-LHEIFBRE_AN)) 

Beef produced/calf fattening CAMF/CAFF BEEF CAMF_SN*CW/CAMF_AN 

Milk for sale produced/dairy cow DCOW COMI 
(PMLKCOW_PRQ+PMLKBUF_PRQ)/D
COW_AN 

Milk for feeding produced/dairy cow DCOW COMF 
MC*(PMLKCOW_PRQ+PMLKBUF_PR
Q)/DCOW_AN 

Milk for feeding produced/suckler 
cow 

SCOW COMF 
Θ*(PMLKCOW_PRQ+PMLKBUF_PRQ)
/SCOW_AN 

Piglets produced/sow SOWS YPIG LPIGLET_SN/SOWS_AN 

Pork produced/sow SOWS PORK SOWS_SN*CW/SOWS_AN 

Pork produced/pig fattening PIGF PORK PIGF_SN*CW/PIGF_AN 

Meat produced/sheep and goats for 
milk production 

SHGM SGMT SHGM_SN*CW/SHGM_AN 

Meat produced/sheep and goats for 

fattening 
SHGF SGMT SHGF_SN*CW/SHGF_AN 

Milk for sale produced/sheep and 
goats for milk production 

SHGM SGMI 
(PMLKSHEP_PRQ+PMLKGOAT_PRQ)/
SHGF_AN 

Milk for feeding produced/sheep and 
goats 

SHGM SGMF 
MC*(PMLKSHEP_PRQ+PMLKGOAT_P
RQ)/SHGF_AN 

Poultry meat produced/poultry 

fattening 
POUF POUM POUF_SN*CW/POUF_AN 

Eggs / Laying hens HENS EGGS 0.001*PEGGC_PRQ*57/HENS_AN 

Notes: -Letter codes (e.g. DCOW, BULF, LPIGLET, etc.) denote FADN and IFM-CAP animal categories as 
provided in Table 10. 
 - ‘SN’ is the sales number, as reported in FADN, of the corresponding animal category. E.g. SCOW_SN 
is the sales number of Suckler cows 
 - ‘PMLKCOW’, ‘PMLKBUF’,‘PMLKSHEP’ and ‘PMLKGOAT’ refers to milk produced by cows, buffalos, 
sheep and goats respectively. ‘PRQ’ is the production quantity, as reported in FADN for the corresponding 

animal product. For example, ‘PMLKSHEP_PRQ’ is the milk quantity produced from sheep. 
 - CW: carcass weight at MS level derived from Eurostat;  
 - MC: share COMF/COMI and SGMF/SGMI at NUTS2 level from CAPRI.  
 - Θ is an estimated coefficient of the production of a SCOW in relation to that of DCOW. We estimate it 
as the ratio of the median production of SCOW to DCOW in NUTS0 level. 
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Figure 4. Relations of livestock activities and output for dairy and cattle sector 

 

 

Figure 5. Relations of livestock activities and output for sheep and goats and granivore sector 
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Table 14. Comparison of total EU livestock production between IFM-CAP and Eurostat 
  Eurostat IFM-CAP 

Milk production Cows 143100 COMI 150128 

 
Sheeps and goats 5500 SGMI 5603 

Meat Beef carcass  (bovine meat) 6900 BEEF 6737 

 
Sheep and goat meat carcass, 500 SGMT 895 

 
Pork carcass 22000 PORK 20168 

 
Poultry meat carcass 12000 POUM 8339 

 
Eggs weight 6700 EGGS 3826 

Note: For 2014 and after, LBOV0 and LBOVFAT are computed from LBOV1, as they are discontinued 

 

2.2.2.4. Feed requirements and allocation of feed resources  

Most of the mathematical programming models applied in the literature represent the 

interactions between crop and animal activities through feed supply and demand 

balances. The feed balances guarantee that animal-specific nutrient demands 

(requirements) are met from internally produced or purchased feed (e.g. forage, grains, 

concentrates). Balancing feed supply (availability) and demand (requirements) is done 

through nutrient values. The physical quantities of feed, as well as the animal feed 

requirements, are expressed in nutrient values such as energy, dry matter, protein, fibre 

and essential amino acids such as lysine. The feed demand depends on the feed 

requirement per animal and the number of animals; the feed supply depends on the 

nutrient content of each feed component and its available (on-farm produced and/or 

purchased) quantity (e.g., De Cara and Jayet, 2000; Alford et al., 2004; De Cara et al., 

2005; Crosson et al., 2006; Britz and Witzke, 2014; Heckelei et al., 2012; Arata et al., 

2013). 

Following the literature, we have developed a specific module within IFM-CAP to 

endogenously match feed availability and feed requirements for the livestock in each 

farm. The structure of this feed module is depicted in Figure 6. It consists of two main 

components: feed availability and feed requirements. Feed availability represents the 

supply of different types of feed, such as grass, fodder, cereals and concentrates. The list 

of individual feed products considered in IFM-CAP, as well as their corresponding feed 

category, is reported in Table 15. Feed requirements depend on livestock type (species 

and purpose) and are determined by, among other things, animal productivity (e.g. 

weight, milk production), duration of animal raising and keeping activities and farm herd 

size. 

Feed availability and feed requirements are then converted into nutrient values and 

balanced by animal category at farm level. Table 16 lists the set of nutrients considered 

in IFM-CAP. Feed availability has to meet the protein (CRPR) and energy (ENNE) needs of 

each animal category (i.e. supply equals demand for CRPR and ENNE). In addition, for 

certain animal categories, additional minimum and/or maximum intake constraints are 

introduced. Maximum intake constraints concern dry matter (DRMX) and fibre (FIDI, 

FICO, FICT, FISM, FISF, FILG), while the minimum constraints are set for dry matter 

(DRMN) and lysine (LISI). 
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Figure 6. Feed module in IFM-CAP 

 

Moreover, minimum and maximum thresholds of feed groups (e.g. cereals, fodder) in 

animal diets expressed in dry matter intake are defined for each animal category. The 

thresholds ensure that the allocation of feed does not result in overuse or underuse of 

certain feed groups and matches animals’ physiological requirements. 

Feed requirements 
-Maintenance 
-Lactation 
-Activity 
-Pregnancy 
-Growth 

  

Feed availability 
-Pasture  
-Fodder crops 
-Crop products 
-Concentrate feed 

  

Nutrient demand 
-Energy 
-Protein 
-Dry matter 
-Fibre 

  

Nutrient supply 
-Energy 
-Protein 
-Dry matter 
-Fibre 

  

 ≤ 
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Table 15. List of feed products in IFM-CAP 

Name of feed 
Feed 
code 

Name of 
aggregated 
feed 

Aggregated 
feed 
grouping  

Feed category 

Fodder 
feed 

Concentrate 
feed 

Othe
r 
feed 

Soya cake SOYC 
Feed rich 
protein 

FPRO  X  

Olive cake RAPC    X  
Sunflower cake SUNC    X  
Soya oil SOYO    X  
Distillers dried grains with 
solubles 

DDGS    X  

Pulses PULS    X  

Fodder maize MAIF Fodder maize FMAI X   
Permanent grassland PGRA Grass FGRA X   
Rough grazing RGRA Grass FGRA X   

Other fodder on arable land OFAR Other fodder FOFA X   

Soft wheat SWHE Feed cereals FCER  X  

Durum wheat 
DWH
E 

   X  

Rye and meslin RYEM    X  
Barley BARL    X  
Oats OATS    X  
Grain maize MAIZ    X  
Other cereals OCER    X  

Sheep and goat milk feeding SGMF 
Sheep and 
Goat Milk for 
feeding 

FSGM   X 

Milk for feeding COMF 
Cow Milk for 
feeding 

FCOM   X 

Molasse MOLA 
Feed rich 
energy 

FENE  X  

Straw STRA Straw FSTR X   

Table grapes TAGR Feed other FOTH   X 

Table olives TABO     X 

Olive oil OLIV     X 

Other fruits OFRU     X 

Citrus fruits CITR     X 

Apples and pears APPL     X 

Potato POTA     X 
Other oil OOIL     X 
Sunflower SUNF     X 
Soya SOYA     X 
Rapeseed RAPE     X 

 

FADN data do not contain all the information needed to parameterise the feed module in 

IFM-CAP. FADN contains farm aggregated economic data on feed availability and costs. 

However, disaggregated feed data by activity (e.g. feed use by animal category), prices 

and yields of certain feed crops, nutrient content of feed and animal requirements are 

not available in FADN. To fill this gap, we supplement FADN data with external sources 

such as other official statistical sources (e.g. Eurostat), scientific literature or other 

models (e.g. CAPRI). The external sources utilised in the current version of the model 

are documented below. The disadvantage of using external data is that they may be 

inconsistent with FADN data and may provide unreliable information, in particular when 

MS or regional data are used at farm level. To reduce this problem, we employ the HPD 

approach to estimate farm-level data and external data are used only as prior 

information in the estimation approach. The estimation approach combines these 

different data sources by taking into consideration the minimisation of deviation of 

estimated data values from the available prior information, the minimisation of feed 

costs (this component was included in the HPD objective function), balancing between 

feed requirements and availability, and data constraints to ensure that the sum of 
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activity feed costs is as close as possible to the aggregated cost values reported in FADN 

(see section 2.2.2). 

Feed availability is represented by the physical quantity of feed, as well as its nutrient 

content and costs (i.e. prices, time, quantity). Farms can use feed produced on-farm or 

purchased on the market. The purchased feed is estimated based on farm level feed 

costs and feed prices in the HPD approach. The on-farm production of feed during the 

base year is obtained from FADN. For straw, we use the residue-to-crop ratio (RCR) as a 

function of grain yield (SWHE, DWHE, RYEM, BARL and OATS) to obtain straw production 

(see section 2.2.1.6). The data on yields of fodder crops (OFAR, GRAS, ROOF and MAIF) 

are not fully reported in FADN. We give priority to FADN data when available. We use 

CAPRI data only if information is not available in FADN or if the yield difference between 

FADN and CAPRI data is greater than 25 %. For grassland production is missing in the 

vast majority of cases and impute it from CAPRI (see section 2.2.1.6). 

Feed prices are derived from FADN, except for fodder and concentrates, for which data 

come from the CAPRI. 

 

Table 16. List of nutrients in IFM-CAP 

Nutrient Description (unit) 

ENNE Net energy (MJ/kg) 

ENMR Metabolisable energy ruminants (MJ/kg) 

ENMC Metabolisable energy chicken (MJ/kg) 

ENMH Metabolisable energy horses (MJ/kg) 

ENMP Metabolisable energy pigs (MJ/kg) 

DRMN Minimum dry matter (kg/kg) 

DRMX Maximum dry matter (kg/kg) 

CRPR Crude protein (kg/kg) 

LISI Lysine (kg/kg)  

FIDI Fibre (kg/100 kg) 

FICO Fibre dairy cows (fill unit system) 

FICT Fibre cattle (fill unit system) 

FISM Fibre sheep and goat milk (fill unit system) 

FISF Fibre sheep and goat fattening (fill unit system) 

FILG Fibre long 

For the nutrient content of feed, we rely exclusively on external sources, as this type of 

data is not available in FADN. In the literature, nutrient values (e.g. regional averages) 

are most often taken from technical books and/or are based on expert knowledge. For 

example, in their FADN-based farm model for Emilia-Romagna in Italy, Arata et al. 

(2013) collected nutrient content data from regional rule books and from personal 

communications from a local animal nutritionist. Similarly, De Cara et al. (2005) and De 

Cara and Jayet (2000) extracted nutrient data from the literature (Jarrige, 1988; Jarrige, 

1989) and combined this with expert knowledge for their FADN-based representative EU 

farm model. The CAPRI model relies on nutrient contents from the Institut National de la 

Recherche Agronomique (INRA) and the SPEL/EU-Base Model (Wolf, 1995). In the IFM-

CAP model, we use the nutrient content of feed at MS level from CAPRI. 

The feed requirements are critical for an accurate representation of crop–animal 

interactions. They describe how much nutrients (i.e. energy, crude protein, fibre and dry 

matter) each animal activity requires for its main biological functions. The full set of 

underlying data needed to calculate feed requirements including nutrients and physical 

quantities is not available in FADN. To overcome this lack of data, we use the 

requirement functions combined with FADN and external data, as is usual in the 

literature (e.g. De Cara and Jayet, 2000; De Cara et al., 2005; Arata et al., 2013). More 

precisely, we used the requirement functions as implemented in CAPRI (Nasuelli et al., 
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1997; IPCC, 2006; Britz and Witzke, 2014) and from other sources (e.g. GfE, 2006; LfL, 

2014, NRC, 1994) to calculate an approximate value of animal requirements (see Annex 

B). These values are then used as prior information to estimate the final nutrient 

requirements by animal category, which guarantees that feed availability equals feed 

requirement at farm level in both physical and nutrient terms. 

The prior values of animal requirements are determined by predefined coefficients and 

animal productivity parameters. The predefined coefficients are extracted from FADN 

data or other sources (e.g. CAPRI; Eurostat), or are calculated based on the combination 

of both sources. However, the predefined coefficients and animal productivity parameters 

(e.g. milk fat content, animal live weight, start/end of day of production process) may 

depart significantly from the actual values observed at farm level. To account for this 

uncertainty, we consider variation of these coefficients and parameters (e.g. by using the 

standard deviation) to derive lower and upper bounds of animal requirements. The lower 

and upper bounds demarcate the most likely interval within which the actual values of 

animal requirements lie.  

The main productivity parameters that determine the nutrient requirements include live 

weight of animal, raising/fattening period, milk and/or meat production, daily animal 

growth rate; fat content of milk, and start and end date of animal raising/fattening 

process. These values are obtained from FADN, calculated based on the combination of 

FADN data and other sources (e.g. CAPRI; Eurostat) or are assumed to be as in CAPRI. 

For example, the fat content of milk is extracted from Eurostat, whereas the live animal 

weight of dairy cows is obtained by dividing the selling value of cows available from 

FADN by the cows’ live weight price obtained from Eurostat. 

2.2.2.5. The HPD program for estimating feed requirements and feed resources 

The feed module aims to balance feed requirements and feed availability at farm level as 

described in section 2.2.2.4. It describes quantity of certain feed categories (cereals, rich 

protein, rich energy, feed based on dairy products, other feed) or single feeding stuff 

(fodder maize, grass, fodder from arable land, straw, milk for feeding) used per animal 

activity level (cows, heifers, calves, etc.). It also ensures that the total energy, protein, 

dry matter and fibre requirements of animals are met by the own-produced and 

purchased quantities of feed. The feed requirements can be covered by roughage 

produced on-farm or purchased (hay, straw, silage, etc.) and own-produced or 

purchased concentrates. 

Assuming that the feed contents are accurately known, the objective is to estimate, at 

given animal herd sizes and prices, the quantity of feeding stuffs needed to meet animal 

requirements, in physical units and nutrient values, at the minimum feed costs. In 

addition, the minimum relative squared deviation between estimated animal 

requirements and prior information (including the deviation from lower/upper bounds) is 

assured, as is the minimum relative squared deviation between estimated on-farm 

produced feed quantity, purchased feed quantity, feed from common land (i.e. grass) 

other use of on-farm consumed crops and feed costs and their observed values in FADN 

data. This is performed with the HPD approach using information on feeding costs and 

on-farm produced feed reported in the FADN database, feed content, feed prices, prior 

information on animal requirements functions, a set of constraints for balancing feed 

requirement and feed availability (energy, crude protein, fibre, dry matter) and a set of 

consistency constraints.  

The model results provide estimates on nutrient requirements, physical quantity of feed 

for each feed and each animal activity, quantity of on-farm produced and purchased 

feed, feed from common land, fodder yields, and other use of on-farm consumed crops. 

The general formulation of the HPD problem is the following:  

min (𝑏𝑓,𝑖,𝑛
𝐹 , 𝑑𝑏𝑓,𝑖,𝑛

𝐹+ , 𝑑𝑏𝑓,𝑖,𝑛
𝐹− , 𝜁𝑓,𝑖,𝑚, 𝑧𝑓,𝑚, 𝑧𝑓,𝑚

𝑜𝑤𝑛 , 𝑧𝑓,𝑚
𝑜𝑡ℎ𝑒𝑟 , 𝑧𝑓,𝑚

𝑐𝑜𝑚𝑛 , 𝑑𝑧𝑓,𝑚
𝑐𝑜𝑚𝑛 , 𝜁𝑓,𝑖,𝑚, 𝜁𝑓,𝑖,𝑚

𝑜𝑤𝑛 , 𝜁𝑓,𝑖,𝑚
𝑝𝑢𝑟𝑐

, 𝜁𝑓,𝑖,𝑚
𝑐𝑜𝑚𝑛 , (54) 
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𝑑𝑐𝑓,𝐴𝐺,𝐹𝐺
𝑜𝑤𝑛 , 𝑑𝑐

𝑓,𝐴𝐺,𝐹𝐺

𝑝𝑢𝑟𝑐
, 𝑏𝑓,𝑖,𝐹𝐺−

𝐷𝑀 , 𝑑𝑏𝑓,𝑖,𝐹𝐺−
𝐷𝑀 , 𝑦

𝑓,𝑖,𝑚
, 𝑑𝜏𝑓,𝑖,𝑚) 𝐻𝑃𝐷𝑓 =

 

+ ∑ (
𝑏𝑓,𝑖,𝑛

𝐹 − 𝑏̅𝑓,𝑖,𝑛
𝐹

𝜎𝑓,𝑖,𝑛
𝑏 )

2

𝑖∈𝐴,𝑛

 
Minimization of the deviation of animal 
requirements from the prior value

 

 

+ ∑ (
𝑑𝑏𝑓,𝑖,𝑛

𝐹+

𝜎𝑓,𝑖,𝑛
𝑏−

)

2

𝑖∈𝐴,𝑛

+ ∑ (
𝑑𝑏𝑓,𝑖,𝑛

𝐹−

𝜎𝑓,𝑖,𝑛
𝑏+

)

2

𝑖∈𝐴,𝑛

 
Minimization of the deviation of animal 
requirements from the lower and 
upper bounds

 

 

+ ∑ (
𝑝𝑓,𝑚𝑧𝑓,𝑚

2

1

∑ [𝑝𝑚(∑ 𝑦𝑖,𝑚𝑥𝑖𝑖∈𝐴 )]𝑚∈𝑀

)

2

𝑚∈𝐹

 
Feed cost minimization weighted by 
the revenue of livestock activities

 

 

+ ∑ (
𝑧𝑓,𝑚

𝑜𝑤𝑛 − 𝑧𝑓,𝑚
𝑜

0.3 ∙ 𝑧𝑓,𝑚
𝑜 )

2

𝑚∈𝑁𝐹𝑂𝐷𝑅

 

Minimization of the deviation of on-

farm produced feed quantity (𝑧𝑓,𝑚
𝑜𝑤𝑛) 

from the FADN observed on-farm use 

of the own produced crop output (𝑧𝑓,𝑚
𝑜 )

 

 

+∑ ∑ (
𝑦𝑓,𝑖,𝑚 − 𝑦̅𝑓,𝑖,𝑚

0.3 ∙ 𝑦̅𝑓,𝑖,𝑚

)

2

𝑚∈𝐹𝑂𝐷𝑅𝑖∈𝐶

 
Minimization of the deviation of fodder 
yields from the prior values

 

 

+ ∑ (
𝑑𝑧𝑓,𝑚

𝑐𝑜𝑚𝑛

0.3 ∙ 𝑧𝑓̅,𝑚
𝑐𝑜𝑚𝑛)

2

𝑚∈𝐹

 

Minimization of the deviation of 

common land feed quantity (𝑧𝑓,𝑚
𝑐𝑜𝑚𝑛) 

from the prior value (𝑧𝑓̅,𝑚
𝑐𝑜𝑚𝑛) 

 

+∑ ∑(
𝑑𝜓𝑓,𝑖,𝐹𝐺

𝑚𝑖𝑛

2
)

2

𝐹𝐺𝑖∈𝐴

 
Minimization of the deviation of the 
dry matter minimum share of the 
specific feed group in livestock diet 

 

+∑ ∑ (
𝑑𝜏𝑓,𝑖,𝑚

2
)

2

𝑚∈𝐶𝑂𝑁𝐶𝑖∈𝐴

 
Minimization of the deviation of the 

maximum concentrate feed share in 
the total concentrate feed diet

 

 

+ ∑

[
 
 
 
 
 (

𝑑𝑐𝑓,𝐴𝐺,𝐹𝐺
𝑜𝑤𝑛

0.3 ∙ 𝑐𝑓,𝐴𝐺,𝐹𝐺
𝑜,𝑜𝑤𝑛 )

2

+ (
𝑑𝑐𝑓,𝐴𝐺,𝐹𝐺

𝑝𝑢𝑟𝑐

0.3 ∙ 𝑐𝑓,𝐴𝐺,𝐹𝐺
𝑜,𝑝𝑢𝑟𝑐 )

2

∑ [𝑝𝐹𝐺(∑ 𝑦𝐴𝐺,𝐹𝐺𝑥𝐴𝐺𝐴𝐺 )]𝐹𝐺

]
 
 
 
 
 

𝐴𝐺,𝐹𝐺

 

Minimization of the deviation of the 
estimated aggregate own 
produced/purchased feed costs from 
the aggregated own 
produced/purchased feed costs 

observed in FADN weighted by the 
revenue of livestock activities 

 

Subject to 

∀𝑖 ∈ 𝐴 , ∀𝑛 ∈ 𝑁+ ∑ 𝜁𝑓,𝑖,𝑚 ∙ 𝛿𝑓,𝑛,𝑚

𝑚∈𝐹

≥ 𝑏𝑓,𝑖,𝑛
𝐹  The sum of nutrient content 𝑛 of 

different types of feed m given to 
animal 𝑖 (sum of variable 𝜁𝑖,𝑚𝛿𝑓,𝑛,𝑚 over 

𝑚) is greater than the minimum 

requirement of nutrient 𝑛

 

(55) 

∀𝑖 ∈ 𝐴, ∀𝑛 ∈ 𝑁𝑜 ∑ 𝜁𝑓,𝑖,𝑚 ∙ 𝛿𝑓,𝑛,𝑚

𝑚∈𝐹

= 𝑏𝑓,𝑖,𝑛
𝐹  The sum of nutrient content 𝑛 of 

different types of feed m given to 

animal 𝑖 (sum of variable 𝜁𝑓,𝑖,𝑚 ∙ 𝛿𝑓,𝑛,𝑚 

over 𝑚) exactly satisfies the 

requirement for nutrient 𝑛 

(56) 

∀𝑖 ∈ 𝐴, ∀𝑛 ∈ 𝑁 𝑏𝑓,𝑖,𝑛
𝐹 + 𝑑𝑏𝑓,𝑖,𝑛

𝐹− ≤ 𝑏̅𝑓,𝑖,𝑛
𝐹−  The estimated animal requirement n 

(𝑏𝑓,𝑖,𝑛
𝐹 ) must be lower than the upper 

(57) 



 

69 
 

bound (𝑏𝑓,𝑖,𝑛
𝑜,𝐹−

) adjusted by the deviation 

(𝑑𝑏𝑓,𝑖,𝑛
𝐹− ) 

∀𝑖 ∈ 𝐴, ∀𝑛 ∈ 𝑁 𝑏𝑓,𝑖,𝑛
𝐹 + 𝑑𝑏𝑓,𝑖,𝑛

𝐹+ ≥ 𝑏̅𝑓,𝑖,𝑛
𝐹+  The estimated animal requirement n 

(𝑏𝑓,𝑖,𝑛
𝐹 ) must be greater than the lower 

bound (𝑏𝑓,𝑖,𝑛
𝑜,𝐹+

) adjusted by the deviation 

(𝑑𝑏𝑓,𝑖,𝑛
𝐹+ ) 

(58) 

∀𝐴𝐺, ∀𝐹𝐺 ∑ ∑ 𝑝𝑓,𝑚𝜁𝑓,𝑖,𝑚
𝑝𝑢𝑟𝑐

𝑥𝑓,𝑖
𝑜

𝑚∈𝐹𝐺𝑖∈𝐴𝐺

+ 𝑑𝑐𝑓,𝐴𝐺,𝐹𝐺
𝑝𝑢𝑟𝑐

= 𝑐𝑓,𝐴𝐺,𝐹𝐺
𝑜,𝑝𝑢𝑟𝑐

 

The estimated purchased feed costs 
(sum per animal feed costs for each 

animal group) should be as close as 
possible to the aggregated purchased 
feed costs observed in FADN at farm 

level (𝑐𝑓,𝐴𝐺,𝐹𝐺
𝑜,𝑝𝑢𝑟𝑐

) across all animal groups 

𝐴𝐺 and feed groups 𝐹𝐺 

(59) 

