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Foreword 

This report is published in the context of AI Watch, the European Commission  knowledge 
service to monitor the development, uptake and impact of Artificial Intelligence (AI) for 
Europe, launched in December 2018. 

AI has become an area of strategic importance with the potential to be a key driver of 
economic development. AI also has a wide range of potential social implications. As part of 
its Digital Single Market Strategy, in April 2018 the European Commission put forward a 
European strategy on AI in its Commu
COM(2018)237. The aims of the European AI strategy announced in the communication are: 

— 

both by the private and public sectors  

— To prepare for socio-economic changes brought about by AI 

— To ensure an appropriate ethical and legal framework. 

Subsequently, in December 2018, the European Commission and the Member States 
COM(2018)795, on the development 

of AI in the EU. The Coordinated Plan mentions the role of AI Watch to monitor its 
implementation. 

AI-related policy initiatives in the Member States; uptake and technical developments of AI; 
and AI impact. AI Watch has a European focus within the global landscape. In the context of 

and analyses are published on the AI Watch Portal (https://ec.europa.eu/knowledge4policy/ai-
watch_en). 

From the in-depth analyses of AI Watch, we will be able to better understand the European 
Union
an independent assessment of the impacts and benefits of AI on growth, jobs, education and 
society. 

AI Watch has been developed by the Joint Research Centre (JRC) of the European Commission 
in collaboration with the Directorate-General for Communications Networks, Content and 
Technology (DG CONNECT). 

This report addresses the following objectives of AI Watch: 

— Reporting on the technical capabilities, functionalities and performances of major AI-
based systems (reported in the literature, by projects, by companies developing products 
and services, etc.). 

— Monitor and benchmark the AI capacities based on reports in the literature and not direct 
testing of AI technology. Developing an overview and analysis of the AI ecosystem. 

 

 

  

https://ec.europa.eu/knowledge4policy/ai-watch_en
https://ec.europa.eu/knowledge4policy/ai-watch_en
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Abstract 

Artificial intelligence (AI) offers the potential to transform our lives in radical ways. However, 
we lack the tools to determine which achievements will be attained in the near future. Also, 
we usually underestimate which various technologies in AI are capable of today. Certainly, 
the translation from scientific papers and benchmark performance to products is faster in AI 
than in other non-digital sectors. However, it is often the case that research breakthroughs 
do not directly translate to a technology that is ready to use in real-world environments. This 
report constitutes the second edition of a study proposing an example-based methodology 
to categorise and assess several AI technologies, by mapping them onto Technology 
Readiness Levels (TRL) (e.g., maturity and availability levels). We first interpret the nine TRLs 
in the context of AI and identify different categories in AI to which they can be assigned. We 
then introduce new bidimensional plots, called readiness-vs-generality charts, where we see 
that higher TRLs are achievable for low-generality technologies focusing on narrow or 
specific abilities, while high TRLs are still out of reach for more general capabilities. In an 
incremental way, this edition builds on the first report on the topic by updating the 
assessment of the original set of AI technologies and complementing it with an analysis of 
new AI technologies. We include numerous examples of AI technologies in a variety of fields 
and show their readiness-vs-generality charts, serving as a base for a broader discussion of 
AI technologies. Finally, we use the dynamics of several AI technologies at different generality 
levels and moments of time to forecast some short-term and mid-term trends for AI. 
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Executive summary 

This report is a revision of the first edition of the assessment of Technology Readiness Levels 
for Artificial Intelligence published in December 2020 (Martínez-Plumed et al., 2020d; 
Martinez-Plumed et al., 2021). It updates the assessment of the original set of AI 
technologies and complements it with an analysis of new AI technologies. 

We still lack the capacity to predict what capabilities and products will become a reality even 
in the short term, a problem that is not unique to AI but to any technology, especially digital 
technologies. We are not always successful, even in hindsight, in understanding why some 
expectations are not met, and why some AI technologies have limitations or what kinds of 
new technologies may replace them. Moreover, although many so-called breakthroughs in AI 
are associated with highly cited research papers or good performance in some particular 
benchmarks, research breakthroughs do not directly translate into a technology that is ready 
to use in real-world environments. 

In this paper, we used the novel example-based methodology introduced in (Martínez-Plumed 
et al., 2020d, 2021) to categorise and assess several AI R&D Technologies, by mapping them 
onto Technology Readiness Levels (TRL) (representing their maturity and availability). We first 
interpret the nine TRLs in the context of AI and identify several categories in AI to which they 
can be assigned. The selection of the new AI technologies is representative but not 
exhaustive: it has been decided in agreement with various experts in AI technologies and is 
based on our own experience and knowledge in the area regarding their relevance and 

levels of research activity. 

We then use the readiness-vs-generality charts, which are bidimensional plots in which we 
define the degree of generality (in terms of being able to function over many diverse specific 
domains and tasks) expected for a particular technology on the x-axis vs the readiness level 
(the TRLs) on the y-axis. Generality is a key element to be recognised, apart from the 
readiness levels since AI is a field that develops (cognitive) capabilities at different generality 
levels. Consequently, we need to assign readiness levels according to different levels of 
generality: a technology that is specialised for a very specific, controlled domain may reach 
higher TRL than a technology that has to be more general-purpose in terms of it not-being 
restricted to specific tasks or scenarios. Therefore, for each technology we define the 
different levels of capabilities based on a comprehensive analysis of the related scientific 
and industrial literature. We also include examples of AI technologies in a variety of fields 
and provide their readiness-vs-generality charts (see Table 1). 

Methodologically, the examples analysed serve to illustrate the difficulties of estimating the 
TRLs, a problem that is not specific to AI. The use of levels on the x-axis, however, has helped 
us be more precise with the TRLs than would be otherwise the case. It should be noted that 
our initial assessment has undergone a thorough evaluation by an independent panel of 
specialists, recognised in at least one of the technologies (or areas) addressed.  

In the charts we see that higher TRLs are achievable for low-generality technologies focusing 
on narrow or specific abilities, while high TRLs are still out of reach for more general 
capabilities. Furthermore, the shapes of the curves seen in the charts of the previous section 
are informative about where the real challenges are for some technologies. Consequently, it 
seems that those curves that are flatter look more promising than those for which there is a 
steep step at some level on the x-axis. We use the dynamics of several AI technology 
examples at different generality levels and moments of time to forecast some short-term 
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and mid-term AI trends. Finally, we illustrate that technological readiness does not mean 
technological success, as well as the potential dangers of an excessive focus on TRL when 
developing new AI technologies and the consequent criticisms related to the lack of generality 
of current AI technologies.  

Valuable contributions of this work are: (1) the definition of the maturity levels for an 
illustrative set of AI technologies through the use of Technology Readiness Level (TRL) 
assessment; (2) an interpretation of the nine TRLs (introduced by NASA and adapted by the 
EU) in the context of AI, and then its systematic application to different categories in AI, by 
choosing one or two examples in each category; (3) the development of new bidimensional 
plots, known as readiness-vs-generality charts, as a trade-off between how general a 
technology is versus its readiness level; (4) an analysis of numerous examples of AI 
technologies in a variety of fields by means of readiness-vs-generality charts; and (5) a 
discussion about the future of AI as a transformative technology and how the readiness-vs-
generality charts are useful for short-term and mid-term forecasting.  

 

Table 1: AI categories and the sample of representative technologies evaluated for each of them. 

Category Technology 

Knowledge Representation & Reasoning Expert Systems 

Learning 

Recommender Systems 
Apprentices by Demonstration 
Audio-Visual Content Generation 

Communication 

Machine Translation 
Speech Recognition 
Natural Language Generation 
 

Perception 
Facial Recognition 
Text Recognition 
 

Planning Transport & Scheduling Systems 

Physical Interaction (Robotics) 

Assisted, Automated and Autonomous Driving  
Home Cleaning Robots 
Logistic Robots 
Inspection and Maintenance Robotics 

Social & Collaborative Intelligence Negotiation Agents 

Integrating Technology Virtual Assistants 
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2 Introduction  

 

Artificial Intelligence (AI) is poised to have a transformative effect on almost every aspect of 
our lives, from the perspective of individuals, groups, companies and governments. While 
there are certainly many obstacles to overcome, AI has the potential to empower our daily 
lives in the immediate future. A great deal of this empowerment comes through the 
amplification of human abilities. Another important space AI systems are taking over comes 
from the opportunities of an increasingly more digitised and 1 world. Overall, AI is 
playing an important role in several sectors and applications, from virtual digital assistants 
in our smartphones to medical diagnosis systems. The impact on the labour market is already 
highly visible, but the workplace may be totally transformed in the coming years.   

However, there is already a high degree of uncertainty even when it comes to determining 
whether a problem can be solved or an occupation can be replaced by AI today (Brynjolfsson 
et al. 2018, Martínez-Plumed et al. 2020). The readiness of AI seems to be limited to: (1) 
areas that use and produce a sufficient amount of data and have clear objectives about what 
the business is trying to achieve; (2) scenarios where the suitable algorithms, approaches 
and software have been developed to make it fully functional in their relevant fields; and (3) 
situations whose costs of deployment are affordable (including data, expert knowledge, 
human oversight, software resources, computing cycles, hardware and network facilities, 
development time, etc., apart from other monetary costs) (Martínez-Plumed et al. 2018a). To 
make things more complicated, AI is not one big, specific technology, but it rather consists of 
several different human-like and non-human-like capabilities, which currently have different 
levels of development (e.g., from research hypotheses and formulations to more deployed 
commercial applications). At a high level, AI is composed of reasoning, learning, perception, 
planning, communication, robotics and social intelligence. At a lower level, there are a myriad 
of applications that combine these abilities with many other components, not necessarily in 
AI, ranging from driverless cars to chatbots.  

Many products we have today were envisaged decades ago but have only come into use very 
recently. For instance, virtual digital assistants, such as Alexa, Siri and Google Home, are still 
far from some of the imagined possibilities, but they are already successfully answering a 
wide gamut of requests from customers, and have already become common shoulders to 
lean on in daily life. Similarly, a computer that could recognise us has been in our imagination 
and desiderata for decades, but it is only recently that AI-based facial recognition and 
biometric systems abound in smartphones, security cameras and other surveillance 
equipment for security and safety purposes. Machine learning and other AI techniques are 

retailing and streaming services, fault detection and diagnosis systems are used in industry 
and healthcare, and planners and optimisers are used in logistics and transportation. Other 
applications, however, have been announced as imminent, but their deployment in the real 
world is taking longer than originally expected. For instance, self-driving cars are still taking 
off very hesitantly and in very particular contexts. 2   

The key question is not whether AI is envisaged or working in limited situations, but whether 
an AI technology is sufficiently developed to be applicable in the real world, as a viable 

                                           

1   https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-

stats-everyone-should-read/#277a44c060ba  
2  https://www.vox.com/future-perfect/2020/2/14/21063487/self-driving-cars-autonomous-vehicles-waymo-cruise-uber 

https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#277a44c060ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#277a44c060ba
https://www.vox.com/future-perfect/2020/2/14/21063487/self-driving-cars-autonomous-vehicles-waymo-cruise-uber
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product leading to public and business value and real transformation. Only if we are able to 
answer this question can we really understand the impact of AI research breakthroughs and 
the time from different stages of their development to viable products. Policymakers, 
researchers and consumers need a clear technical analysis of AI capacities, not only to 
determine what is within-range and out-of-range of AI (Martínez-Plumed 2018b), but also 
what are the current levels of maturity and readiness of newly introduced technologies.  

 

2.1 Objectives and contributions 

The aim of this paper is thus to define the maturity of an illustrative set of AI technologies 
through the use of Technology Readiness Level (TRL) assessment. We first interpret the nine 
TRLs (introduced by NASA and adapted by the EU) in the context of AI, and then we apply 
them systematically to different categories in AI, by choosing one or two examples in each 
category. In order to do this, we introduce new bidimensional plots, known as readiness-vs-
generality charts, as a trade-off between how general a technology is versus its readiness 
level. We see that, in many domains, actual systems proven in operational environments are 
already out there, but still show limited capabilities. For more generality in capabilities, the 
TRL is still at an earlier stage. We include numerous examples of AI technologies in a variety 
of fields and provide their readiness-vs-generality charts. These are used as exemplars that 
function as practical guidelines for anyone interested in analysing other AI technologies using 
a similar methodology. The examples selected in this paper are also sufficiently 
representative for a discussion on the future of AI as a transformative technology and how 
these charts can be used for short-term and mid-term forecasting. We start this open 
discussion at the end of this paper. 

 

2.2 Scope 

We potentially consider all AI technologies, as defined by the areas that are usually 
associated with the discipline. This is one of the main reasons why we enumerate a list of AI 
categories that correspond to subfields in AI. In this regard we follow the AI Watch operational 
definition (Samoili et al., 2020) which defines a concise taxonomy that characterises the core 
domains of the AI research field (as well as transversal topics). This categorisation, which 
proceeds from the absence of a mutually agreed definition and taxonomy of AI, is used as a 
basis for the AI Watch monitoring activity and has been established by means of a flexible 
scientific methodology that allows for regular revision. We do not use other characterisations 
of AI as comprising systems that act rationally or act like a human, which may be more 
restrictive. Regarding the ingredients that make an AI technology inherently ready, we cover 
techniques and knowledge, but also compute , data and other dimensions of AI solutions. 
However, other factors affecting the pace and adoption of a technology (e.g., the financial 
costs of deploying solutions, labour market dynamics, economic benefits, regulatory delays, 
social acceptance, etc.) fall outside the scope of this report.  

 

2.3 Intended audience 

This document is addressed, on the one hand, to researchers and companies writing project 
proposals and trying to determine which TRLs they will be able to achieve, and on the other 
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hand, to policymakers and evaluators assessing how far a given proposal reaches in the TRL 
scale. For target readers not familiar with TRLs, this document is self-contained and can also 
serve as an introduction to TRLs and a way of analysing progress in AI in terms of TRLs. This 
approach may represent a more fine-grained (in terms of AI area-specific and, more 
specifically, example-specific readiness analysis) and systematic scale (in terms of data 
collection, implementation and analysis) than using performance in benchmarks, bibliometric 
analysis or simply popularity.   

 

The rest of the paper is organised as follows. Section 2 reviews the notion of technology 
readiness level, borrowed from NASA and adapted in the EU. Section 3 presents the key 
methodology: we first provide the contours of what an AI technology is in particular, which is 
determined more precisely by those that can be assigned to one (or more) of the seven AI 
categories corresponding to subareas in the discipline. This section introduces the readiness-
vs-generality charts, which are key for understanding the state of different technologies, by 
turning the conundrum between readiness and generality into a trade-off chart. Section 4 
includes one or two examples of AI technologies for each of the seven categories, with a 
short definition, historical perspective and the grades of generality that are used in the charts. 
Section 5 discusses all charts together, finding different dynamics, and considers a 
prototypical example of AI technology  the virtual assistant  covering several categories. 
Section 6 concludes the paper with an analysis of future trends in AI according to the 
evolution of TRL for different levels of generality. An appendix follows after the references, 
including a rubric for the TRLs.  
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3 Technology Readiness Levels 

Defined and used on-and-off for NASA space technology planning for many years, the 
Technology Readiness Levels (TRL) constitute a systematic measurement approach that 
supports consistent assessments, comparisons and delimitations about the maturity of one 
or more technologies. TRL analysis was originally used for aeronautical and space projects 
and later generalised to any kind of project, covering the whole span from the original idea 
to commercial deployment. The key point underlying TRLs is that if we consider a specific 
technology and we have information about the TRL in which it is located, we can get an idea 
of how mature it is. Therefore, the primary purpose of using TRLs is to help decision-making 
concerning the development and transitioning of technology. TRL assessment should be 
viewed as one of several tools that are needed to manage the progress of research and 
development activity within an organisation.  

The European Commission (EC) slightly adapted the TRL descriptions to be used in the Horizon 
2020 Work Programmes and calls for proposals.3 The current TRL scale used by the EC 
consists of nine levels. Each level characterises the maturity of the development of a 
technology, from the mere idea (level 1) to its full deployment on the market (level 9).4  

In what follows, we present these nine levels as we use them in this work (see the rubric for 
further details in the Appendix, and Table 1 for a summary): 

 

— TRL 1: Basic principles observed (Have basic principles been observed and reported?) 
Lowest level of technology readiness. Research begins to be translated into applied 
research and development. Examples might include paper studies of a technology's basic 
properties.  

— TRL 2: Technology concept formulated (Has a concept or application been 
formulated?) Invention begins. Once basic principles are observed, practical applications 
can be invented. Applications are speculative and there may be no proof or detailed 
analysis to support the assumptions. Examples are limited to analytic studies.  

— TRL 3: Experimental proof of concept (Has analytical and experimental proof-of-
concept been demonstrated?) Continued research and development efforts. This includes 
analytical studies and laboratory studies to physically validate analytical predictions of 
separate elements of the technology. Examples include components that are not yet 
integrated or representative.  

— TRL 4: Technology validated in the lab (Has a component or layout been 
demonstrated in a laboratory (controlled) environment?) Basic technological components 
are integrated to establish that they will work together. This is relatively low fidelity  
compared to the eventual system. Examples include integration of ad hoc  software or 
hardware in the laboratory.  

— TRL 5: Technology validated in a relevant environment 5F

5 (Has a component or layout 
unit been demonstrated in a relevant  typical; not necessarily stressing  environment?) 

                                           

3  https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016-2017/annexes/h2020-wp1617-annex-

ga_en.pdf 

4  Note that TRLs start from applied research, not covering the fundamental research that may lay the foundations of future 

technologies. The latter may be considered as a “TRL 0” (fundamental research), although this zero level is not contemplated 

in the original TRL scale, and we will not use it. The lowest level used in this paper will always be TRL 1. 