∀𝐴𝐺, ∀𝐹𝐺 ∑ ∑ 𝑝𝑓,𝑚𝜁𝑓,𝑖,𝑚
𝑜𝑤𝑛 𝑥𝑓,𝑖

𝑜

𝑚∈𝐹𝐺𝑖∈𝐴𝐺

+ 𝑑𝑐𝑓,𝐴𝐺,𝐹𝐺
𝑜𝑤𝑛

= 𝑐𝑓,𝐴𝐺,𝐹𝐺
𝑜,𝑜𝑤𝑛  

The estimated own produced feed costs 

(sum per animal feed costs for each 
animal group) should be as close as 
possible to the aggregated own 
produced feed costs observed in FADN 

at farm level (𝑐𝑓,𝐴𝐺,𝐹𝐺
𝑜,𝑝𝑢𝑟𝑐

) across all animal 

groups 𝐴𝐺 and feed groups 𝐹𝐺 

(60) 

∀𝑚 ∈ 𝐹 𝑧𝑓,𝑚 = 𝑧𝑓,𝑚
𝑜𝑤𝑛 + 𝑧𝑓,𝑚

𝑝𝑢𝑟𝑐
+ 𝑧𝑓,𝑚

𝑐𝑜𝑚𝑛 The estimated quantity of feed m at 

farm level (𝑧𝑓,𝑚) equals estimated own-

produced feed quantity (𝑧𝑓,𝑚
𝑜𝑤𝑛), 

estimated purchased feed quantity 

(𝑧𝑓,𝑚
𝑝𝑢𝑟𝑐

) and estimated feed from 

common land (i.e. grass) (𝑧𝑓,𝑚
𝑐𝑜𝑚𝑛) 

(61) 

∀𝑚 ∈ 𝑁𝐹𝑂𝐷𝑅 𝑧𝑓,𝑚
𝑜 = 𝑧𝑓,𝑚

𝑜𝑤𝑛 + 𝑧𝑓,𝑚
𝑜𝑡ℎ𝑒𝑟  FADN observed on-farm use of the own 

produced non-fodder crop output m 

(𝑧𝑓,𝑚
𝑜 ) equals estimated feed use plus 

estimated other on-farm uses of the 
crop output m 

(62) 

∀𝑚 ∈ 𝐹 𝑧𝑓,𝑚
𝑐𝑜𝑚𝑛 + 𝑑𝑧𝑓,𝑚

𝑐𝑜𝑚𝑛 = 𝑧𝑓̅,𝑚
𝑐𝑜𝑚𝑛 The estimated feed quantity from 

common land (grass) (𝑧𝑓,𝑚
𝑐𝑜𝑚𝑛) is equal 

to its prior value (𝑧𝑓̅,𝑚
𝑐𝑜𝑚𝑛) and the 

deviation variable (𝑑𝑧𝑓,𝑚
𝑐𝑜𝑚𝑛) 

(63) 

∀𝑖 ∈ 𝐶, ∀𝑚 ∈
𝐹𝑂𝐷𝑅,   

𝑧𝑓,𝑚
𝑜𝑤𝑛 = 𝑦𝑓,𝑖,𝑚𝑥𝑓,𝑖

𝑜  Estimated on-farm use of the own 

produced fodder output 𝑧𝑓,𝑚
𝑜𝑤𝑛 equals the 

estimated yield 𝑦𝑓,𝑖,𝑚 times the 

observed activity level 𝑥𝑓,𝑖
𝑜  

(64) 

∀𝑚 ∈ 𝐹 𝑧𝑓,𝑚
𝑜𝑤𝑛 = ∑𝜁𝑓,𝑖,𝑚

𝑜𝑤𝑛 𝑥𝑓,𝑖
𝑜

𝑖∈𝐴

 
Total own-produced feed m at farm 

level 𝑧𝑓,𝑚
𝑜𝑤𝑛 equals the sum of the per 

animal own-produced feed quantities 
multiplied by livestock activity levels 

(65) 

∀𝑚 ∈ 𝐹 𝑧𝑓,𝑚
𝑝𝑢𝑟𝑐

= ∑𝜁𝑓,𝑖,𝑚
𝑝𝑢𝑟𝑐

𝑥𝑓,𝑖
𝑜

𝑖∈𝐴

 
Total purchased feed m at farm level 

𝑧𝑓,𝑚
𝑝𝑢𝑟𝑐

 equals the sum of the per animal 

purchased feed quantities multiplied by 
livestock activity levels 

(66) 
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∀𝑚 ∈ 𝐹 𝑧𝑓,𝑚
𝑐𝑜𝑚𝑛 = ∑𝜁𝑓,𝑖,𝑚

𝑐𝑜𝑚𝑛𝑥𝑓,𝑖
𝑜

𝑖∈𝐴

 Total feed m feed from common land at 

farm level 𝑧𝑓,𝑚
𝑐𝑜𝑚𝑛 equals the sum of the 

per animal feed obtained from common 
land multiplied by livestock activity 
levels 

(67) 

∀𝑖 ∈ 𝐴, ∀𝑚 ∈ 𝐹 𝜁𝑓,𝑖,𝑚 = 𝜁𝑓,𝑖,𝑚
𝑜𝑤𝑛 + 𝜁𝑓,𝑖,𝑚

𝑝𝑢𝑟𝑐
+ 𝜁𝑓,𝑖,𝑚

𝑐𝑜𝑚𝑛 Total amount of feed m per animal i 

(𝜁𝑓,𝑖,𝑚) equals own-produced feed 

quantity per animal (𝜁𝑓,𝑖,𝑚
𝑜𝑤𝑛 ), purchased 

feed quantity per animal (𝜁𝑓,𝑖,𝑚
𝑝𝑢𝑟𝑐

) and 

feed from common land per animal 

(i.e. grass) (𝜁𝑓,𝑖,𝑚
𝑐𝑜𝑚𝑛) 

(68) 

∀𝑖 ∈ 𝐴, ∀𝐹𝐺 ∑ 𝜁𝑓,𝑖,𝑚 ∙ 𝛿𝑓,𝑚
𝐷𝑀

𝑚 ∈ 𝐹𝐺+

≥ (𝜓𝑓,𝑖,𝐹𝐺
𝑚𝑖𝑛 + 𝑑𝜓𝑓,𝑖,𝐹𝐺

𝑚𝑖𝑛
)𝑏𝑓,𝑖,𝐷𝑀

𝐹
 

The contribution to dry matter of feeds 
belonging to the specific feed type FG 

must be greater than the minimum 

allowed 𝜓𝑓,𝑖,𝐹𝐺
𝑚𝑖𝑛 𝑏𝑓,𝑖,𝐷𝑀

𝐹  adjusted by the 

deviation 𝑑𝜓𝑓,𝑖,𝐹𝐺
𝑚𝑖𝑛 𝑏𝑓,𝑖,𝐷𝑀

𝐹  

(69) 

∀𝑖 ∈ 𝐴, ∀𝐹𝐺 ∑ 𝜁𝑓,𝑖,𝑚 ∙ 𝛿𝑓,𝑚
𝐷𝑀

𝑚 ∈ 𝐹𝐺−

≤ 𝜓𝑓,𝑖,𝐹𝐺
𝑚𝑎𝑥

𝑏𝑓,𝑖,𝐷𝑀
𝐹  

The contribution to dry matter of feeds 
belonging to the specific feed type FG 

must be lower than the maximum 

allowed 𝜓𝑓,𝑖,𝐹𝐺
𝑚𝑎𝑥 𝑏𝑓,𝑖,𝐷𝑀

𝐹   

(70) 

∀𝑖 ∈ 𝐴, ∀𝑚 ∈
𝐶𝑂𝑁𝐶  

𝜁𝑓,𝑖,𝑚

≤ (𝜏𝑓,𝑖,𝑚

+ 𝑑𝜏𝑓,𝑖𝑚) ∑ 𝜁𝑓,𝑖,𝑚

𝑚 ∈ 𝐶𝑂𝑁𝐶

 

The different concentrate feed m given 
to animal 𝑖 (𝜁𝑓,𝑖,𝑚) must be lower than 

the maximum share of the total 

concentrate feed quantity (𝜏𝑓,𝑖,𝑚
𝑜 ) 

adjusted by the deviation variable 

(𝑑𝜏𝑓,𝑖,𝑚) 

(71) 

∀𝑚 ∈ 𝐹 𝑧𝑓,𝑚
𝑝𝑢𝑟𝑐

∙ 𝑧𝑓,𝑚
𝑜𝑡ℎ𝑒𝑟 = 0 Consistency constraint: ensures that 

purchase and other on-farm use of feed 
m does not occur at the same time 

(72) 

∀𝑚 ∈ 𝐹𝑂𝐷𝑅 
𝑧𝑓,𝑚

𝑝𝑢𝑟𝑐
(𝑑𝑧𝑓,𝑚

𝑐𝑜𝑚𝑛

+ ∑ 𝑧𝑓,𝑚
𝑜𝑡ℎ𝑒𝑟

𝑚∈𝐹𝑂𝐷𝑅

) = 0 

Consistency constraint: excludes 
purchase of fodder m if fodder other 
on-farm use or the deviation of the 
feed from common land from its prior 
value are positive for at least one 
fodder output 

(73) 

∀𝑚 ∈ 𝐶𝐸𝑅𝐸 𝑧𝑓,𝑚
𝑝𝑢𝑟𝑐

∑ 𝑧𝑓,𝑚
𝑜𝑡ℎ𝑒𝑟

𝑚∈𝐶𝐸𝑅𝐸

= 0 
Consistency constraint: excludes 
purchase of cereal m if other on-farm 
use is positive for at least one cereal 

output 

(74) 

∀𝑚 ∈ 𝑃𝐶𝑂𝑁𝐶 𝑧𝑓,𝑚
𝑝𝑢𝑟𝑐

∑ 𝑧𝑓,𝑚
𝑜𝑡ℎ𝑒𝑟

𝑚∈𝑃𝐶𝑂𝑁𝐶

= 0 
Consistency constraint: excludes 
purchase of concentrate feed m not 
produced on-farm if other on-farm use 
is positive for at least one cereal output 

(75) 

where o indexes observed value of a given variable; 𝑛 denotes the different types of 

nutrient or energy requirements (𝑛 ∈ 𝑁); 𝐴𝐺 defines the set of animal activity groups 

(e.g., ruminants, pigs, and poultry) (𝐴𝐺 ⊂ 𝐴); 𝐹𝐺 is set of feed groups (e.g., 

concentrated, and rough types of feed) (𝐹𝐺 ⊂ 𝐹); 𝐹𝑂𝐷𝑅 and 𝑁𝐹𝑂𝐷𝑅 is set of fodder 

outputs (𝐹𝑂𝐷𝑅 and 𝑁𝐹𝑂𝐷𝑅 ⊂ 𝐹); 𝐶𝐸𝑅𝐸 is set of cereal outputs (𝐶𝐸𝑅𝐸 ⊂ 𝐹); and 𝐶𝑂𝑁𝐶, and 

𝑃𝐶𝑂𝑁𝐶 are sets of concentrate feed and purchased concentrate feed not produced on-
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farm, respectively (𝐶𝑂𝑁𝐶 and 𝑃𝐶𝑂𝑁𝐶 ⊂ 𝐹). 𝑏𝑓,𝑖,𝑛
𝐹  is the animal requirement for nutrient 𝑛 

and livestock activity 𝑖; 𝑏𝑓,𝑖,𝐷𝑀
𝐹  is animal requirement for dry matter; 𝑑𝑏𝑓,𝑖,𝑛

𝐹+  and 𝑑𝑏𝑓,𝑖,𝑛
𝐹−  are 

the deviations of animal nutrient requirements from their lower and upper bounds, 

respectively; 𝑧𝑓,𝑚 is total quantity of farm use of feed m; 𝑧𝑓,𝑚
𝑜𝑤𝑛, 𝑧𝑓,𝑚

𝑝𝑢𝑟𝑐
 and 𝑧𝑓,𝑚

𝑐𝑜𝑚𝑛 are total 

quantity of own-produced feed, purchased feed, and feed obtained from common land 

(i.e. grass), respectively; 𝑧𝑓,𝑚
𝑜  is FADN observed on-farm use of the own produced crop 

output m; 𝑑𝑧𝑓,𝑚
𝑐𝑜𝑚𝑛 is the deviations of the common land feed (grass) from its prior value; 

𝜁𝑖,𝑚 is the amount of feed 𝑚 given to animal activity 𝑖; 𝜁𝑓,𝑖,𝑚
𝑜𝑤𝑛 , 𝜁𝑓,𝑖,𝑚

𝑝𝑢𝑟𝑐
 and 𝜁𝑓,𝑖,𝑚

𝑐𝑜𝑚𝑛 are the 

amount of on-farm produced, purchased and common land feed 𝑚 given to animal 

activity 𝑖, respectively; 𝑐𝑓,𝐴𝐺,𝐹𝐺
𝑜,𝑜𝑤𝑛  and 𝑐𝑓,𝐴𝐺,𝐹𝐺

𝑜,𝑝𝑢𝑟𝑐
 are costs reported in FADN for own-produced 

and purchased feed, respectively; 𝑑𝑐𝑓,𝐴𝐺,𝐹𝐺
𝑜𝑤𝑛 and 𝑑𝑐𝑓,𝐴𝐺,𝐹𝐺

𝑝𝑢𝑟𝑐
 are the error terms for the 

estimated costs relative to the costs reported in FADN for own-produced and purchased 

feed, respectively; 𝜓𝑓,𝑖,𝐹𝐺
𝑚𝑖𝑛  and 𝜓𝑓,𝑖,𝐹𝐺

𝑚𝑎𝑥  are the minimum and maximum share in total feed 

consumption (represented in dry matter) from feed group 𝐹𝐺 for animal activity 𝑖, 

respectively; 𝑑𝜓𝑓,𝑖,𝐹𝐺
𝑚𝑖𝑛  is the deviation of the minimum dry matter share; 𝜏𝑓,𝑖,𝑚 is the 

maximum concentrate feed share in the total concentrate feed diet (represented in 

tonnes); and 𝑑𝜏𝑓,𝑖,𝑚 is the deviation of the concentrate feed share from the maximum 

concentrate feed share. Regarding prior information, 𝑏̅𝑓,𝑖,𝑛
𝐹 and 𝜎𝑓,𝑖.𝑛

𝑏  are the mean and 

standard deviation of the animal nutrient requirements, respectively; 𝑏̅𝑓,𝑖,𝑛
𝐹+  and 𝑏̅𝑓,𝑖,𝑛

𝐹−  are 

the lower and upper bounds of the animal nutrient requirements, respectively; 𝜎𝑓,𝑖,𝑛
𝑏−  and 

𝜎𝑓,𝑖,𝑛
𝑏+  are the standard deviations of the lower and upper bounds of the animal nutrient 

requirements, respectively; 𝑦̅𝑓,𝑖,𝑚 is the mean yield (yield prior value); and 𝑧𝑓̅,𝑚
𝑐𝑜𝑚𝑛 is prior 

value of feed obtained from common land (i.e. grass). 

The first component of the objective function (54) is linked to the minimisation of the 

normalised squared deviation of estimated animal requirements from the prior 

information; the second component is related to the minimisation of normalised squared 

deviation estimated animal requirements from lower and upper bounds. The aim is to 

impose a higher penalty if requirements are outside the bounds. The third component 

ensures cost minimisation of feed; the fourth component minimises the relative squared 

deviation between the estimated on-farm produced feed and observed FADN on-farm use 

of the own produced crop output quantity; the fifth component minimises the relative 

squared deviation between the estimated fodder yield and its prior value; the sixth 

component minimises the relative squared deviation between the estimated common 

land feed quantity from the prior value; the seventh component minimise the relative 

squared error of the feed group share from the minimum share in the total feed 

consumption (measured by dry matter), whereas the eighth component does the same 

for the individual concentrate feed shares in total concentrate consumption but measured 

in physical quantities instead of dry matter. The final component minimises the relative 

squared error of the estimated (on-farm produced and purchased) feed costs from the 

FADN recorded feed costs. Because all components in the objective function except the 

cost minimisation element are differences, we scale the function by the livestock 

production value. 

Equations (55) and (56) balance the feed requirement with the feed availability in 

nutrient values. Equations (57) and (58) constrain the deviation of animal requirements 

to be within or around the lower and upper bounds of animal requirements. The bounds 

are used to account for the uncertainty in data determining the level of animal 

requirements. Equations (59) and (60) constrain the estimated costs of on-farm 

produced feed and purchased feed, respectively, to be as close as possible to their 

observed values in FADN. Equations (61) and (62) ensure that physical quantity of feed 

is balanced at farm level for the total quantity of feed (the total feed equals on-farm 

produced feed, purchased feed and feed from common land) and on-farm consumed of 

the own-produced crop output (on-farm consumed crop output equals feed use and other 

use), respectively. Equation (63) constrains the feed obtained from common land to be 
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as close as possible to its prior value obtained from FADN. Equation (64) establishes 

physical quantity balance for fodder production. Equations (65), (66) and (67) sum the 

feed use over all animal activities for on-farm produced feed, purchased feed and feed 

from common land, respectively. Equations (68) ensures that physical quantity of feed is 

balanced per animal: the total feed per animal equals on-farm produced feed per animal, 

purchased feed per animal and feed per animal from common land. The minimum share 

constraint (69) ensures that a given feeding stuff (or group of feed) represents at least a 

certain amount of total feed consumption (measured in dry matter), whereas the 

maximum share constraint (70) ensures that a given feeding stuff (or group of feed) 

does not exceed a certain limit in the total feed consumption for a given animal activity. 

These two constraints ensure certain feed management practices and prevent overuse or 

underuse of certain feeds. The constraint described by equation (71) ensures that a feed 

concentrate does not exceed a certain maximum limit in the total concentrate feed 

consumption for a given animal activity (measured in physical quantity). This constraint 

aims to ensure that the composition of the concentrate feed corresponds as closely as 

possible to the observed data (21). Equations (72) to (75) are consistency constraints 

that aim to exclude certain feeding practices perceived unlikely or unreasonable (i.e. 

exclude feed purchase and other on-farm use at the same time for different feed types).  

Figure 7, Figure 8 and Figure 9 compare the HPD estimated IFM-CAP costs with the 

actual FADN costs aggregated at MS level for purchased feed, farm produced feed and 

total feed costs, respectively. We also report the slope for the estimated linear model 

between IFM-CAP costs and the FADN costs (22). A slope value equal to 1 implies that, on 

average, the estimated IFM-CAP costs correspond to the FADN costs at MS level. A slope 

lower than 1 implies that estimated costs are on average lower than the FADN costs. As 

shown in the figures, the slope between the estimated and FADN costs is highest for the 

total feed costs (99 %), followed by purchased feed (99 %) and the own feed (90 %). At 

farm level, the slopes are 77 %, 70 %, and 72 % for total feed costs, purchased feed 

costs and the own feed costs, respectively (not shown in the figures). Because the slopes 

are somehow lower than 1 (particularly at farm level), our model underestimates the 

FADN costs. The use of external data and regional aggregates for nutrient feed content, 

feed prices and, to some extent, for fodder yields may have led to differences between 

the estimated and the observed costs. The discrepancy arises because, in reality, these 

data will probably vary across farms and thus may depart from the regionally aggregated 

values. In addition, imposing cost minimisation of feed mix may have led to an 

underestimate of the feed cost given that, in reality, strict cost minimisation may not 

always hold, particularly in the presence of market imperfections (e.g. transaction costs, 

uncertainty). 

 

                                           
(21) The maximum limits are available from FEEDMOD. 
(22) Linear model is specified as follows: IFM-CAP estimated costs = Slope * FADN costs + error 
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Figure 7. FADN purchased feed costs versus IFM-CAP estimated purchased feed costs aggregated 
at MS level (EUR/farm) 

 

 

Figure 8. FADN costs of farm produced feed versus IFM-CAP estimated costs of farm produced 
feed aggregated at MS level (EUR/farm) 
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Figure 9. Total FADN feed costs versus IFM-CAP estimated total feed costs aggregated at MS level 
(EUR/farm) 

 

Figure 10 to Figure 16 compare the HPD estimated animal intake requirements, with 

their lower and upper bounds, for dairy cows (DCOW), fattening of pigs (PIGF) and sheep 

and goat activity (SHGM) for selected nutrients for all farms modelled in IFM-CAP. As 

reported in Figure 10 and Figure 11, the estimated energy (ENNE) and protein (CPRP) 

intakes of dairy cows are around the lower bound for most farms. In contrast, the 

estimated intake of fibre (FIDI) is in between upper and lower bounds for most farms 

(Figure 12). The main explanation for the underestimation of energy and protein is that 

the HPD estimation model cannot balance them within the bounds for the given set of 

feeds (determined by the constraints described by equations (55) to (75)). The ratio of 

the energy and protein content of the available feed cannot be matched with the ratio of 

these requirements for dairy cows such that they remain within the lower and upper 

bounds. This could be because the nutrient contents of feed in our model are not farm 

level specific but are provided at MS level, and thus may depart from the actual values. 

This is particularly problematic for fodder feed, the nutrient content of which may vary 

widely across regions and farms. Similarly to the balancing problem of dairy cows, the 

estimates for energy requirements for fattening of pigs (PIGF) are around the lower 

bound for most farms, whereas the estimates for protein intake are around the upper 

bound (Figure 13 and Figure 14). In contrast to dairy cows and fattening of pigs, the 

energy and protein requirements for sheep and goat activity (Figure 15 and Figure 16) 

are mostly within lower and upper bounds. This could be because of a less 

heterogeneous diet of sheep and goat activity thus allowing the HPD model to balance 

the supply and demand of feed such that animal requirements are within the bounds. 
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Figure 10. Estimated ENNE intake for DCOW for all IFM-CAP farms 

 

 

Figure 11. Estimated CRPR intake for DCOW for all IFM-CAP farms 
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Figure 12. Estimated FIDI intake for DCOW for all IFM-CAP farms 

 

 

Figure 13. Estimated ENNE intake for PIGF for all IFM-CAP farms 
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Figure 14. Estimated CRPR intake for PIGF for all IFM-CAP farms 

 

 

Figure 15. Estimated ENNE intake for SHGM for all IFM-CAP farms 
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Figure 16. Estimated CRPR intake for SHGM for all IFM-CAP farms 
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2.2.3. Model calibration 

2.2.3.1. Calibration theory 

Over the past decade, several PMP approaches have been developed to accurately 

calibrate programming models (23). The original PMP approach, introduced by Howitt 

(1995), relied on the introduction of non-linear terms (a non-linear behavioural function) 

to an otherwise linear optimisation model. Through such additional non-linear terms, the 

objective function of the (profit-maximising) model becomes concave and allows for 

interior solutions that were not previously feasible for a given constraint set (24). PMP 

calibration can be succinctly described as the process of recovering the parameters of the 

behavioural function so that the necessary first-order conditions (FOCs) of the final 

model are exactly satisfied at the observed levels of the related variables (i.e. we 

assume that the optimal solution coincides with the observations). As detailed in 

Section 2.1, the non-linear behavioural function for IFM-CAP is associated with the 

variables for crop and animal activity levels (through parameters 𝑑𝑖 and 𝑄𝑖,𝑗) and for the 

feed input coefficient (through parameters 𝑑𝑖,𝑚
𝐹  and 𝑄𝑖,𝑚

𝐹 ). Effectively, calibration of IFM-

CAP aims to recover these unknown parameters, together with the CARA coefficient 𝜑, so 

that the optimisation model exactly reproduces the observed activity levels 𝑥̅𝑖 and the 

observed value of the feed input coefficient 𝜁𝑖̅,𝑚 in the base year. 

For simplicity of exposition, we break down the FOCs of the optimisation program in IFM-

CAP into those related to (i) crop activities, (ii) animal activities and (iii) feed input 
coefficients. Using the notation introduced in Section 2.1, the FOCs for the 𝑖-th crop 

activity, when evaluated at the optimal level of all unknown variables, can be written as: 

 ∑ 𝑝𝑚𝑦𝑖,𝑚

𝑚∈𝑀

− ∑ 𝑐𝑖,𝑘

𝑘

− ∑ 𝑝𝑚𝜉𝑚𝑦𝑖,𝑚

𝑚∈𝐹

− (𝑑𝑖 + ∑𝑥̅𝑗𝑄𝑖,𝑗

𝑗

) − 𝜑 ∑𝑥̅𝑗𝛺𝑖,𝑗

𝑗

− ∑ 𝐴𝑖,𝑡𝜃̅𝑡

𝑡

= 0 
(76) 

 

 𝑏𝑡 − ∑𝐴𝑡,𝑖𝑥̅𝑖

𝑖

= 0 

∀ 𝑖 ∈  set of crop activities 

(77) 

Similarly, the FOCs for animal activities can be written as: 

 

∑ 𝑝𝑚𝑦𝑖,𝑚

𝑚∈𝑀

− 10−3 ∑ 𝑝𝑚𝜁𝑖̅,𝑚

𝑚∈𝐹

− ∑ 𝑝𝑚𝜉𝑚𝑦𝑖,𝑚

𝑚∈𝐹

− (𝑑𝑖 + ∑𝑥̅𝑗𝑄𝑖,𝑗

𝑗

) − ∑ 𝑑𝑖,𝑚
𝐹 𝜁𝑖̅,𝑚

𝑚∈𝐹

− 0.5 ∑ 𝜁𝑖̅,𝑚𝑄𝑖,𝑚
𝐹 𝜁𝑖̅,𝑚

𝑚∈𝐹

− 𝜑 ∑𝑥̅𝑗𝛺𝑖,𝑗

𝑗

− ∑ 𝐴𝑡,𝑖𝜃̅𝑡

𝑡

= 0 

(78) 

 𝑏𝑡 − ∑𝐴𝑖,𝑡𝑥̅𝑖

𝑖

= 0 

∀ 𝑖 ∈  set of animal activities 

(79) 

For the feed input coefficients: 

                                           
(23) For a review on PMP models see de Frahan et al. (2007), Heckelei and Britz (2005), Heckelei et al. 

(2012), Mérel and Bucaram (2010) and Paris (2011). 
(24) PMP approaches have also been applied to intrinsically non-linear models, including non-linear E-V models 

(Petsakos and Rozakis, 2015) and supply models with explicit production relationships, such as constant 
elasticity of substitution or other production functions (e.g. Mérel et al., 2011). As in the typical PMP 
approach for linear models, calibration in this case focuses on recovering, or adjusting, the non-linear 
parameters so that the necessary first-order conditions are satisfied at the observed activity allocation.  
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−10−3𝑝𝑚𝑥̅𝑖 − 𝑑𝑖,𝑚

𝐹 𝑥̅𝑖 − 𝜁𝑖̅,𝑚𝑄𝑖,𝑚
𝐹 𝑥̅𝑖 − ∑ (∑𝐴𝑛,𝑚,𝜈

𝐹 𝜃̅𝑖,𝑛,𝜈
𝐹

𝑛

)

𝜈

= 0 

∀ 𝑖 ∈  set of animal activities, and ∀ 𝑚 ∈  set of feeds 

(80) 

Recovering the PMP terms (𝑑𝑖, 𝑄𝑖,𝑗, 𝑑𝑖,𝑚
𝐹  and 𝑄𝑖,𝑚

𝐹 ) in the above equations is not a trivial 

exercise and cannot be carried out using standard econometric estimation techniques 

because the number of unknowns parameters is greater than the number of available 

equations, that is, the FOCs that need to be satisfied. This constitutes an undetermined 

equation system with no unique solution (an ‘ill-posed’ problem). The ill-posedness of the 

above system of equations is exacerbated by the presence of the shadow prices of the 
binding constraints (𝜃̅𝑡 and 𝜃̅𝑖,𝑛,𝜈

𝐹 ) in the FOCs, which are themselves unknown and need 

to be recovered as well. For this reason, most early PMP approaches, applied to LP 

models, used the traditional PMP procedure, which ignored the shadow prices from the 

final calibrating equation. Such approaches typically set all off-diagonal 𝑄𝑖,𝑗 elements to 

zero and calculated the remaining parameters using ad hoc assumptions (25). Although 

keeping only the diagonal 𝑄𝑖,𝑖 elements is often an acceptable simplification for quadratic-

cost PMP models (e.g. Mérel and Bucaram, 2010) and it is also adopted for the current 

version of IFM-CAP, the traditional PMP calibration procedure has been heavily criticised 

because the transition from a linear model to a non-linear one (by adding the non-linear 

behavioural function) leads to inconsistent shadow prices in the final non-linear model, 

when calibration is examined from an econometrician’s viewpoint (Heckelei and Wolff, 

2003). Furthermore, the theoretical justification of the accompanying ad hoc 

assumptions is weak, and the overall calibration process does not control for the model’s 

response to parameter changes (i.e. the model’s second-order properties), which may 

sometimes lead to erratic model behaviour. 

To ensure a non-arbitrary parameter specification, recent applied programming models 

have either (i) estimated model parameters with cross-sectional data (Heckelei and Britz, 

2000) or time series data when multiple observations were available (Britz and Arata, 

2019; Buysse et al., 2007; Jansson and Heckelei, 2011) or (ii) used exogenous 

information on supply elasticities (Britz and Witzke, 2014; Mérel and Bucaram, 2010) 

and/or on shadow prices of resources (de Frahan et al., 2007). The objective of 

calibrating an optimisation model by forcing it to replicate, or at least approximate, 

exogenous information on price elasticities of supply is to ensure that the response of the 

model with respect to changes in at least one parameter of interest (in this case, prices) 

is consistent with the available exogenous information about what this response may be 

(the elasticity values). 

For the calibration of IFM-CAP we use both multiple observations (cross-sectional data) 

and prior information on NUTS 2 price supply elasticities to calibrate the base year farm 

activity plans. Price elasticities of supply for crops are taken from available econometric 

studies at NUTS 2 level (Jansson and Heckelei, 2011) (26). Elasticities of 1 and 0.1 are 

used for annual crops and permanent crops, respectively, when prior information is 

unavailable. Supply elasticities for livestock activities, as well as feed demand elasticities, 

are taken from CAPRI. 

When using supply elasticity priors for calibrating mathematical programming models of 

agricultural supply, the elasticity formula needs to account not only for the impact of 

prices on supply but also for the impact of prices on the dual values of the model’s 

binding constraints. In other words, and using vector notation for simplicity (in bold), the 

                                           
(25) A presentation of these early PMP approaches can be found in Heckelei (2002). 
(26) The use of supply elasticities from Jansson and Heckelei (2011) is motivated by the fact that they provide 

estimates at EU regional level; there are no other studies available that would provide better regional 
resolution and/or estimates of land allocation elasticities across EU regions. Moreover, IFM-CAP assumes 
fixed yields, meaning that land allocation elasticities correspond to supply elasticities. 
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optimal value 𝐱̅ of the activity vector is a function of both prices and dual values, while 

the resulting duals 𝛉̅ are themselves a function of prices. These relationships can be 

expressed using the functions 𝐱̅ = 𝑋(𝐩, 𝛉̅) and 𝛉̅ = 𝛩(𝐩), so that the total effect of 𝐩 on 𝐱̅ is 

given by the total derivative evaluated at {𝐱̅, 𝛉̅}: 

 
d𝐱

d𝐩
=

𝜕𝑋

𝜕𝐩
+

𝜕𝑋

𝜕𝛉

𝜕𝛩

𝜕𝐩
 (81) 

Mérel and Bucaram (2010) call this approach ‘non-myopic’, or ‘exact’, as opposed to 
‘myopic’ calibration, which focuses only on how 𝐩 affects 𝐱̅ through the partial derivative 

𝜕𝐹 𝜕𝐩⁄ , and ignores the impact of 𝐩 on 𝛉̅ (i.e. the myopic approach does not consider the 

second term in the right hand side of equation (81)). Under a non-myopic calibration 
approach, and setting 𝐓 = 𝐐 + 𝜑𝛀, the price elasticity of supply 𝐄𝒔 for IFM-CAP crop 

activities can be expressed as (27): 

 𝐄𝒔 ≡
d𝐱

d𝐩
∙
𝐩

𝐱̅
= [𝐓−1 − 𝐓−1𝐀′(𝐀𝐓−1𝐀′)−1 𝐀𝐓−1][(1 − 𝛏)′ ∙ 𝐲] ∙

𝐩

𝐱̅
 (82) 

Equation (82) represents a system of non-linear equations that needs to be solved for 𝐓, 

given an exogenously defined value of 𝐄𝒔. Because of the numerical complexity of this 

task, (which also includes two matrix inversion operations of 𝐓−1 and (𝐀𝐓−1𝐀′)−1), solving 

for 𝐓 relies on an HPD program, which is presented in Section 2.2.3.2. 

There are two important observations related to equation (82). The first is that the linear 
PMP terms 𝑑𝑖 do not affect the model’s supply response (28). As a result, 𝑑𝑖 can be 

recovered separately from the non-linear terms 𝑄𝑖,𝑗, which are part of matrix 𝐓 in the 

above elasticity formula. From a modelling viewpoint, this means that the calibration of 

IFM-CAP can be split into two steps: the first step relies on equation (82) with exogenous 
information on 𝐄𝒔 (priors) to recover 𝑄𝑖,𝑗, while the second step uses the estimated 𝑄𝑖,𝑗 to 

calculate 𝑑𝑖 so that the reference activity vector is reproduced (Garnache and Mérel, 

2015). Specifically, once the quadratic terms are recovered using exogenous supply 
elasticities, 𝑑𝑖 is calculated from the FOCs and then further adjusted, if needed, to ensure 

that the model replicates the observed situation. This latter adjustment involves running 

the model with additional constraints that bind all activities to their observed levels, and 

then adding the dual values of these constraints to 𝑑𝑖 (
29). 

The other important observation is that non-myopic calibration against supply elasticity 

priors is possible only when at least one of the constraints is binding for the observed 

situation (i.e. 𝛉̅ ≥ 0). This condition assumes a priori knowledge of the correct 

specification of matrix 𝐀, or, more precisely, the partition of 𝐀 in each farm that 

corresponds to binding constraints. If the said partition of 𝐀 is a zero matrix, then 𝛉̅ = 0 

and the term d𝐱/d𝐩 in the elasticity equation reduces to 𝜕𝑋/𝜕𝐩 (equivalent to myopic 

calibration). 

The first task when calibrating IFM-CAP against supply elasticities is thus to determine 
the binding constraints and to reconstruct matrix 𝐀 in each farm. In IFM-CAP, matrix 𝐀 is 

always non-zero, as the land constraint is modelled as an equality and therefore it is 

                                           
(27) This equation is similar to the elasticity equation 11 in Jansson and Heckelei (2011, p. 145). The only 

difference is the inclusion of losses 𝛏, which are calculated in the IFM-CAP feed module and are part of the 

model’s objective function. 
(28) The same applies for the shadow prices 𝛉̅ of the model’s binding constraints (Mérel and Bucaram, 2010). 

More precisely, the elasticity formula is equivalent to a value function as it has been derived under the 
assumption that shadow prices are evaluated at their optimal level.  

(29) The procedure for adjusting 𝑑𝑖 resembles the first step of the traditional PMP algorithm in the sense that it 

uses additional calibration constraints to recover some linear parameters (the dual values of the additional 
constraints) that allow the model to calibrate. IFM-CAP uses these dual values to simply adjust 𝑑𝑖 while 
retaining the 𝐓 matrix previously recovered with the supply elasticity priors, which means that the model’s 

supply response with respect to price changes (the model’s implied elasticities) is not affected. 
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always binding (equation (6) in Section 2.1.2). Drawing on experience with previous 

versions of IFM-CAP, the VCS constraint (equation (11) in Section 2.1.2) is also assumed 

to be binding for both crop and animal activities. In addition to the above constraints, we 

followed a ‘reverse engineering’ approach to examine if any of the diversification 

(greening) constraints (equations (18) and (19) in Section 2.1.2) are also binding at 

farm level under the base year FADN data. This exercise revealed that the 75 % 

diversification constraint is binding for only 31 farms in the entire 2017 FADN sample, 

while only three farms satisfied the 95 % diversification constraint as an equality. More 

importantly, about 4 % of all farms in the base year FADN sample do not comply with 

the diversification requirements, as these are modelled in IFM-CAP. This can be 

explained by the existence of aggregate commodities in the model whose components 

count as individual crops for the purposes of greening by sampled FADN farms (e.g. 

other cereals activity). In other words, as IFM-CAP cannot fully capture in detail all the 

available farm options for complying with greening, some farms may fail to calibrate 

because the diversification constraints in the model are inconsistent with the observed 

crop allocation in the base year. Similarly, IFM-CAP does not capture all the 

implementation options for EFAs, for example field margins and buffer strips. For the 

above reasons, greening constraints were dropped and the only constraints considered in 

the calibration of crop activities were those related to total land endowment and to VCS 

payments. 

Because of the complexity of the base year model and the inability to determine the 

constraints that are indeed binding, the full model will not always be consistent with the 

exogenous supply elasticities used for its calibration. Nevertheless, although a reduced 

constraint set may lead to a full model whose true implied elasticities are different from 

the elasticities calculated with equation (82) –unless land endowments and VCS are 

indeed the only binding constraints in the farm – the approach remains useful for 

calibration purposes. The reason is that it provides a minimum level of second-order 

structure to the calibrated model by setting bounds to its supply response. 

In the case of feed PMP terms, a similar ‘reverse engineering’ approach to reconstruct a 

single matrix of feeding constraints cannot be implemented because constraints are split 

into those related to nutrient requirements (equations (7) and (8)) and those related to 

aggregate feeds (equations (9) and (10)). For this reason, calibration against feed price 

elasticities of demand from CAPRI can only be carried out myopically. However, the 
principle of recovering 𝑄𝑖,𝑚

𝐹  separately from the linear term 𝑑𝑖,𝑚
𝐹 , which was explained 

above in the case of activities, can still be applied for the feed PMP terms. This means 

that we use priors for feed demand elasticity to calculate 𝑄𝑖,𝑚
𝐹 , and then we impute this 

value in equation (80) – the FOCs for the feed input coefficient variable – in order to 
obtain an estimate of 𝑑𝑖,𝑚

𝐹 . 

The myopic calibration of 𝑄𝑖,𝑚
𝐹  involves solving the FOCs (80)) for 𝜁𝑖̅,𝑚: 

 𝜁𝑖̅,𝑚 = −
1

𝑄𝑖,𝑚
𝐹 𝑥̅𝑖

[10−3𝑝𝑚𝑥̅𝑖 + 𝑑𝑖,𝑚
𝐹 𝑥̅𝑖 + ∑(∑𝐴𝑛,𝑚,𝜈

𝐹 𝜃𝑖,𝑛,𝜈
𝐹

𝑛

)

𝜈

]  

and then differentiating with respect to 𝑝𝑚: 

 𝑑𝜁𝑖,𝑚

𝑑𝑝𝑚

= −
10−3

𝑄𝑖,𝑚
𝐹  

 

The own feed price elasticity of demand at 𝜁𝑖̅,𝑚 is then defined as:  

 
𝐸𝑖,𝑚

𝐹 =
𝑑𝜁𝑖,𝑚

𝑑𝑝𝑚

𝑝𝑚

𝜁𝑖̅,𝑚

= −
10−3

𝑄𝑖,𝑚
𝐹

𝑝𝑚

𝜁𝑖̅,𝑚

 (83) 
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Parameter 𝑄𝑖,𝑚
𝐹 , which corresponds to the quadratic part of the feed PMP terms, can be 

directly calculated from equation (83): 

 
𝑄𝑖,𝑚

𝐹 = −
10−3

𝐸̅𝑖,𝑚
𝐹

𝑝𝑚

𝜁𝑖̅,𝑚

 
 

Finally, 𝑑𝑖,𝑚
𝐹  can be obtained by imputing 𝑄𝑖,𝑚

𝐹  in equation (80). However, because the 

dual values of any binding feeding constraints are not known, 𝑑𝑖,𝑚
𝐹  is obtained from 

equation (80) without considering the term ∑ (∑ 𝐴𝑛,𝑚,𝜈
𝐹 𝜃̅𝑖,𝑛,𝜈

𝐹
𝑛 )𝜈 . 

 

2.2.3.2. The highest posterior density program for calibrating against supply 

elasticities 

For each farm 𝑓, the HPD model minimises the weighted sum of normalised squared 

deviations, from prior information, of the estimated (i) farm-specific own-price supply 
elasticities; (ii) farm-specific CARA coefficient; and (iii) a farm-specific 𝑄𝑖,𝑗 matrix of the 

behavioural function (diagonal). The estimation procedure is applied for both crops and 

livestock activities. Using the algebraic notation introduced in Section 2.1, the general 

formulation of the HPD problem is as follows: 

 
min

  𝜑𝑓, 𝐸𝑓,𝑖,𝑖, 𝑄𝑓,𝑖,𝑗≥0
𝐻𝑃𝐷𝑓 = (

𝜑𝑓 − 𝜑̅𝑓

𝜎𝑓
𝜑 )

2

+ ∑ 𝜔𝑓,𝑖 (
𝐸𝑓,𝑖,𝑖 − 𝐸̅𝑓,𝑖,𝑖

𝜎𝑓,𝑖.𝑖
𝐸 )

2

𝑖

+ ∑ 𝜔𝑓,𝑖 (
𝑄𝑓,𝑖,𝑖 − 𝑄̅𝑓,𝑖,𝑖

𝜎𝑓,𝑖,𝑖
𝑄 )

2

𝑖

 (84) 

which is subject to: 

 

𝐸𝑓,𝑖,𝑗 = {(𝑇𝑓,𝑖,𝑗)
−1

− ∑[∑(𝑇𝑓,𝑖′,𝑖)
−1

𝑖′

𝐴𝑓,𝑖′,𝑡 (∑ 𝐴𝑓,𝑡,𝑖′(𝑇𝑓,𝑖′,𝑗′)
−1

𝐴𝑓,𝑗′,𝑡

𝑖′,𝑗′

)

−1

∑𝐴𝑓,𝑡,𝑖′(𝑇𝑓,𝑖′,𝑗)
−1

𝑖′

]

𝑡

} 

× [∑
 𝑝𝑓,𝑚

𝑥̅𝑓,𝑖
(1 − 𝜉𝑓,𝑚)𝑦𝑓,𝑗,𝑚

𝑚

] 

where 𝑖′, 𝑗′ ∈ set of production activities and are aliases of 𝑖 

(85) 

 
𝑇𝑓,𝑖,𝑗 = 𝑄𝑓,𝑖,𝑗 + 𝜑𝑓𝛺𝑓,𝑖,𝑗 

where 𝑄𝑓,𝑖,𝑗 = 0 ∀ 𝑖 ≠ 𝑗 (𝑄 is diagonal) 
(86) 

 ∑𝑇𝑓,𝑖,𝑖′(𝑇𝑓,𝑖′ ,𝑗)
−1

𝑖′

= 1 ∀ 𝑖 = 𝑗 

∑𝑇𝑓,𝑖,𝑖′(𝑇𝑓,𝑖′ ,𝑗)
−1

𝑖′

= 0 ∀ 𝑖 ≠ 𝑗 

where 𝑖′ ∈ set of production activities and is an alias of 𝑖 

(87) 

 

∑ 𝐴𝑓,𝑡,𝑖(𝑇𝑓,𝑖,𝑗)
−1

𝐴𝑓,𝑗,𝑡

𝑖,𝑗

(∑𝐴𝑓,𝑡′,𝑖(𝑇𝑓,𝑖,𝑗)
−1

𝐴𝑓,𝑗,𝑡′

𝑖,𝑗

)

−1

= 1 ∀ 𝑡 = 𝑡′ 

∑ 𝐴𝑓,𝑡,𝑖(𝑇𝑓,𝑖,𝑗)
−1

𝐴𝑓,𝑗,𝑡

𝑖,𝑗

(∑𝐴𝑓,𝑡′,𝑖(𝑇𝑓,𝑖,𝑗)
−1

𝐴𝑓,𝑗,𝑡′

𝑖,𝑗

)

−1

= 0 ∀ 𝑡 ≠ 𝑡′ 

where 𝑡′ ∈ set of binding farm constraints and is an alias of 𝑡 

(88) 
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where 𝜑̅𝑓 and 𝜎𝑓
𝜑
 are the mean and the standard deviation for the CARA coefficient used 

as prior information; 𝑄̅𝑓,𝑖,𝑖 and 𝜎𝑓,𝑖,𝑖
𝑄

 are the mean and the standard deviation for the 

elements of matrix 𝐐 (assumed to be diagonal) used as prior information; and 𝐸̅𝑓,𝑖,𝑖 and 

𝜎𝑓,𝑖.𝑖
𝐸  are the mean and standard deviation of farm own-price elasticities of supply used as 

prior information. The normalised squared deviations for the supply elasticities and for 

the elements of matrix 𝐐 are weighted by the proportion of observed activity gross 

margins to total farm profits, 𝜔𝑓,𝑖 = 𝑔𝑚𝑓,𝑖/∑ 𝑔𝑚𝑓,𝑖𝑖 , to allow the more profitable activities to 

dominate. 

Equation (84) defines the HPD measure to be minimised, equation (85) is the elasticity 

formula (the algebraic equivalent of equation (82)), equation (86) defines matrix 𝐓 as 

the sum of 𝐐 + 𝜑𝛀, and equations (87) and (88) correspond to the inversion operations 

for matrices 𝐓 and 𝐀𝐓−1𝐀′, respectively, as required by the elasticity formula. 

The prior value of the CARA coefficient, 𝜑̅𝑓, is specified relative to a common prior value 

of the relative risk aversion (RRA) across all farms. RRA is a measure of risk aversion 

that is invariant to the level of income and therefore it can be compared among farms of 

different economic size. Specifically, the prior value of RRA is set as equal to 1, so that 
𝜑̅𝑓 = 1/𝑧𝑓, where 𝑧𝑓 is the farm income observed in the base year. This follows the Arrow–

Pratt definition of the ARA coefficient 𝜑𝑓 = −𝑈′′(𝑧𝑓)/𝑈
′(𝑧𝑓) (Pratt, 1964), where 𝑈(𝑧𝑓) is the 

utility of income that is assumed to be exponential in IFM-CAP, as explained in 

Section 2.1. The selected prior RRA value of 1 is a typical average value often suggested 

by authors (Hardaker et al., 2004). 

The elasticity prior 𝐸̅𝑓,𝑖,𝑖 is set as equal to the CAPRI supply elasticity for the region where 

farm 𝑓 belongs. Although using regional values as farm-specific priors is a strong 

assumption, the approach presents several advantages compared with the HPD model 

applied for the calibration of IFM-CAP v.1, which sought to approximate the prior as the 

weighted aggregate elasticity across all farms (Louhichi et al., 2018b). A first obvious 

advantage is that it is numerically simpler and computationally faster, as the program 

minimises the HPD metric per individual farm rather than for a group of farms. A second 

advantage is that the regional supply elasticity prior is better approximated, as the 

resulting farm elasticities are distributed more closely around the regional prior. In other 

words, the revised approach approximates the regional elasticity indirectly, by controlling 

the individual farm supply response, whereas the previous approach directly targeted the 

regional elasticity prior but did not control for the farm-specific supply response. 

However, because of the computational complexity of the HPD model that ran over a 

group of farms, the deviation from the regional prior was often significant, which also 

resulted in erratic farm-specific elasticities. 

The prior information for 𝑄̅𝑓,𝑖,𝑖 is based on a simple regression model that uses all farms 

at NUTS 2 level to estimate a common (diagonal) matrix of implicit activity costs 𝐵𝑖,𝑖, in 

which the activity FOCs for each farm–activity combination are the estimating equations: 

 𝑌𝑓,𝑖 = 𝐵𝑖,𝑖 + 𝜀𝑓,𝑖 (89) 

where 𝜀𝑓,𝑖 are the residual terms, which can also be interpreted as the linear activity PMP 

terms 𝑑𝑓,𝑖. The dependent variable 𝑌𝑓,𝑖 corresponds to the non-PMP part of the activity 

FOCs and is given by: 

 𝑌𝑓,𝑖 = E[𝑔𝑚𝑓,𝑖] − 𝜑̅𝑓 ∑𝑥̅𝑓,𝑗Ω𝑓,𝑖,𝑗

𝑗

− ∑A𝑓,𝑖,𝑡𝜃̅𝑓,𝑡

𝑡

= 0 

∀ 𝑖 ∈  set of crops activities 

 

(90) 
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𝑌𝑓,𝑖 = E[𝑔𝑚𝑓,𝑖] − ∑ 𝑑𝑖,𝑚
𝐹 𝜁𝑖̅,𝑚

𝑚∈𝐹

− 0.5 ∑ 𝜁𝑖̅,𝑚𝑄𝑖,𝑚
𝐹 𝜁𝑖̅,𝑚

𝑚∈𝐹

− 𝜑̅𝑓 ∑𝑥̅𝑓,𝑗Ω𝑓,𝑖,𝑗

𝑗

− ∑A𝑓,𝑖,𝑡𝜃̅𝑓,𝑡

𝑡

= 0 

∀ 𝑖 ∈  set of animal activities 

The term E[𝑔𝑚𝑓,𝑖] is the expected activity gross margin, specified in Section 2.1.1, while 

the feed PMP terms 𝑑𝑖,𝑚
𝐹  and 𝑄𝑖,𝑚

𝐹  are calculated as explained in the previous section, 

using price elasticities of feed demand from CAPRI. The matrix of binding constraints for 
each farm, A𝑓,𝑖,𝑡, refers to land endowments and VCS payments (the latter are only for 

animal activities) and the shadow prices 𝜃̅𝑓,𝑡 are set as equal to the land rental value 

reported in the FADN database and to the unitary VCS payment for 𝑖 activity, 

respectively. 