5  When, in the descriptions, we talk about “relevant environment” we refer to an environment with conditions that are close 
enough to or simulate the conditions that exist in a real environment (production). 

https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016-2017/annexes/h2020-wp1617-annex-ga_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016-2017/annexes/h2020-wp1617-annex-ga_en.pdf
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Reliability is significantly increased. The basic technological components are integrated 
with reasonably realistic supporting elements so it can be tested in a simulated 
environment. Examples include high-fidelity laboratory integration of components. 

— TRL 6: Technology demonstrated in a relevant environment (Has a prototype been 
demonstrated in a relevant environment, on the target or surrogate platform?) 
Representative model or prototype system, which is well beyond that of TRL 5, is tested 
in a relevant environment. This represents a major step up in a technology s demonstrated 
readiness. Examples include testing a prototype in a high-fidelity laboratory environment 
or in a simulated operational environment. 

— TRL 7: System prototype demonstration in operational environment (Has the 
prototype unit been demonstrated in the operational environment?) Represents a major 
step up from TRL 6, requiring demonstration of an actual system prototype in an 
operational environment. Examples include testing the prototype in operational testing 
platforms (e.g., a real-world clinical setting, a vehicle, etc.).  

— TRL 8: System complete and qualified (Has a system or development unit been 
qualified but tools and platforms not operationally demonstrated?) Technology proved to 
work in its final form and under expected conditions. In most cases, this TRL represents 
the end of true system development. Examples include developmental test and 
evaluation of the system to determine if the requirements and specifications are fulfilled. 

deployed in an operational environment (ready to be commercialised). 

— TRL 9: Actual system proven in operational environment (Has a system or 
development unit been demonstrated on an operational environment?) Actual application 
of the technology in its final form and under mission conditions, such as those 
encountered in operational test and evaluation. Examples include using the system under 
operational conditions. This is not a necessary end point, as the technology can be 
improved over the months or years, especially as more and more users can give feedback. 
But it may also happen that general use unveils some flaws or safety issues, and the 
system must be retired, with one or more TRLs being reconsidered for the technology. 

 

We may group the above nine TRLs in terms of the environment in which the project is 
developed. In the first four levels (TRL 1  TRL 4) the technology validation environment is in 
the laboratory, in levels TRL 5 and 6 the technology is being validated in an environment with 
characteristics similar to the real environment and the last three levels (TRL 7  TRL 9) deal 
with the testing and validation of the technology in a real environment.6 This can be seen 

 

Given the type of research, technological development and innovation being addressed, it 
should be noted that the first four levels would address the most basic technological research 
involving, mostly, laboratory results. Technological development would then be carried out 
from the levels TRL 5  TRL 6 until the first prototype or demonstrator is obtained. 
Technological innovation projects would be between TRL 7 to TRL 9 since technological 
innovation requires the introduction of a new product or service on the market and for this it 
must have passed the tests and certifications as well as all relevant approvals. These levels 

                                           

6  https://www.solarsteam.ca/TRL-file   

https://www.solarsteam.ca/TRL-file
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would involve deployment or large-scale implementation. These concepts are shown in the 
 

If we want to assess the life cycle of the technology to be developed in terms of outputs 
produced,7 TRL 1 to TRL 3 go from a first novel idea to the proof of concept. Subsequently, 
the technological development would be addressed (TRL 4  TRL 7) until its validation. Finally, 
we would have its placing on the market and deployment (TRL 8  TRL 9). This is shown in 

 

Finally, one should also consider the results that each of the maturity levels would bring. 
 

Last but not least, although TRLs have several advantages such as providing a unified and 
common framework for the understanding of the status of a technology, as well as helping 
to make decisions concerning technology funding and transition, there are some limitations. 
Readiness does not necessarily fit appropriateness or feasibility: a mature technology (e.g., 
an automated or self-driving train) may possess a greater or lesser degree of readiness to 
be used in a particular context (e.g., subways,8 airports,9 etc.), but the technology may not be 
ready to be applied to other contexts (e.g., general railways). We will deal with this issue later 
under the concept of generality.  

Some disciplines have introduced variants or specific TRL scales, e.g., changing granularity 
(Charalambous et al. 2017), while others have given extra criteria for the particular discipline 
but keeping the original nine-level scale (Bucner et a. 2019). We will stick to the original scale 
here, and instead of giving a prescriptive refinement of each level for AI, we will use the 
standard rubrics (see appendix) complemented with an example-based approach, as we 
explain in the following section. 

 

  

                                           

7  https://www.cloudwatchhub.eu/exploitation/readiness-market-more-completing-software-development  

8  https://press.siemens.com/global/en/pressrelease/europes-longest-driverless-subway-barcelona-goes-operation  
9  http://www.mediacentre.gatwickairport.com/press-releases/2018/18_03_16_autonomous_vehicles.aspx  

https://www.cloudwatchhub.eu/exploitation/readiness-market-more-completing-software-development
https://press.siemens.com/global/en/pressrelease/europes-longest-driverless-subway-barcelona-goes-operation
http://www.mediacentre.gatwickairport.com/press-releases/2018/18_03_16_autonomous_vehicles.aspx


 

12 

 

Table 2: Summary of Technology Readiness Levels (TRLs) according to several characteristics. 

Environment Goal 
Product / 

Evaluation 
Outputs TRL Description 

Laboratory 

 
Research 

Proof of 

concept 

Scientific articles 

published on the 

principles of the 

new technology 

TRL 

1 
Basic principles 

observed 

Publications or 

references 

highlighting the 

applications of 

the new 

technology. 

TRL 

2 

Technology 

concept 

formulated 

Measurement of 

parameters in the 

laboratory 

TRL 

3 
Experimental 

proof of concept 

Prototype 

Results of tests 

carried out in the 

laboratory. 

TRL 

4 
Technology 

validated in lab 

Simulation Development 

Components 

validated in a 

relevant 

environment. 

TRL 

5 

Technology 

validated in 

relevant 

environment 

Results of tests 

carried out on the 

prototype in a 

relevant 

environment. 

TRL 

6 

Technology 

demonstrated in 

relevant 

environment 

Operational Implementation 

Result of the 

prototype level 

tests carried out 

in the operating 

environment. 

TRL 

7 

System 

prototype 

demonstration in 

operational 

environment 

Commercial 

product/service 

(certified) 

Results of system 

tests in final 

configuration. 

TRL 

8 
System complete 

and qualified 

Deployment 

Final reports in 

working condition 

or actual mission. 

TRL 

9 

Actual system 

proven in 

operational 

environment 
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4 Methodology 

As the purpose of this paper is to determine a way to evaluate the TRLs of different AI 
technologies, it is key to be sufficiently general so that we could potentially consider and 
review any relevant and significant AI-related developments, covering both industry and 
academia. In this regard, we should first define what we mean by an AI technology, and 
whether this can capture new inventions and developments from all players related to 
innovation and production. Note that AI is not a single technology, but a research discipline 
in which different subareas have produced and will produce a number of different 
technologies. Of course, we could just enumerate a list of technologies belonging or involving 
AI, but it might well be imbalanced and non-representative of the full range of areas in AI. 
Therefore, in order to be able to cover a good representation of AI technologies that have 
spun off from academic or industrial research, we will identify subfields and recognise the 
relevant technologies they comprise.  

It is also very important to recognise that, apart from readiness levels, AI is a field that 
develops cognitive capabilities at different generality levels (e.g., voice recognition for 
different degrees of versatility and robustness can have different TRLs). Consequently, we 
need to assign readiness levels according to different levels of generality: a technology that 
is specialised for a very particular, controlled domain may reach a higher TRL than a 
technology that has to be more general-purpose (performing in a wide range of different 
scenarios and/or different tasks) or even open-ended (performing in uncontrolled scenarios). 
In order to represent the twin importance of these two concepts, in the last subsection we 
introduce the readiness-vs-generality charts, which will be applied over a subset of relevant 
AI technologies in the following sections. 

4.1 What is an AI technology? 

In any engineering or technological field, a particular technology is defined as the sum of 
techniques, skills, methods and processes used in the resolution of concrete problems (Crabb 
1823). Therefore, technology as such constitutes an umbrella term encompassing any sort 
of (scientific) knowledge that makes it possible to design and create goods or services that 
facilitate adaptation to the environment, as well as the satisfaction of individual essential 
needs and human aspirations. The simplest form of technology is the development and use 
of basic tools, either in the form of knowledge about techniques, processes, etc., or embedded 
into technological systems.  

Artificial intelligence (or more precisely the technology that emerges from AI) is usually 

et al., 2019). Enabling technologies lead to important leaps in the capabilities of people or 
society overall. For instance, writing or the computer are such enabling technologies, as they 
replace or enhance human memory, information transmission or calculation. Definitely, AI 
introduces new capabilities, which can replace or augment human capabilities. It is important 
not to confuse an AI system with the product of an AI itself. For instance, if a generative 
model creates a painting, a poem or the plan of a house, the product the AI technology creates 
is not the painting, the poem or the plan of the house, but the generator, an AI system, which 
embodies the autonomous ability. On the other hand, a tool such as a machine learning 
library is not an AI product, but a tool that allows people to create AI products; in this case, 
systems learning from data represent the autonomous ability. 
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-
et al., 2017) and are defined as those that can radically change society or the economy, such 
as electricity or automobiles. This definition, however, is not necessarily associated with how 
many different uses a technology has,10 

ies as transformative (Gruetzemacher & 
Whittlestone 2019). Clearly, a technology cannot be transformative if it does not reach critical 
elements of society or become mainstream. This is not possible if the technology does not 
reach TRL 9. As a result, many promising technologies in AI will only become transformative 
when they reach the level TRL 9, and this is one reason why it is so important to assess how 
far we are from this final level to really determine the expected impact of AI on society. 

This is all very well, but we still need a definition of AI technology. Although there are many 
different views on this, the overall research goal of AI is usually associated with the creation 
of technology that allows computers to function in an intelligent manner. However, assessing 

-Orallo, 
2017). Therefore, we simply assume that an AI technology is any sort of scientific or industrial 
knowledge derived from the research and development in any subareas of the field. Of course, 
this depends on how well the contours of AI are delimited (Martínez-Plumed 2018b). 
Therefore, in this document, when we talk about an AI technology, we may indistinctly refer 
to a particular method used or introduced in an AI subdiscipline (e.g., an autoencoder), a 
distinctive application area (e.g., machine translation), a specific product (e.g., an optical 
character recognition system), a software tool or platform (e.g., a decision support system), 
etc. 

4.2 Categories of AI technologies 

AI is not one big, specific technology; rather, it consists of several main areas of research and 
development that have produced a variety of technologies. In other areas, the identification 
of technologies is performed through different methods, depending on the goal of the 
technology: craft or industrial production of goods, provision of services, organisation or 
performance of tasks, etc. However, the common phases in the invention and development 
of a new technology start with the identification of the practical problem to be solved. In the 
case of artificial intelligence, we can assimilate this first stage of the identification of 
technology with a given cognitive capability that we want to reproduce or create 
mechanically. These capabilities are usually grouped into areas of AI. Therefore, before 
starting to analyse the maturity levels of these different AI technologies, we will introduce 
those main fields of research in AI and what sort of relevant technologies they comprise. This 
categorisation is inspired by the operational definition of AI adopted in the context of AI 
Watch (Samoili et al., 2020), which proposes a concise taxonomy that characterises the core 
domains of AI research, as well as some transversal areas. In our case we focus on a list of 
seven categories, leaving out those more philosophical or ethical research areas related to 
AI. The categories selected are defined as follows: 

 

— Knowledge representation and reasoning: This subarea of AI focuses on designing 
computer representations (e.g., data structures, semantic models, heuristics, etc.) with the 
fundamental objective to represent knowledge that facilitates inference (formal 

                                           

10  Actually, whether an AI technology is general-purpose or not will be considered by the term “generality” below. Some AI 
technologies are actually very specific. 
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reasoning) to solve complex problems. Knowledge representation is being used, for 
instance, to embed the expertise and knowledge from humans in combination with a 
corpus of information in order to automate decision processes. Some specific examples 
are IBM  Watson Health (Ahmed et al., 2017), DXplain (Hoffer et al., 2005) and CaDet 
(Fuchs et al., 1999). 

— Learning: A fundamental concept of AI research since its inception is the study of 
computer algorithms that improve automatically through experience (Langley, 1996). 

rs to more abstract, and generally complex, concepts in 
humans (such as episodic learning), today we tend to associate learning by computers 
with the prominent area of machine learning, in a more statistical or numeric fashion, 
such as implemented in neural networks or probabilistic methods (techniques that are 
now used in many of the other subdisciplines below). Machine learning involves a myriad 
of approaches, tools, techniques and algorithms used to process, analyse and learn from 
data in order to create predictive models, identify descriptive patterns and ultimately 
extract insights (Flach, 2012; Alpaydin, 2020). These general algorithms can be adapted 
to specific problem domains, such as recommender systems (in retail or entertainment 
platforms), understanding human behaviour (e.g., predicting churn) or classification of 
images or documents (e.g., filtering spam). 

— Communication: Natural Language Processing (NLP) is the AI subfield concerned with 
the research of efficient mechanisms for communication between humans and machines 
through natural language (Clark et al., 2013; Goldberg, 2017). It is mainly focused on 
reading comprehension and understanding of human language in oral conversations and 
written text. There is considerable commercial interest in the field: some applications of 
NLP include information retrieval, speech recognition, machine translation, question 
answering and language generation. Today, NLP, for instance, can be used in advertising 
and market intelligence to monitor social media, analyse customer reviews or process 
market-related news in real time to look for changes in sentiments toward 
products and manufacturers. 

— Perception: Machine perception is the capability of a computer system to interpret data 
from sensors to relate to and perceive the world around them. Sensors can be similar to 
the way humans perceive the world, leading to video, audio, touch, smell, movement, 
temperature or other kinds of data humans can perceive, but machine perception can 
also include many other kinds of sophisticated sensors, from radars to chemical 
spectrograms, to massively distributed simple sensors coming from the Internet of Things 
(IoT). Computer vision (Szeliski, 2010) has received most attention in the past decades 
and deals with computers gaining understanding from digital images or, more recently, 
videos. Many applications are already in use today such as facial identification and 
recognition, scene reconstruction, event detection or video tracking. Computer audition 
(Gold et al., 2011) deals with the understanding of audio in terms of representation, 
transduction, grouping, use of musical knowledge and general sound semantics for the 
purpose of performing intelligent operations on audio and music signals by the computer. 
Applications include music genre recognition, music transcription, sound event detection, 
auditory scene analysis, music description and generation, emotion in audio, etc. Speech 
processing is covered by both perception and communication, as it requires NLP. Finally, 
tactile perception, dexterity, artificial olfaction, and other more physical perception 
problems are usually integrated into robotics (see below), but are also needed in a wide 
range of haptic devices and many other applications. 
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— Planning and search: This AI subject, which is related to decision theory (Steele et. al., 
2016), is concerned with the realisation of strategies or action sequences aiming at 
producing plans or optimising solutions for the execution by intelligent agents, 
autonomous robots, unmanned vehicles, control systems, etc. Note that a planning 
problem can be reduced to a search problem (Russell & Norvig, 2002). However, the 
actions to be planned or the solutions to be optimised are usually more complex than the 
outputs obtained in classification or regression problems, due to the multidimensional 
and structured space of solutions (e.g., a Markov Decision Process). In terms of 
applications, although planning has had real-world impact in applications from logistics 
(Kautz et al., 2000), to chemical synthesis (Segler et al., 2018), or health (Spyropoulos, 
2000), planning algorithms have achieved remarkable popularity recently in games such 
as checkers, chess, Go and poker (Silver et al., 2016, 2017; Brown et al., 2019), usually in 
combination with reinforcement learning.  

— Physical interaction (robotics): This area deals with the development of autonomous 
mechanical devices that can perform tasks and interact with the physical world, possibly 
helping and assisting humans. Although robotics as such is an interdisciplinary branch of 
engineering and science (including remote-controlled robots with no autonomy or 
cognitive behaviour), AI typically focuses on robots (Murphy 2019) with a set of particular 
operations and capabilities: (1) autonomous locomotion and navigation, indoor or outdoor; 
(2) interaction, working effectively in homes or industrial environments, perceiving 
humans, planning their motion, communicating and being instructed to perform their 
physical procedures; and (3) control and autonomy, including the ability for a robot to 
take care of itself, exteroception, physical task performance, safety, etc. As examples of 
well-known applications of robots with AI we find driverless cars, robotic pets or robotic 
vacuum cleaners.  

— Social abilities (collective intelligence): The broad category covering social abilities 
and collective intelligence has to do with Multi-Agent Systems (MAS), Agent-Based 
Modelling (ABM), Swarm Intelligence, as well as other related topics such as Game Theory 
(in auctions, networks, economics, fairness equilibria, etc.)., where collective behaviours 
emerge from the interaction, cooperation and coordination of decentralised self-
organised agents (Shoham et al., 2008). In general terms, here we include those 

interact with each other and reach conclusions or a (semi-)equilibrium through interaction 
and communication. This area overlaps with learning, reasoning and planning. For 
instance, recommender engines are well-known applications where group intelligence 
emerges from collaboration (Chowdhury et al., 2010). 

The above categorisation is sufficiently comprehensive of the areas of AI (and the capabilities 
that are being developed in the subject) to provide a balanced first-level hierarchy to which 
we can assign specific technologies. Of course, there will be some technologies that may 
belong to two or more categories (we will include an example in the discussion), but we do 
not expect to have technologies that cannot be assigned to any category. Finally, note that 
AI technologies may be also categorised in the form of applications or programmes 
developed to perform specific tasks (weak AI). Actually, AI has been used to develop and 
advance numerous fields and industries and, therefore, we can find a wide range of examples 
of AI applications in areas such as healthcare (e.g., medical diagnosis), marketing (e.g., online 
assistants), automotive and transportation (e.g., self-parking and cruise controls), finance 
(e.g., electronic trading platforms), media (e.g., deep fakes), military (e.g., unmanned combat 
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aerial vehicles), education (e.g., digital assistants/tutors), and more. These are all high-profile 
examples which, beneath the surface, are using different precise AI techniques (belonging to 
the above list of seven categories) to successfully perform their tasks. In this sense, whatever 
the categorisation we use for AI technologies, any subsequent TRL analyses would draw 
similar conclusions as we are following an example-based approach for TRL evaluation 
choosing one or two examples in each of the considered categories. 

 

4.3 TRL assessment in AI: readiness-vs-generality charts 

In order to assess the readiness levels of AI technologies, we also face an important dilemma 
between the readiness level and the ability to act and successfully perform in real-world, 
open-ended (uncontrolled) scenarios. If we describe a generic technology (e.g., a robotic 
cleaner), we will have a very different assessment of readiness depending on whether the 
specification of the AI system requires more or less capabilities.11 For instance, if the robotic 
cleaner is expected to clean objects by removing them and placing them back, and also to 
cover vertical and horizontal surfaces when people and pets are around, then the readiness 
level is expected to be lower than a vacuum cleaner roaming around on the floor, with a 
particularly engineered design that avoids some of the problems of a more open-ended 
situation. Of course, one can specify all these technologies separately, and identify different 
clusters of functionalities, as we see below in Figure 1 (left). These technologies are mostly 
independent and can reach different TRLs (shown in different darkness levels). Progress 
would be analysed by observing for how many of them the TRLs increase. However, the 
overlaps are not systematic, and high TRLs could be obtained by covering the whole space 
with very specific solutions.  

 

          

Figure 1. Left: we can consider different instances of the technology covering different niches, each 

of them solving a set of tasks, situations and conditions that are not hierarchically related to each 
other. Each cluster of functionality achieves a different TRL (shown with different darkness levels) 
that is mostly independent of the other niches. Right: we choose a decomposition of the space such 
that each instance of the technology that we analyse is a superset of the previous instances. We call 

 

                                           

11  Note that we should not confuse “capability” (or functionality) with “sophistication” (or complexity): using a more 

sophisticated system does not guarantee further capabilities.   
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A different way of organising this space is a hierarchical generality model of technology, as 
illustrated in Figure 1 (right). In many areas, as we will see in the following sections, there is 
some meaningful way (many times more than one) to arrange the space of tasks, situations 
and conditions in a hierarchical order. If we are able to select one hierarchy that is a total 
order (i.e., each pair of instances are comparable), then any instance is a subset of a more 
general instance and, thus, we will be able to talk about different levels of generality of the 
same technology. This ensures that no smaller task or situation is left out. Also, the idea of 
levels is a good representation of the fact that, very often, progress is cumulative. 

Note that the higher the generality is, the lower the expected readiness level becomes and 
vice versa. This will help to understand the common situation where a technology is stuck at 
TRL 7, but reducing the scope of the technology, i.e., less general, or focusing on a specific 
functionality can lead to a product with TRL 9. Robotic vacuum cleaners are a good example 
of this. By limiting the scope of the technology, whether it be the task (only floor vacuuming) 
or the range (simple trajectories), the system is more specialised (or narrow), with the 
successful outcome that these devices are found in many homes today (TRL 9).  

Another advantage of the hierarchical generality model of technology is that the total order 
allows the levels to be considered as an ordinal magnitude that can be represented in a 
Cartesian space along with another ordinal magnitude, the TRL. Thus, we can use two-
dimensional plots12 (readiness-vs-generality charts) with the degree of generality 
anticipated on the x-axis and the readiness level (the TRLs) on the y-axis. Figure 2 illustrates 
this idea with an example. 

 

Figure 2. Readiness-vs-generality chart showing the different levels of capabilities (more specific to 
more general) on the x-axis and TRLs on the y-
descending curve. Progress towards truly transformative AI will be achieved by moving this curve to 
the top right. 

 

As we move right on this plot, we have a system or application (i.e., an AI technology) that is 
more generally applicable. As we go up the plot, product readiness increases, in term of being 

                                           

12  Both magnitudes (generality and TRL) are ordinal rather than quantitative, so technically a grid would be a more accurate 

representation than a Cartesian plot. Also, we connect the points with segments, but this does not mean that the 
intermediate points in these segments are really meaningful. 
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used in the real world. Such a plot can be applied to any technology (e.g., a pencil is both 
general and ready, as a writing device), but determining the balance between generality and 
readiness is key in artificial intelligence, since many technologies sacrifice generality for 
performance in a particular niche of application to reach some narrow readiness. Only 
reaching the top right corner will generate truly transformative technology.13 For instance, a 
robotic vacuum cleaner moving around our floors has reached TRL 9 but has not transformed 
society. A fully-fledged robotic cleaner would do so, affecting millions of jobs and the way 
homes are organised for cleaning, recycling and even decoration.  

The shape of these charts may reveal some important information. A steep decreasing curve 
that reaches high TRL levels for only low capabilities may show that important fundamental 
research is required to create  probably new  AI technologies that reach higher levels of 
generality. A flat curve that reaches only medium TRL for a wide array of capabilities may 
mean that reaching a commercial product or general use may depend on issues related to 
safety, usability or societal expectations about the technology, and not so much about 
rethinking the foundations of the technology. Nevertheless, a case-by-case analysis may lead 
to different interpretations. The next section presents the respective readiness-vs-generality 
chart for an illustrative set of AI technologies.  

Before presenting the case-by-case analysis, we need to fix some criteria to determine the 
x-axis and the precise location of each point on the chart. Unfortunately, there is no standard 
scale for levels of generality that could be used for all technologies. For each technology, 
levels of generality are established by looking at the historical evolution of the technology, 
which means that some levels (e.g., word recognition for reduced vocabularies) did not gain 
traction, while others (e.g., speech recognition for reduced vocabularies) can be identified as 
an early milestone in this technology. In all technologies, we can identify different dimensions 
that can help us define the levels. For instance, two dimensions are commonly involved in 
the definition of the levels of generality: how many situations the technology can cover 
(environments, kinds of problems), which can be associated with task generality, and the 
diversity of conditions for these situations (e.g., quality of the information, noise, etc.), which 
can be associated with robustness. The first dimension (i.e., situation covered) can unfold into 
two or more parameters (e.g., for speech recognition: size of vocabulary and number of 
languages). In our hierarchical generality model of technology, we merge all of them into one 
single ordinal level. There are of course cases where more challenging versions of the 
technology cannot easily be reduced to such a unidimensional scale, but we can still try to 
find a scale of levels that extend from lower to higher generality. In a few cases, we will 
simply reuse some pre-established standard levels (usually defined at a development level 
rather than at a capability level) that have been used in the past for that particular 
technology, or even used as standards, as happens with machine translation (see the four 
basic types of translation (Hutchins et al. 1992)) and self-driving cars (see the US National 
Highway Traffic Safety Administration (NHTSA) definition of six levels of car autonomy70).  

Once the space is defined by the generality levels and the nine readiness levels, we locate 
the points in the following way. First, we follow the rubric in the appendix. Second, for each 
level, we identify the highest TRL according to the best player (research team or company) 
as per 2020. The reasoning behind this choice  e.g., instead of choosing an average  is due 
to the fact that AI technologies are digital, which means that they are quickly imitated by 

                                           

13  Here we refer to the concept of Radically Transformative AI (RTAI) from (Gruetzemacher et al., 2019) which is referred to 

as “AI capabilities or products which lead to societal change comparable to that precipitated by the agricultural or industrial 

revolutions”. We may find examples of RTAI in the literature such as high-level machine intelligence (Grace et al., 2018), 
comprehensive AI services (Drexler, 2019) or a broadly capable system (Gruetzemacher, 2019). 
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other players. Indeed, the possible slowing factors such as patents are usually compensated 
by open publication platforms such as arXiv 12F

14 and open software platforms such as github, 13F15 
not to mention the common mobility of key people in AI between academia, industry and 
especially key tech giants, bringing the technology with them and spreading it to other 
players. 

Finally, even using this generality-vs-readiness space and the rubric in the appendix, there 
will be cases where we struggle to assess the TRL precisely. This can be caused by partial 
information about the technology, a definition of the TRLs that is not crisp enough, or the 
literature-based definitions for the levels of generality. It may also be the result of the 
authors of this report not being experts in each and every subarea in AI (although some 
detachment may also be positive). In other cases, this is caused because our assessments 
have been overseen by several experts (see the list in the acknowledgements at the beginning 
of the document) and occasionally there were some minor discrepancies. For all these cases 
we will use vertical error bars. We hope that some of our assessments could be replicated by 
other groups of experts and build these bars as proper confidence bands from the variance 
of results from a wider population of experts.  

4.4 Methodology summary 

The methodology developed in this report to define the maturity of AI technologies through 
the use of Technology Readiness Level (TRL) assessment covers the identification of AI 
technologies through to the assessment of their maturity levels: 

1. Identification of relevant AI technologies. Based on the categorisation of AI 
technologies in section 3.2, we have assigned specific (illustrative) technologies to 
each AI area. The selection of technologies is based on our own experience and 

me specific 
cases, we have also considered the associated levels of research activity (e.g., number 
of related papers, results, benchmarks, challenges, tasks, etc.) behind a particular 
technology. For the latter we have used the information provided in the 
AIcollaboratory (Martínez-Plumed et al. 2020a, 2020b, 2020c).  

2. Analysis of the TRLs for AI technologies. We introduce and use two-dimensional 
plots called readiness-vs-generality charts in which we define the degree of generality 
of specific AI technologies on the x-axis vs the readiness level (the TRLs) on the y-
axis. For each technology we define the different levels of capabilities based on a 
comprehensive analysis of the related scientific and industrial literature. 

3. Expert panel evaluation. Our initial assessment undergoes a thorough assessment 
by an independent panel of specialists, recognised in at least one of the technologies 
(or areas) addressed. The experts are asked to follow the rubric in Appendix A to 
estimate the particular level in the scale for specific technologies. Furthermore, 
experts provide further information on the technology in question, such as signposting 
the most relevant research documents and publications which may help focus the 
analysis onto the most appropriate works, highlighting also any pertinent issues 
relating to the different technologies.  

                                           

14  https://arxiv.org/ 
15  https://github.com/ 

https://arxiv.org/
https://github.com/
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4. Integration and evaluation. Both our evaluations and the (qualitative) feedback 

and discrepancies provided by the panel of experts are then used to derive error bars 
in the readiness-vs-generality charts for each technology. The results are then 
summarised, and a briefing is produced which is subjected to a further series of 
reviews and revisions. Note that a wider group of experts, using more extensive 
training on the TRLs and usual methods for aggregation or consensus of opinions 
(such as the Delphi method (Bernice 1968)) would bring more robustness to the TRL 
estimates, including a systematic way of deriving the error bars.   
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5 TRL Assessment for representative AI technologies 

In this section, we select some illustrative AI technologies to explore how easy and insightful 
it is to determine the TRL for each of them. We will examine the technologies under the 
categories presented in section 3.2, and will use readiness-vs-generality charts for each of 
these technologies.  

 

5.1 Knowledge representation and reasoning 

Reasoning has always been associated with intelligence, especially when referring to humans. 
It is no wonder that the first efforts in AI were focused on building systems that were able 
to reason autonomously, going from some premises to conclusions, as in logic. We select one 
AI technology in this category, expert systems, because of its historical relevance and 
representativeness of reasoning systems.  

5.1.1 Technology: Expert Systems 

Expert systems, which were introduced in the 1980s, are a traditional AI technology that 
humans can use to extend or complement their expertise. Expert systems are usually good 
at logical reasoning and receive inputs as facts that trigger a series of chain rules to reach 
some conclusions (typically as facts or statements). Expert systems are still fuelling many AI 

- and can be found 
in some digital assistants or chatbots. In the early days of expert systems, the rules, i.e., the 
expertise encoded by the expert system, were usually created by experts manually, but 
nowadays knowledge can be extracted from document repositories or other sources such as 
the web or Wikipedia (Mitchell et al., 2018; Gonçalves et al., 2019). Modern expert systems 
can also revise their knowledge more easily than was possible in the past. Such systems can 
deal with vast amounts of complex data in many application domains (Wagner, 2017). 

Figure 3. Readiness-vs-generality chart for expert system technology. While TRL 9 has clearly been 
reached for narrow systems with static and certified knowledge (early commercial systems and many 
expert systems still in place today), a very low TRL is estimated for expert systems dealing with 
general, broad knowledge and common sense. Current development is taking place at an intermediate 
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level of expert systems, where knowledge is still narrow, but is changing, uncertain and updatable. 
Error bars are shown at this level because of doubts in the autonomy of some of these systems (e.g., 
IBM  Watson).  

 

Because of the evolution of expectations and capabilities of expert system technology, the 
x-axis of Figure 3 uses three different generality levels of expert systems:  

 

— Level 1  Narrow static and certified knowledge: Manually codifying narrow 
expertise knowledge, reason through bodies of specific knowledge, explain the reasoning, 
draw complex conclusions, etc.  

— Level 2  Narrow dynamic and uncertain knowledge: Automated knowledge 
refinement (belief revision, reason maintenance (Reinfrank 1988), etc.), reason under 
uncertainty, actionable insights, etc. 

— Level 3  Broad knowledge, common sense and meta-cognition: Introspective and 
broad knowledge, common sense, creative responses. 

 

For the first level, early academic systems such as MYCIN (Shortliffe, 2012) or CADUCEUS 
(Banks, 1986) progressed from research papers to prototypes in relevant environments (TRL 
7) in the 1970s and 1980s. Because of the excitement and expectations of expert systems 
in the 1980s, some commercial systems were used in business-world applications, reaching 
TRL 9. For instance, SID (Synthesis of Integral Design) was used for CPU design (Gibson et al, 
1990). The success of former expert systems in TRL 9 also unveiled some limitations (e.g., 
narrow domains, manual knowledge acquisition, lack of common-sense knowledge, no 
revision, etc.). Today, many knowledge-based systems, usually coding business rules in 
database management systems as procedures or triggers, actually work as expert systems 
at this first level. Consequently, even if the term expert system  is in disuse today, systems 
with these capabilities are still operating at TRL 9, as shown in Figure 3.   

The second level represents a new level of expectations raised after the limitations of the 
1980s. A new generation of expert systems was sought to overcome the knowledge 
acquisition bottleneck and be robust to change and uncertainty. They have been integrating 
automated rather than manual knowledge acquisition, and are deployed in a variety of 
industrial applications, such as health/diagnosis (Hoffer et al., 2005), 
control/management/monitoring (Jayaraman et al., 1996), stock markets (Dymova et al., 
2012), space (Rasmussen, 1990), etc. However, many of these systems do not meet the 
expectations of robustness and self-maintenance completely, and some of the features of 
level 2 are not fully autonomous (requiring important human maintenance). Because of this, 
we consider them more like market-ready research being tested and demonstrated in 
relevant environments, and thus covering different TRLs (from TRL 5 to TRL 9, ranging from 
prototypes to commercial products). This is reflected by the error bars in the figure. This can 
also be applied to a new generation of systems such as IBM  Watson (Ahmed et al., 2017), 
which has already been validated and demonstrated in specific operational environments 
(e.g., healthcare). Watson, in a limited sense, could be understood to be a powerful expert 
system, also combining a number of different techniques for natural language processing, 
information retrieval, hypothesis generation, etc.  
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At the third level of generality, we are referring to systems incorporating broad knowledge 
and common-sense reasoning over that knowledge, including reasoning about what the 
system does not know (beyond assigning probabilities to their conclusions, as Watson does). 
While capturing and revising knowledge automatically for a wide range of domains has been 
illustrated in research papers and lab prototypes (Mitchell et al., 2018), nothing resembling 
true common-sense reasoning has been shown even at a research level,16 and that is why 
we assign TRL 1 to this level (although it is more likely a fundamental research stage even 
before this level). 

The schism between levels 2 and 3 (and the lack of progress on this schism in the past years) 
suggests that fundamental research still needs to be done until AI systems exhibit more 
human-like common-sense reasoning, being capable of predicting results and drawing 
conclusions that are similar to expert humans.  

Of course, expert systems are not the only technology in the knowledge representation and 
reasoning category. Automated theorem provers, Boolean satisfiability problem (SAT) solvers, 
belief revision engines, truth maintenance systems, etc., as well as other different types of 
deductive and inference engines, are successful technologies that could also be analysed to 
determine their TRLs at different generality levels. 

 

5.2 Learning 

Learning is probably the most distinctive capability of systems that adapt to their 
environment. Systems that do not learn are fragile and cannot cope with any situation that 
was not accounted for beforehand. In the case of AI technologies, we want to consider 
systems that are not the result of the capability (e.g., a static classifier built with a machine 
learning technique that is no longer learning), but systems that continually improve with 
experience. We choose two technologies in this category: recommender systems that are 
constantly updating their recommendations as new data comes in, including new items, and 
more sophisticated apprentices by demonstration, which learn by observing how a (human) 
expert performs a task. Both are good examples of AI technologies that represent learning 
systems.  

5.2.1 Technology: Recommender Systems 

A recommender system (Ricci et al., 2011) is a type of information filtering system that aims 
to provide a way to quickly show users or cosumers different types of topics or information 
items (e.g., movies, music, books, news, images, web pages, etc.) that they are looking for, as 
well as to discover new ones that may be of their interest. A recommendation service should 
help cope with the flood of information by recommending a subset of objects to the user by 

are based on the idea of similarities between items (i.e., an item is recommended based on 
interest of a similar item) or users (i.e., an item is recommended based on what a similar 
customer has consumed), or a combination between them both. 