The regression model, defined by equations (89) and (90), requires that 𝐵𝑖,𝑖 be non-

negative. It is estimated in GAMS as a least squares process, that is, as an 

unconstrained program that minimises the sum of the squared residuals 𝜀𝑓,𝑖. Parameter 

𝑄̅𝑓,𝑖,𝑖 for each farm is then calculated by scaling 𝐵𝑖,𝑖 by the inverse of the observed activity 

vector at farm level – 𝑄̅𝑓,𝑖,𝑖 = 𝐵𝑖,𝑖/𝑥̅𝑓,𝑖 (
30) – while the linear PMP terms 𝑑𝑓,𝑖 are set as equal 

to the residuals 𝜀𝑓,𝑖. This value of 𝑑𝑓,𝑖  constitutes only an initial estimate, as it is later 

adjusted with a constrained model run, which adds the following calibration constraints 
to the IFM-CAP model that bound each activity level within the interval [𝑥̅𝑓,𝑖 − 𝑍−, 𝑥̅𝑓,𝑖 + 𝑍−]:  

 𝑥𝑓,𝑖 ≤ 𝑥̅𝑓,𝑖 + 𝑍− [𝜆𝑓,𝑖] (91) 

 𝑥𝑓,𝑖 ≥ 𝑥̅𝑓,𝑖 − 𝑍− [𝜆𝑓,𝑖] (92) 

where 𝑍− is a very small number that is used to disentangle the calibration constraints 

from the land constraint. As the model is non-linear, upper and lower bounds of activity 

levels are set to ensure that the observed situation is reproduced exactly. A similar set of 

calibration constraints can be found in Kanellopoulos et al. (2010) and Petsakos and 

Rozakis (2015). Every activity 𝑖 is bound only by one of the two constraints, resulting in 

a dual value 𝜆𝑓,𝑖 ≥ 0 if the constraint in equation (91) is binding, and 𝜆𝑓,𝑖 ≤ 0 in the case of 

equation (92). This run modifies 𝑑𝑓,𝑖 upwards or downwards, depending on which 

constraint is binding, so that its updated value is given by 𝑑𝑓,𝑖
′ = 𝑑𝑓,𝑖 + 𝜆𝑓,𝑖. 

  

                                           
(30) This scaling of 𝐵𝑖,𝑖 to calculate the farm-specific 𝑄̅𝑓,𝑖,𝑖 is equivalent to 𝑄̅𝑓,𝑖,𝑗 = (1/√𝑥̅𝑓,𝑖)𝐵𝑖,𝑗(1/√𝑥̅𝑓,𝑗), which was 

used in IFM-CAP v.1 for the fully specified matrices 𝐐 and 𝐁. 
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2.2.4. Baseline construction 

The baseline is a reference situation that represents a mid-term projection of the 

European farming sector under the current policy setting. The IFM-CAP baseline is in line 

with the baseline of the Directorate-General for Agriculture and Rural Development, 

which refers to projections of the situation of the agricultural sector for 2030. Scenarios 

are counterfactuals of the baseline; the bulk of the data and the assumptions in the 

scenarios are identical to those of the baseline. 

Below we present the various components of the baseline model. Each of these 

components contains a number of assumptions. Changing any of these assumptions will 

result in a different baseline; for example, instead of using the single FADN base year of 

2017, the average of multiple years (e.g. 2014–2017) could be used, or additional 

activities could be more loosely defined. 

2.2.4.1. Farm accountancy data network base year data 

Some data are considered immutable across time (e.g. weights, total UAA and observed 

activities) and are loaded directly from the FADN database without any modifications. 

Other data are the result of more complex estimations, namely the data resulting from 

the calibration procedure (e.g. PMP terms and risk aversion coefficients) and those 

related to the feed requirements module (e.g. animal requirements and nutrient 

content). The production year that the above data refer to is termed the ‘base year’; this 

is currently 2017. 

2.2.4.2. Additional activities 

Given that the baseline is about a mid-term projection, we need to assume that the 

activities of the farm may expand relative to the activities we observe in the base year. 

We make the following assumption: a farm can be engaged in a non-observed activity if 

that activity has been observed in its NUTS 3-TF14-ORGANIC cell (31) in more than 5 % 

of the total UAA of the cell. We also assume that all farms can be engaged in the FALL, 

PULS and SOYA activities, so as to follow the greening policy restrictions. The non-

observed yields, prices and PMP parameters are estimated as the averages of the 

corresponding parameters of the NUTS 3-TF14-ORGANIC cell (32). The PMP linear terms 

of the additional activities are further adjusted so that in the base year their levels are 

zero. 

 

2.2.4.3. CAPRI trends 

To be in line with the Directorate-General for Agriculture and Rural Development 

projections for 2030, we incorporate the CAPRI trends and adjust the expected prices 

and yields for the base year. More specifically, we use output prices and yields from the 

CAPRI projections for the year 2030, which was taken as the time horizon for CAP 

greening scenario simulations. These projections are used to update the price and yield 

                                           
(31) Two farms belong to the same NUTS3-TF14-ORGANIC cell if their properties with regard to the NUTS 3 

unit, the type of farming (FADN code TF14) and organic status are the same for the base year. 
(32) Without this modelling decision, farms would not be allowed to choose activities that are not observed in 

the same region and farm type, which may restrict their choices and thus also the simulated results. 
However, the set of activities observed in the same farm type and region is indicative of the probable 
feasible options that a farm faces when choosing a production structure. If activities are not observed in 
other similar farms, it indicates that they were probably not economically feasible because various 
unobserved factors (e.g. experience, skills, fixed costs and natural constraints) that are not accounted for 
in our model would make such an activity choice unprofitable. Hence, our approach for modelling non-
observed activities partially accounts for unobserved factors that may impact farms’ choices. A similar 
approach, but with more restrictive selection criteria, was used by Mahy et al. (2015), who consider the 
closest peers to address the self-selection problem. They select the closest peers based on the total farm 
area, crop area allocation, number of crops, geographical distance between farms and permanent 
grassland sgare; our approach, in contrast, is based on only two criteria, NUTS 2 region and farm type. 
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data of the base year, based on the trends. The CAPRI baseline is the best option for this 

adjustment for two reasons. First, it is developed in conjunction with the European 

Commission baseline and the projections present a consistent set of market and sectoral 

income prospects defined on the basis of specific policy and macroeconomic assumptions 

(Britz and Witzke, 2014; Himics et al., 2013). Second, the CAPRI nomenclature is 

consistent enough with that of IFM-CAP that a minimum number of assumptions is 

necessary for the transfer of the CAPRI projections to our model. 

2.2.4.4. Inflation and technological change 

We also adjust input costs based on inflation and technological change predictions Given 

the medium-term outlook on the prospects for agricultural markets and income 

(Directorate-General for Agriculture and Rural Development) (33), we assume an inflation 

rate of 1.6 % for input prices. We also assume a negative adjustment of those prices of 

0.6 % due to the productivity growth of the technical factors (European Commission, 

2016a). 

2.2.4.5. Baseline policy 

The baseline policy refers to the current 2014–2020 CAP policy. This section describes 

the key assumptions made for the baseline construction regarding the CAP policy 

All FADN farms are assumed to comply with the definition of ‘active farmer’ and are 

therefore eligible for subsidies. 

Entitlements and decoupled payments per hectare for individual farms are directly 

drawn from the 2017 FADN data set, as it contains payments according to the 2014–

2020 CAP configuration. That implies that, although some CAP options are not 

endogenously modelled, they are captured by the heterogeneity of payments across 

farms. For example, although there are no explicit data to model the CAP regulation 

establishing that afforested areas and areas under the water framework directive, birds 

directive or habitats directive are eligible for decoupled payments if they had the right to 

a payment in 2008, the actual eligibility of individual farms will be reflected in the data 

for decoupled payments. The same applies for ‘capping’, as the decoupled payment data 

contain the ‘capped’ payments, if any. For this, for the construction of the baseline 

scenario, no alteration is made regarding the distribution of the decoupled payments to 

farms. For MSs that are applying convergence to the decoupled unit payment values, this 

may lead to small deviations, as the end of the convergence period is 3 years after the 

base year (2020 is the end of the convergence period and the base year is 2017). 

Regarding coupled payments, as extensively discussed in Section 2.2.1.8, these are 

drawn from the FADN data set and it is assumed that their distribution will remain the 

same in the baseline scenario. 

The young farmers scheme and the small farmers scheme are not modelled in IFM-

CAP. There are no data available in the FADN database to accurately assess the young 

farmers scheme (34), while the small farmers scheme is a voluntary measure that is not 

easily modelled in the current version of IFM-CAP. In terms of budget, these two 

schemes are minor. The young farmers scheme may represent only up to 2 % of the 

direct payment budget, while the small farmers scheme is applied in 15 MSs and is 

disbursed only to (small) farmers applying for it, which is difficult to assess (European 

Commission, 2017). 

Under the CAP greening measures, 30 % of direct payments are conditional on 

complying with three mandatory requirements: (i) crop diversification for arable crops; 

                                           
(33) https://ec.europa.eu/info/food-farming-fisheries/farming/facts-and-figures/markets/outlook/medium-

term_en 
(34) The FADN database does not contain information on whether a farmer has become the head of the farm 

for the first time. 

https://ec.europa.eu/info/food-farming-fisheries/farming/facts-and-figures/markets/outlook/medium-term_en
https://ec.europa.eu/info/food-farming-fisheries/farming/facts-and-figures/markets/outlook/medium-term_en
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(ii) maintenance of permanent grassland; and (iii) allocation of land to EFAs. Following 

EU regulations (EU, 2015; European Parliament and Council, 2014a), the modelling of 

greening measures assumes full compliance with the three greening measures without 

allowing farmers to trade off income reductions with full compliance against direct 

payment reductions as a consequence of partial or full non-compliance. Most studies in 

the literature model full compliance with CAP greening requirements (e.g. Cortignani and 

Dono, 2015; Gocht et al., 2017; Mahy et al., 2015; Was et al., 2014); a few allow 

farmers to choose the level of (non-)compliance (e.g. Cortignani et al., 2017; Solazzo 

and Pierangeli, 2016; Vosough-Ahmadi et al., 2015). As shown in Table 17, the crop 

diversification measure applies only to farms with an arable area greater than 10 ha. 

Farms with more than 75 % of their total eligible land covered by grassland and farms 

with 75 % of their arable area cultivated with forage are also not subject to the crop 

diversification measure. Furthermore, there are stricter requirements for farms having 

more than 30 ha of arable land (group 2) than for farms with between 10 and 30 ha of 

arable land (group 1). Farms in the latter group need to have at least two different crops 

and the main crop should not exceed 75 % of the arable land. Farms in the former group 

are required to have at least three crops; the main crop should not cover more than 

75 % of the arable land and the two main crops together should not cover more than 

95 % of the arable land. 

Table 17. Crop diversification measure as implemented in IFM-CAP  

 Exempted 

farms 
Farms group 1 

Farms 

group 2 

Arable land (AL) < 10 ha*  10–30 ha  30 ha 

Minimum number of cultivated crops — 2 3 

Maximum proportion of main crop in AL (%) — 75 % 

Maximum proportion of two main crops in 

AL (%) 
— — 95 % 

NB: *Farms are excluded if (i) fodder area + fallow area  75 % of AL and AL – (fodder + fallow) < 30 ha; (ii) 

grassland + other herbaceous fodder crops > 75 % of the UAA and AL – other herbaceous crops < 30 ha; or 

(iii) the farming is organic. 

Source: Compiled based on Regulation No 1307/2013 (European Parliament and Council, 2013), Commission 

Delegated Regulation No 639/2014 (European Parliament and Council, 2014a) and Commission Delegated 

Regulation No 640/2014 (European Parliament and Council, 2014b). 

Under the maintenance of permanent grassland measure, the ratio of grassland to total 

agricultural area cannot decrease by more than 5 % compared with the reference ratio in 

2017. Moreover, under this measure, farms are prevented from ploughing and 

converting permanent grassland in areas designated by MSs as environmentally 

sensitive (35). 

The calculation of the reference ratio can be applied at national, regional or subregional 

level: 23 MSs apply it at national level, four MSs do so at regional level and one MS is 

without permanent grassland (Malta). If the ratio of grassland to total agricultural area 

has decreased by more than 5 % at the national or regional level (depending on 

implementation), the obligation needs to be imposed at farm level (European Parliament 

and Council, 2013, 2014a,b). 

We use 2017 as the reference year for modelling the grassland measure, as this is the 

IFM-CAP base year. That is, we calculate the ratio of grassland to total agricultural area 

                                           
(35) These areas can be located inside or outside Natura 2000 areas. 
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for 2017 and compare it with the ratio at baseline (2030). If in an MS or region 

(depending on implementation) the ratio decreases by more than 5 % at baseline 

relative to the base year, we impose the obligation at farm level in the greening 

scenario. 

Two categories of grassland are modelled in IFM-CAP: permanent grassland and rough 

grazing area. Permanent grassland is assumed to be fully replaceable with arable land if 

relative returns change, while the rough grazing area is assumed to be fixed, as this type 

of land is usually of low quality. Both grassland categories are assumed to be subject to 

the grassland measure in the greening scenario. 

In the case of environmentally sensitive areas, we consider that grassland located in a 

Natura 2000 area is subject to the grassland measure of no conversion to arable land. 

The EFA measure requires farms with more than 15 ha of arable land to allocate at least 

5 % of that land (excluding areas under grassland) to an EFA. The areas that qualify as 

EFAs include land left fallow, terraces, landscape features, buffer strips, agroforestry, 

areas with short rotation, afforested areas, catch crops and nitrogen-fixing crops 

(Table 18) (European Parliament and Council, 2013, 2014a). MSs can choose which land 

elements they classify as eligible for EFA status. As reported in Table 18, land cultivated 

with nitrogen-fixing crops is the most common type of EFA-eligible area across MSs (27 

MSs), followed by fallow land (26 MSs) and areas with short rotation (20 MSs). The 

eligible land elements have different weights in contributing to EFA levels (varying 

between 0.3 and 30), depending on their conversion and weighting factors (36). 

The EFA measure is the most challenging measure to model, as no data are available 

that enable us to capture different eligible land elements. Because of missing data in the 

FADN database, only the following four elements of EFAs are considered in IFM-CAP: 

fallow land (including voluntary set-aside), afforested areas, catch crops and nitrogen-

fixing crops. Fallow land and nitrogen-fixing crops are endogenous activities in IFM-CAP. 

Forests and catch crops are not endogenously modelled in IFM-CAP and, therefore, their 

areas are set as equal to the base year level. EU regulations specifies the list of crops 

that can be considered catch crops / green cover or nitrogen-fixing crops. Given that in 

the IFM-CAP model some minor activities are aggregated, they cannot be mapped 

exactly to this list of eligible crops. Therefore, we assume that all cereals and pulses can 

be considered catch crops and that pulses and soya can be considered nitrogen-fixing 

crops. MSs with more than 50 % of their land surface area covered by forest may decide 

that the EFA measure will not be applied in areas in which more than 50 % of the land 

surface area at local administrative unit (LAU) 2 level (37) (or other contiguous 

geographical area) is covered by forest and the ratio of forest land to agricultural land is 

higher than 3:1. This forest exemption is applied in Estonia, Latvia, Finland and Sweden. 

Given that the FADN (and IFM-CAP) does not include any information at LAU 2 level, the 

forest exemption is assessed at farm level, but only for farms located in NUTS 3 regions 

in which the exemption is applied (European Commission, 2016b). 

It is important to note that MSs can change the elements that are eligible to be counted 

as EFAs on a yearly basis. Table 18 reports the notifications applied in 2016, which 

correspond to the assumptions used in the modelling of CAP greening in IFM-CAP. 

 

                                           
(36) As in the case of the crop diversification measure (Table 17), farms with more than 75 % of their total 

eligible land covered by grassland and farms with 75 % of their arable area cultivated with forage are not 
subject to the EFA measure. 

(37) An LAU is a low-level administrative division of an MS. There are two levels of LAUs: LAU 1 and LAU 2.  
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Table 18. Land elements eligible as EFAs 

Eligible area 

No of 

implementing 

MSs 

Conversion 

factor 

Weighting 

factor 

Modelling 

in IFM-

CAP 

Fallow land 26 n.a. 1 Yes 

Terraces 8 2 1 No 

Hedges or wooded strips 13 5 2 No 

Isolated trees 13 20 1.5 No 

Trees in line 16 5 1.5 No 

Trees in groups 17 n.a. 1.5 No 

Field margins 16 6 1.5 No 

Ponds 12 n.a. 1.5 No 

Ditches 15 3 2 No 

Traditional stone walls 7 1 1 No 

Other landscape features under GAEC or 

SMR 

11 n.a. 1 No 

Buffer strips 17 6 1.5 No 

Agroforestry 11 n.a. 1 No 

Strips along forest edges (no production) 9 6 1.5 No 

Strips along forest edges (with 

production) 

6 6 0.3 No 

Areas with short rotation 20 n.a. 0.3 No 

Afforested areas 14 n.a. 1 Yes 

Catch crops or green cover 19 n.a. 0.3 Yes 

Nitrogen-fixing crops 27 n.a. 0.7 Yes 
NB: GAEC, good agricultural and environmental conditions; n.a., not applicable; SMR, statutory management 

requirements. 

Source: Compiled based on EU regulations (European Parliament and Council, 2014a, 2015). 

 

 

2.2.4.6. Validation of the baseline scenario 

We have performed a validation of the baseline model, examining the effect of each of 

the above assumptions to the baseline results. More specifically, In Table 19, we are 

summarizing the scenarios run for validating the baseline. The ‘by/cl’ scenario contains 

only the baseyear and the calibration data. This is expected to be almost identical to the 

baseyear data. The ‘by/cl/a’, ‘by/cl/c’ and ‘by/cl/g’ scenarios isolate the additional 

activities, CAPRI trends and greening assumptions. These scenarios will provide the 

effect of each of the above assumptions to the baseyear data. The rest of the scenarios 

are combinations of the previous scenarios and are useful for seeing the interaction 

effects of the baseline assumptions. The ‘by/cl/a/c/g’ scenario is the actual baseline 

model that includes all three elements. 

In Table 20 and Table 21, we provide the results of the model for the baseline 

assumptions. As expected, the calibrated model ‘by/cl’ provides almost identical results 

to the baseyear (‘by’) values. Also, the inclusion of additional activities (by/cl/a) and of 

greening constraints (by/cl/g) does not have a significant impact in the results. Results 

change in comparison to the baseyear when we introduce price changes from CAPRI 

trends. Nevertheless, the changes are reasonable and thus we conclude that the baseline 

construction is valid. 
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Table 19. Scenarios run for the validation of the baseline (2017 baseyear) 

Scenario Additional 
Activities 

CAPRI 
Trends 

Greening 
Constraints 

by/cl    

by/cl/a +   

by/cl/c  +  

by/cl/g   + 

by/cl/a/g +  + 

by/cl/c/g  + + 

by/cl/a/c + +  

by/cl/a/c/g + + + 

Note: ‘by’=2017 baseyear / ‘cl’=calibration / ‘a’=additional activities / ‘c’=capri 
trends / ‘g’=greening constraints 

 

Table 20. Estimated areas for the various stages of the baseline in EU (th. ha) 

 
by by/cl by/cl/g by/cl/a by/cl/a/g by/cl/c by/cl/c/g by/cl/a/c by/cl/a/c/g 

DWHE 2,560 2,560 2,136 2,543 2,452 2,348 2,035 2,186 2,109 

SWHE 22,166 22,166 17,413 21,729 19,705 20,945 16,672 19,255 17,661 

BARL 11,961 11,961 9,731 11,925 11,371 13,694 11,048 13,747 13,019 

MAIZ 7,795 7,795 6,374 7,855 6,809 8,311 6,604 8,606 7,433 

RYEM 2,109 2,109 1,770 2,156 2,106 2,321 1,922 2,239 2,164 

OATS 2,558 2,558 2,118 2,564 2,478 2,293 1,923 1,825 1,762 

PARI 504 504 548 510 519 509 547 540 560 

OCER 4,243 4,243 3,510 4,195 4,068 3,008 2,620 2,178 2,084 

PULS 3,019 3,019 2,348 3,071 2,846 2,771 2,274 2,777 2,554 

RAPE 7,173 7,173 5,499 7,432 6,658 6,703 5,110 7,653 6,723 

SUNF 4,535 4,535 3,677 4,508 3,604 4,388 3,506 4,326 3,312 

SOYA 915 915 732 944 790 742 637 680 552 

OOIL 251 251 207 270 258 340 278 471 450 

SUGB 1,760 1,760 1,519 1,670 1,598 907 904 802 778 

POTA 1,217 1,217 1,120 1,314 1,257 1,474 1,309 1,782 1,697 

TEXT 372 372 344 380 350 338 318 314 296 

TOBA 85 85 78 96 101 88 80 108 104 

OCRO 418 418 322 460 302 491 379 556 386 

OIND 448 448 388 643 594 598 493 858 793 

MAIF 5,692 5,692 3,724 5,686 5,409 8,560 5,063 11,416 10,230 

PGRA 29,331 29,331 36,248 28,910 29,579 26,346 34,244 23,020 24,214 

RGRA 6,498 6,498 6,498 6,498 6,498 6,498 6,498 6,498 6,498 

OFAR 14,676 14,676 22,671 14,675 16,445 17,389 25,057 19,439 21,348 

VGOF 1,109 1,109 993 1,225 1,099 1,109 996 1,197 1,085 

VGMG 346 346 314 436 314 357 321 435 332 

VGUG 119 119 161 134 138 122 164 130 134 

APPL 595 595 679 610 617 620 704 674 682 

CITR 410 410 421 409 414 428 440 430 435 

BERR 252 252 282 252 253 266 296 271 272 
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NUTS 1,175 1,175 1,280 1,186 1,197 1,033 1,146 934 945 

PEAC 230 230 237 235 236 206 215 170 171 

OLIV 3,184 3,184 3,415 3,181 3,230 2,973 3,221 2,511 2,549 

OFRU 436 436 512 444 457 424 501 445 459 

TABO 255 255 274 266 266 288 306 440 440 

TAGR 74 74 97 76 84 81 104 115 123 

TWIN 2,734 2,734 3,034 2,759 2,811 2,951 3,231 2,997 3,047 

FLOW 59 59 53 57 40 59 53 58 40 

NURS 69 69 69 68 68 69 69 68 68 

FALL 4,349 4,349 4,883 4,311 8,660 3,632 4,391 3,529 8,172 

 by by/cl by/cl/g by/cl/a by/cl/a/g by/cl/c by/cl/c/g by/cl/a/c by/cl/a/c/g 

 

Table 21. Estimated number of animals for the various stages of the baseline in EU 

ACT by by/cl by/cl/g by/cl/a by/cl/a/g by/cl/c by/cl/c/g by/cl/a/c by/cl/a/c/g 

DCOW 22,300 22,099 22,094 22,103 22,111 30,816 30,775 30,826 30,833 

SCOW 11,304 11,230 11,232 11,228 11,229 12,143 12,142 12,141 12,141 

HEIR 9,002 8,984 8,984 8,984 8,984 9,795 9,792 9,795 9,795 

HEIF 6,609 6,582 6,583 6,599 6,598 8,569 8,551 8,586 8,586 

BULF 7,024 7,001 7,004 7,041 7,042 8,458 8,435 8,498 8,498 

CAMR 18,682 18,433 18,432 18,433 18,432 16,361 16,378 16,361 16,361 

CAFR 4,562 4,553 4,552 4,553 4,553 4,143 4,145 4,143 4,143 

CAMF 1,024 1,004 1,005 1,004 999 863 868 863 864 

CAFF 1,024 1,000 1,005 999 1,004 986 989 986 986 

SOWS 12,566 10,191 10,191 10,190 10,190 18,945 17,855 18,941 18,937 

PIGF 85,849 74,612 74,627 74,595 74,599 87,501 85,004 87,475 87,476 

SHGM 61,664 58,583 58,415 58,524 58,503 60,047 60,007 60,118 60,103 

SHGF 26,504 23,621 23,554 23,609 23,555 39,390 39,236 39,403 39,397 

HENS 276,224 189,138 188,069 188,911 189,653 336,970 331,503 336,566 337,530 

POUF 967,896 729,652 729,386 731,016 730,388 936,570 923,113 938,173 937,811 

OANI 3,164 2,873 2,873 2,873 2,873 2,873 2,873 2,873 2,873 

ACT by by/cl by/cl/g by/cl/a by/cl/a/g by/cl/c by/cl/c/g by/cl/a/c by/cl/a/c/g 
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2.2.5. Environmental Indicators 

The environmental indicators are used to further process the model’s results and add the 

environmental effects of the evaluated policies. Below we briefly describe the relevant 

indicators for greenhouse gas emissions, nitrogen, input use, biodiversity and soil 

quality. More detailed information can be found in Bielza et al. (2015), Bielza et al. 

(2017) and Bielza et al. (2021). 

2.2.5.1. GHG and N indicators 

The following indicators are currently implemented in IFM-CAP: 

 CH4TOT: GHG methane emissions = CH4ENT + CH4MAN + CH4RIC (in t CO2eq). 

 N2OTOT: GHG Nitrous oxide emissions  = N2OGRA + N2OAPP + N2OMAN 

+N2OSYN + N2OHIS + N2OCRO + N2OLEA + N2OAMM (in t CO2eq) 

 GWPA: GHG total emissions = GH4+N2O (in t CO2eq). 