                                           

16 Despite the recent success of NLP systems in Winograd Schema Challenge (context-based pronoun disambiguation problems) 

(Levesque et al, 2012), an alternative of the Turing Test (Turing, 1950), several criticisms question whether improved 

performance on these benchmarks represents genuine progress towards common-sense-enabled systems (see, e.g., 
Trichelair et al., 2019).  
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Figure 4: Readiness-vs-generality chart for recommender engines technology. TRL 9 is reached for 
those very well-known recommender systems based on user feedback and used in a variety of areas 
such as playlist generators for video and music services or product recommenders. Current 
developments going beyond explicit feedback and using non-explicit latent attributes have already 
demonstrated their value in operational environments. Lower TRLs (TRL 2 to TRL 6) are estimated for 
more complete and flexible recommender systems being able to perform deeper personalisation 
using various dimensions of data. Finally, recommendation content generation would be a future 
direction in the field, with still little or no research nowadays.  

 

Because of the evolution of expectations and capabilities of recommender systems 
technology, the x-axis of Figure 4 uses four different generality levels described in the 
following: 

 

— Level 1  Direct feedback-based recommendations: Personalised recommendation 
based on explicit rankings/feedback (click, buy, read, listen, watch ) over users/items and 
contexts. 

— Level 2  Indirect feedback-based recommendations: Recommendations beyond 
explicit feedback with latent attributes representing categories that are not obvious from 
the data. 

— Level 3  Context-aware highly personalised recommendation: User-based and 
context-aware personalised optimisation/recommendation balancing competing factors 
such as diversity, context, evidence, freshness and novelty, and using direct/indirect 
feedback, adding value-aware recommendations, etc. 

— Level 4  Content generation recommendation: Recommendations of what new 
items/content should be created to fill missing needs and add value. 

 

For the first level of generality, we find those recommender systems able to find explicit 
similarity in users and items (making use of either or both collaborative filtering and content-
based filtering (Ricci et al., 2011)) based on explicit feedback. Here we find a number of 
commercial systems that are or have been used in business-world applications, reaching TRL 
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box17 as examples of content-based recommender systems. Also, the engines used in 
Amazon, Netflix (Gomez-Uribe, 2015), YouTube (Davidson, 2010), Spotify18 or Linkedin (Wu 
et al., 2014) were (at the beginning of their development) examples of collaborative filtering-
based approaches.19 Finally, there are also popular recommender systems for specific topics 
like restaurants and online dating, as well as for exploring research articles and experts (Chen 
et al., 2011), collaborators (Chen et al., 2015) and financial services (Felfernig et al., 2017). 

For the second level, more effective methods are currently being developed to look at 
similarity beyond explicit feedback as well as latent attributes (e.g., by using matrix 
factorisation (Koren et al., 2009) or deep learning embeddings (Zhang et al., 2019)) revealing 
relationships that have not yet been realised. Research behind these more advanced and 
flexible approaches has increased exponentially in recent years20 with notable examples such 
as those from Zillow,21 Netflix22 and Airbnb (Grbovic, 2018) already demonstrating success in 
operational and real-world environments (TRL 9). 

Although successful, recommender systems still need to account for and balance multiple 
(competing) factors such as diversity, context, popularity/interest, evidence, freshness and 
novelty (Amatriain et al., 2016), for instance, to make sure the recommendations are not 
biased against certain kinds of users and thus going beyond being simple proxies of accurate 
rating predictors. Furthermore, multi-dimensional rating would also be a step beyond (Shalom 
et al., 2016) for recommender systems being able to optimise and personalise the whole 
user experience (e.g., using a product, website, platform, etc.) via deep personalisation and 
using various dimensions of data. In this regard, recommendations and optimisations should 

ur. All this would 
correspond with the third level of generality in Figure 4, being still a matter of research and 
prototyping (TRL 2 to TRL 6) with some approaches and examples found in the literature (see 
e.g., Leonhardt et al. 2018, Ahmed et al. 2012, Kang et al. 2019). 

Regarding the fourth level of generality, we are including further innovations for 
recommendation systems such as recommending new items/products/services/contents that 

the value of the company or platform. Generating the content of a recommendation is still a 
research matter, including proof-of-concepts validated in lab (TRL 2 to TRL 4) with some 
ideas already published such as automatic food menu generation (Bianchini et al., 2017), 
music generation (Johansen, 2018), simple fashion design23 (Kang et al., 2017; Kumar and 
Gupta, 2019) or even artificially generated comments (Lin et al., 2019). 

As a final note, and in terms of current advances, some authors (Ekstrand et al., 2011; 
Konstan et al., 2013; Beel et al., 2016) have found that current research in recommender 
systems is stagnated because it is not providing meaningful contributions either in terms of 
more advanced capabilities, or regarding practical applications. The main reasons for the 
small impact of the research in this area are mainly the difficulties in reproducing 

                                           

17 https://algorithms-tour.stitchfix.com/ 

18 https://towardsdatascience.com/how-spotify-recommends-your-new-favorite-artist-8c1850512af0 

19 Note that, currently, some of these companies use more advanced neural-based approaches (see, e.g., Covington et al, 

2016). 

20 E.g., The leading international conference on recommendation systems (RecSys) started to organise regular workshops on 

deep learning in 2016. 

21 https://www.zillow.com/tech/embedding-similar-home-recommendation/ 

22 https://help.netflix.com/en/node/100639  

23 https://towardsdatascience.com/the-future-of-visual-recommender-systems-four-practical-state-of-the-art-techniques-
bae9f3e4c27f 

https://algorithms-tour.stitchfix.com/
https://towardsdatascience.com/how-spotify-recommends-your-new-favorite-artist-8c1850512af0
https://www.zillow.com/tech/embedding-similar-home-recommendation/
https://help.netflix.com/en/node/100639
https://towardsdatascience.com/the-future-of-visual-recommender-systems-four-practical-state-of-the-art-techniques-bae9f3e4c27f
https://towardsdatascience.com/the-future-of-visual-recommender-systems-four-practical-state-of-the-art-techniques-bae9f3e4c27f
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inexistence of comprehensive experiments, and the necessity of establishing best-practice 
guidelines for recommender-systems research. Hence, practitioners and operators of 
recommender systems may find little guidance in the current research when looking for which 
recommendation approaches to use to address their specific tasks and problems.    

5.2.2 Technology: Apprentice by Demonstration 

Recommender systems are complex systems involving different types of information. 
However, in some way, they do not differ much from a classification problem powered by 
statistical correlations and patterns. In the case of humans, learning is usually associated 
with more complex phenomena, such as episodic learning, the creation of abstract concepts 
and the internalisation of new procedures. Many of these areas are still at a preliminary stage 
in AI (as they have always been!), but some others are beginning to show more progress in 
recent years. Learning by demonstration (Schaal, 1997) is one of these types of learning that 
is more complex than a classical supervised or unsupervised machine learning problem, or 
even a generative model. Learning by demonstration, and the related learning by imitation 
(Miller et al., 1941), is the way in which culture is transmitted in primates, including humans. 
It is also very relevant in the workplace, as many tasks are just taught by an expert illustrating 
a procedure to an apprentice, sometimes with little verbalised instruction involved. More 
recently, with the popularity of short videos demonstrating simple tasks such as fixing a 
bicycle brake to cooking a fried egg, learning by demonstration is becoming the preferred 
way of instruction for many people. Consequently, progress in this area could have a 
significant impact on society. 

Learning by demonstration is more technically defined in AI as learning a procedure or a task 
from traces, videos or examples of an operator (usually a human) performing the task. We 
limit our study here to tasks where the actions are discrete and relatively simple in order to 
avoid overlapping with the robotics category. For instance, a videogame with a finite number 

simple programme snippet to perform an operation. A full operator in a factory is ruled out 
here because of all the propriosensory complexity being involved. Consequently, we are 
referring to a technology that is usually known more specifically as programming by 
demonstration (Cypher 1993) or programming by example (Lieberman, 2001). However, 
more recently, the combination of deep learning with reinforcement learning has developed 
new techniques, such as deep reinforcement learning, that are able to learn from the 
interaction with the environment. Soon, some of these techniques evolved to take advantage 
of traces (Sutton et al., 1998), or recorded interactions performed by a human or an artificial 
expert (Silver et al., 2016; Mnih et al., 2016; Harb et al., 2017).  
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Figure 5: Readiness-vs-generality chart for learning by demonstration. We see that level 1 reaches 
TRL 9, especially because of the possibilities of deep reinforcement learning using human traces. 
Level 2 also reaches TRL 9 in some domains, such as spreadsheet automation (although not in others, 
but we represent the maximum here, as we do in all other charts). Finally, level 3 requires learning 
systems that can process background knowledge in any domain, which is still at a very preliminary 
stage (TRL 2) with the principles and their envisaged applications. 

 

 

The x-axis of Figure 5 uses three different generality levels, defined as follows: 

 

— Level 1: Many examples, no background knowledge or common-sense needed 

for a particular domain: In this simple  case, a system can learn from a particular 
configuration of perceptions and actions (e.g., video games) and learn from thousands of 
traces of humans (or other systems) succeeding or failing at the task. Note that this is 
supposed to be more efficient than learning without traces, or necessary in some 
environments for which we lack a simulator, and a database of recorded cases is required 
(e.g., protocols, treatments, etc.). 

— Level 2: Very few examples, background knowledge needed, working for a 

particular domain: When few examples are available, learning needs to rely on 
background knowledge. Here, we assume that only one domain (i.e., particular scenario 
or task) can be handled, by embedding sufficient background knowledge into the system 
or in the domain-specific language used for the representation of the policies and 
procedures. 

— Level 3: Very few examples, background knowledge needed, working for any 

domain: In this case we want the system to handle virtually any domain. In order to reach 
this generality, we need the flexibility of changing the background knowledge from one 
domain to another, or a system that has wide knowledge about different areas, so that 
it can understand traces, videos, demos, etc., for different domains. For instance, the 
system should be able to automate a task, e.g., in a sales office or in a newspaper editorial 
office.  
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Given these levels, we can now assign the TRLs. For level 1 we can use as evidence the 
progress of deep reinforcement learning from traces. For instance, AlphaGo (Silver et al., 
2016) was able to learn how to play Go but used some hints from human traces. Similarly, 
many deep reinforcement learning algorithms use traces (Mnih et al., 2016; Harb et al., 2017). 
Because new variants of these algorithms are open source and already implemented,24 with 
more modest resources than in the original paper, this puts us in TRL 9, at least for the case 
of video games. If we want to create an agent that can learn to play different Arcade games 
from observation, this can be done, and no background knowledge about the games is 
needed.  

In level 2, the challenge comes from the limited number of examples. Humans usually need 
just one representative example to get the idea of a new task. This is possible because they 
have contextual information and background knowledge about the elements and basic 
actions that appear in the demonstrated task. This domain knowledge can be hardcoded into 
the system, either as rules or in the language itself used to express the learned procedures. 
We also assign a TRL 9 because of some successful systems in the domain of spreadsheet 
automation. In particular, Flash Fill (Gulwani et al., 2012) is based on a particular domain 
specific language that enables Microsoft Excel users to illustrate a simple formula with very 
few examples. The same idea has been brought to other domains, although each system 
requires a particular DSL for each domain (Polozov et al., 2015). 

Finally, for level 3, we would like the same system to be able to learn tasks in different 
domains. This would mean that this apprentice could be applied for traces or videos in any 
domain and could replicate the task reliably. This level is still in its inception, even if there 
has been research for decades (Muggleton, 1992; Olsson, 1995; Ferri et al., 2001; Gulwani 
et al., 2015). While some systems have been applied to toy problems, we do not find evidence 
beyond having the technology concept formulated, and this is why we assign TRL 2.  

Clearly, progress in this final level would have a major impact in many daily tasks that are 
repetitive and would not need programming or writing scripts or code snippets by hand. Such 
a system would have a transformative effect on the labour market and the work of 
programmers, among other professions. Because the challenge may depend on symbolic 
representations (for knowledge representation) and it has been explored for decades, we do 
not expect a breakthrough to high TRL 9 in the near-term future. 

5.2.3 Technology: Audio-visual content generation 

Audio-visual content generation technology is a very recent AI technology (from mid-2010) 
which comprises those techniques and algorithms able to create completely new content 

authentic to human observers. For example, a synthetic photograph of a cat that manages 
to fool the discriminator (one of the functional parts of these algorithm) is likely to lead a 
random person to accept it as a real photograph. In this context, there are two key 
technologies: generative adversarial networks or GANs (Bengio, 2014), and variational 
autoencoders also known as VAE (Welling, 2014).  

The former, the GANs, are based on the confrontation of two competing neural networks in 
a continuous zero-sum game. That is, the loss or gain of one of these networks is 

                                           

24  See, e.g., https://github.com/openai/baselines 

https://github.com/openai/baselines
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compensated by the loss or gain of the other. In this way, one of the networks, the generative 
one, produces realistic samples of what is intended to be created, such as texts, images, 
sounds, etc. The goal of the second neural network (the discriminator) is to discriminate 
between real images and false images and, thus, it helps the generator to deliver results that 
are more accurate and so similar to a real image that they cannot be differentiated. The 

generative network cannot pass off the material as authentic, it will be discarded, and the 
network will be notified how close it has come to the desired reference used as its training 
model. This forces the network to try again. This is an iterative procedure that makes both 
networks compete with each other, making GANs capable of producing, evaluating and 
reworking any type of content. Hundreds of thousands or even millions of attempts can be 
made before the discriminating network accepts the result offered by its rival. During all the 
rejections that occur, the generative network learns, and that is the purpose of the 
discriminating network. On the other hand, this network guides the generative network with 
the information it gives it about its hit rates. In its beginnings, when they were first described 
in 2014 (Goodfellow et al, 2014), this technology could generate 32 × 32 pixel images. In 
2019 (Aila, 2019) the technology was sufficiently developed to generate faces of people that 
did not exist at a quality of 1024 × 1024 pixels or generate audio based on the image content 
(Lee, 2018) demonstrating the potential of these content creators to mix different domains. 
As in other neural-based technologies, the main complexity of the GAN lies in the adjustment 
of the hyperparameters that are essential to obtain adequate results. 

For its part, the second group of generative models, the VAEs (Welling, 2014), follow an 
encoder-decoder structure. In this way, the encoder is able to summarize  the content of an 
image in a set of vectors known as embeddings25 (or latent space). The decoder, on the other 
hand, learns to regenerate the original image from the description contained in the 
embeddings. This encoder-decoder process is not new (Hinton, 2016). Typically, the latent 
space produced by the encoder is sparsely populated, meaning that it is difficult to predict 
the distribution of values in that space. Values are scattered and space will appear to be well 
utilised in a 2D representation. This is a very good property for compression systems. 
However, for content generation this sparsity is an issue because finding a latent value for 
which the decoder will know how to produce a valid image is almost impossible. Then, the 
main difference with previous deployments is that VAEs work by making the latent space 
more predictable, more continuous, less sparse and, by forcing latent variables to become 
normally distributed, VAEs gain control over the latent space. In this way, once the network 
has been trained, the VAE can generate new (false) images from any point within the 
embedding normalised space. The main problem with VAE technology is that the sampling 
space is continuous, and the distribution of embeddings cannot always be precisely adjusted 
to a normal distribution. This makes the generated images blurry or unrecognizable in many 
cases. To overcome this obstacle, VQ-VAE (Vector-Quantized Variational Autoencoders) 
(Kavukcuoglu, 2018) were created. They allow obtaining a library of embeddings and 
studying their temporal distribution to ensure that they follow what is expected. In addition, 
its discreet nature allows the use of Transformers (state-of-the-art deep learning models, 
mostly used for NLP and Computer Vision tasks, that adopt the mechanism of attention 
(Vaswani et al., 2017)) to model the aforementioned distribution. This approach has been 
shown to be capable of generating more realistic images in addition to allowing text analysis 

                                           

25  Word embedding is a learned representation of a text, where words that have the same meaning have a similar 

representation. This approach to word and document representation can be considered one of the major advances of Deep 
Learning in natural language processing problems. 



 

31 

 

to be mixed for the generation of images. A last step has been to add a GAN structure (VQ-
GAN) (Esser, 2021) as a decoder to achieve a more context-specific embedding library 
configuration and reducing the need for fine tuning of parameters. 

 

 
Figure 6: Readiness-vs-generality chart for audio-visual generation. We see that level 1 
reaches TRL 9, especially because of the current capabilities of neural-based approaches for 
content generation. Level 2 also reaches high TRL level 9 for non-static synchronised content 
generation for some domains but still as prototype developments. Finally, level 3 requires 
much more complex, innovative, and creative cross-domain content generation, which is still 
at a very preliminary stage (TRLs 1 5) depending on the domains.  

 

Because of the evolution of expectations and capabilities of audio-visual content generation 
technology, we may define three different generality levels of audio-visual content 
generation: 

— Level 1  Domain-specific data augmentation: In this case, generating approaches 
are able to create new static content that follow the same distribution in which they have 
been trained (e.g., performing crops, flips, zooms, eliminating noise in the image, 
eliminating blurring, aging a face, increasing the resolution of an image, and other simple 
transforms of existing images in the training dataset) creating new, artificial but plausible 
examples from the input problem domain on which the model is trained. 

— Level 2  Domain-specific, non-static, consistent, stable, synchronised data 

generation: More complex (non-static) content that is created is consistent (both globally 

and locally) and synchronised with the domain in which the generator is working (e.g., 
generating lip movement, elimination or reconstruction of parts of the image,  

— Level 3 - Domain-general, creative, artistical, innovative data generation: Any 
sort of audio or image content may be created regardless of the domain from which the 
generation models have been trained. In other words, these generation approaches are 
able to create new content outside the distribution where it has been trained (e.g., creating 
artwork, combining unrelated concepts in plausible ways, rendering text, etc.). 
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Within the first level we may find those generative approaches capable of creating new 
content in very limited and specific environments. These are approaches that are generally 
available on the market (TRL 9). Within this group we found desktop, web and mobile 
applications that allow, for instance, to improve the resolution of input images, transform 
photos from black-and-white to colour, repair images, generate artistic styles, etc. Photo 
editing software suites, such as Adobe,26 are adding features of this type in some of its 
applications. Also, the photo effects and filters used in applications such as Instagram27 are 
usually using these technologies. Finally, we may also find specific applications in the market 
that allow users to create people s faces that do not really exist (Nvidia, 2019). 