 NH3: Ammonia emissions =NH3GRA + NH3APP + NH3MAN + NH3SYN (in t N) 

 FB: Farm balance (N surplus) = FBH + FBA (in t N) 

All of them can be expressed in total amount, t per hectare and kg per kg. 

 

2.2.5.2. Input use indicators 

The FADN database for the year 2012 lacks of data on intermediate inputs in physical 

quantities such pesticides and fertilizers(38), so that proxies on input use(39) have to be 

applied in the structure of the IFM-CAP model. The following four indicators are currently 

implemented (Bielza, 2017): 

 EINP: Average annual expenditure on inputs per ha - proxy of agricultural 

intensification 

 EPLA: Pesticide expenditure per ha - proxy of pesticide risk 

 EFER: External fertilizer expenditure per ha - proxy of fertilizer consumption 

 FERQ:  Quantity of fertilizers and soil improvers – proxy of fertilizer application 

(kg per ha) 

The first three indicators resulting from dividing the corresponding input expenditure on 

total inputs, pesticides or fertilizers by the UAA, while FERQ approximates input 

quantities by using a standard fertilizer price (Bielza, 2017). 

 

2.2.5.3. Biodiversity 

The IFM-CAP model contains three indicators related to biodiversity on position: CRICH, 

CDIVE and CDIVE_ha. The indicators are calculated using functional crop groups. A 

functional crop group is defined as a set of crops that are homogeneous from a 

biodiversity support perspective. 

The biodiversity indicators are calculated as follows: 

 CRICH: Number of functional crop groups cultivated on a farm on a per hectare 

basis. Crops considered in the indicator are annual and perennial crops. Crops 

considered in the indicator are annual and perennial activities. Permanent 

grasslands and rough grazing pastures are excluded. 

                                           
(38) From 2014 onwards, the FADN unit started to collect data on NPK input use, which is still being processed 

and validated. 
(39) The use of these types of proxies were suggested by Westbury et al. (2011) and the FLINT project 

(http://www.flint-fp7.eu/). 
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o The indicator is calculated by dividing the number of functional crop groups 

per farm (M) by the sum of the respective areas (Aj): 

CRICH =  
M

∑ AjM
j=1

 

 CDIVE: Shannon diversity index calculated on crop groups shares at farm level. 

Crops considered in the indicator are annual and perennial crops. Permanent 

grasslands and rough grazing pastures are excluded. Crops grown under shelter 

are also excluded. 

o The indicator is estimated as follows 

CDIVE =  − ∑(cj ∙ ln cj)

M

f=1

 

where M is the number of functional crop groups in the farm and where cj 

is the share of the j-th functional crop group calculated as: 

cj =  
Aj

∑ Aj
M
j=1

 

 CDIVE_ha: Shannon diversity index per hectare. This indicator can be computed 

at farm level and should be aggregated at regional / country level by weighted 

average using total farm areas and FADN weighing factors. 

The last two indicators are complementary. In order to make scenario comparison or 

geographic comparison at the aggregate level, both indicators should be higher (or 

lower) to determine that the new situation is better (or worse) than the baseline. If one 

indicator is higher and the other is lower, then it will not be possible to draw clear 

conclusions for biodiversity. 

 

2.2.5.4. Soil quality and management indicators 

The IFM-CAP model at its current stage includes two indicators referring to soil quality 

and management: 

Crop cover effect on soil erosion: Conventionally, soil erosion is estimated using the 

well known Revised Universal Soil Loss Equation (RUSLE) equation, which estimates soil 

losses as a function of several biophysical factors such as erosivity of the eroding agents 

(mainly water), erodibility of the soil, slope steepness and slope length of the land, land 

cover, stoniness and human practices designed to control erosion. There is no farm-level 

information at EU-28 level about most of these factors (e.g. rainfall, slope, soil type, soil 

erodibility…), so that the RUSLE equation cannot be fully used. To overcome this 

limitation, a proxy based on crop cover was proposed by Bielza (2017). 

The crop cover erosion indicator (EROSF_CP) is calculated as the product of RUSLE 

cover-management factor (C-factor) and soil conservation and support practices factors 

(P-factor), which are part of the full RUSLE equation. EROSF_CP is calculated as follows: 

EROSF_CPf = ∑ [Cci
NUTS2 ×

Aari
f

TEAf
× CM

NUTS2 × PNUTS2]

I

i=1

+ ∑[Ccj
NUTS2 ×

Aperj
f

TEAf
× PNUTS2]

J

j=1

 

where the Aari is the arable crops area (including fallow land but not crops under shelter) 

in farm f, I the number of arable crops in the farm, Aperj is the area of permanent crops 

and permanent grasslands (including rough grazing) in farm f, J the number of 

permanent crops and grasslands in the farm, TEA the total erodible area (the utilised 

agricultural area of the farm except those of crops under shelter), CC the crop-specific 
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cover factor(40), P the support practices factor and CM the management factor, which is 

calculated as follows: 

CM
NUTS2 = CMtillage

NUTS2 × CMcatchcrop
NUTS2 × CMresidues

NUTS2  

 

The IFM-CAP model also has two other intermediate erosion factors on position: 

 EROSF_Cc is only based on C- crop-specific factors 

 EROSF_Ccm also includes soil management factors defined at NUTS2 level. 

Bielza et al. (2017) reports the full description and values of the factors applied in 

the IFM-CAP model. Most of the factors have been obtained from the European Soil Data 

Centre (ESDAC(41)) and further information can be found in Panagos et al. (2015a and b). 

 The share of permanent grassland, SGRA, is used as a proxy for soil organic carbon 

content, and it is calculated as follows: 

𝑆𝐺𝑅𝐴 =
𝐴𝑟𝑔 + 𝐴𝑢𝑔 + 𝐴𝑚𝑝

𝑈𝐴𝐴
 

Using FADN on rough grazing area (Arg), unused permanent grassland with DP 

(Aug), Area of meadows and permanent pastures (Amp) being defined as the grassland 

grown for 5 years or more on cultivated land and Total Utilised Agricultural Area (UAA). 

Note that rough grazing areas are fixed in the IFM-CAP model. 

 

                                           
(40) Crops have been grouped depending on their physical and phenological features which can increase or 

decrease soil erosion (i.e. soil coverage, root structure, phenological stages, etc.). 
(41) esdac.jrc.ec.europa.eu, European Commission, Joint Research Centre 
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3. Code design and implementation 

The IFM-CAP model is a large-scale farm model. It consists of more than 100 code files 

and several gigabytes of data. Additionally, it was developed for continuous use and its 

size is expected to grow as requests for policy evaluations accumulate. 

For these two reasons, efficient organisation of the code is necessary to produce a model 

that is error-free, easy to maintain and extend. An efficient design is a prerequisite for 

having a model that can grow while keeping the complexity manageable. 

In this section, initially we describe the design principles for coding IFM-CAP and then we 

provide guidance on how to install, run and further develop the model. 
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3.1. Conceptual basis 

3.1.1. The farm model abstraction 

We have based the IFM-CAP2 coding on a farm model abstraction as in Figure 17. The 

farm optimisation problem is at the core of the design. It contains all parameters, 

variables and equations that the modeller assumes that represent in a satisfactory way 

the decision-making process of the farm. The parameter values (i.e. the data) are at 

its perimeter. They include individual characteristics of the farm (e.g. the costs of the 

farm’s activities) and general parameters (e.g. policy parameters that apply to all farms). 

A part of those values will be the result of data estimation procedures. These 

procedures form the outer layer. 

 

 

Figure 17. An abstract view of a farm model 

 

It is a core design choice that this logical partitioning of a farm model is also represented 

in the IFM-CAP code. The reflection of this representation in the code makes the model 

more transparent and facilitates its verification. ‘What the model does’ can be 

understood by reviewing the behavioural component (layer 1), disregarding the other 

two layers. ‘What data are the model using’ can be easily answered by examining the 

data (layer 2), disregarding the optimisation problem and/or data estimation procedures. 

‘How the data were derived’ can be assessed by focusing on the data operations 

(layer 3). Thus, the comprehension of the model can be broken into smaller parts and is 

easier to do. Furthermore, when these three layers are kept separate, it is easier to 

undertake debugging and error tracing. 
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3.1.2. The optimisation problem concept 

We define an optimisation problem using the following conceptual elements (42). 

1. Variables. This represents the set of variables (i.e. which variables are contained 

in the problem). 

2. Equations. This represents the set of equations and their mathematical 

formulation (i.e. which equations are contained in the problem and their exact 

mathematical form). 

3. Parameters. This represents the set of parameters (i.e. which parameters the 

problem contains without any reference to the actual data that are assigned to 

them). 

4. Parameter data. These are the values assigned to the parameters (43). 

5. Solve. This represents the final matrix of the problem. It is the actual numerical 

matrix that is passed to the solver. 

Changing one of those elements (e.g. adding a new variable or modifying the parameter 

data) will result in a different optimisation problem (i.e. a different final matrix). 

However, some elements will trigger more extended changes to the problem and other 

will have limited effect.  

More specifically, altering the set of variables or the set of parameters (i.e. adding or 

removing a variable or a parameter from the problem) will necessarily trigger a change 

in the equation element (adding or altering an equation; otherwise, it was meaningless 

to add or remove a variable or parameter). However, a change in the equation element 

(e.g. adding, removing or changing the definition of an equation) will not necessarily 

require a change in the set of variables or the set of parameters. In addition, a change in 

the parameter set will require a change in the parameter data, while the reverse does 

not hold; changing the value of a parameter does not necessarily require a new 

parameter. In addition, any change in the equations or the parameter data will result in 

a different final matrix of the problem. The same holds for a change in the set of 

variables or the set of parameters, as this will trigger a change in the equations and/or 

the parameter data. 

The above relationships regarding the changes triggered to the optimization problem by 

changes in its element can be organised in a hierarchical relationship in Figure 18. An 

arrow from (A) → (B) signifies that any change in the element (A) will require a change 

in element (B) (if we add a new variable, we need to add or change an equation), 

although the opposite is not necessarily true (if we add an equation, it does not 

necessarily mean we need a new variable) 

 

                                           
(42) Without a loss of generality, the naming convention is related to the GAMS modelling language. 
(43) This definition also contains the numerical values of any attributes of the variables and the equations 

(upper and lower bounds, etc.). 
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Figure 18. The hierarchical relationship of the elements of the optimisation problem.  
An arrow from (A) → (B) signifies that any change in the element (A) will require a change in 

element (B) (if we add a new variable, we need to add or change an equation), although the 

opposite is not necessarily true (if we add an equation, it does not necessarily mean we need a 
new variable). 

To make the above definitions more concrete, we provide the example of the classical 

transport problem in Box 1. The code is shown in part A and the conceptual elements of 

the optimisation problem are shown in part B. 

We use this hierarchy in order to partition IFM-CAP code more efficiently, as explained in 

a later section.  
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Box 1. Example of a dependence diagram of a language program 

Set 
i 'canning plants' / seattle, san-diego / 
j 'markets' / new-york, chicago, topeka /; 
 
Parameter 
a(i) 'capacity of plant i in cases' 
/ seattle 350 
 san-diego 600 / 
 
b(j) 'demand at market j in cases' 
/ new-york 325 
 chicago 300 
 topeka 275 /; 
 
Table d(i,j) 'distance in thousands of miles' 
 new-york chicago topeka 
seattle  2.5 1.7 1.8 
san-diego 2.5 1.8 1.4; 
 
Scalar f 'freight in dollars per case per thousand miles' / 90 /; 
 
Parameter c(i,j) 'transport cost in thousands of dollars per case'; 
c(i,j)  = f*d(i,j)/1000; 
 
Variable 
x(i,j) 'shipment quantities in cases' 
z 'total transportation costs in thousands of dollars'; 
 
Positive variable x; 
 
Equation 
cost 'define objective function' 
supply(i) 'observe supply limit at plant i' 
demand(j) 'satisfy demand at market j'; 
 
cost.. z =e = sum((i,j), c(i,j)*x(i,j)); 
 
supply(i).. sum(j, x(i,j)) =l = a(i); 
 
demand(j).. sum(i, x(i,j)) =g = b(j); 
 
Model transport / all /; 
 
solve transport using lp minimizing z; 
 
display x.l, x.m; 

 
A: Code of the transport problem 

 
Part B: Conceptual elements 

 

 

 
 
 

Part C: File organisation 
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3.1.3. Reproducibility 

Reproducibility refers to the ability of the scientific community to obtain the same 

results as the originators of some specific scientific findings (Lusoli, 2020). 

In the case of IFM-CAP, one obstacle for reproducibility is the availability of data. Our 

data are based on individual FADN farm data and there is a confidentiality agreement 

between the JRC and the Directorate-General for Agriculture and Rural Development that 

prohibits the sharing of the data. This makes it impossible for a third party to reproduce 

the results. However, we are sharing the model’s code and, in the future, we may 

release some artificial farm data that will allow independent researchers to experiment 

and validate the model’s operation. 

Beyond this, we apply three general principles for making a research project 

reproducible, as described in Kitzes et al. (2017): 

1. clearly separate, label and document all data, files and operations that occur on 

data and files; 

2. document all operations fully, automating them as much as possible and avoiding 

manual intervention in the workflow when feasible; 

3. design a workflow as a sequence of small steps that are glued together, with 

intermediate outputs from one step feeding into the next step as inputs. 

A related issue is that of literate programming, a programming paradigm introduced 

by Donald Knuth. Knuth’s key message was that code should be made not only machine 

readable (or executable by the computer) but also human readable. This means that the 

logical structure of the code should reflect a narrative that resembles that of a paper, as 

opposed to a set of somewhat ad hoc instructions that reflect the order in which the 

analysis took place (de la Guardia and Sturdy, 2019). We adhere to this approach by 

applying sufficient commenting and also employing the R Markdown language for several 

data-related operations. 
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3.1.4. Modularity 

Modularity is a concept that has gained popularity in recent decades across a variety of 

professional and disciplinary settings. Russell (2012) provides a thorough description of 

the concept. 

Modularity describes specific relationships between a whole system and its 

particular components. A modular system consists of smaller parts (modules) 

that fit together within a predefined system of architecture. Modules feature 

standardized interfaces, which facilitate their integration with the overarching 

system architecture. A key feature of each module is that it should encapsulate 

(or ‘black box’) its messy internal details, thus masking technical, organizational, 

cultural, and political conflicts to display only a consistent interface. The 

designers of modular systems are therefore able to swap modules in a ‘plug-and-

play’ manner, which increases the system’s flexibility. 

In the software engineering domain, modularisation was embraced from the beginning 

and has been the subject of extensive and ongoing research (van der Hoek and Lopez, 

2011). Quite early, Parnas (1972) established the fundamental principle of information 

hiding, which refers to reducing the information that a module allows other modules to 

access. The second related principle is that of low coupling and high cohesion, 

introduced by Stevens et al. (1974), which refers to the dependence of one module on 

the others to the least extent possible (coupling) and the existence of strong dependence 

in the elements of a module (cohesion). A derived principle is that of separation of 

concerns, which refers to decomposing a computer program in such a way that different 

concerns or aspects of the problem at hand are addressed in distinct modules (Dijkstra, 

1982). 

Obviously, modularisation is a desired property of any design but there are two obstacles 

to achieving it. The first is related to the cross-cutting aspects/concerns that a 

problem has. There is a limit to the degree of low coupling related to the nature of the 

problem. The second is that there is an unlimited set of possible modularisations 

and the designer has to select one. Thus, it is a design challenge to identify the optimal 

set of modules. 

The need for modularity comes from the fact that, usually, a model is continuously 

evolving. If we had to develop a one-time-use model, a non-modular solution would be 

more efficient. However, the time and effort involved in continuously adjusting a 

monolithic model grows exponentially and, after a certain point, rewriting the model from 

scratch may take less time than modifying it. On the other hand, a modular model is 

easily adaptable to extensions and modifications. 

It is often the case that the word ‘modular’ is misunderstood. Calling a model ‘modular’ 

merely on the basis that it provides varied functionality or that the code lies in different 

files is not correct. These ‘modules’ are usually split into different files but their ‘software 

logic’ is still very much interlinked, so that from a software point of view they are a 

single monolithic entity. A non-modular model, although it may have ‘modules’, requires 

too much effort and time to understand, maintain and extend. The modularity of the 

model is a qualitative property of logic design, not of how the files are split. 

A model that is, in fact, modular has a structure such that understanding it is easy and 

extending or modifying it does not create ripple effects (i.e. the need to change the 

code in many other parts of the model), and thus extending or modifying it does not 

require too much effort. The properties of a modular model are as follows. 

1. Transparency. The model can be reviewed module by module, facilitating overall 

comprehension and quality control. 

2. Maintainability. Code and database updates of a module do not affect other 

modules. 

3. Extensibility. Modules can be extended or added to the core model without 
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affecting other parts of the model. 

4. Distributed development. Modellers focus on specific modules, which facilitates 

coordination of the coding efforts. 

There are already some well-recognised and mature software development methods 

available for increasing the modularity of software code. 

1. Divide and conquer. This principle dictates the decomposition of a large and 

extended problem into smaller self-sustained subproblems. Handling the series of 

smaller subproblems is less complex than dealing with the whole problem at once. 

2. Separation of concerns. This is a design principle for separating a computer 

program into distinct sections, so that each section addresses a separate concern. 

3. Data flow-oriented design. In the data flow-oriented design approach, the 

design is information driven. The program structure follows that of the 

information flow and the emphasis is on the processing or operations performed 

on the data. 
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3.2. Coding guidelines 

The organisation and the structure of the code have the objective of making the model 

modular, transparent and easy to debug. More specifically, considering the abstractions 

of the farm models and the optimisation problem, as analysed in the previous section, 

and the specifications of modularity and reproducibility, the structure of the code adheres 

to the guidelines found in the following subsections. 

3.2.1. Model versions and projects 

3.2.1.1. Versions 

As discussed earlier, the IFM-CAP model will be used for different assessment exercises 

and some will probably require a significantly restructured model, that is, changing, 

adding or deleting sets, variables, equations and parameters. For example, the present 

IFM-CAP model has a fixed input–output relationship for farm production; a request to 

examine the effect of a nitrogen tax will require the introduction of a functional input–

output relationship for nitrogen and output yield. In creating the restructured model the 

current model will not be deleted, as it is possible that it will be reused. Therefore, it is 

most probable that more than one version of the model will reside in the codebase (44). 

There are two ways to handle the parallel existence of two or more versions of the 

model. 

1. Try to fit all versions in the same codebase. The variables, equations and 

parameters of the different models are kept in the same file/files, with the 

common elements used by all models and the individual elements used only by 

the relevant model. This approach requires the utilisation of ‘smart’ and ad hoc 

solutions to avoid the code of one model interfering with the use of the other 

model. For example, in the case of a ‘shared equation’, i.e. has one form in the 

first model and a different form in the second model, there may be different 

versions of the equation or a coefficient in front of the terms that are relevant to 

only one model that will be zeroed out depending on the model employed. 

2. Clearly separate the versions into different folders/files. In this approach 

the two versions do not share any code at all. The common code is duplicated in 

the different model folders (but still separated so that it can be edited 

independently) and the individual code relates only to the relevant models. 

Developing a new version does not imply that the workload will be the same as 

the workload for developing the current version, as the current model will 

probably be copied to a different folder and only the required changes will be 

applied. If a bug is found in the predecessor model (the starting point of the new 

version), it will need to be manually corrected in the descendant model. 

As modularity and transparency are of prime concern, we chose to follow the second 

approach. Although it leads to greater code redundancy, it also provides greater code 

clarity and is far more straightforward to read, understand and debug (45). In the first 

approach, the redundant elements (sets, variables, equations and parameters that are 

used by one model but not by the other) add noise to the process of understanding the 

code. In addition, the ad hoc solutions required to make the mixed code work with the 

different models make this approach more error prone and harder to read and 

understand. Given that reading and understanding the code is a task that is exercised 

                                           
(44) This leads to redefining the notion of the ‘model’ in the IFM-CAP case. As parallel versions of the IFM-CAP 

optimisation problem will exist, and all are potentially utilisable, IFM-CAP is converted to a ‘modelling 
framework’ that encompasses the design principles and the knowledge base of the developers and can be 
quickly used to develop a ‘model’ that responds to a particular policy question. 

(45) IFM-CAP v.1 was coded following the first approach; comparing IFM-CAP v.2 with v.1 shows convincingly 
the advantages of the second approach regarding code clarity and transparency. 
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more frequently than writing the code (46), the second approach also leads to higher 

productivity in terms of model development. 

The various data preparation processes are also version specific. For example, calibration 

is expected to be different between the version of the model for a fixed yield and that for 

a functional yield; in this case each version will have its own calibration code. For data 

preparation code that is similar between two versions, again for the sake of code clarity, 

we will follow the code duplication approach. For example, if between two versions the 

feed module is identical, we will duplicate the code across the two versions. 

However, creating a different version of the model whenever a new equation or a new 

parameter is required would bloat the codebase unnecessarily. Thus, a version should be 

spawned only in the case of significant changes to an existing version. For dealing with 

limited modifications to an existing model, the notion of a ‘project’ should be used, as 

presented in the following section. 

 

3.2.1.2. Project 

The standard use case is that a version of the IFM-CAP model is employed for answering 

one or more research questions, for example what the production and environmental 

effects of a specific configuration of a new CAP policy are or what the production effects 

of a nitrogen tax are. Answering different research questions with the same version of a 

model requires slight modifications to the code, to the input data and to the analysis of 

the results. 

Thus, for organising efficiently both the code and the data, the notion of a ‘project’ is 

introduced. A project is the isolated code (47) of a particular version of the model that has 

responsibility for using that version’s logic and data and, if necessary, modifying it in 

order to answer a specific research question. One version of the model will contain many 

projects, as research questions that utilise that version will accumulate. 

For example, the main version of the model contains the legal_proposal and the trade 

projects. The first was created for evaluating the European Commission’s legal proposal 

for the CAP post 2020; the second was created for evaluating the production effects of 

the FTA trade agreements48 based on the assumptions of the Aglink/Cosimo computable 

general equilibrium model. The two projects differ in the following aspects: 

— Different output prices. The legal_proposal inherits the baseline prices while 

the trade project reads prices from an external file. 

— Different scenario assumptions. The legal_proposal project has 20 scenarios 

that vary in terms of the CAP budget, the Right Hand Side (RHS) of CAP 

constraints and the equations included. On the contrary, the trade project has 

only three scenarios, which differ only in terms of prices and use the same CAP 

setting (same RHS constraints and equations). 

— Different reporting needs. For the legal_proposal project, Qlik reports are 

created that provide production, income and environmental effects by NUTS 

region, type of farming, economic size and eco-scheme adopters. For the trade 

project, we deliver a single Excel file providing production and income effects by 

type of farming and economic size only. 

                                           
(46) Once the coder produces a part of the code (the code chunk), it is very often used in ‘reading mode’. The 

coder himself or other members of the team ‘read’ this code chunk with the purpose of understanding it. 
Two exemplary cases of the ‘reading mode’ are, when a new developer is incorporated into the team and 
he needs to understand how the model works, and when the model needs to be extended and this code 
chunk interacts with the part of the model that is to be extended.  

(47) Isolated code in the sense that, whatever happens to the code (change, delete, add logic), the version’s 
code is not affected. 

48 FTA stands for ‘Free Trade Agreements’ 
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For consistency with our priority of code clarity, we do not try to meet these different 

requirements inside the same files of the version code. Instead, we split the code into 

the different projects. We provide more details on how the versions and the project code 

are organised in the following section. 

 

3.2.1.3. Version and project organisation 

Figure 19 provides an overview of the organisation of different model versions and 

projects. Different model versions are kept in separate folders within the ‘versions’ folder 

of the IFM-CAP code root folder. In each version’s folder there is a ‘projects’ folder. In 

this folder, each project resides in its own folder. Code that is common to all projects of 

a version resides in folders and files inside that version’s folder. 

 

 

Figure 19. Organisation of versions and projects in the IFM-CAP model 

 

A real-life example is shown in Figure 20. This figure shows the current status of the 

IFM-CAP model (October 2021). 
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Figure 20. Real-life example of the organisation of the versions and projects in the IFM-CAP 
model 

 

The ‘versions’ folder resides in the code root folder. Four versions of the model exist in 

this folder. The ‘main’ version is the version that was set up to work with the 2012 base 

year data, which was mainly prepared using IFM-CAP v.1 code. The ‘water_nitrogen’ 

version is under development and will incorporate yield responses based on water and 

nitrogen. 

The ‘main2017’ version is the standard version of the model related to the 2017 base 

year. Inside this version, alongside the ‘projects’ folder, there are several other files and 

folders. The model.gms and the definitions.gms files are where the equations, the 

variables and the parameters of the optimisation problem reside, that is, these files 

define the optimisation problem. The ‘sets’ folder keeps the version’s set definitions and 

their elements. All are expected to be common to all projects and thus they are defined 

at this level. The ‘ggig’ folder contains code related to the GUI; again, as it is common to 

all projects, it is defined at the same level as the ‘projects’ folder. The ‘calibration’, ‘feed’ 

and ‘add_acts’ folders keep the version-related data processes for calibration, the 

estimation of feed requirements and the elicitation of additional activities, respectively. 

The ‘reporting’ folder keeps code that can be used for parsing the results of a run and 

producing a report. It contains reporting code that is common to all projects, for example 

for parsing a report GAMS Data eXchange (GDX) file and aggregating its data for 

uploading to a Business Intelligence web application. Any reporting-related code that is 

specific to a project will reside inside the folder of that project. 

Inside the ‘projects’ folder are the three existing projects of the main2017 version of the 

model. The baselines project is responsible for creating the baseline data. The 

legal_proposal project contains the simulation runs for a paper submitted to a journal 

regarding the post-CAP 2020 European Commission proposal. The organics project 

contains simulation runs related to evaluating the impacts of converting 25 % of the land 

to organic farming. The individual projects can load data from the ‘calibration’, ‘feed’ and 

‘add_acts’ folders and can also include code from the parent version folder (sets, 

definitions and model). However, the projects do not share code between them. 

Within each project folder, the organisation of the files and folders is left to the discretion 

of the modeller responsible for the project. The project code is allowed to load the 

version’s data and to modify them and also to add or remove equations, variables and 

parameters or change sets, but it should not include code from other projects. In 

addition, the project code is responsible for running the simulations and saving the 
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results. This setting provides maximum flexibility while maintaining the necessary 

independence between projects, allowing for a modular model. 

The most important principle behind the versions–project organisation is that code that is 

more generic should be higher in the folder hierarchy. On the contrary, code that is more 

specific should be deeper in the folder hierarchy. For example, the model.gms file is 

more generic in the sense that is applicable to any project of a specific version; thus, it is 

placed above all projects in the folder hierarchy. A file that is running a simulation for a 

project should reside inside the folder of the project, as it is specific to the project. 

Analogously, an include file related to a specific project should reside either inside the 

specific project’s folder or deeper in the folder hierarchy. 

A corollary is that a file can only include other files that are above it in the folder 

hierarchy. A project’s code file is allowed to include the model.gms file that is located two 

levels above. However, a version’s file should not include a project’s file. This stems from 

the fact that more specific files (which are deeper in the folder hierarchy) can include 

more generic files (which are higher in the hierarchy), but not vice versa (Figure 21). 

Adhering to those two principles will lead to a model that is modular and scalable, as 

altering any specific file will not lead to other specific code being broken. Any change to a 

specific level’s file will not propagate to the more generic code (as the generic code is not 

allowed to include specific code) and thus will not create ripple effects (i.e. potentially 

breaking the functioning of the code in other levels). 

 

 

Figure 21. Abstract representation of the ‘file include hierarchy’ in IFM-CAP 
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3.2.2. Code and data 

3.2.2.1. Static and dynamic code 

Within a particular version of the model, the code can be distinguished into two classes 

that serve different purposes. 

1. One class of code, has a static functionality, defining parameters, variables and 

equations. The model.gms, definitions.gms and sets are all static code. They do 

not employ the computer’s central processing unit (CPU) but are there for 

defining the elements of the optimisation problem. Although they do not produce 

any data, they have a central role and correspond to the optimisation problem 

entity in the farm model abstraction. 

2. The other class of code has a dynamic functionality, meaning that it is actually 

‘doing’ something, for example running a model or calculating parameters, by 

utilising CPU cycles. 

 

A code file can contain either only static code or both static and dynamic code (49). 

In IFM-CAP, a design principle is that the optimisation problem itself should reside in a 

file(s) that contains only static code. In this way, it will be easy to verify that the 

conceptual model has been coded well. For this reason, we will use model.gms and 

definitions.gms files in each version of the model. 

Files that contain dynamic code will probably include static code from other files and will 

also contain additional in-line static code. The rule detailed in the previous section on 

how files should be included applies here too (files should only include other files from 

the same or a higher level of folder hierarchy). 

In addition, as a rule of thumb, we prefer in-line static code to including it from outside 

files. Including files makes reading the code difficult and complicates debugging. For this 

reason, including files should be done only when a significant number of lines of code is 

identical for two or more code files that reside in the same folder level or deeper. 

 

3.2.2.2. Data organisation 

As described in Section 3.1.1, the optimisation problem and the data used should be 

distinct entities. Thus, in IFM-CAP we adhere to the following principles regarding data 

organisation: 

1. The data needed to run the model are prepared and saved before the running of 

the optimisation model. This means that running the model should not include 

any data calculation/transformation procedures. Sometimes, it may look 

redundant to have two files, one for saving the input data and another for loading 

it and running the simulation, but it greatly improves the reliability of the run 

itself as run data can be reviewed easily. More details are provided in 

Section 3.2.2.4. 

2. The data operations that produce the data reside in separate folders with 

independent code. For example, as shown in Section 3.2.1, the calibration process 

                                           
(49) Although it does not produce any results, a file that contains only static code can compile. On the 

contrary, a dynamic file is required to do something with a static code; thus, it will necessarily contain 
some static code. In GAMS terms, it is analogous to the code that is relevant for the compilation phase 
and the execution phase. Parameters, variables and equations can be defined and are parsed in the 
compilation phase. They are not actually doing anything (i.e. utilising CPU cycles), but they can exist as 
standalone code. On the contrary, assignments, calculations and solve statements, although they utilise 
the CPU and change the memory state, cannot be run until the relevant parameters, variables and 
equations have been defined. 
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resides in a separate folder inside the version folder and contains code that is not 

connected to any other part of that version. In this way, we achieve two things. 

First, one can review the data operation more easily and verify that it does what it 

is supposed to do. Second, any change to the data operation code will not affect 

the rest of the version’s code and vice versa. The binding of the data operation 

logic to the rest of the version’s logic (i.e. how the calibration procedure is 

connected to the version’s optimisation problem) should be realised only through 

data exchange. In practice, the data operation will output a data file and this in 

turn will be the input for another version’s file. This facilitates the independence of 

the data operation code because, as long as the structure of the data file remains 

the same, the data operation and the rest of the version can be developed 

independently. 

3. As explained in more detail in Section 3.3.2, the code files and the data files are 

kept in different locations. The data folder structure should mirror the code folder 

structure. We provide an illustrative example in Figure 22. The two versions that 

exist in the code folder are reflected in the two different folders that reside in the 

database folder. As the path of the versions in the code folder always contains a 

‘versions’ folder, we do not mirror this in the database folder; instead, we add a 

‘v.’ prefix to denote that the folders are related to a version. Inside each version 

folder in the code folder there is a project folder; again, this is reflected inside the 

‘v.version1’ and ‘v.version2’ folders. The ‘p.’ prefix denotes that each folder is 

related to a project. Note that the data operation procedure that resides in the 

‘<Code>/versions/version2/dataOper1’ folder is located in the 

‘<Database>/v.version2/dataOper1’ folder. The mirroring principle allows two 

things: first, it enables the numerous files that exist in IFM-CAP to be organised 

efficiently; second, it enables the code that was responsible for creating a data 

file to be easily traced. 

Within a project or a data operation folder, other folders can be created on demand, 

to facilitate clear data storage, but in general the mirroring principle should also be 

respected. Section 3.2.2.4 provides an example of this. 

A related principle is that of naming raw data files with an underscore (‘_’) prefix. Raw 

data files are those that are not the result of any code execution. For example, an 

Excel file containing the CAP budget provided by the Directorate-General for 

Agriculture and Rural Development could have the name ‘_dg_agri_2021_budget.xls’. 

In this way one can easily spot the data files that are the starting point for producing 

other data. 
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Figure 22. Example of how organisation of the code is mirrored in organisation of the data 

 

 

3.2.2.3. The small sequential steps pattern 

Following the modularisation principle of ‘divide and conquer’, we decompose the logic of 

the dynamic code into smaller steps. The amplitude of the decomposition is at the 

discretion of the version’s modeller, but a balance between reproducibility, traceability 

and code efficiency should be sought. 

For this, the version’s dynamic code is split into files that start with a number that is 

indicative of the order of the steps. The code in each file has a self-contained logic that 

completes a specified task. In practice, self-contained logic means that a file reads an 

input data file, applies calculations and saves an output data file; in this way the 

calculations can be verified easily by comparing the changes between the input and the 

output data files and the intentions of the algorithm contained in the file. 

Some concrete examples of this pattern are provided in Figure 23. In ‘calibration on 

v.main2017’, the 00 step gathers all required data from other parts of the version and 

compiles a big GDX file; the 01 step then splits this file into GDX files at NUTS 2 level 

that are read by the 02 step, which estimates priors, etc. 
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Calibration on v.main2017 Feed in v.main2017 FADN module 

 

 

 

Figure 23. Examples of the small sequential steps pattern in IFM-CAP 

 

Especially for data operations, we have moved a significant part of the GAMS code of 

IFM-CAP v.1 into R Markdown. R Markdown is a dynamic reporting framework that 

combines explanatory text, R code and the results of the code execution in the same file. 

The use of R Markdown enhances transparency in the following ways. 

1. Documentation of the code is straightforward and efficient. One can describe the 

logic of the code and its assumptions in the same place that the code resides, 

using figures, tables and formatted text. In addition, having the documentation 

together with the code allows the documentation to be easily updated when 

updating the code, reducing the cost of maintaining the documentation and 

coupling the code with its documentation. 

2. Inspection of what the code does is straightforward. One can easily produce 

summary statistics of the code execution. For instance, in a script with the 

purpose of loading and transforming the raw comma-separated values (CSV) files 

of the FADN database into an R-compatible format, one can display the names of 

the files that were loaded, the number of records, some plots with the 

distributions of the variables of interest, etc. 

3. The workflow of the file is naturally split into smaller steps. This allows for easy 

debugging. 

3.2.2.4. The prepare–run–report pattern 

As already discussed, the data and the dynamic code that issues solve commands for the 

optimisation problem should be distinct. For this we employ the ´prepare–run–report’ 

pattern, as shown in Figure 24. 

The ‘prepare’ procedure is responsible for collecting the data for the optimisation 

problem and preparing a GDX file that contains these data. The ‘run’ procedure includes 

(using $include) the optimisation GMS file and loads the data (using $GDXIN or 

execute_load) and runs the model. Running the model can mean running the model for 

one farm or running the model for a whole NUTS 3 area, for example. The ‘run’ 

procedure is also responsible for saving the solution results into a GDX file. The solution 

results contain only the levels of the variables and the equations at the optimum 

solution. Any further calculations that are based on the solution are carried out during 

the ‘report’ procedure, which loads the solution file, processes it and creates a GDX file 

that contains the results of the calculations. 
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Figure 24. The prepare–run–report sequence 
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3.3. Using and developing the model 

3.3.1. Installation 

3.3.1.1. Software and hardware requirements 

The farm decision model is written in GAMS (50). It is solved using the CONOPT (51) and 

SBB (52) solvers. Thus, in order to run the model, a licensed version of GAMS software 

with a CONOPT and SBB licence is required. We also suggest using GAMS distribution 

28.2 or higher. 

The creation of the model database uses both GAMS and R. Thus, in case one needs to 

run the data preparation procedures, an R (53) installation is required. Rstudio (54) is also 

recommended as it provides the best way to open and handle R code. 

For running the GUI, any freely available Java (55) distribution is required. In addition, 

the binaries of the GAMS graphical user interface generator (56) (GGIG) are necessary. 

Installing TortoiseSVN (57) is recommended. It facilitates downloading of the latest 

version of the code and updating of the model. 

There are distinct hardware requirements for preparation of the data and for running the 

model. Regarding the preparation of IFM-CAP data, a personal computer with at least 

16 GB of memory is required. Regarding the running of the farm decision model, an 

acceptable hardware is a personal computer with multiple CPUs so that farms can be 

solved in parallel. At the JRC, a Windows machine with 64 GB of memory and 40 CPUs 

allows us to prepare data without any memory problems and also to solve one scenario 

for the whole of the EU in approximately 3 hours. 

3.3.1.2. How to install 

It is advisable to create a folder named ‘IFM-CAP2’ and inside this folder to create three 

subfolders: ‘Code’, ‘Database’ and ‘Gui’. 

 

The IFM-CAP SVN repository (58) should then be checked out to the ‘Code’ folder. A 

username and password provided by the IFM-CAP team at the JRC.D.4 Economics of 

Agriculture Unit are required to complete this step. More details on how to use SVN to 

check out a repository are provided on the TortoiseSVN website (59). 

When the code has been downloaded to the ‘Code’ folder, the file ‘install_locally.txt’ will 

be available. This file contains detailed instructions on how to download the initial 

database and the GGIG Java binaries for the GUI. 

 

                                           
(50) https://www.gams.com/  
(51) https://www.gams.com/latest/docs/S_CONOPT.html  
(52) https://www.gams.com/latest/docs/S_SBB.html  
(53) https://cran.r-project.org/bin/windows/base/  
(54) https://rstudio.com/products/rstudio/download/  
(55) https://www.java.com/en/download/  
(56) https://www.ilr.uni-bonn.de/em/rsrch/ggig/ggig_e.htm  
(57) https://tortoisesvn.net/  
(58) https://svn.jrc.es/repos/IFM-CAP/branches/IFM2  
(59) https://tortoisesvn.net/docs/nightly/TortoiseSVN_en/tsvn-quick-start.html  

https://www.gams.com/
https://www.gams.com/latest/docs/S_CONOPT.html
https://www.gams.com/latest/docs/S_SBB.html
https://cran.r-project.org/bin/windows/base/
https://rstudio.com/products/rstudio/download/
https://www.java.com/en/download/
https://www.ilr.uni-bonn.de/em/rsrch/ggig/ggig_e.htm
https://tortoisesvn.net/
https://svn.jrc.es/repos/IFM-CAP/branches/IFM2
https://tortoisesvn.net/docs/nightly/TortoiseSVN_en/tsvn-quick-start.html
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3.3.2. Folder structure 

There are four main folders in the IFM-CAP model (Figure 25). The GIGG executables 

contain the Java binaries for the GUI. The scratch directory is the directory where 

temporary files are created during the execution of the model (e.g. the GAMS scratch 

directories when solving the model). The database contains all input data files required 

for running the model and all output data files produced by the model. The code 

directory contains all the model code. 

The locations of these folders are independent from each other and are configurable by 

the user. For example, the <ScratchDir> folder can reside in a RAM disk or a fast SSD 

disk, the <GGIGexe> folder can be in a network shared drive, and the <Database> and 

the <Code> folders can be in another drive. The main configuration file is located in 

‘<Code>/conf/inc.gms’. In this file we explicitly define the location of the <ScratchDir> 

and <Database> folders. An example folder configuration is provided in Box 2. 

 

Figure 25. IFM-CAP folder structure (level 1) 

Box 2. Example folder configuration 

$ontext 
In this file set any Model-wide Compile-time Variables 
This file must be the only place where such Model-wide variables can be defined. 
$offtext 
 
 
*–––––––––––––––––––––––––––- 
* DatabaseDirectory 
* the directory that data operations are taking place.  
* This facilitates easy changing of input/output data 
* It shall NOT have a trailing "\" 
*–––––––––––––––––––––––––––- 
$SETGLOBAL DatabaseDirectory "E:/IFM-CAP2-database" 
 
*–––––––––––––––––––––––––––- 
* ScratchDirectory 
* The directory that temporary GAMS directories will be created (255a, 255b, etc.) 
* Use a location of a fast disk (SSD, Ramdisk, etc.) 
* It shall NOT have a trailing "\" 
*–––––––––––––––––––––––––––- 
$SETGLOBAL ScratchDirectory "F:" 

For <Code>, we do not explicitly define its location. As we run the model through the 

GAMS environment, there is an implicit definition of the code directory as equal to the 

working directory of the GAMS project we are running. This implies that, when including 

a GMS file, we should always start from the root of the code file but without explicitly 
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giving a file location. We provide an example in Box 3. We load the file calling ‘$INCLUDE 

versions/main/definitions.gms’. 

 

Box 3. Example of %DatabaseDirectory% usage 

$INCLUDE conf/inc.gms 
 

$INCLUDE versions/main/definitions.gms 

 
$GDXIN '%DatabaseDirectory%/ifm1/DATA_2012_bis_FDALL.gdx' 
$ LOAD FD 
$GDXIN 
 
$GDXIN '%DatabaseDirectory%/ifm1/p_data_baseline_2030_IA_20122018.gdx' 
$ LOAD p_DataFD 
$GDXIN 
 
EXECUTE_UNLOAD "%DatabaseDirectory%/ifm1/FDALL_Clean.gdx" FDALL; 

Developers of the application should respect the concern of each folder. Most 

importantly, data, whether input or output, should reside only in <Database>. In 

addition, whatever type of code is used should reside in <Code> (60). 

In GAMS, when loading or saving data, the folder where data are located should always 

be referred to using the %DatabaseDirectory% control parameter. In the example in 

Box 3, at the beginning of the script we include ‘conf/inc.gms’, which contains the values 

of the folder locations; then, for $GDXIN or EXECUTE_UNLOAD, we always provide the 

file path in relation to %DatabaseDirectory%. This allows two or more database folders 

to be maintained. Switching the model from using one database to using another 

database is very easy by changing the %DatabaseDirectory% control variable in 

‘inc/conf.gms’. 

 

3.3.3. Running the model 

In this section, we provide details on how to run the model. There are three ways to run 

the model. 

1. Using the GMS files. This option provides finer control over the model and can 

be used either for debugging or for further development. 

2. Using the GUI. This option is preferable for novice users or for working with a 

few NUTS 2 or NUTS 0 regions, especially if there is no need to carry out 

debugging. 

3. Using the GGIS’s batch facility. This is the most efficient way to run the model 

for the whole of the EU. The model is run in parallel, utilising as many CPUs as 

possible. 

3.3.3.1. Using the GAMS source files 

GMS script organisation 

There are three GMS script types. 

                                           
(60) For example, the GGIG XML definition files do not reside in the <GGIGexe> folder but in 

‘<Code>/versions/main/ggig/ifmcap_default.xml’. These files define the GUI elements and are part of the 
IFM-CAP code, as they are expected to evolve (new work steps and tasks, new options, etc.). 
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1. Model definition scripts. The first category includes the scripts containing the 

optimisation problem. These are the ‘model.gms’, which contains the variables 

and equations of the model, and the ‘definitions.gms’, which contains the 

parameter definitions. 

2. Runnable scripts. The second category includes the GMS scripts that either load 

data and transform them or load data and solve the model and produce results. 

3. Included scripts. The last category of scripts contains GMS files that are not 

runnable but instead contain code that is reusable by two or more runnable 

scripts. The strategy is to create included scripts only if their content is identical 

between two or more runnable scripts. 

For runnable scripts, a template is provided in Box 4. It contains a header with 

information on the purpose of the script, the control parameters it contains, and its input 

and output data files. 

 

Box 4. Template for a runnable script 

******************************************************************************** 

$ontext 

<The purpose of the Script> 

 

Control Parameters: 

<List of Control Parameters> 

 

Input data Files: 

<List of Data input files> 

 

Output data Files: 

<List of Data output files> 

$offtext 

******************************************************************************** 

 

 

* CONTROL PARAMETERS 

******************************************************************************** 

 

* If running in controlled state then the GUI overrides these options 

$IfThenI.controlled NOT %CONTROLLED% == "1" 

 

* <DEFINE THE CONTROL PARAMETER VALUES WHEN SCRIPT IS NOT RUN IN CONTROLLED 

* STATE> 

 

$Else.controlled 

 

* <CODE SPECIFIC TO WHEN SCRIPT RUNS IN CONTROLLED STATE> 

 

$EndIf.controlled 

 

 

 

* Include Model-wide Compile-time Variables 

******************************************************************************** 

$INCLUDE conf/inc.gms 

; 

 

 

* Script Logic 

******************************************************************************** 

* <CODE THAT IMPLEMENTS THE SCRIPT’S PURPOSE> 

 

 

 

 

Control parameters add flexibility to runnable scripts. They are $SET statements that 

control the behaviour of the script. As shown in Box 4, they are defined in a dedicated 

section at the beginning of the script. The modeller can define their values inside the 
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GMS script, but in cases in which the script is called externally (e.g. a $call or an execute 

statement), if the –CONTROLLED=1 parameter is passed, they will be ignored and the 

external control parameter values will be used instead. An example with extended 

comments is provided in Box 5. 

 

Box 5. Example of control parameters 

 

* <MORE LINES ABOVE> 

 

* If you call from another gams script with the following statement, the next $IfThen will 

* be ignored 

* $call <script name> –CONTROLLED=1 

 

* If running in controlled state then the GUI overrides these options 

$IfThenI.controlled NOT %CONTROLLED% == "1" 

 

* Defining what baseline data are used 

$SET BASELINE_DATA "CAPRIbaselineIA_1230_2020" 

 

* Defining which NUTS 2 region(s) to run 

$SET NUTS2 "EL140000" 

 

* This is enforced only in the case you run the script through GAMS IDE 

OPTION profile=1; 

 

$Else.controlled 

 

$EndIf.controlled 

 

* <MORE LINES BELOW> 

 

$BATINCLUDE versions/main/projects/baselines/inc/load_data.gms 

"%DatabaseDirectory%/v.main/p.Baselines/%BASELINE_DATA%/input/nuts2/model_data_%NUTS2%.gdx" 

 

* <MORE LINES BELOW> 

 

 

 

 

3.3.3.2. Using the graphical user interface 

IFM-CAP has also been linked to the GGIG framework, written in Java (Britz, 2011). This 

offers a GUI that has functionalities that are organised into work steps and tasks. Each 

version has its own GUI, and it can be started by running ‘<Code>/versions/<VERSION 

NAME>/gui.bat’. 

As can be seen in Figure 26, the actions that a user can carry out have a hierarchy. 

There are work steps that contain tasks. Each of the tasks has various options and 

makes a runnable GAMS script run. In addition, within each task the user can compile 

(and test if the program compiles without errors), start (execute) or stop the GAMS 

program. 
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Figure 26. IFM-CAP GUI parts 

 

Table 22 provides an example of the tasks that are available to the user for the main 

version of the model. 

 

Table 22. GUI work steps and tasks for the main version of the model 

Work step Task Description 

Administration 

tasks 

01 Create Directories Create the directories required in the 
%DatabaseDirectory%. 

See 
‘versions/main/others/create_directories.gms’. 

02 Clean Tmp Clean temporary files in the 

%DatabaseDirectory%. 

See ‘versions/main/others/clean_data.gms’. 

Baseline tasks 

01 Compile Single GDX Create a single GDX file that contains all model 
data for all farms. 

02 BSL Compile NUTS2 GDX Create GDX files for several NUTS 2 regions. 

03 BSL Runner NUTS2 Run the baseline model for several NUTS 2 
regions. 

04 BSL GrassOver Calc Calculate the grassland overshooting for 
several NUTS 2 regions. 

05 BSL Runner GrassOver 

NUTS2 

Run the baseline model considering the 

grassland overshoot for several NUTS 2 
regions. 

<Project> 

scenario 

tasks 

01 PSC Compile NUTS2 GDX Create GDX files for several NUTS 2 regions 
and one scenario. 

02 LP Runner NUTS2 Run the legal proposal model for several 
NUTS 2 regions and one scenario. 

03 LP GrassOver Calc Calculate the grassland overshooting for 
several NUTS 2 regions and one scenario. 

04 LP Runner GrassOver NUTS2 Run the legal proposal model considering the 
grassland overshoot for several NUTS 2 
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regions and one scenario. 

05 LP Check Run Status Report for each of steps 01–04 how many 

NUTS 2 regions and how many scenarios have 
not been run. 

06 LP Reporting Create a report that compiles the solutions 
from many NUTS 2 regions and many 
scenarios. 

 

The contents of the GUI are controlled through the ‘<Code>/versions/<VERSION 

NAME>/ggig/ifmcap_default.xml’ file. More information on how to edit this file in order to 

add elements in the GUI is found in the GGIG documentation (Britz, 2010). For every 

task, the file ‘<Code>/versions/main/ggig/ggig_controller.gms’ is called. This file acts as 

an intermediate between the GUI and the individual runnable scripts. 

 

3.3.3.3. Using batch runs 

The GGIG binaries provide a batch run feature that is very useful for running all steps 

(prepare data, run model, check grassland and run model with grassland overshoot) for 

the whole of the EU. It is the best option to follow if debugging of the model has been 

carried out. 

Batch runs are project specific and are stored inside ‘/versions/<VERSION 

NAME>/<PROJECT NAME>/batch_runs’. 

The batch runs can be either initiated through the GUI or run from the command line 

with a Java command. 
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3.4. Naming conventions 

Title Rule Examples 

GAMS commands  Use upper case for GAMS commands and GAMS-reserved words (e.g. ‘SUM’ and ‘AND’).  

Variables and parameters 

Start parameter names with ‘p_’, continuous variables with ‘v_’ and binary (or integer) variables with 

‘b_’. 

Exception to the above: All variables after the model solution are initially stored as parameters with a 
prefix ‘rv_’ indicating that they represent the resulting values of variables. Such parameters are later 

used in the reporting process and transformed in the reporting parameter p_Res. 