Regarding the second level, we find more complex (non-static) generation approaches able 
to generate consistent and synchronised new content with respect to the domain in which 
the generator is working. In this regard, we may find prototype demonstrations (TRLs 5 7) 
for the so-call deep fakes, synchronising speech-video inputs (e.g., lip movement) according 
to a specific language (improving the speech realism), or for adding/modifying the facial 
expressions/emotions of the speaker according to the sense of the speech through photo 
animations (Zhang I. P., 2021). Further relevant demonstrations involve approaches for 
generating new people s voices or even new songs (Roberts, 2018), software tools for 
transforming designs/sketches to realistic images of buildings (Efros, 2018) (Pan, 2019) for 
the creation of architectural plans and 3D models given some parameters (Chaillou, 2019) 
or descriptive text (Tan, 2020). On this level we also find more developed, market-ready 
approaches (TRLs 7 9) used to modify, in pictures, the painting style (Kim, 2019), remove 
specific, non-trivial content from images (Gao, 2020), make one person imitate the 
movements of another (Zhang J. A., 2021), change gestures, facial parts or backgrounds 
(Perov, 2020), etc. All of the above in a highly realistic way, it being difficult to distinguish 
between a false image (partially or totally generated by computer) and real image.   

Finally, the third level involves generative approaches capable of creating new content in 
cross-domain settings (in which the generators have not been trained) having capabilities 
closer to human-like creativity and generating images from texts or sounds, or vice versa. 
Generative models at this level still have a long way to go (2 6), but research like DALL-E 
(Ramesh et al., 2021) and CLIP (Radford et al., 2021; Galatolo et al., 2021) have 
demonstrated the capacity of these networks and their potential to develop creativity. In the 
case of the project DALL-E (Ramesh et al., 2021), it can generate false images from a text 
description written in natural language. In the case of CLIP (Radford et al., 2021; Galatolo et 
al., 2021), it is a generalist model trained with hundreds of thousands of images and text 
taken from the internet. From this training, CLIP has been shown to be able to identify objects 
in any image with any background and level of abstraction. 

 

5.3 Communication 

Computers exchange information all the time, but their format is predefined and formal. 
However, humans exchange information and knowledge in much more complex ways, 
especially through natural language. One big challenge of computers and AI has been 
developing tools that allow humans and machines to communicate more smoothly in natural 

                                           

26  https://www.adobe.com/creativecloud/photography.html 
27  https://help.instagram.com/453965678013216 
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language, and more generally about tools that can do some tasks related to language 
processing. We have chosen two AI technologies that are very significant in natural language 
processing: machine translation and speech recognition. These are two examples of AI 
technologies that represent systems that (help) communicate.  

5.3.1 Technology: Machine Translation 

Machine translation (MT) is the automatic translation of texts from one language into another 
language by a computer programme. While human translation is the subject of applied 
linguistics, machine translation is seen as a subarea of artificial intelligence and computer 
linguistics. At a basic level, originally machine translation was based on simple substitutions 
of the atomic words of one natural language for those of another. Through the use of 
linguistic corpora, more complex translations can be attempted, allowing for more 
appropriate handling of differences in linguistic typology, sentence recognition, translation of 
idiomatic expressions and isolation of anomalies. This translation process can also be 
improved thanks to human intervention, for example, some systems allow the translator to 
choose proper names in advance, preventing them from being translated automatically. MT 
services have become increasingly popular in recent years, and there is an extensive range 
of MT software and special tools available, enabling fast processing of large volumes of text. 

 

 
Figure 7: Readiness-vs-generality chart for Machine Translation (MT) technology. TRL 9 has been 

reached for the first two types of MT (MAHT and HAMT). Currently, FAMT approaches have reached a 
crucial moment, with powerful market-ready products such as Google Translator or DeepL, and a 
lively research community developing and testing new systems at the expense of the improvements 
in neural-based approaches. The two FAHQT levels, either at controlled or uncontrolled scenarios, are 
estimated to have very low TRW due to the current limitations in the area of MT.   

 

In terms of capabilities of MT, we define five levels of machine-assisted translation (see 
Figure 7) following the different types of translations already defined in the literature 
(Hutchins et al. 1992). While the level of autonomy is key in the first three of these types, 
and quality in levels 3 and 4, and these two factors are not necessarily aligned with levels of 
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generality, we prefer to keep the original scale as the most interesting (challenging) levels 
are 4 to 5 and do correspond with varying generality: 

 

— Level 1  Machine-assisted human translation (MAHT):  The translation is 
performed by a human translator who uses a computer as a tool to improve or speed up 
the translation process.  

— Level 2  Human-assisted machine translation (HAMT): The source and/or the 
target language text is modified by a human translator either before, during, or after it is 
translated by the computer. 

— Level 3  Fully automatic (automated) machine translation (FAMT): This 
represents automatic production of a low-quality translation from the source language 
without any human intervention.  

— Level 4  Fully automatic high-quality machine translation in restricted and 

controlled domains (FAHQMTr): This represents automatic production of a high-quality 
translation from the source language without any human intervention in restricted and 
controlled domains.   

— Level 5  Fully automatic high-quality machine translation in unrestricted 

domains (FAHQMTu): This represents automatic production of a high-quality translation 
from the source language without any human intervention in unrestricted domains.   

 

For the first two levels, it is clear we already reached TRL 9 levels, with a myriad of translation 
products28 as well as dictionaries29 and, thesaurus30 in the market, helping to combine 
machine and human-based translations. 

In terms of current developments in FAMT (third level of capabilities), we have a number of 
successful MT software and applications, Google Translator being the flag bearer in FAMT 
(TRL 9). In some instances, MT services can replace human translators and dictionaries, and 
provide (imperfect but satisfactory) translations immediately. This is the case when getting 
the general meaning across is sufficient, such as with social media updates, manuals, 
presentations, forums, etc. In this regard, current MT software and applications31 are best 
suited when we need quick, one-off translations and accuracy is not of importance. Also, MT 
applications are particularly effective domains where formal (structured) language is used. 
Finally, it should also be noted that although the technology has reached a TRL 9, MT is 
currently a hot area in AI in which numerous advances are being achieved using new neural-
based approaches (Sutskever et al., 2014), which have largely overcome the classical 
statistical approaches.  

In this setting, levels 4 and 5 correspond with the ultimate goal of MT: FAHQMT. As already 
commented, MT produces more usable outputs than when translating conversations or less 
standardised text. However, when aiming at professional translations of complex texts, 
business communication, etc., MT does not constitute, currently, a genuine or satisfactory 

                                           

28  https://www.sdl.com/, https://www.memoq.com/ or https://www.wordfast.net/ 

29  https://www.wordreference.com/ 

30  https://www.thesaurus.com/ 
31  https://en.wikipedia.org/wiki/Comparison_of_machine_translation_applications 

https://www.sdl.com/
https://www.memoq.com/
https://www.wordfast.net/
https://www.wordreference.com/
https://www.thesaurus.com/
https://en.wikipedia.org/wiki/Comparison_of_machine_translation_applications
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alternative to qualified specialist translators.32 A number of scholars questioned the 
feasibility of achieving fully automatic machine translation of high quality in the early 
decades of research in this area, first and most notably Yehoshua Bar-Hillel (Yehoshua, 
1964). More recently, some research (TRL 1 to TRL 3) is being carried out for restricted 
scenarios (see, e.g., Muegge, 2006), corresponding with level 4. Level 5 is still considered a 
utopia in MT (TRL 1) in the short or mid-term. The most obvious scenario is the translation of 
literary texts: MT systems are unable to interpret text in context, understand the subtle 
nuances between synonyms, and fully handle metaphors, metonymy, humour, etc. 

5.3.2 Technology: Speech Recognition 

Speech recognition comprises those techniques and capabilities that enable a system to 
identify and process human speech. It involves sub-areas such as Speech Transcription (Seide 
et al., 2011) and Spoken Language Understanding (SLU) (Tur et al., 2011), among others, but 
we will focus on the former. Although speech recognition first came on the scene in the 1950s 
with a voice-driven machine named Audrey (by Bell Labs), which could understand the spoken 
numbers 0 to 9 with a 90 percent accuracy rate (Juang et al., 2005), nowadays, speech 
recognition programmes can recognise a virtually limitless number of spoken words, aided 
by cognitive and computational innovations (e.g., pure or hybrid neural models combining 
statistical approaches). 

 
Figure 8: Readiness-vs-generality chart for speech recognition technology. TRL 9 has clearly been 
reached for narrow systems with limited voice commands or conversational interface such as those 
shown by the widespread VAs like Amazon s Alexa, Apple s Siri, etc. Current research is going towards 
more advanced speech capabilities including vocabulary size, speaker independence and attribution, 
processing speed, etc. Low TRLs are estimated for systems showing native-speaker language 
understanding capabilities. 

 

Because of the evolution of expectations and capabilities of speech recognition technology, 
the x-axis of Figure 8 uses four different generality levels: 

                                           

32  https://en.wikipedia.org/wiki/Machine_translation 

https://en.wikipedia.org/wiki/Machine_translation
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— Level 1  Limited voice commands: Predefined instructions or voice commands in the 
recognition system with a particular (formal) syntax using, e.g., limited speech 
dictionaries. 

— Level 2  Large-vocabulary continuous speech recognition systems: Restricted-
domain speech recognition systems with larger vocabularies for spoken (formal and 
informal) words and phrases, some interaction with the user, high levels of robustness 
and accuracy of data, endpoint detection, no speech timeout, etc. 

— Level 3  Free speech recognition in restricted contexts: Open-ended vocabulary 
(formal and informal), far-field (remote) sources, speaker attribution, full transcription 
from any audio/video source, and able to deal with noise, echo, accents, disorganised 
speech, etc. 

— Level 4  Native-level free speech recognition in unrestricted contexts: Native-
speaker multi-language recognition in adversarial environments, involving complete 
processing of complex language utterances, spontaneous speech, confusability, speaker 
independence, etc., under (possibly) adverse conditions. 

 

For the first level, we find those voice recognition systems allowing predefined and limited 
system proprietary voice commands to perform specific instructions. We are able to find this 
technology in the market (TRL 9) since the 1980s in different products and applications, from 
voice- , 1994) in Mac OS 
in the 1990s) to toys (see, e.g., the Worlds of Wonder's Julie doll 27F

33 in the 1980s) or in-car 
voice recognition systems (Tashev et al., 2009) 

For the second level, common applications today include voice interfaces in robots, digital 
assistants or specific software such as voice dictation, voice dialling or call routing, domotic 
appliance control, preparation of structured documents, speech-to-text processing, and 
aircraft (e.g., direct voice input allowing the pilot to manage systems). Note that although all 
the above-mentioned speech recognition-powered products and software are market-ready 
products (TRL 9) with high levels of robustness and accuracy, the capabilities achieved by 
these systems are still limited to restricted domains, also having problems with noise 
environments, different accents, disorganised conversations, echoes, speaker distance from 
the microphone, etc.   

Level 3 is still largely in research and evaluation phases; it is limited in that current 
approaches (e.g., language models and acoustic models) cannot handle the complexities of 
a free speech recognition application in unrestricted contexts with multiple speakers for a 
myriad of languages and different regional accents for the same languages. Furthermore, 
even in controlled contexts with a limited dictionary, there is still a lack of accuracy with 
common misinterpretations. Therefore, we can say that the technology achieving these 
capabilities is still a matter of research, prototyping and testing (TRLs 3 7).  

Finally, much more advanced capabilities in terms of a complete natural (multi-)language 
recognition in complex and unrestricted scenarios (as adult native speakers would do for their 
mother tongue) is still a long-term goal today for the research in the area (given the state 
being at TRL 1 to TRL 3). Working under adverse conditions (e.g., noise, different accents, 

                                           

33  http://www.robotsandcomputers.com/robots/manuals/Julie.pdf 

http://www.robotsandcomputers.com/robots/manuals/Julie.pdf
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complex language utterances, etc.) will be eventually solved in the short or medium term as 
they are problems that can be addressed with larger datasets and models. However, more 
complex scenarios such as language-independent speech recognition including the 
understanding of non-explicit information such as the use of prosody, emotions, meaningful 

g., speaker intention modelling) are 
clearly more long-term goals in the field. 

 

5.3.3 Technology: Massive Multi-modal models 

In less than a decade, research in Natural Language Processing (NLP) has been overturned 
by the appearance of a suite of language models (LM) trained in an unsupervised manner on 
very large corpora. These language models (or foundation models (Bommasani et al., 2021)), 
based on the use of various statistical and probabilistic techniques to determine the 
probability of a given sequence of words occurring in a sentence, have proved capable of 

be adapted (e.g., fine-tuned) to a wide range of downstream tasks.  

On a technical level, LMs are enabled by (1) transfer learning (Thrun 1998) (i.e., to take the 

improvements in computer hardware, model architectures and the availability of much more 
training data). Actually, the technologies behind LMs are not new: they are based on deep 
neural networks and self-supervised learning, both of which have existed for decades. Current 
models (including BERT (Devlin et al. 2019), GPT-3 (Brown et al., 2020), and CLIP (Radford et 
al., 2021)) are based on a simple yet powerful architecture called Transformer (Vaswani et 
al., 2017), considered the latest major technological revolution in the field of NLP. The key to 
success of this approach is the use of an attention mechanism which allows you to search 
for relationships with all words in the context and to rely on the most similar words to improve 
prediction, whatever their position in context. This is a big change from previous technologies 

contextual dependencies, but they were always constrained by referencing words by their 
positions. Attention is about referencing by content.  

The spectacular progress associated with LM does not so much come from its ability to 
generate texts, but rather to carry out tasks after being exposed to a very small number of 

-
learning model having been explicitly supervised for this purpose. In this regard, in terms of 
capabilities of LM, we define three levels based on learning and generalisation: (see Figure 
9): 

 

— Level 1  Learn broadly applicable priors from large, diverse datasets: 
Transferability of meta-knowledge across domains and adaptability to linguistics tasks 
in different scenarios and languages. 

— Level 2  Generalisable task specification: Learning across more complex (non-
linguistic) tasks, inputs (perceptual sources such as audio & video) and environments. 

— Level 3  Reasoning and common-sense capabilities to perform high-order skills (e.g., 
physics & dynamics, theory of mind, temporality, causality, etc.). 
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Figure 9: Readiness-vs-generality chart for massive multi-modal models technology. While high TRLs 
have been reached by LM when addressing natural language-related tasks, lower TRLs are estimated 
when moving to more complex tasks, domains or environments, or when demand higher levels of 
reasoning skills. 

 

For the first level, we have seen that the scope of LM over the last few years has been 
adapted via natural language prompts to do a more than acceptable job on a wide range of 
NLP-related tasks despite not being trained explicitly to do many of those tasks (Brown et 
al., 2020). Many LMs are skilled language generators. For instance, GPT-3 (Brown et al., 2020) 
can create anything that has a language structure: answer questions, write essays, 
summarize long texts, translate languages, take memos, create computer code, etc., in a way 
that is almost indistinguishable from how a human would do it (Clark et al., 2021). However, 
although LMs are surprisingly versatile with the linguistic knowledge they obtain from 
pretraining, there are still limits to this adaptability. It is not clear how successfully current 
LMs may handle language variation, formality and linguistic diversity (Ponti et al., 2019; 
Bender 2011; Joshi et al., 2020) due to, among other things, the lack of enough (text) data 
to train large-scale LMs. Still, multilingual LMs have been released to extend that success to 
non-English languages by jointly training on multiple languages at the same time, and the 
multilingual foundation models to date (mBERT, mT5, XLM-R) are each trained on around 
100 languages (Devlin et al. 2019; Goyal et al., 2021; Xue et al., 2020). However, the extent 
to which these models are robustly multilingual is still an open question (Lauscher et al., 
2020; Virtanen et al., 2019; Artetxe et al., 2020). 

Regarding level 2, we are beginning to see the use of similar Transformer-based sequence 
modelling approaches across different research communities, and multi-modal LMs have 
been applied to images (Dosovitskiy et al., 2020; Chen et al., 2020d), speech (Liu et al., 2020), 
tabular data (Yin et al., 2020), protein sequences (Rives et al., 2021), organic molecules 
(Rothchild et al., 2021), and reinforcement learning (Chen et al., 2021; Janner et al., 2021). 
Notables are the examples for visual synthesis, including DALL-E (Ramesh et al. 2021) and 
CLIP-guided generation (Radford et al. 2021; Galatolo et al., 2021), where researchers 
leverage multimodal language and vision input to render compelling visual scenes. Still, and 
relative to the broader aims of the field, the current capabilities of multi-modal models are 
currently early-stage (TRLs 3 5): the previous promising early efforts are still largely centred 



 

39 

 

on RGB image inputs and a subset of core traditional vision tasks. However, the field 
continues to progress on broader challenges centred on embodied and interactive perception 
settings. 

Regarding those more advance functionalities in the third level, in the short-term, we may 
anticipate that the capabilities of massive multi-modal language models will continue to 
improve along the above directions (particularly with respect to generalisation capability 
(Radford et al., 2021; Ramesh et al., 2021), as training objectives are refined (Chen et al., 
2020; Hénaff et al., 2021; Selvaraju et al., 2021) and neural architectures are designed to 
incorporate additional modalities (Jaegle et al., 2021b). Still, it remains a matter for research 
(TRLs 1 3). For its part, in the longer-term, the potential for massive multi-modal language 
models to reduce dependence on explicit annotations may lead to progress on essential 
cognitive skills (e.g., reasoning and common-sense capabilities) which have proven difficult 
in the current, fully supervised paradigm (Zellers et al., 2019a; Martin-Martin et al., 2021). 
Improving high-level reasoning capabilities is thus a core challenge for existing LMs: generate 
high-level plans emulating the way humans perform abstract reasoning, high-level planning 
and coordination in tackling difficult problem-solving tasks (Miller et al., 1960). For the 
moment, LMs tend to focus solely on predicting the next low-level steps (Polu and Sutskever, 
2020; Han et al., 2021; Chen et al., 2021). This can be thought of as a data collection 
challenge (data for high-level reasoning is scarce and difficult to collect except for limited 
settings (Li et al., 2021)). Another line would be to investigate how abstract hierarchies of 
new capabilities emerge and are built progressively by themselves during learning capturing 
the structure of the input domain (Ellis et al., 2021; Hong et al., 2021), but it still remains an 
open question how to scale these approaches to more general and realistic settings. 

 

5.4 Perception 

Perception is a capability that we find in most animals, to a greater or lesser extent. In 
humans, vision is usually recognised as a predominant sense, and AI, especially in recent 
years, has given this predominance to machine vision.28F34 Even if we just cover vision discussed 
below, we select two important technologies, facial recognition and text recognition, with very 
different perception targets, representing two good examples of AI technologies that 
incarnate systems that perceive.  

 

5.4.1 Technology: Facial Recognition 

A facial recognition system is a biometric technology capable of identifying a person from a 
digital image or a frame from a video source. In general, the facial recognition pipeline 
follows three main steps: (i) detection of faces in the input image or video frame; (ii) 
extraction of a set of features from each detected face, forming a so-called biometric 
template; and (iii) face matching, which compares each extracted biometric template to those 
from reference images pre-enrolled in a database and computes corresponding similarity 
scores. When a similarity score is above a certain threshold (usually configurable by the user), 
then an identity match is considered.   

                                           

34  This predominance is perhaps exaggerated, at least with a view of AI as achieving intelligent behaviour. People who are 
blind from birth are the proof that full cognitive development is possible without sight. 
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In the last decade, facial recognition has gained significant attention, becoming an active 
research area in both industry and academia. It covers various disciplines, including image 
processing, pattern recognition, computer vision, high-performance computing and neural 
networks. It is nowadays widely established as one of the most flexible biometrics, capable 
of automatically identifying people at long distances in a non-intrusive manner.  

There is a myriad of scenarios in which a face recognition system can be deployed, ranging 
from border control (Rodriguez et al., 2018) (e.g., at an airport gate) or access control (Wang 
et al., 2020) (at the entrance to a building, a workplace, etc.) to video-surveillance (Barquero 
et al., 2021) (e.g., of a critical infrastructure or a crowded place). In most contexts, it is critical 
that the system is able to work in real-time, to rapidly notify about an identified blacklisted 
person or to prevent unwanted subjects from accessing certain areas. Ideally, face 
recognition should also be robust when confronted with scenes with changing lighting 
conditions (such a , 
because of wearing sunglasses, hats, scarfs, etc.) cannot be controlled. 

The latter are classic challenges for face recognition technology. However, new issues have 
arisen in very recent years, driven by societal changes. On the one hand, several companies 
 including Microsoft and IBM  have been criticised for rolling out facial recognition software 

that is more accurate for some demographics than others. Specifically, these systems tend 
to accurately identify fair-skinned men far more often than they identify darker-skinned 
women (Buolamwini et al., 2019; Hupont et al., 2019). Face recognition should be fair and 
universal, being able to identify subjects with high accuracy regardless of their gender, age 
and ethnicity. On the other hand, two key recent events, namely the growing threat of 
massive terrorist attacks (e.g., Bataclan, Paris 2015; Breitscheidplatz, Berlin 2016; Rambla, 
Barcelona 2017; Manchester Arena 2017) and the COVID-19 pandemic, have boosted the 
need to employ facial recognition systems in increasingly complex situations. There is a need 
to cover larger-scale and more unconstrained environments (e.g., large indoor/outdoor highly 
crowded places), and to accurately identify people even when wearing medical face masks.  

Because of this wide variety of contexts and challenges related to face recognition 
technology, the x-axis of Figure 8 uses five different generality levels:  

 

— Level 1  Facial verification: Also called face authentication, it is the simplest face 
recognition scenario. It is a one-to-one (1:1) problem, that computes the similarity score 

2018). It verifies that this person is who she claims to be, and thus needs some 
cooperation from her (e.g., the person must be willing to pose in front of a camera for 
unlocking a smartphone (Olade et al., 2018) or at airport check-ins). Generally, both query 

quality, showing full-frontal faces in controlled scenarios in 
terms of illumination, camera resolution, background and facial occlusions.  

— Level 2  Facial recognition under controlled situations: In this scenario, face 
recognition is formulated as a one-to-many (1:N) query for a given face against a 
database of known faces (for instance, a blacklist of N persons, a list of N authorised 
persons or users). Faces are detected and identified without requiring the active 
cooperation of individuals (Kortli et al., 2020). At this level the environment is low-to-
moderately crowded and controlled in terms of illumination, camera position and head 
pose (cameras are located so that faces are frontal or near-frontal). Examples include 
automatic face tagging in social media and access control at the entrance of a building. 
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— Level 3  Facial recognition under unconstrained situations: 1:N face recognition 

in moderately-to-highly crowded situations, with lower resolution faces (<100 × 100 
pixels), poorer or changing illumination conditions, and where strong head poses (>30º in 
yaw/pitch/roll), facial expressions, changes in facial appearance and facial occlusions may 
happen (Barquero et al., 2021). Typical use cases at this level are related to the video-
surveillance of crowded open/public spaces (e.g., a frequented street, a shopping mall, a 
train platform at rush hour, etc.) to help law enforcement bodies identify individuals under 
search or to find missing persons. 

— Level 4  Demographically unbiased facial recognition: Most typical face 
recognition contexts require the analysis of people from very different nationalities, 
ethnicities, physical appearance and age (such as an airport with flights arriving from 
different continents, international events, etc.). This level extends the previous one by 
including fair, universal and trustworthy face recognition models able to identify persons 
with high accuracy regardless of demographic factors such as age, race, gender or facial 
appearance (hairstyle, facial hair, body weight, etc.).  

— Level 5  Partially occluded facial recognition: This level covers face recognition 
systems not only able to deal with unconstrained and unbiased face recognition, but also 
to identify persons even when wearing a medical mask which may occlude up to 60% of 
the face.  

 
Figure 10: Readiness-vs-generality chart for facial recognition (FR) technology. TRL 9 has been 

clearly reached for face verification and FR in controlled environments, with a number of commercial 
systems being deployed for different applications (access control, security, smartphone unlocking, 
social media, etc.). Facial recognition systems under unconstrained situations (such as crowded 
train/metro stations or public spaces) are also currently being tested, demonstrated and  less 
frequently  fully deployed in operational environments, mostly for law enforcement purposes (TRLs 
between 5 and 9). Lower TRLs are estimated when these sorts of systems are confronted with 
demographically varied contexts, where their behaviour is expected to be fair and unbiased (TRLs 3 
to 5). Finally, post-pandemic FR is still in its initial phase of technological readiness (TRLs 1 to 4), 
since most of the current systems are not capable of coping with the strong facial occlusions caused 
by the use of medical masks. 
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Regarding level 1
image to a reference one, when both are taken in controlled situations (e.g., in a photo booth, 
with a high-resolution smartphone camera, driving license/passport photo, etc.). Nowadays 
we find many market-ready facial verification applications (TRL 9) applied to different areas: 
security35 (e.g., to grant access to critical infrastructures), financial services36 (digital 
payments, online account access, etc.), border/boarding control37 (at airports, train stations, 
etc.), among others. These systems rely on full frontal high-resolution facial images with 
uniform illumination and no occlusions to achieve those high levels of predictive accuracy. 
Moreover, as they depend on the cooperation of the person and given the sensitivity of the 
use case, they usually prioritise having very low False Acceptance Rates (FAR): if the system 
is unsure about the identity of the person (i.e., the similarity score is below the chosen 
threshold), it might ask her to repeat the shooting up to several times until being fully certain 
about the prediction, which boosts even further their reliability. 

Level 2 no longer depends on the cooperation of individuals, so that similarity scores are 

identity match. This fact might impact facial recognition performance with regard to level 1, 
especially as N increases, but with images being taken in controlled situations, the predictive 
accuracy is still very high. A great number of applications corresponding to this level are 
widely established in the market (TRL 9). The most popular ones include social media tagging 
(i.e. to automatically recognise when its members appear in photos38) and access control (e.g. 
to workplace,39 to prevent unauthorised persons to access critical infrastructures40 such as 
hospitals or government buildings, gambling addicts to enter casinos,41 etc.).  

As for level 3, facial recognition outside of a controlled environment involves addressing 
much more complex factors. From the technical perspective, and boosted by the emergence 
of Deep Learning, most research effort in the facial recognition community has been devoted 
to bridge the gap between level 2 and 3 in the last five 
datasets and benchmarks have been publicly released to train and validate models for facial 
recognition able to cope with unconstrained faces (Huang et al., 2008; Guo et al., 2016; Zhu 
et al., 2016). Novel deep architectures and training techniques have been designed to 
compare and predict potential matches of faces regardless of their illumination, head pose, 
occlusions, changes in expression and facial appearance (Scroff et al., 2015; Liu et al., 2021; 
Huang et al., 2020). State-of-the-art unconstrained facial recognition models have now 

saturated accuracy for most popular public facial benchmarks,42 which brings them to TRL 
5. A step further is achieved by systems taking part in the Face Recognition Vendor 

Test (FRVT43), which is a periodical internal benchmark by the US National Institute of 
 protocol 

emulating a real operational environment (time-constrained tests against at least six 
collections of photographs with multiple images of more than 8 million people), which pushes 
participating systems to a TRL 7. Nevertheless, reaching final TRLs at the third generality 
level is not only a technical matter. Current plans to install facial recognition systems in 
unconstrained crowded public places are subjected to criticisms from civil society 

                                           

35  https://www.idemia.com/facial-recognition-access-control  

36  https://en.facephi.com/industries/financial-services  

37  https://www.airportveriscan.com/  

38  https://www.facebook.com/help/122175507864081  

39  https://ntechlab.com/solution/corporate-safety/  

40  https://hertasecurity.com/facial-recognition-access-control-software/  

41  https://securitytoday.com/articles/2019/10/29/major-casino-game-company-will-add-facial-recognition.aspx  

42  https://paperswithcode.com/sota/face-verification-on-labeled-faces-in-the  
43  https://pages.nist.gov/frvt/reports/1N/frvt_1N_report.pdf  

https://www.idemia.com/facial-recognition-access-control
https://en.facephi.com/industries/financial-services
https://www.airportveriscan.com/
https://www.facebook.com/help/122175507864081
https://ntechlab.com/solution/corporate-safety/
https://hertasecurity.com/facial-recognition-access-control-software/
https://securitytoday.com/articles/2019/10/29/major-casino-game-company-will-add-facial-recognition.aspx
https://paperswithcode.com/sota/face-verification-on-labeled-faces-in-the
https://pages.nist.gov/frvt/reports/1N/frvt_1N_report.pdf
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organisations as well as bans from authorities.44 For instance, a prior approval is needed for 
TRL 8 in Europe and the US. For that reason, there is a limited number of initiatives testing 
and demonstrating systems in different operational and real-world scenarios (TRLs 7 8) such 

as bus stations,45 airports or sport stadiums (Galbally et al., 2019). Large video-surveillance 
and security systems currently operating at TRL 9 are mostly deployed in less privacy-

concerned countries such as China (see YITU Dragon Eye products used in Shanghai Metro46), 

India47 or Uruguay.48  

In level 4, facial recognition models need to be invariant to demographic diversity. The key 
ingredient for success is the use of large amounts of training data to cover the widest range 
of variations in demographics (age, gender and race). However, most popular facial datasets 
and benchmarks, such as the widely used Labeled Faces in the Wild (Serna et al., 2020), are 
remarkably biased, containing a vast majority of white (up to 90%) and male (up to 75%) 
faces. This implies that any model trained or validated on them will inexorably show similarly 
biased patterns, favouring the majority race and gender data in the training set (Fu et al., 
2014). Indeed, state-of-the-art face recognition models suffer from very structured and 
damaging demographic biases (Hupont et al., 2019), making them not yet ready for 
operational environments. Given the importance of the problem, the NIST recently extended 
its FRVT protocol to study demographic effects49 at TRL 5, and found a dramatic drop in 
performance for facial recognition systems when trying to recognise people of different race 
or gender (e.g., FAR varying by factors up to 100 times in the case of race). Some pioneering 
works have started to provide public demographic-aware benchmarks (Hupont et al., 2019; 
Robinson et al., 2020) and address the problem algorithmically (Serna et al., 2020), but 
efforts are still below TRL 5. 

Level 5 of generality arose from one day to next, by mid-March 2020, as a response to the 
COVID-19 pandemic. On the one hand, the sanitary crisis has strengthened the position of 
facial recognition as a the most suitable biometric for touchless and distant access control, 
not requiring the manipulation of access security cards or to put a finger on a device shared 
by hundreds of persons. On the other hand, a new and great technical challenge emerged: 
the vast majority of face recognition models to date were not sufficiently robust to deal with 
largely occluded faces, where the upper face is the only visible part. Developers had to rapidly 
adapt their algorithms to support face recognition on subjects potentially wearing face 
masks, without losing accuracy for unmasked persons. Since then, an increasing number of 
research publications have surfaced on the topic (Deng et al., 2021; Wang et al., 2021) along 
with new face-masked datasets (Wang et al., 2021). As a consequence of this rush, a number 
of commercial providers have already announced the availability of face recognition systems 

capable of handling face masks50 and the NIST has extended its FRVT protocol to test the 
performance of pre- and post-pandemic algorithm behaviour when confronted with masked 

faces.51 About 200 face recognition models were tested by the NIST under a verification (1:1) 
scenario, by applying synthetic masks to real border crossing photos. Results showed that 

                                           

44 Some examples include: https://www.euractiv.com/section/data-protection/news/german-ministers-plan-to-expand-

automatic-facial-recognition-meets-fierce-criticism/, https://www.nytimes.com/2019/05/14/us/facial-recognition-ban-san-

francisco.html or https://www.politico.eu/article/european-parliament-ban-facial-recognition-brussels/.  

45 https://algorithmwatch.org/en/spain-mendez-alvaro-face-recognition/  

46 https://www.yitutech.com/en  

47 https://www.independent.co.uk/life-style/gadgets-and-tech/news/india-police-missing-children-facial-recognition-tech-

trace-find-reunite-a8320406.html 

48 https://www.prnewswire.com/news-releases/facial-recognition-in-uruguayan-football-680914081.html     

49 https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8280.pdf  
50 https://www.bbc.com/news/technology-55573802    
51 https://pages.nist.gov/frvt/html/frvt_facemask.html     

https://www.euractiv.com/section/data-protection/news/german-ministers-plan-to-expand-automatic-facial-recognition-meets-fierce-criticism/
https://www.euractiv.com/section/data-protection/news/german-ministers-plan-to-expand-automatic-facial-recognition-meets-fierce-criticism/
https://www.nytimes.com/2019/05/14/us/facial-recognition-ban-san-francisco.html
https://www.nytimes.com/2019/05/14/us/facial-recognition-ban-san-francisco.html
https://www.politico.eu/article/european-parliament-ban-facial-recognition-brussels/
https://algorithmwatch.org/en/spain-mendez-alvaro-face-recognition/
https://www.yitutech.com/en
https://www.independent.co.uk/life-style/gadgets-and-tech/news/india-police-missing-children-facial-recognition-tech-trace-find-reunite-a8320406.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/india-police-missing-children-facial-recognition-tech-trace-find-reunite-a8320406.html
https://www.prnewswire.com/news-releases/facial-recognition-in-uruguayan-football-680914081.html
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8280.pdf
https://www.bbc.com/news/technology-55573802
https://pages.nist.gov/frvt/html/frvt_facemask.html
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post-pandemic algorithms surpass pre-pandemic ones, but still failed to authenticate 
between 10% to 40% of masked images. Nevertheless, this in-lab test setup is yet very 
limited (TRL 4) and there is a long way to go 
recognition. 

 

5.4.2 Technology: Text Recognition  

Text recognition is the process of digitising text by automatically identifying symbols or 
characters from an image belonging to a certain alphabet, making them accessible in a 
computer-friendly form for text processing programmes or the like. Text recognition involves 
both offline recognition (e.g., input scanned from images, documents, etc.) and online 
recognition (i.e., input is provided in real time from devices such as tablets, smartphones, 
digitisers, etc.). Here we will focus on the former. Large amounts of written, typographical or 
handwritten information exist and are continuously generated in all types of media. In this 
context, being able to automate the conversion (or reconversion) into a symbolic format 
implies a significant saving in human resources and an increase in productivity, while 
maintaining or even improving the quality of many services. Optical character recognition 
(OCR) has been in regular use since the 1990s, developed significantly with the widespread 
use of the fax by the end of the 20th century. Today, it is already in wide use, but the 
possibilities and requirements have evolved with a more digital society. 

Figure 11 tries to model the evolution of expectations in terms of the different capabilities 
of text recognition technology through the following levels of generality: 

 

— Level 1  Template-based typewritten and handwritten character recognition: 
Recognition of typewritten and handwritten characters in structured documents (e.g., 
postal systems, bank-check processing, passports, invoices, etc.). 

— Level 2  Free-form handwritten character recognition: Recognition of (non-
)separable/segmentable handwritten characters with automatic layout analysis in 
unstructured documents. 

— Level 3  Free-form unconstrained handwritten word recognition: recognition of 
unconstrained  
(non-)separable/segmentable handwritten words in unstructured documents. 