Use camel case names* for naming variables and parameters. If a parameter represents a specific 
attribute of another parameter or modelling concept, use an underscore (e.g. maximum or minimum 
values). 

Try to use names of adequate length when defining parameters and variables, striking a balance 

between the number of characters and self-explanatory names. When some concepts modelled have 
longer names or are difficult to describe, use the shortest names possible that provide a clear 

understanding of each variable or parameter. 

This is in line with the GAMS good coding practices** for using longer names and additionally enhances 
the readability of the code. 

p_DSub_TVal 
Decoupled subsidies 
total value 

p_DSub_UVal 
Decoupled subsidies 

unit value 

Sets Use upper case.  

ACT 
Set of all production 
activities 
 

DPAY 
Set of all decoupled 

payments 

Subsets 
Subset names begin with a prefix referring to the superset. 

Use upper case. 

CROP_ACER(CROP) 

Set of all cereal 
activities, which is a 
subset of set CROP 
 
DPAY_PIL1(DPAY) 

Subset of all pillar 1 
decoupled 
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payments, which is 
a subset of set DPAY 

Aliases  
Name any set alias with the name of the set and a number from 1–9. For example, for set ACT, if one 
alias is needed, name it ACT1; if another alias is needed, name it ACT2, etc. 

 

Equation naming 

Use upper case. 

Equations start with E_XXX. 

Variables that are the direct result of an equation calculation can have the same name as the equation. 

 

NB: *Camel case is the practice of writing phrases such that each word or abbreviation of a phrase begins with a capital letter, with no intervening 

spaces or punctuation, for example HelloWorld and UpperCamelCased. **The good coding practices are available on the GAMS website 

(https://www.gams.com/latest/docs/UG_GoodPractices.html). 
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Annex A: Literature review of modelling livestock activities 

Table A-1. Reviewed papers that used a normative approach 

Authors Year Type of 
model 

Model 
purpose 

Farm 
speciality 

Scale Data used Livestock 
activities  

Purchase and sale Calibration  Intergenerational dependences 

 Base Simulation 

Jones and 
Salter 

2013 Normative, 
static annual 
LP models 
with 
embedded, 
anaerobic 
digestion 
(AD) 
enterprise  

Economic 
evaluation of 
farm-based 
AD 

Arable, dairy, 
AD enterprise 

Representative 
arable farm in 
east England, a 
larger than 
average dairy 
farm in south-
east England 

Defra Farm 
Business 
Survey data, 
literature, 
farm 
management 
handbooks 

Adult cow, 
replacement 
heifers, calves 
that are sold 
at 3 weeks 

Selling beef crosses 
(calves) at age of 3 
weeks 

 Adult cows 
endogenous, herd 
size constrained 
0.5–2 LSU/ha; 
Calves and heifers 
as shares of adult  

Same 

Lelyon et al.  2011 Normative 
LP, static 
annual with 
four seasons 
per year 

Analysis of 
response to 
decoupling 
and the price 
variation 

Grass-based 
farm, semi-
intensive, milk 
plus cereals 
and, milk plus 
young bulls 

Farm level, 
plains regions, 
France 

The annual 
survey of the 
Institute de 
l’Elevage 
(2008) with 
more than 
600 dairy 
producers 

Dairy cows, 
heifers, calves 
and young 
bulls 

Selling female and 
male calves, buying 
male calves for 
fattening, selling 
bulls (fattened male 
calves) 

Technical 
coefficients 
were modified 
(2005 basis) 

Adults cows 
endogenous; 
calves as a share 
of adults cows; 
bought-in male 
calves 
endogenous 

Same 

Acs et al. 2010 Normative, 
static LP 

Analysis of 
impacts of 
CAP 
decoupling on 
a range of 
farm types  

Regional, farm 
level, farm 
types in 
marginal hill 
area of Peak 
District, UK 

Dairy, beef, 
breeding 
sheep, forage 

Survey of 44 
farms that 
identified six 
representative 
farm types in 
2006/2007 

Suckler cows, 
dairy cows, 
calves, heifers 

Purchase heifers, 
selling young beef 
calves, selling 
fattened calves, 
selling young dairy 
calves, selling 
young fat dairy 
calves  

Results 
compared with 
surveyed farms 
data  

Dynamics 
determined 
exogenously 
(replacement 
rate) and by 
selling activities 
endogenous) 

Same 

Crosson et al 2006 Normative 
static LP for 
beef farming 
systems 

Adaptation to 
variations in 
prices, 
technical 
development, 
participation 
in an agri-
environmental 

Beef animal 
and forage 
production 

Irish beef 
production 
systems 

Grass 
production 
data from 
experiments 

Teagasc, for 
the period 
2001–2004 

Suckler beef 
cow (young 
and adult), 
replacement 
heifer, calf, 
yearlings, and 
finishing 

Sale activities for 
weaners and store 
animals at various 
ages of fattening; 
only replacement 
heifers are 
purchased 

Based on expert 
judgement and 
based on 
financial and 
technical criteria 

Adult cows 
endogenous; 
calves and heifers 
based on 
exogenous factors 
such replacement 
rate, feed 

Same 
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Authors Year Type of 
model 

Model 
purpose 

Farm 
speciality 

Scale Data used Livestock 
activities  

Purchase and sale Calibration  Intergenerational dependences 

 Base Simulation 

scheme activities requirements 

Havlík et al. 2006 Normative, 
static LP 

Environmental 
analysis of 
organic 
suckler cow 
farms 

Specialised 
suckler cow 
production, 
crop 

Protected 
Landscape 
Area White 
Carpathians, 
Czech Republic 

FADN CZ 2002 Suckler cow, 
weaners, 
heifers, bulls 
at different 
ages 

Replacement 
heifers from own 
breeding but they 
can be sold, calves 
can be sold 

Results 
compared with 
2002 survey  

Dynamic 
determined 
exogenously  

Same 

Visagie and 
Ghebretsadik 

2005 Normative 
static LP 

Modelling risk 
in farm 
planning 

Crop, adult 
dairy cattle, 
young cattle, 
sheep for 
wool 

Farm level 

Swartland, 
South Africa 

One farm data Adult cow, 
Adult sheep 

Buying/selling 
adult/young cows 
and sheep 

 Adults cows 
endogenous; 
young cattle as a 
share of adults 
cows 

Same 

Ducros et al. 2005 Normative, 
static LP 

Analysis of 
impact of 
policies such 
as stocking 
density and 
nitrogen 
balance on 
environmental 
and economic 
performance  

Breeding dairy 
cattle, forage 
and apples 

Farm level,  
mixed crop-
livestock-
orchard 
farming 
Normandy, 
France 

Literature Dairy cows, 
fattening 
calves and 
heifers 

Sales are 
considered for all 
livestock categories 

Test the 
coherence of 
technical 
coefficients used 
in the model 
with data from 
surveyed farm. 

Dynamics 
determined 
exogenously 
(replacement 
rate) and by 
selling activities 
(endogenous) 

Same 

Veysset et al. 2005 Normative, 
static LP with 
two seasons 
of summer 
and winter 

Analysis of 
economic 
adaptation of 
two farm 
types to 
Agenda 2000 
CAP reform 

A mixed crop-
livestock farm 
and a 
livestock farm 

Farm-level 
Charolais 
suckler cattle, 
Northern from 
Massif Central,  

France 

Data of 20 
years from 90 
Charolais 
suckler farms 
from three 
regions 

Suckler cows, 
male and 
female calves, 
heifers 

Male calves sold as 
store and fattened, 
female calves sold 
as store and 
fattened; 33-month 
heifers could be 
bought in 

Based on expert 
judgement and 
based on four 
observed 
activities 

Adult cows 
endogenous; 
calves determined 
by share 
(exogenous) 

same 

Ramsden et 
al. 

1999 Normative, 
static annual 

To evaluate 
the impact of 
changes in 
milk to milk-
quota-leasing 
price ratios, 
nitrogen 

Dairy cow, 
beef cow, 
forage 

Farm level 
(only one farm 
modelled), 
dairy sector, 
UK 

Literature Dairy cows, 
heifers and 
calves. Cows 
have five milk 
production 
levels. Male 
animals from 

Heifers bought in as 
2-year olds, female 
calves can be sold 

Results 
compared with 
actual farm data 
for England and 
Wales based on 
a survey 

Adult cows 
endogenous, 
calves and heifers 
based on 
exogenous data 
such as 

Same 
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Authors Year Type of 
model 

Model 
purpose 

Farm 
speciality 

Scale Data used Livestock 
activities  

Purchase and sale Calibration  Intergenerational dependences 

 Base Simulation 

fertiliser and 
concentrate  

dairy go to 
beef 

replacement rate 

Nicholson et 
al. 

1994 Normative, 
multi-period 
LP 

Analyse 
alterative 
nutritional 
management 
strategies  

Farm level, 
representative 
lowlands of 
western 
region 

Dairy, beef 
cattle, forage 
mixed milk-
meat cattle 
farms, 
Venezuela 

Data from 22 
farms 
surveyed in 
the study 
region 

Three cow 
status, one 
calves, two 
age groups 
heifers, three 
age groups 
steers 

No purchase of 
animals modelled, 
but all animal 
categories can be 
sold 

Validation by 
construct 

 Same 

Source: Louhichi et al. (2018b) 
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Table A-2. Reviewed papers that used a positive approach 

Authors Year Type of 
model 

Model 
purpose 

Farm 
speciality 

Scale Data used Livestock 
Activities  

Purchase and sale Calibration  Intergenerational 
dependences 

Observed 
behaviour at 
simulation 

Base Simulation 

Gill et al. 2015 PMP Assessment of 
policy and 
price changes 
on hog sector 

Crops, beef, 
breeding sow 
and growing 
pigs 

Provincial, 
Canada 

Regional 
data 

Sows and 
growing pigs 

Sows culled/move next 
cycle. Growers 

Slaughtered/exported 
as live animals or 
replace culled sows 

Quadratic 
cost function 
(Howitt, 
1995) 

Sows 
exogenous; 
growers 
based on 
sows and 
farrowing 
cycles/year
; PMP 
applied to 
growers. 

Same; 
PMP 
terms 
removed 

Ratio of 
growers to 
sows, 
replacement 
rates, market 
hogs per sow, 
birth rates 
and death 
are 
exogenous 

Jitea et al. 2015 PMP Ex-ante 
analysis of 
2014 CAP 
reform, land 
abandonment  

Crop and 
livestock 

On region in 
north-
western 
Romania 
(NUTS2) 

Independent 
survey (207 
farms) 

Dairy (m/f, 
age), beef, 
sheep, goat, 
pig  

Selling meat and milk. 
They don’t mention any 
purchase activity 

quadratic 
cost function 
(Howitt 
,1995) 

Yes, 
exogenous 
parameter
s, such as 
fertility 
rate and 
replaceme
nt rate  

Same  

Fragoso et 
al. 

2011 PMP Assessment of 
the effects of 
CAP on farm 
income, land, 
labour and 

Forestry, beef 
cattle, sheep, 
extensive 
swine 

Regional, 
Alentejo, 
Portugal 

Regional 
data from 
the Official 
Network of 
Agricultural 
Account data 

Beef 
(breeding, 
calves), sheep, 
swine 

No purchase, but sale Quadratic 
cost function 
(Howitt, 
1995) 

No No  
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Authors Year Type of 
model 

Model 
purpose 

Farm 
speciality 

Scale Data used Livestock 
Activities  

Purchase and sale Calibration  Intergenerational 
dependences 

Observed 
behaviour at 
simulation 

Base Simulation 

capital (RICA) 

Thorne et al. 2009 PMP Ex-ante policy 
analysis 

Crop and 
livestock 

EU FADN Dairy, suckler, 
beef, sheep, 
goat 

Only dressed animals 
(i.e. breeding adults) 

quadratic 
cost function 
(Howitt 
1995) 

Yes, based 
on shares, 
static 

Same  

Judez et al. 2001 PMP Ex-ante 
analysis of 
agenda 2000 

Crops and 
Beef and Veal 

Regional 
farm types 
in Spain 

Regional 
FADN 

Suckler cows & 

young male  

Selling 1< young male 
cattle 

quadratic 
cost function 
(Howitt 
1995) 

Yes; share 
of young 
per cow 

same an increase 
of suckler 
cows and a 
decrease of 

young males 

Source: Louhichi et al. (2018b) 
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Annex B: Animal feed requirement functions in IFM-CAP 

This annex presents the functions used in IFM-CAP to determine the nutrient requirement 

by animal category. These requirement functions are based on CAPRI (Nasuelli et al., 

1997; IPCC, 2006; Britz and Witzke, 2014), LfL (2014); GfE (2006) and NRC (1994). 

 

1. Dairy cows (DCOW) and suckler cows (SCOW) 

The dry matter requirements for cows include minimum dry matter for lactation per year 

(DRMN) and maximum dry matter (DRMX): 

𝐷𝑅𝑀𝑁𝑖 = 305(0.0185𝐿𝑊𝑖 + 0.305𝑀𝐶𝑖) + 60(0.0185𝐿𝑊𝑖) 

𝐷𝑅𝑀𝑋𝑖 = 𝐷𝑅𝑀𝑁𝑖 ∗ 1.2 

The energy requirements of cows are expressed as net energy for each of the main 

biological functions of the animal including lactation, maintenance, activity, pregnancy 

and growth: net energy lactation (NEL), net energy maintenance (NEM), net energy 

activity (NEA), net energy pregnancy (NEP) and net energy for growth (NEG). 

𝑁𝐸𝐿𝑖 = (0.4 ⋅ 𝑀𝐶𝑖 + 1.47)𝑀𝑃𝐷𝑖𝐿𝑃𝑖 

𝑁𝐸𝑀𝑖 = 0.17(0.386𝐿𝑊𝑖
0.75) ⋅ 365 

𝑁𝐸𝐴𝑖 = 0.17(0.386𝐿𝑊𝑖
0.75)365 if there is grassland on-farm; otherwise 𝑁𝐸𝐴𝑖 = 0 

𝑁𝐸𝑃𝐷𝐶𝑂𝑊 = (𝐿𝑊0.75 ⋅ 0.386) ⋅ 0.10 ⋅ 365 

𝑁𝐸𝑃𝑆𝐶𝑂𝑊 = (𝐿𝑊0.75 ⋅ 0.386) ⋅ 0.
10 ∗ 𝐶𝐴𝐿𝑉𝑆𝐶

1000
  

The total net energy (ENNE) is the sum of the above energy components: 

𝐸𝑁𝑁𝐸𝑖 = 𝑁𝐸𝐿𝑖 + 𝑁𝐸𝑀𝑖 + 𝑁𝐸𝐴𝑖 + 𝑁𝐸𝑃𝑖 

The crude protein requirement (CRPR) is calculated as follows: 

𝐶𝑅𝑃𝑅𝐷𝐶𝑂𝑊 =
14 ⋅ 𝑀𝐶𝐷𝐶𝑂𝑊 + 28

1000
𝑀𝑃𝐷𝐷𝐶𝑂𝑊𝐿𝑃𝐷𝐶𝑂𝑊 +

117 + 0.6 ⋅ 𝐿𝑊𝐷𝐶𝑂𝑊

1000
365 + 1300 ⋅ 42 

𝐶𝑅𝑃𝑅𝑆𝐶𝑂𝑊 =
14𝑀𝐶𝐷𝐶𝑂𝑊 + 28

1000
𝑀𝑃𝐷𝐷𝐶𝑂𝑊𝐿𝑃𝐷𝐶𝑂𝑊 +

1.27 + 𝐿𝑊𝐷𝐶𝑂𝑊 + 127.3

1000
⋅ 365 + 1300 ⋅ 42 

The requirements for fibre digestibility (FIDI), maximum fibre (FICO) and fibre long 

(FILG) are: 

𝐹𝐼𝐷𝐼𝑖 = 𝐷𝑅𝑀𝑁𝑖 (
𝑀𝐶𝑖

100
− 0.29 +

43.92

100
) 

𝐹𝐼𝐶𝑂𝑖 = 0.7 ⋅ (0.14 ⋅ 𝐿𝑊𝑖
0.75) ⋅ 365 

𝐹𝐼𝐿𝐺𝑖 =
𝐹𝐼𝐷𝐼𝑖

3
 

where subscripts DCOW and SCOW stand for dairy cow and suckler cow, respectively, 

i = DCOW, SCOW; CALCSG is calves per cow; and MC is adjusted milk production per day 

corrected by fat milk content (MF). MF is extracted from Eurostat. MC depends on milk 

production per day (MPD), which it is derived from FADN; COMI and COMF are, 

respectively, milk production for feeding and milk production (not for feeding) for 

suckler/dairy cows derived from FADN (in kg per day). The raising period (PD) is 365 

days, of which the duration of lactation (LP) is assumed to be 305 days for dairy cows 

and 125 days for suckler cows. The mean live weight (LW) is calculated by dividing the 

selling value of cows available from FADN by the meat price obtained from Eurostat. 

𝑀𝐶𝑖 = 𝑀𝑃𝐷𝑖(0.4 + 0.15 ⋅ 𝑀𝐹𝑖) 

𝑀𝑃𝐷𝑖 =
(𝐶𝑂𝑀𝐼𝐷𝐶𝑂𝑊 𝑆𝐶𝑂𝑊⁄ + 𝐶𝑂𝑀𝐹𝐷𝐶𝑂𝑊)

125
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Lower and upper bounds of nutrient requirements for dairy and suckler cows are 

obtained by varying the fat milk content (MF) and the mean live weight (LW) by three 

standard deviations around their mean values. The lower and upper bounds represent 

the interval within which the actual animal requirements most probably lie. 

2. Fattening and raising of calves (CAMF/CAFF; CAMR/CAFR) 

The nutrient requirements for fattening of male (CAMF) and female (CAFF) calves and 

raising of male (CAMR) and female (CAFR) calves are taken from LfL (2014) and are 

reported in Table B-1 and Table B-2. The requirement tables deliver the requirement on a 

daily basis from birth to about 800 days. The table provides average values as well as 

minimum (min) and maximum (max) values for daily weight increase (DAILY) (kg/day), 

animal weight in a given day (XALW) and nutrient requirements (ENNE, ENMR, CRPR, 

DRMA, DRMN, DRMX). The minimum and maximum values are used to derive the lower 

and upper bounds of animal requirements. 

The annual requirements are calculated from Table B-1 and Table B-2 as follows: 

𝑋𝑖 =
∑ 𝑋𝑖,𝐷𝐴𝑌

𝐷𝐴𝑌=𝑒𝑛𝑑𝐷
𝐷𝐴𝑌=𝑠𝑡𝑎𝑟𝑡𝐷

𝑒𝑛𝑑𝐷−𝑠𝑡𝑎𝑟𝑡𝐷
   for i = CAMF, CAFF, CAMR, CAFR 

where DAY stands for day for DAY0 to DAY805; startD is start day of the fattening/raising 

process and endD is end day of the fattening/raising process; and X = ENNE, ENMR, 

CRPR, DRMA, DRMN, DRMX. 

The equations above calculate annual nutrient requirements for fattening and raising 

calves. All animal categories in IFM-CAP represent average number of head available on-

farm in a year. This implies 365 production days for all animal categories including 

fattening of calves. The total requirements are calculated by multiplying the average 

nutrient per day by 365 days. 

The mean value of the start day (startD) and end day (endD) are defined based on the 

FADN definition. The start day for fattening (raising) calves is assumed to be day zero, 

whereas the end day is set to 60 (180) days (Table B-3). However, the actual start and 

end day of calve activities of farms may depart significantly from the mean values. To 

account for this uncertainty we consider lower and upper bounds for these two 

parameters as defined in Table B-3. 

The annual requirements for fibre are defined as follows: 

𝐹𝐼𝐶𝑇𝑖 = 𝐷𝑅𝑀𝑋𝑖  for i = CAMF, CAFF, CAMR, CAFR 

The lower and upper bounds of animal requirements for fattening and raising of calves 

are obtained by using minimum and maximum values of nutrient requirements as 

reported in Table B-1 and Table B-2 as well as by varying the start and end day as 

reported in Table B-3. Note that this variation implicitly implies that the daily weight 

increase (DAILY) (kg/day) and animal weight in a given day (XALW) (kg/animal) also 

change as reported in Table B-1 and Table B-2 following the duration of the fattening and 

the raising process defined by the minimum and maximum values of start and end days 

in Table B-3. 

3. Adult cattle fattening (BULF, HEIF) and heifers for breeding (HEIR) 

Similarly to calf activities, the nutrient requirements for male and female adult cattle 

fattening (BULF, HEIF) and heifers for breeding (HEIR) are taken from LfL (2014) and are 

reported in Table B-1 and Table B-2. The annual requirements are calculated from those 

tables as follows: 

𝑋𝑖 = 365 ⋅
∑ 𝑋𝑖,𝐷𝐴𝑌

𝐷𝐴𝑌=𝑒𝑛𝑑𝐷
𝐷𝐴𝑌=𝑠𝑡𝑎𝑟𝑡𝐷

𝑒𝑛𝑑𝐷−𝑠𝑡𝑎𝑟𝑡𝐷
    for i = BULF, HEIF, HEIR; X = ENNE, ENMR, CRPR, DRMA, DRMN, DRMX 

The annual requirements for fibre are defined as follows: 

𝐹𝐼𝐶𝑇𝑖 = 𝐷𝑅𝑀𝑋𝑖   for i = BULF, HEIF, HEIR 
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To obtain the end day (endD) of the adult cattle, first the mean live weight (LW) is 

calculated by dividing the selling value of adult cattle (PRIC) available from FADN by the 

meat price extracted from Eurostat. Second, to obtain the end day of the fattening 

process, we use the animal weight in a given day (XALW) from Table B-1 (for BULF) and 

Table B-2 (for HEIF and HEIR) to derive the period (days) needed to reach the derived 

mean live weight LW. The start day startD of the fattening process of BULF, HEIF and 

HEIR is defined based on the FADN definition and is reported in Table B-3. 

To account for the uncertainty in the data, we vary the mean live weight by three 

standard deviations, which results in variation of the end day endD based on the 

corresponding information on XALW available from Table B-1 and Table B-2. The start 

day is varied as reported in Table B-3. The nutrient requirements are varied using the 

minimum and maximum values as reported in Table B-1 and Table B-2, while the start 

day is varied as reported in Table B-3. 

4. Sows (SOWS) 

The nutrient requirements for sows (SOWS) are taken from GfE (2006) and are reported 

in Table B-4. The table reports the daily nutrient needs over the whole year (365 days). 

The table assumes that the requirements of a medium breeding performance are 

independent of the number of piglets, as there is no reliable relation between number of 

piglets and milk yield described in GfE (2006). 

The annual requirements are calculated from Table B-4 as follows: 

𝑋𝑆𝑂𝑊𝑆 = ∑ 𝑋𝐷𝐴𝑌
𝐷𝐴𝑌=364
𝐷𝐴𝑌=0  for X = ENNE, ENMP, CRPR 

The minimum (DRMN) and maximum (DRMX) requirements of dry matter are calculated 

as follows: 

𝐷𝑅𝑀𝑁𝑆𝑂𝑊𝑆 =
𝐸𝑁𝑀𝑃𝑆𝑂𝑊𝑆

14.82
 

𝐷𝑅𝑀𝑋𝑆𝑂𝑊𝑆 =
𝐸𝑁𝑀𝑃𝑆𝑂𝑊𝑆

13.47
 

The minimum and maximum values reported in Table B-4 are used to derive the lower 

and upper bounds of animal requirements. This is to account for the uncertainty in the 

underlying data (e.g. number of piglets, milk yield). 

5. Fattening of pigs (PIGF) 

Nutrients for fattening pigs are calculated by summing up the nutrient requirements over 

the growth period of pigs from the start day until the end day of the fattening process. 

The nutrient requirements are taken from GfE (2006) and are reported in Table B-5. The 

annual requirements are calculated from this table as follows: 

𝑋𝑃𝐼𝐺𝐹 = 365 ⋅
∑ 𝑋𝐷𝐴𝑌

𝐷𝐴𝑌=𝑒𝑛𝑑𝐷
𝐷𝐴𝑌=𝑠𝑡𝑎𝑟𝑡𝐷

𝑒𝑛𝑑𝐷−𝑠𝑡𝑎𝑟𝑡𝐷
 for X = ENNE, ENMP, CRPR 

The minimum (DRMN) and maximum (DRMX) requirements of dry matter are calculated 

as follows: 

𝐷𝑅𝑀𝑁𝑃𝐼𝐺𝐹 =
𝐸𝑁𝑀𝑃𝑃𝐼𝐺𝐹

(13.4 ⋅ 0.88 ⋅ 0.588)
 

𝐷𝑅𝑀𝑋𝑃𝐼𝐺𝐹 =
𝐸𝑁𝑀𝑃𝑃𝐼𝐺𝐹

(12.6 ⋅ 0.88 ⋅ 0.588)
 

As for adult cattle, to obtain the end day (endD) of the pig-fattening process, first the 

mean live weight (LW) is calculated by dividing the selling value of pigs available from 

FADN by the meat price extracted from Eurostat. Then, to obtain the end day of the 

fattening process, we use the animal weight in a given day (XALW) from Table B-5 to 

derive the period (days) needed to reach the derived mean live weight LW. The start day 

startD of the fattening process is defined based on the FADN definition and is reported in 

in Table B-3. 
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To account for the uncertainty in the data, we vary the mean live weight by three 

standard deviations, which results in variation of the end day based on the corresponding 

information on XALW available from Table B-5. The nutrient requirements are varied 

using the minimum and maximum values as reported in Table B-5, while the start day is 

varied as reported in Table B-3. Note that the main source of variation of requirements 

(around minimum and maximum values) is daily live weight gains of pigs. The growth 

rate of pigs can strongly vary across MS and across farms within a MS. Moreover, the 

relative ratios of different nutrient requirements vary across different growth stages of 

pigs. The minimum and maximum values of requirements reported in  Table B-5take into 

consideration both these sources of variation and are available from GfE (2006). 