— Level 4  Complex non-pundit-readable text recognition: Recognition, 
interpretation and deciphering of non-pundit-readable media (e.g., ancient or badly 
damaged) unconstrained texts in any format. 
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Figure 11. Readiness-vs-generality chart for text recognition technology. TRL 9 has been clearly 

reached by OCR systems. For free-form character recognition, current developments in machine 
learning and computer vision are improving the performance of these systems, where we may find 
prototypes for testing and demonstrating new capabilities as well as market-ready products (TRL 5 
to TRL 9). More advanced capabilities in terms of unconstrained, free-form recognition of handwritten 
text is still a matter of research and development (TRL 2 to TRL 6). Very low TRLs are estimated for 
text recognition systems addressing the interpretation and deciphering of non-human-readable 
media.  

 

For level 1 we find the simplest (and most common) form of character recognition: template-
based optical character recognition (OCR). OCR, as a technology, has been instrumental in 
automating the processing of managing physical typewritten documents. For instance, 
enterprises using OCR software can create digital copies of structured documents such as 
invoices, receipts, bank statements and any type of accounting documents that needs to be 
managed. Passports, and other forms of structured documentation that need to be managed, 
are also the target of OCR software. The accuracy of these systems is dependent on the 
quality of the original document, but levels are usually around 98% or 99% for printed text 
(Holley 2009), which is good enough for most applications, or 95% when addressing, for 
instance, very specific handwritten recognition tasks such as postal address interpretation 
(see, e.g., (Srihari et al., 1997)). Most commercial products and software are of this type (TRL 
9).52   

Currently, OCR technology has been improved by using a combination of machine learning 
and computer vision algorithms to analyse document layout during pre-processing to pinpoint 

rgets both unconstrained typewritten and handwritten text, imposing 
new challenges on the technology. This represents thus the second level of capabilities in 
Figure 9. Because this process is involved in recognising handwriting text, accuracy levels 
may, in some circumstances, not be very good but can achieve 97 99% accuracy rates in 
structured forms when handling capital letters and numbers (Ptucha et al., 2019) which are 
easily separable/segmentable, but it fails when addressing more complex scenarios such as 

                                           

52  https://en.wikipedia.org/wiki/Comparison_of_optical_character_recognition_software  

https://en.wikipedia.org/wiki/Comparison_of_optical_character_recognition_software
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unconstrained texts or non-separable (e.g., cursive) handwriting. However, these error rates 
do not preclude these systems from massive use, with plenty of ICR products and software 
currently in the market 40F

53 (TRL 9). It is also an active area of research (see, e.g., Bai et al., 
2014; Oyedotun et al., 2015; Yang et al., 2016; Ptucha et al., 2019) where new alternatives 
(e.g., neural approaches) are being developed and assessed. 

Level 3 capabilities represent further advancements in this sort of technology involving 
recognition of unconstrained (i.e., non-easily separable/segmentable) and free-form 

.54 
technologies 42F

55 may fall within this level. IWR is optimised for processing real-world 
documents that contain mostly free-form, hard-to-recognise data fields that are inherently 
unsuitable for ICR. While ICR recognises on the character-level, IWR works with unstructured 
information (e.g., full words or phrases) from documents. Although IWR is said to be more 
evolved than hand print ICR, it is still an emerging technology (TRL 5 to TRL 9) with some 
products performing capabilities to decode (scanned) printed or handwritten text (see, e.g., 
Google Vision API56 used in Google Docs57 and Google Lens app58), as well as number of 
prototypes being tested and validated in relevant environments (Yuan et al., 2012; Acharyya 
et al., 2013). 

Finally, much more advanced uses of text recognition systems would be, for instance, to 
interpret ancient or badly damaged texts that can only be deciphered by experts in the field 
or even not deciphered by humans. Along this line we nowadays find some efforts in terms 
of research and projects (see, e.g., Lavrenko et al., 2004; Sánchez at al., 2013; Granell et al., 
2018; Toselli et al., 2019), but without going beyond successful validations and 
demonstrations from laboratory to relevant scenarios (TRL 2 to TRL 6).  

 

5.5 Planning 

In this AI category, planning  usually deals with choosing the best sequence of actions 
according to some utility function, scheduling  is about arranging a set of actions 
(or a plan) in a timeline subject to some constraints. Not surprisingly, this is one of the areas 
in AI that had early successful applications in different domains. We choose transport 
scheduling systems as a well-delineated example of an AI technology that represents 
systems that plan.  

5.5.1 Technology: Transport Scheduling Systems 

Transport scheduling refers to those tactical decisions associated with the creation of vehicle 
, 

2009). In order to determine an appropriate vehicle schedule, there are also other factors 
that have a direct effect on the operating costs: the number of vehicles required; the total 
mileage and hours for the vehicle fleet; as well as the crew schedule. These activities are 
usually assisted by software systems with or without direct interaction with the planner in 

                                           

53 See http://www.cvisiontech.com/library/ocr/text-ocr/intelligent-character-recognition-software.html, 

https://abbyy.technology/en:features:ocr:icr or https://www.scanstore.com/Forms_Processing_Software/ICR_Software/ 

54 Note that the transcription at further levels (e.g., line or paragraph) goes beyond this technology as it involves other 

technologies such as (joint) line segmentation (Bluche, 2016). 

55 https://www.efilecabinet.com/what-is-iwr-intelligent-word-recognition-how-is-it-related-to-document-management/, 

https://content.infrrd.ai/case-studies/global-investment-firm-uses-infrrds-intelligent-data-processing 

56 https://cloud.google.com/vision/docs/handwriting 

57 https://docs.google.com/ 
58 https://lens.google.com/ 

http://www.cvisiontech.com/library/ocr/text-ocr/intelligent-character-recognition-software.html
https://abbyy.technology/en:features:ocr:icr
https://www.scanstore.com/Forms_Processing_Software/ICR_Software/
https://www.efilecabinet.com/what-is-iwr-intelligent-word-recognition-how-is-it-related-to-document-management/
https://content.infrrd.ai/case-studies/global-investment-firm-uses-infrrds-intelligent-data-processing
https://cloud.google.com/vision/docs/handwriting
https://docs.google.com/
https://lens.google.com/
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charge. This sort of system takes as input several parameters, including the frequency of 
service in different routes, the expected travel times, etc., as well as different operating 

icle reutilisation/repositions, layovers, 
coordination of passenger transfers, number of vehicles, etc.), to generate high-quality 
solutions (e.g., departure times).  

Because of the evolution of the expectations and capabilities of transport scheduling 
technology, the x-axis of Figure 12 uses three different generality levels described as follows:  

 

— Level 1  Specific-purpose offline scheduling: All the information is available 
beforehand with no uncertainty, which can be used as an input and an optimised schedule 
is output. The particularities of the domain are embedded into the system and only the 
data are given as an input. 

— Level 2  Specific-purpose online scheduling/rescheduling: All or part of the input 
information comes in real time, with uncertainty in measurements or in the information 
(e.g., a train that should arrive at 3:30 but instead arrives at 3:40). Still, the particularities 
of the domain are embedded into the system.  

— Level 3  General-purpose online scheduling/rescheduling: The information also 
comes in real-time and with uncertainty, but the system is now designed to be extended 
with new subsystems that have different specific behaviours. For instance, a train station 
scheduling system can include the behaviour, utilities and constraints of bus and metro 
subsystems connecting with the station, as well as events in the city, and optimise 
globally.  

 
Figure 12: Readiness-vs-generality chart for transport scheduling system technology. The range of 
software systems that are able to perform offline and online scheduling for particular domains 
implies a TRL 9 for the first two levels. More general-purpose scheduling systems have a lower TRL 
of between 3 and 7. 
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Although, traditionally, transport timetables have been manually generated (e.g., using time-
distance diagrams (Chakroborty et al., 2017) where schedules are manually adjusted to meet 
all the constraints), this process can take a long time and it is unfeasible when dealing with 
highly loaded transport networks. At level 1 of generality, computer-based scheduling and 
planner systems have appeared in recent decades to provide automated and optimised 
transport scheduling for vehicles and drivers. These systems have been launched, after years 
of research, for different areas of application (TRL 9) including, among others: (a) trains 
(Ghoseiri et al., 2004; Ingolotti et al., 2004; Abril et al., 2006) with a huge number of 
commercial products such as RAILSYS,59 OTT60 or MULTIRAIL;61 (b) flights (Feo et al, 2009), 
also with a myriad of commercial applications such as FLIGHTMANAGER,62 OASIS63 or 
TAKEFLIGHT;64 (c) buses and shuttles (Gavish et al., 1978), with software platforms such as 
GOALBUS,65 TRIPSPARK66 or REVEAL;67 (d) maritime transport (Meng et al., 2014) with 
commercial software such as MJC2,68 or MES;69 or (e) road transport (Törnquist, 2006), with 
software products such as PARAGON70 or PARADOX.71 Note that all these systems are 
specialised (or adapted) for performing in very particular scenarios, and there is no general-
purpose tool. 

For level 2, we consider that the input information can be provided online, so an automated 
scheduling system needs to process it in real time. The systems should have then two parts: 
offline scheduling (for known information), and online rescheduling. While the former 
oversees scheduling vehicles and crews from known information, the latter has to be applied 
in response to the new specific needs and/or incidents that may appear. The schedules have 
to be dynamically updated balancing the resources (vehicles, timeslots, crew, etc.) available. 
Examples of real-time requirements or incidents may be, for instance, to meet specific travel 
demands or requests of passengers (e.g., new stops), to adapt to perturbations or problems 
regarding resources/demand (e.g., failures in vehicles), or manage new schedule intervals 
between new events (e.g., as volcano eruptions or heavy weather-related issues), etc. Dealing 
with real-time needs also entails that scheduling systems have to be able to confront 
different levels of uncertainty in terms of measurements or in the information they are 
provided (e.g., a train should arrive at 3:30 but it instead arrives at 3:40). Like in level 1, we 
are able to find plenty of research in this regard (see, e.g., Eberlein et al., 1998; Fu et al., 

; Verderame et al., 2010; Wegele et al., 2010; Reiners et al., 2012) 
as well as market-ready applications (e.g., MJC272 for road traffic, TPS73 for trains, OPTIBUS74 
for bus/shuttles) applied to different transport scenarios, this implying a TRL 9 for this sort 
of more capable scheduling systems.  

Finally, for the third level, we introduce a further level of generality in terms of these systems 
being able to be extended to any sort of transport scheduling problem with a combination of 
other transportation systems and other constraints and utility functions (e.g., a coach service 

                                           

59  https://www.rmcon-int.de/railsys-en/ 

60  https://www.via-con.de/en/development/opentimetable/ 

61  https://www.oliverwyman.com/our-expertise/insights/2013/jan/multirail-pax-_-integrated-passenger-rail-planning-.html 

62  https://www.topsystem.de/en/flight-scheduling-1033.html 

63  http://www.osched.com/ 
64  https://tflite.com/airline-software/Passenger-Service-System/flight-schedule/ 

65  https://www.goalsystems.com/en/goalbus/ 

66  https://www.tripspark.com/fixed-route-software/scheduling-and-routing 

67  http://reveal-solutions.net/bus-routing-scheduling-software/bus-scheduling-software-101/ 

68  https://www.mjc2.com/transport-logistics-management.htm  

69  https://cirruslogistics.com/products/marine-enterprise-suite/  

70  https://www.paragonrouting.com/en-gb/our-products/routing-and-scheduling/integrated-fleets/ 

71  https://www.paradoxsci.com/transportation-logistics-software-rst 

72  https://www.mjc2.com/transport-logistics-management.htm  

73  https://www.hacon.de/en/solutions/train-capacity-planning/ 
74  https://www.optibus.com/ 
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49 

 

combined with a train service). However, having general-purpose scheduling software 
systems is more difficult due to the varietal intrinsic characteristics of each scenario (it is not 
the same scheduling a fleet of trucks based on road-traffic characteristics as scheduling 
flights based on airflows, hub banking and other flight characteristics). However, although 
the previously introduced products and software platforms are all domain-specific systems, 
the task of automating scheduling or timetabling (as a multi-objective constrained 
optimisation problem) is a general problem creating a feasible/optimised schedule for any 
kind of service or a combination of them. In (Hassold et al., 2014; Liu et al., 2016) we can 
see some general-purpose solutions (at the research level), but they are still being tested 
and demonstrated in particular domains. That is why we give a TRL value of between 3 and 
7.  

 

5.6 Physical interaction (robotics) 

Many people have a paradigmatic view of intelligent systems as robots that physically 
interact with the world. While a great part of AI applications are digital, it is those tasks that 
require physical interaction with the world and with humans in particular that usually shape 

concerning AI. When asking people about AI systems, navigation (e.g., 
going from one place to another safely) and manufacturing (e.g., performing tasks in 
collaboration with workers) are important applications of many of these systems. We have 
selected four very relevant and different technologies in this category: self-driving cars, home 
cleaning robots, logistic robots, and inspections and maintenance robotics. Again, when 
robotics is combined with AI we expect these physical systems not to be controlled by humans 
(locally or remotely) but be given instructions (e.g., where to go and what to do) and follow 
them autonomously. The following four categories provide good examples of AI technologies 
that represent systems that interact physically.  

5.6.1 Technology: Self-Driving Cars  

AI is changing the very act of driving, and therefore transport as a whole. Driving automation 
systems are already included in most modern cars to assist drivers and increase the safety 
of every journey. But driving automation functions are progressively reaching new levels, 
being capable of performing part or all of the driving tasks and potentially allowing drivers 
to become mere passengers. The effort and investment by car manufacturers and major 
technology companies to advance this technology is extraordinary, as are the efforts by 
standardisation bodies, policymakers, and public authorities to find the best legal and social 
fit for the adoption of this potentially disruptive technology. This is mainly driven by the many 
potential benefits of the technology, such as increased safety, lower traffic congestion and 
emissions, new mobility services, and potentially increased mobility for those unable to drive 
by themselves.  

This technology has a well-established and internationally accepted categorisation of levels 
of automation. This is the taxonomy proposed by SAE International (formerly Society of 
Automotive Engineers) in its recommendation SAE J3016  published in 2014 and revised in 
2018 and 2021.75 It establishes six levels of driving automation, from 0 (no automation) to 
5 (full automation). The core of the automation is based on the driving automation systems 

                                           

75 SAE International, “Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles”, 
J3016 202104, 2021. Url: https://www.sae.org/standards/content/j3016_202104/  

https://www.sae.org/standards/content/j3016_202104/
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which are the hardware and software able to perform some or all driving tasks on a sustained 
basis. One important concept needed to understand the different levels is the Operational 
Design Domain (ODD) which refers to the set of operating conditions (e.g., type of scenario, 
speed range, traffic conditions, lighting and weather conditions, connectivity requirements, 
pre-mapped zones, etc.) under which a given driving automation system is specifically 

defined as follows:  

 

— Level 0  No Driving Automation: The performance by the driver of all driving tasks. 

— Level 1  Driver Assistance: The sustained and (limited) ODD-specific execution by a 
driving automation system of the lateral or the longitudinal vehicle motion control tasks 
(but not both simultaneously) with the expectation that the driver will perform the 
remaining driving tasks. 

— Level 2  Partial Driving Automation: The sustained and (limited) ODD-specific 
execution by a driving automation system of both the lateral and longitudinal vehicle 
motion control tasks, with the expectation that the driver completes the remaining driving 
tasks and supervises the driving automation system. 

— Level 3  Conditional Driving Automation: The sustained and (limited) ODD-specific 
performance by a driving automation system of driving tasks with the expectation that 
the driver is receptive to a requests to intervene in case of system failures, and will 
respond appropriately.  

— Level 4  High Driving Automation: The sustained and (limited) ODD-specific 
performance by a driving automation system of all driving tasks without any expectation 
that a user will respond to a request to intervene. The driving automation system must 
be capable of reaching a minimal risk condition in the event where the ODD limit is being 
reached. 

— Level 5  Full Driving Automation: The sustained and unconditional (i.e., not ODD-
specific) performance by a driving automation system of all driving tasks without any 
expectation that a user will respond to a request to intervene. 
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Figure 13. Readiness-vs-generality chart for self-driving cars technology. TRL 9 has been clearly 

reached by many cars on our roads in the levels between SAE levels 0 and 2 of driving automation. 
For SAE levels 3 and 4, current developments of automobile companies are presently performing 
research, prototyping and testing with self-driving cars (so TRLs are between 5 and 7). However, very 
low TRLs are still estimated for fully self-driving cars requiring no human attention at all. 

 

We can translate these levels of automation into more convenient and explicit driving modes 
.76 This way, levels 1 and 2 will refer to 

assisted driving, in which humans are fully responsible for all driving tasks. Level 3 can be 

considered as automated driving, in which it is the human who ultimately assists the 
system (assistant or backup driver). And finally, levels 4 and 5 can be referred to as 
autonomous driving, in which the driver is a mere passenger with no responsibility in the 
driving tasks. However, it is important to note that the levels of automation usually refer to 
features, functions or systems (not the whole vehicle) and are always defined within a set of 
specifications established in the ODD.77 This implies that we should be cautious when 
interpreting the TRL assigned to each level of automation, as it will always depend on the 
specific feature that has been automated and its operating design domain. So, for example, 
we could have a level 4 automatic parking system for daytime conditions, which becomes 
level 3 for night-time conditions. Or a level 4 traffic jam system for dense traffic, that can 
only reach level 2 with moderately congested traffic. Or a level 4 automated lane keeping 
system (ALKS) on highways with good lighting conditions, that becomes level 3 in night 
conditions, and level 2 in adverse weather conditions (e.g., rain, fog, snow, etc.). Thus, we 
should interpret the levels of automation as a simplification when referring to this 
technology, which serves as an abstraction of a more complex and multidimensional problem. 
This simplification makes it more convenient to assign ranges for the TRLs. 

 

 

                                           

76 R. Schram, “Euro NCAP’s first step to assess automated driving systems”, Euro NCAP Working Group on Automated Driving, 

Paper Number 19-0292, 2018.  

77 British Standards Institution (BSI), “Operational Design Domain (ODD) taxonomy for an automated driving system (ADS) – 
Specification”, PAS 1883, 2020.  
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Let s go into more detail for the different levels.   