6. Laying hens (HENS) 

𝐸𝑁𝑀𝐶𝐻𝐸𝑁𝑆 = 365 ⋅ (0.46 ⋅ 𝐿𝑊𝐻𝐸𝑁𝑆 + 0.57 ⋅ 𝐸𝐺𝐺𝑌𝐻𝐸𝑁𝑆) ⋅ 1000 ⋅ 𝑘𝐸𝑁𝑀𝐶 

𝐷𝑅𝑀𝐴𝐻𝐸𝑁𝑆 =
𝐸𝑁𝑀𝐶𝐻𝐸𝑁𝑆

12
 

𝐷𝑅𝑀𝑁𝐻𝐸𝑁𝑆 =
𝐸𝑁𝑀𝐶𝐻𝐸𝑁𝑆

15
 

𝐷𝑅𝑀𝑋𝐻𝐸𝑁𝑆 =
𝐸𝑁𝑀𝐶𝐻𝐸𝑁𝑆

8
 

𝐶𝑅𝑃𝑅𝐻𝐸𝑁𝑆 = 0.14 ⋅
𝐸𝑁𝑀𝐶𝐻𝐸𝑁𝑆

11.1
 

𝐿𝐼𝑆𝐼𝐻𝐸𝑁𝑆 = 0.0095 ⋅ 𝐸𝐺𝐺𝑆𝐻𝐸𝑁𝑆 + 1.9 ⋅ 60 

where 

𝐸𝐺𝐺𝑌𝐻𝐸𝑁𝑆 =
𝐸𝐺𝐺𝑆 57⁄

365
 

ENMC is metabolisable energy for chicken; EGGY is number of eggs per laying hen per 

day with the assumption of average egg weight of 57 g and 365 production days; EGGS 

is egg production (in kg per 1 000 heads); LWHENS is mean live weight assumed 1.62 kg, 

kENMC is unit conversion factor for energy requirements (Table B-8). 

7. Poultry (POUF) 

The nutrient requirements for poultry are taken from NRC (1994) and are reported in 

Table B-6. The requirement tables are for broilers and provide nutrient requirement on a 

daily basis from birth until the end day of the production process. The annual 

requirements are calculated from this table as follows: 

𝑋𝑃𝑂𝑈𝐹 = 365 ⋅
∑ 𝑋𝐷𝐴𝑌

𝐷𝐴𝑌=𝑒𝑛𝑑𝐷
𝐷𝐴𝑌=𝑠𝑡𝑎𝑟𝑡𝐷

𝑒𝑛𝑑𝐷−𝑠𝑡𝑎𝑟𝑡𝐷
 for X = ENNE, ENMC, CRPR, DRMA 

The mean value of the start day (startD) and end day (endD) of the production process 

are defined based on FADN definition. The start day is assumed zero, whereas the end 

day is set to 40 days (Table B-3). To account for the uncertainty, we consider lower and 

upper bounds of the start and end day as defined in Table B-3. 

The minimum (DRMN) and maximum (DRMX) requirements of dry matter are calculated 

as follows:  

𝐷𝑅𝑀𝑁𝑃𝑂𝑈𝐹 =
𝐸𝑁𝑀𝐶𝑃𝑂𝑈𝐹

(13.4 ⋅ 0.88 ⋅ 0.717)
 

𝐷𝑅𝑀𝑋𝑃𝑂𝑈𝐹 =
𝐸𝑁𝑀𝐶𝑃𝑂𝑈𝐹

(12.6 ⋅ 0.88 ⋅ 0.717)
 

To account for the uncertainty in the data, the lower and upper bounds of poultry 

nutrient requirements are obtained by using minimum and maximum values of nutrient 

requirements as reported in Table B-6 as well as by varying the start and end day as 

reported in Table B-3. The main sources of uncertainty in deriving the poultry 
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requirements are the duration of production process, the type of poultry (e.g. broiler, 

turkey) and daily growth rate. 

8. Ewes and goats for milk (SHGM) 

First, nutrient requirements are calculated for ewes (EWES) and goats (GOAT) 

separately, second, the nutrient requirements for the combined sheep and goat activity 

(SHGM) are obtained as the weighted average over EWES and GOAT. 

8.1 Nutrient requirements for EWES and GOAT 

𝑁𝐸𝑀𝑖 = 0.217 ⋅ 𝐿𝑊𝑖
0.750.10 ⋅ 7𝑃𝐷𝑖 

𝑁𝐸𝐴𝑖 = 0.0107 𝐿𝑊𝑖𝑃𝐷𝑖  if there is grassland on-farm; otherwise 𝑁𝐸𝐴𝑖 = 0.009𝐿𝑊𝑖𝑃𝐷𝑖 

𝑁𝐸𝐿𝑖 = 4.6 ⋅ 𝑀𝑃𝐷𝑖 ⋅ 170 

𝐸𝑁𝑁𝐸𝑖 = 𝑁𝐸𝑀𝑖 + 𝑁𝐸𝐴𝑖 + 𝑁𝐸𝐿𝑖 

𝐶𝑅𝑃𝑅𝐸𝑊𝐸𝑆 = 135 (0.026 + 0.0014𝐿𝑊𝐸𝑊𝐸𝑆) + 170(0.0634 + 0.0012𝐿𝑊𝐸𝑊𝐸𝑆 + 0.0895𝑀𝑃𝐷𝐸𝑊𝐸𝑆) +1.35 ⋅

(2.22 ⋅ 𝐿𝑊𝐸𝑊𝐸𝑆 − 19.88) ⋅ 60
1

1000
 

𝐶𝑅𝑃𝑅𝐺𝑂𝐴𝑇 = 305 ⋅ (12.66 + 0.8 ⋅ 𝐿𝑊𝐺𝑂𝐴𝑇) + 61 ⋅ 𝑀𝑃𝐷𝐺𝑂𝐴𝑇170 +
60 ⋅ (1.425 ⋅ 𝐿𝑊𝐺𝑂𝐴𝑇 + 14.666)

1000
 

 𝐷𝑅𝑀𝑁𝐸𝑊𝐸𝑆 = 135 ⋅ (0.36 + 0.023 ⋅ 𝐿𝑊𝐸𝑊𝐸𝑆) + 170 ⋅ (1.112 + 0.0187 ⋅ 𝐿𝑊𝐸𝑊𝐸𝑆 + 0.279 ⋅ 𝑀𝑃𝐷𝐸𝑊𝐸𝑆

+ 60(0.0268 ⋅ 𝐿𝑊𝐸𝑊𝐸𝑆 − 0.24) 

𝐷𝑅𝑀𝑁𝐺𝑂𝐴𝑇 = 305 ⋅ (0.55 + 0.013 ⋅ 𝐿𝑊𝐺𝑂𝐴𝑇) + 0.3 ⋅ 𝑀𝑃𝐷𝐺𝑂𝐴𝑇170 + 60 ⋅ (0.0122 ⋅ 𝐿𝑊𝐺𝑂𝐴𝑇 + 0.5316) 

where 

𝑀𝑃𝐷𝑖 =
𝑆𝐺𝑀𝐼𝑖 + 𝑆𝐺𝑀𝐹𝑖

170
 

i = EWES, GOAT; MPD is sheep/goat milk production per day. It is assumed that there 

are 170 milk production days, 135 days maintenance only and 60 days of final mating; 

SGMI is milk production per sheep/goat; SGMF and SGMI are milk production for feeding 

and milk production (not for feeding) for sheep and goats, respectively, derived from 

FADN (in kg per day); PDi = 365; LWEWES = 55; LWGOAT = 60. 

8.2 Nutrient requirements for sheep and goat activity (SHGM) 

𝑅𝐸𝑄𝑆𝐻𝐺𝑀 = 𝑠ℎ𝐸𝑊𝐸𝑆𝑅𝐸𝑄𝐸𝑊𝐸𝑆 + 𝑠ℎ𝐺𝑂𝐴𝑇𝑅𝐸𝑄𝐺𝑂𝐴𝑇 

𝐷𝑅𝑀𝑋𝑆𝐻𝐺𝑀 = 1.5 ⋅ 𝐷𝑅𝑀𝑁𝑆𝐻𝐺𝑀 

𝐹𝐼𝑆𝑀𝑆𝐻𝐺𝑀 = 120 ⋅
𝐿𝑊𝑆𝐻𝐺𝑀

0.75

1000
⋅ 365 

where 

𝐿𝑊𝑆𝐻𝐺𝑀 = 𝑠ℎ𝐸𝑊𝐸𝑆𝐿𝑊𝐸𝑊𝐸𝑆 + 𝑠ℎ𝐺𝑂𝐴𝑇𝐿𝑊𝐺𝑂𝐴𝑇 

REQ = ENNE, CRPR, DRMN; FISM is fibre for sheep and goats; shEWES and shGOAT are 

shares of ewes and goats in the total herd size, respectively, derived from FADN. 

The lower and upper bounds of requirements are obtained by varying the average milk 

production per day and the mean live weight by 30 % around their mean values. 

9. Sheep and goats fattening (SHGF) 

𝐸𝑁𝑁𝐸𝑆𝐻𝐺𝐹 = (0.1596 ⋅ 𝐿𝑊𝑆𝐻𝐺𝐹 + 0.0303 ⋅ 𝐷𝐴𝐼𝐿𝑌𝑆𝐻𝐺𝐹 − 0.56)(1 − 0.2)𝐹𝐷𝑆𝐻𝐺𝐹𝑘𝐸𝑁𝑀𝑅 

𝐶𝑅𝑃𝑅𝑆𝐻𝐺𝐹 =
(21.778 + 0.33 ⋅ 𝐿𝑊𝑆𝐻𝐺𝐹) + 0.258 ⋅ 𝐷𝐴𝐼𝐿𝑌𝑆𝐻𝐺𝐹1.35 ⋅ 𝐹𝐷𝑆𝐻𝐺𝐹 ⋅ 1000

1000
  

𝐷𝑅𝑀𝑁𝑆𝐻𝐺𝐹 = (0.038286 ⋅ 𝐿𝑊𝑆𝐻𝐺𝐹 + 0.06381)𝐹𝐷𝑆𝐻𝐺𝐹 

𝐷𝑅𝑀𝑋𝑆𝐻𝐺𝐹 = 1.5 ⋅ 𝐷𝑅𝑀𝑁𝑆𝐻𝐺𝐹 

𝐹𝐼𝑆𝐹𝑆𝐻𝐺𝐹 = 0.075 ⋅ 𝐿𝑊𝑆𝐻𝐺𝐹
0.75 𝐹𝐷𝑆𝐻𝐺𝐹 
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where 

𝐹𝐷𝑆𝐻𝐺𝐹 = 𝑀𝑖𝑛 [320;𝑀𝑎𝑥 (45;
𝑆𝐺𝑀𝑇𝑆𝐻𝐺𝐹 𝐶𝑊𝑆𝐻𝐺𝐹⁄

𝐷𝐴𝐼𝐿𝑌𝑆𝐻𝐺𝐹

)] 

𝐿𝑊 =

𝑀𝑎𝑥[8;𝑀𝑖𝑛(25; 𝑆𝐺𝑀𝑇𝑆𝐻𝐺𝐹)]
𝐶𝑊𝑆𝐻𝐺𝐹

2
 

SGMT is meat production per animal; CW = 0.6; DAILY = 0.250 kg; kENMR is conversion 

factor for metabolisable energy ruminants (ENMR) (Table B-7 and Table B-8). 

The lower and upper bounds of requirements are obtained by varying the duration of the 

fattening period and the mean live weight up to 80 % around their mean values. 
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Table B-1. Nutrient requirement table for male cattle fattening and raising (CAMF, CAMR, BULF) 

  DAY 0 DAY 1 DAY 2 DAY 3 … DAY 803 DAY 804 DAY 805 

DAY Average  1 2 3  803 804 805 

Min  1 2 3  803 804 805 

Max  1 2 3  803 804 805 

DAILY Average 800 800 800 800  1412 1412 1412 

Min 690 690 690 690  1290 1290 1290 

Max 800 800 800 800  1506 1506 1506 

XALW Average 80 80.8 81.6 82.4  1177.937 1179.349 1180.761 

Min 80 80.69 81.38 82.07  813.052 814.342 815.632 

Max 80 80.8 81.6 82.4  1259.177 1260.683 1262.189 

ENNE Average 10.659 10.659 10.659 10.659  75.4908 75.4908 75.4908 

Min 9.405 9.405 9.405 9.405  70.9137 70.9137 70.9137 

Max 11.286 11.286 11.286 11.286  78.375 78.375 78.375 

ENMR Average 17 17 17 17  120.4 120.4 120.4 

Min 15 15 15 15  113.1 113.1 113.1 

Max 18 18 18 18  125 125 125 

CRPR Average 0.239 0.239 0.239 0.239  1.213 1.213 1.213 

Min 0.213 0.213 0.213 0.213  1.213 1.213 1.213 

Max 0.265 0.265 0.265 0.265  1.32 1.32 1.32 

DRMA Average 1.05 1.05 1.05 1.05  10.03333 10.03333 10.03333 

Min 0.95 0.95 0.95 0.95  9.466667 9.466667 9.466667 

Max 1.15 1.15 1.15 1.15  10.33333 10.33333 10.33333 

DRMX Average 1.2 1.05 1.05 1.05  10.03333 10.03333 10.03333 

Min 1.1 0.95 0.95 0.95  9.466667 9.466667 9.466667 

Max 1.3 1.15 1.15 1.15  10.33333 10.33333 10.33333 

DRMN Average 0.9 1.05 1.05 1.05  10.03333 10.03333 10.03333 

Min 0.8 0.95 0.95 0.95  9.466667 9.466667 9.466667 

Max 1 1.15 1.15 1.15  10.33333 10.33333 10.33333 

Source: LfL (2014). 
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Table B-2. Nutrient requirement table for female cattle fattening and raising (CAFF, CAFR, HEIF, 

HEIR) 

  DAY 0 DAY 1 DAY 2 DAY 3 … DAY 803 DAY 804 DAY 805 

DAY Average  1 2 3  803 804 805 

Min  1 2 3  803 804 805 

Max  1 2 3  803 804 805 

DAILY Average 690 690 690 690  825 825 825 

Min 690 690 690 690  825 825 825 

Max 690 690 690 690  825 825 825 

XALW Average 80 80.69 81.38 82.07  805.8 806.625 807.45 

Min 80 80.69 81.38 82.07  799.77 800.595 801.42 

Max 80 80.69 81.38 82.07  810.71 811.535 812.36 

ENNE Average 9.405 9.405 9.405 9.405  62.7 62.7 62.7 

Min 9.405 9.405 9.405 9.405  59.565 59.565 59.565 

Max 9.405 9.405 9.405 9.405  65.835 65.835 65.835 

ENMR Average 15 15 15 15  100 100 100 

Min 15 15 15 15  95 95 95 

Max 15 15 15 15  105 105 105 

CRPR Average 0.213 0.213 0.213 0.213  1.149 1.149 1.149 

Min 0.213 0.213 0.213 0.213  1.092 1.092 1.092 

Max 0.213 0.213 0.213 0.213  1.205 1.205 1.205 

DRMA Average 0.95 0.95 0.95 0.95  10.5 10.5 10.5 

Min 0.95 0.95 0.95 0.95  10.5 10.5 10.5 

Max 0.95 0.95 0.95 0.95  10.5 10.5 10.5 

DRMX Average 1.1 0.95 0.95 0.95  10.5 10.5 10.5 

Min 1.1 0.95 0.95 0.95  10.5 10.5 10.5 

Max 1.1 0.95 0.95 0.95  10.5 10.5 10.5 

DRMN Average 0.8 0.95 0.95 0.95  10.5 10.5 10.5 

Min 0.8 0.95 0.95 0.95  10.5 10.5 10.5 

Max 0.8 0.95 0.95 0.95  10.5 10.5 10.5 

Source: LfL (2014). 

 

Table B-3. The start and the end day of the fattening/raising process of animal activities 

 

Start day (startD) End day (endD) 

 

Average Min Max Average Min Max 

CAFF 0 0 60 180 60 240 

CAMF 0 0 60 180 60 240 

CAFR 0 0 180 365 180 912.5 

CAMR 0 0 180 365 180 912.5 

HEIR 365 180 730 Calc. s.d. s.d. 

HEIF 180 60 360 Calc. s.d. s.d. 

BULF 272.5 120 545 Calc. s.d. s.d. 

PIGF 0 0 17 Calc. s.d. s.d. 

POUF 0 0 10 40 30 62 

Notes: Calc.: calculated based on the mean live weight derived from FADN and Eurostat and corresponding 
values of endD from Table B-1 and Table B-2; s.d.: calculated based on the standard deviation of the endD. 

Source: derived based on FADN definitions 
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Table B-4. Nutrient requirement table for sows (SOWS) 

  DAY 0 DAY 1 DAY 2 DAY 3 … DAY 362 DAY 363 DAY 364 

DAY Average  1 2 3  362 363 364 

Min  1 2 3  362 363 364 

Max  1 2 3  362 363 364 

ENNE Average 24.5196 24.5196 24.5196 24.5196  24.5196 24.5196 24.5196 

Min 23.0496 23.0496 23.0496 23.0496  23.0496 23.0496 23.0496 

Max 25.9896 25.9896 25.9896 25.9896  25.9896 25.9896 25.9896 

ENMP Average 41.7 41.7 41.7 41.7  41.7 41.7 41.7 

Min 39.2 39.2 39.2 39.2  39.2 39.2 39.2 

Max 44.2 44.2 44.2 44.2  44.2 44.2 44.2 

CRPR Average 0.33 0.33 0.33 0.33  0.33 0.33 0.33 

Min 0.3 0.3 0.3 0.3  0.3 0.3 0.3 

Max 0.36 0.36 0.36 0.36  0.36 0.36 0.36 

Source: GfE (2006). 

 

Table B-5. Nutrient requirement table for fattening of pigs (PIGF) 

  DAY 0 DAY 1 DAY 2 DAY 3 … DAY 175 DAY 176 DAY 177 

DAY Average  1 2 3  175 176 177 

Min  1 2 3  175 176 177 

Max  1 2 3  175 176 177 

DAILY Average 600 600 600 600  700 700 700 

Min 600 600 600 600  700 700 700 

Max 700 700 700 700  800 800 800 

XALW Average 20 20.6 21.2 21.8  150.2 150.9 151.6 

Min 20 20.6 21.2 21.8  150.2 150.9 151.6 

Max 20 20.7 21.4 22.1  166.9 167.7 168.5 

ENNE Average  7.644 7.644 7.644  21.168 21.168 21.168 

Min  7.644 7.644 7.644  21.168 21.168 21.168 

Max  8.82 8.82 8.82  22.932 22.932 22.932 

ENMP Average  13 13 13  36 36 36 

Min  13 13 13  36 36 36 

Max  15 15 15  39 39 39 

CRPR Average  0.202353 0.202353 0.202353  0.225882 0.225882 0.225882 

Min  0.202353 0.202353 0.202353  0.225882 0.225882 0.225882 

Max  0.235294 0.235294 0.235294  0.254118 0.254118 0.254118 

Source: GfE (2006). 
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Table B-6. Nutrient requirement table for poultry (POUF) 

  DAY 0 DAY 1 DAY 2 DAY 3 … DAY 60 DAY 61 DAY 62 

DAY Average  1 2 3  60 61 62 

Min  1 2 3  60 61 62 

Max  1 2 3  60 61 62 

DAILY Average 21.14 21.14 21.14 21.14  57.86 57.86 57.86 

Min 21.14 21.14 21.14 21.14  57.86 57.86 57.86 

Max 21.14 21.14 21.14 21.14  57.86 57.86 57.86 

XALW Average  0.02 0.04 0.06  3.02 3.08 3.14 

Min  0.02 0.04 0.06  3.02 3.08 3.14 

Max  0.02 0.04 0.06  3.02 3.08 3.14 

ENNE Average 0.18 0.18 0.18 0.18  1.94 1.94 1.94 

Min 0.18 0.18 0.18 0.18  1.94 1.94 1.94 

Max 0.18 0.18 0.18 0.18  1.94 1.94 1.94 

ENMC Average 0.25 0.25 0.25 0.25  2.70 2.70 2.70 

Min 0.25 0.25 0.25 0.25  2.70 2.70 2.70 

Max 0.25 0.25 0.25 0.25  2.70 2.70 2.70 

CRPR Average 0.00 0.00 0.00 0.00  0.04 0.04 0.04 

Min 0.00 0.00 0.00 0.00  0.04 0.04 0.04 

Max 0.00 0.00 0.00 0.00  0.04 0.04 0.04 

DRMA Average 0.02 0.02 0.02 0.02  0.18 0.18 0.18 

Min 0.02 0.02 0.02 0.02  0.18 0.18 0.18 

Max 0.02 0.02 0.02 0.02  0.18 0.18 0.18 

Source: NRC (1994). 

 

Table B-7. Carcass share, live start weight and coefficient of energy for growth 

 

Carcass to live weight (CW) 

 

Coeff. 0-1 

SHGF 0.60 

HENS 0.80 
Source: CAPRI. 

 

Table B-8. Conversion factors for energy requirements (KENMR, KENMC, KENMH, KENMP) 

ENMR ENMC ENMH ENMP 

0.627 0.717 0.631 0.588 

Source: CAPRI. 
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Annex C. Agri-environmental indicators 

 

Table C-1 reports the state of implementation of the environmental indicators in the 

current version of the IFM-CAP model. 

 

Table C-1. Agri-environmental indicators in the IFM-CAP model 

Domain/dimension Indicator Sub-indicator Status 

Public policy Agri-environmental 

commitments 

Agri-

environmental 

payments per 

hectare 

Operational 

Market signals and 

production 

systems 

Intensification/extensification Input 

expenditure 

Operational 

Intensification/extensification Low, medium 

and high input 

expenditure 

Not 

implemented 

Climate change 

and air 

Greenhouse gas emissions Methane and 

nitrous oxide  

Implemented 

but not yet 

operational 

Ammonia emissions Ammonia Implemented 

but not yet 

operational 

Water Nutrient management Nitrogen 

budget 

Implemented 

but not 

operational 

Phosphorus 

budget 

Implemented 

but not 

operational 

Nutrient management Fertiliser 

consumption 

Operational 

Fertiliser 

expenditure 

Operational 

Pesticide risk Expenditure on 

plant protection 

products 

Operational 

Soil Soil erosion by water  Soil loss 

equation 

Not yet 

implemented. 

Need for farm 

spatial allocation 

Soil erosion by water Crop system 

and support 

Operational 
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practices factor 

Soil organic matter Soil organic 

matter  

To be designed 

Soil organic matter Share of 

permanent 

grassland 

Operational 

Biodiversity and 

landscape 

Crop richness Crop richness 

from functional 

crop groups 

Operational 

Crop diversity Crop diversity 

from functional 

crop groups 

Operational 

Diversity of land uses  Cannot be 

implemented 

until shifts 

between land 

uses are 

included in the 

model 

Extensiveness Extensiveness 

in arable land 

Cannot be 

implemented 

until farm yields 

are endogenised 

Extensiveness 

in grassland 

Implementation 

forthcoming 

Extensive permanent 

grasslands 

Share of 

extensive 

permanent 

grasslands 

Operational 

Environmental compensation 

zones (ECZs) 

Share of ECZs 

in the UAA 

Cannot be 

implemented 

until shifts 

between land 

uses are 

included in the 

model 
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List of abbreviations  

CAP common agricultural policy 

CAPRI common agricultural policy regionalised impact  

CARA constant absolute risk aversion 

CPU central processing unit 

EFA ecological focus area 

FADN farm accountancy data network 

FOC first-order condition 

GAMS general algebraic modelling system 

GDX GAMS Data eXchange 

GGIG GAMS graphical user interface generator 

GUI graphical user interface 

HPD highest posterior density 

IFM-CAP individual farm model for common agricultural policy  

IQR interquartile range 

LP linear programming 

MS Member State 

NUTS Nomenclature of Territorial Units for Statistics 

PMP positive mathematical programming 

RCR residue-to-crop ratio 

RRA relative risk aversion 

UAA utilised agricultural area 

VCS voluntary coupled support 
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