Level 0  No driving automation 

Although modern cars have passive safety systems (e.g. ABS or ESC), when we have level 0, 
the driver performs all driving tasks, and it is not too complicated to conclude that almost all 
cars currently on the market meet this condition, so we can clearly assign a TRL 9. 

Level 1  Partial driving automation 

The first and therefore most mature driver assistance system is Adaptive Cruise Control 
(ACC). It was introduced in the early 1990s and is present in a wide range of commercial 
vehicles today.78 ACC systems focus on maintaining a targeted speed (longitudinal motion) 
selected by the driver or maintaining the distance between the vehicle in front and the ego 
vehicle. Stop & Go functionality was introduced later, i.e., the ability to target a speed equal 
to zero due to a stopped vehicle in front of the vehicle. ACC only provides driving support for 
the longitudinal motion of the vehicle. The steering wheel must be controlled by the driver.  

One example of assisted driving systems with lateral control can be found with the Park 

motion) while the driver determines the speed using the pedals. These systems were first 
introduced on the market in 2003,79 and were consolidated around 2010. Another example 
is the Lane Keeping Assist,80 which is the evolution of the Lane Departure Warning (LDW) 
system but conceived not only to warn the driver if the vehicle drifts out of the lane without 
the turn signals on but to keep the vehicle in the centre of the lane by controlling the steering 
wheel (lateral motion). Although the lane keeping assistant usually operates over a range of 
speeds, the speed control is not part of the system itself. The above examples are commercial 
systems, so they provide good evidence that this level of automation is clearly in TRL 9. 

Level 2  Partial driving automation 

If we combine the Lane Keeping Assist with the ACC Stop & Go, we have the sustained 
execution of both the lateral and longitudinal vehicle motion control tasks, which results in 
the so-called Traffic Jam Assist (level 2). Although this technology was initially presented in 
2013 for use at high speeds st81) the most 
common operational design domain of most car manufacturers includes a maximum speed 
beyond which the system stops operating (low-speed driving conditions).82 

Another level 2 system corresponds to the evolution of the Park Steering Assist into the so-
called Automatic Parking Assist, which is able to carry out the parking manoeuvre completely 
with steering wheel and speed control. In the last decade we can find these automatic parking 
assist systems available in several models of different vehicle manufacturers.83 At this level 
of automation, the Automatic Parking Assist requires total supervision and some degree of 
control from the driver.  

                                           

78 L. Xiao and F. Gao, “A comprehensive review of the development of adaptive cruise control systems,” Vehicle System 
Dynamics, vol. 48, No. 10, pp. 1167–1192, 2010. 

79 CNN International. “Toyota unveils car that parks itself”, 2003. URL: 

http://edition.cnn.com/2003/TECH/ptech/09/01/toyota.prius.reut/index.html 
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Autopilot system.84 It was first launched in 2014, but since then numerous upgrades and 
updates have been made.85 As recently established in the NHSTA's investigation86 to evaluate 
the performance and operating conditions of the Autopilot system following a series of 

Autopilot is an (SAE Level 2) 
Advanced Driver Assistance System (ADAS) in which the vehicle maintains its speed and lane 
centring when engaged within its Operational Design Domain (ODD). With the ADAS active, 
the driver still holds primary responsibility for Object and Event Detection and Response 
(OEDR), e.g., identification of obstacles in the roadway or adverse manoeuvrers by 
neighbouring vehicles during the driving tasks
users misuse this technology due to over-reliance, with fatal consequences.87 

All these examples are well established commercial systems (despite misuse by some users), 
so it is reasonable to say that level 2 driving automation systems have reached TRL 9.  

Level 3  Conditional driving automation 

The next level of the Traffic Jam Assist is the Traffic Jam Chauffeur,88 which for low-speed 
driving conditions (traffic jams) involves sustained performance of the driving tasks with the 
expectation that the driver is receptive to a request to intervene in case of system failures. 
Audi presented the first commercial system in 2017 (Traffic Jam Pilot89) with a maximum 
speed of 60 km/h. However, they encountered serious problems in commercialising it, as 
there was (and still is) no clear legal framework to deal with the market entry of level 3 
driving automation features.90 However, this situation is changing. In March 2020 the United 
Nations Economic Commission for Europe (UNECE) by means of its UNECE World Forum for 
Harmonization of Vehicle Regulations (WP.29) adopted an international regulation to 
establish uniform provisions concerning the approval of vehicles with regard to Automated 
Lane Keeping Systems (ALKS).91 In a first step, the regulation limited the operational speed 
to 60 km/h maximum, so it can be considered equivalent to Traffic Jam Pilot technology. 
Many countries are also adapting their national legislation to allow the commercialisation of 
these systems. Recently, in November 2020, Honda received type designation for its level 3 
Traffic Jam Pilot technology in Japan.92 There are other car manufacturers focused on 
developing this technology, but they have not yet incorporated it into commercial models. 
Although with limited scale, we can conclude that Traffic Jam Chauffeur's technology has 
reached TRL 9.  

The next step in level 3 automation is the extension of the maximum speed range of the 
system (beyond traffic jams), including additional functionalities such as lane changing or 
overtaking. These features are included in the so-called Highway Chauffeur or Highway Pilot 
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systems.93 These systems have not been commercialised yet, but some prototypes have been 

mostly validated in relevant environments and, in some cases, even demonstrated in 
operational environments (e.g., trucks highway pilot94). Therefore, we can assign TRLs 

between 5 and 7 for this level 3 automation technology.  

Finally, one of the most promising applications of autonomous cars at scale are the so-called 
-driving taxis, which are devised to provide a mobility service 

in urban environments. There are several pilot tests underway in several cities around the 
world, some of which are in commercial use and open to the public (e.g., Uber and Waymo). 
But in almost all cases, this technology is implemented at level 3 with a backup driver.  

Taking into account the state of the aforementioned conditional driving automation systems, 
we can generalise and conclude that the technology has reached an average TRL 7, with 
margins from TRL 5 to TRL 9. 

Level 4  High driving automation 

As mentioned above, at this level it should be noted that, within the ODD, no driver is required. 
Although there are legal exemptions for testing level 4 systems in many countries, so far 
only Germany has recently adopted a regulatory framework to allow their commercial use.95 
Even so, it will not be until 2022 that the first permits will be issued. Therefore, we can state 
that there are no commercial level 4 systems worldwide, as there are no legal frameworks 
to support them. Depending on the driving feature, the technology has been validated in the 
lab (TRL 4) and even demonstrated in relevant and operational environments (TRL 7). We can 
state that most of the systems have been validated in relevant environments (TRL 5).  

For example, as an extension of the Highway Chauffeur/Pilot we have the Highway 
Autopilot,96 which does not require the user to intervene in the driving dynamic tasks as the 
system is capable of reaching a minimum risk condition in the event of a critical failure. This 
system has been demonstrated on trucks in operational environments.9798 One concept that 
fits perfectly within the term driverless cars , and which incorporates technology both in the 
vehicle and in the infrastructure, is Automatic Valet Parking.99 This highly automated driving 
function was conceived to allow automatic navigation and parking within a car park without 
the need for driver support. It was validated in relevant environments more than a decade 
ago,100 but it was not until 2017 that the technology was demonstrated in operational 
environments.101 

Another type of system that not only lacks a driver, but also a steering wheel and pedals, are 
urban shuttles for the transport of both people and goods. This type of technology has 
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reached TRL 7 as it has been demonstrated in different operational environments. Some 
examples are the e-Pallete vehicles from Toyota,102 that have been recently used to support 
athlete mobility at the Olympic and Paralympic Games Tokyo 2020,103 or the R2 autonomous 
delivery vehicles developed by Nuro104 to deliver pizza in Houston in collaboration with 
Dominos.105 Recently, in July 2021, the first international ISO safety standard for these types 
of level 4 vehicles (low speed and predefined routes), has been published.106 

Finally, it is important to note that since the end of 2020, Waymo has put into service, for 
the first time worldwide, driverless taxis (i.e., l
suburbs of Phoenix.107 Although with a limited number of vehicles, and in a very structured 
operating environment, this experience is one of the greatest achievements in autonomous 
driving so far.  

Considering all the aforementioned examples, we can generalise and conclude that high 
driving automation systems (level 4) have reached TRLs between 4 and 7, the most common 
one being TRL 5.  

Level 5  Full driving automation  

This level of automation is somewhat problematic in its definition. Although the SAE 
International recommendations attempt to clarify the meaning of an unconditional/unlimited 
ODD by relating it to the performance of a typical skilled driver, the truth is that, from a 
technical and legal point of view, it is quite difficult to accept the idea of an unlimited ODD. 
Ultimately, the difference between level 4 and level 5 has to do with the size of the ODD, 
which makes level 5 somewhat ill-defined, and does not allow us to make solid estimates of 
the current TRL of this technology. We can consider that the idea of an unlimited ODD (level 
5) refers to the range of operating conditions of a typical driver, which may include different 
lighting conditions (daytime and night-time), moderate adverse weather conditions, complex 
road layouts, different traffic conditions, etc.  

The concept of an autonomous driving system capable of operating in an ODD similar to that 
of a typical expert driver has been formulated108 (TRL 2) and experimental proof of concepts 
have been developed109 (TRL 3). Moreover, considering the increasing importance that 
autonomous driving simulators,110 and even the so-called shadow mode,111 are playing in the 
development and testing of automated driving technology, in which  millions of different 
scenarios with a very large ODD can be tested in a reasonable period of time, we can consider 
that this level of automation is currently being validated in the lab (TRL 4).  
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5.6.2 Technology: Home cleaning robots 

Home cleaning robots were one of the expectations of early AI and robotics. Home chores 
are at the same time considered to require low qualification and seen as a nuisance for which 
automation would represent a liberation. Many partial (non-AI) solutions have gone in this 
direction during the 20th century such as washing machines, non-robotic vacuum cleaners, 
and dishwashers. However, robotic cleaners started to flourish as late as the 1990s.112 They 
are currently used for helping humans with many kinds of simple domestic chores such as 
vacuum cleaning, floor cleaning, lawn mowing, pool cleaning or window cleaning.  

 
Figure 14. Readiness-vs-generality chart for home cleaning robot technology. While TRL 9 has been 
clearly reached by those specialised robots for dusting, vacuuming, mopping etc., lower TRLs are 
estimated when considering more complex house-cleaning tasks involving manipulation, flexibility, 
interaction, or coordination at any level. 

 

However, despite their popularity, we can analyse how far we are from reaching the original 
goals if we analyse these technologies by their level of generality. We identify the following 
three levels: 

 

— Level 1  Specialised cleaning tasks: In this level we consider a robot that is able to 
do a particular cleaning task in a very specific way, such as dusting, vacuuming, mopping, 
doing the windows or cleaning the swimming pool, and other tasks that do not require 
manipulating new and diverse sets of objects (just well-defined objects such as walls and 
windows, and avoiding obstacles). In this case, the robot has a physical configuration that 
exploits the particularities of the task, either as a roundish device moving on the floor or 
a small autonomous drone doing the windows.  

— Level 2  Specialised cleaning tasks manipulating objects: Here we consider that 
the task is still specific but involves the manipulation of a variability of household objects, 
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including removing and putting back decorations and many other items, folding laundry, 
ironing clothes, etc. (beds do not have a predefined size or location, clothes are very 
different, etc.). The robots, still purposed for a single task, may have different shapes and 
sizes for each application. 

— Level 3  General cleaning: In this final level of generality we expect the same robot 
to do many home chores. This means that the robot may have a more flexible physical 
configuration (probably with some type of robotic limbs) and a sophisticated interplay 
between perceptors and actuators. At this level we are not implying that these robots 
must be humanoid, clean exactly as humans do or use the same instruments (broom, 
vacuum cleaners, etc.). 

 

Looking at Figure 14, for level 1, clear evidence of TRL 9 can be found in the roundish robotic 
cleaners that roam around our houses vacuuming and sometimes mopping the floor. Many 
models exist, with some simple perception and navigation capabilities. Most of the 
innovations in the last decade have been towards better identifying walls and avoiding stairs 
using built-in sensors for autonomous navigation, mapping, decision making and planning. 
For instance, they are able to scan the room size, identify obstacles and perform the most 
efficient routes and methods. Some of them include capabilities from other categories (such 
as, speech recognition for voice commands or even basic conversation capabilities). However, 
they are still at this level, as they are not able to manipulate objects. A similar situation 
happens with other specific tasks such as windows cleaning,113 pool cleaning, lawn mowing 
or car washing. 

Level 2 involves the manipulation of objects, which requires more advanced recognition of 
the environment and dexterity. There are current prototypes114 to fold laundry (Bersch et al, 
2011; Miller et al., 2012) or iron clothes115 (Estevez et al., 2020). More complex tasks such 
as making the bed or clean the bathroom116 are still a bit below working prototypes. 
Nevertheless, considering the best situation of all these specific cases, we have evidence of 
a TRL 3.  

Finally, level 3 is still in very early stages, and we do not have evidence to assign a value 
beyond TRL 1. Regarding the near future, innovations are required at level 2, before moving 
to significant progress at level 3, with general-purpose service robots (Walker et al., 2019), 
which would become the real transformation drivers. Nevertheless, technology companies 
working on home robots (e.g., iRobot, Amazon, Samsung, Xiaomi, etc.) are still fighting for 
some other competitive advantages at level 1. For example, they add video conferencing and 
voice assistants to their devices rather than the ability to actually manipulate objects or 
diversify the physical tasks they can do. While some specialisation may be positive in the 
long term for cleaning (as any other activity), and there are some marketing and economic 
interests for going in this direction, having dozens of different gadgets at home has some 
limitations in terms of maintenance, sustainability and adoption. In the end, we could even 
envision the possibility that a robot at level 3 could replace dishwashing machines, vacuum 
cleaners and other specialised devices towards a more general home cleaner, especially in 
small apartments. 
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5.6.3 Technology: Logistic Robots 

The area of logistics and transportation is seen as a key area in which robotics and 
automation can provide a clear added value by increasing productivity. The technologies in 
this area deal with the transportation of materials and goods along the supply chain. As such, 
this area was identified as one of the main market domains for robotics in the Strategic 
Research Agenda (SRA) that the SPARC,117 the PPP between the European Commission and 
euRobotics, created for H2020. In Horizon Europe, the Strategic Research, Innovation and 
Deployment Agenda (SRIDA) of ADRA118, the PPP on AI, Data and Robotics also identifies this 
area as a promising venue.  

This area encompasses several topics. One of the initial successful robotics applications is 
storage management. While automatic storage management systems using cranes and 
conveyor belts have existed since the 1970s, the use of robots offers greater flexibility (de 
Koster, 2018). The popular Kiva robot119 from Amazon is a good example, and the company 
is adding about 15,000 robots yearly to work alongside employees. There are studies on the 
productivity benefits of such systems (Lamballais et al., 2017; Hanson et al., 2018). Another 
topic relates to the entry and exit of goods into storage and, in general, intra-logistics 
transportation of goods within a factory. In any interface between storage/delivery and 
transportation there is the need for picking, packing and unpacking. Finally, the area includes 
the transportation of goods between factory and delivery centres, as well as last-mile 
delivery. Note that other functionalities related to transportation between factories and 
distribution centres are related to the autonomous vehicle industry, which has already been 
covered in Section 4.6.1, and therefore will not be covered here. Last-mile delivery (Wang et 
al, 2016) is also not considered here. 

One of the main challenges of introducing robots for automating logistics in factories is the 
lack of specific infrastructures and expertise (industrial robots need sophisticated operation, 
maintenance and programming) for operating this technology. Also, industrial robots typically 
require a large upfront investment, but if the factory is already prepared or is adapted for 
introducing this technology (e.g., by imposing separation between humans and robots, 
including markers or devices for robot localisation, etc.), then it is possible to achieve higher 
levels of functionality for this technology. At the same time, it is important to avoid imposing 
restrictions and costly adaptations to the factories for the integration of logistic system 
solutions. 
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Figure 15: Readiness-vs-generality chart for home logistics robot technology. While TRL 9 
has been clearly reached by those solutions with limited functionalities performing in adapted 
scenarios, lower TRLs are estimated when considering more complex scenarios involving 
moving among people or more complex tasks involving manipulation or coordination at any 
level. 

 

The levels we will use for logistic robots are as follows: 

— Level 1  Storage movement in adapted factories using AGVs, typically 

separated from humans: The first level corresponds to the case in which the factory is 
prepared or can be adapted to the robotic system. This typically entails creating a 
separate space for the robots. In this space, specific infrastructure is deployed to 
assist/provide robot localisation and/or navigation, like visual codes and laser reflectors 
for localisation, or magnetic lines for robot guidance.  

— Level 2  Intra-logistics in general factories, possibly among persons (TRLs 7 to 

9): Here we consider the case in which the factory is not directly adapted to the presence 
of robots for their operation, or the potential degree of adaptation is limited. As such, the 
robots must localise themselves in the factories without requiring an infrastructure. 
Furthermore, these robots depart from predefined paths to flexible paths including 
obstacle avoidance, decentralised control, and conflict resolution, etc. (Draganjac et al., 
2016). At these levels, instead of AGVs the systems are now considered autonomous 
mobile robots (AMRs). 

— Level 3  Handling of goods, including picking (TRLs 5 to 8): There are several 
logistic tasks that require manipulating goods, like loading and unloading, sorting of 
goods, picking, packaging or palletizing, and they too could benefit from robotics 
technologies. They are, in general, more complex tasks than before, as they require new 
perception abilities for detecting and separating objects, and different degrees of 
manipulation. Level 3 deals with robots that add this capability.  

 

Looking at Figure 15, the use of Automated Guided Vehicles (AGVs) to transport items has 
already achieved high readiness levels (TRL 9). For instance, the Kiva system mentioned 
above (Wurman et al., 2008; Guizzo, 2008) is used nowadays in Amazon centres to transport 
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storage pods to human pickers in certain workstations surrounding the warehouse, where the 
human workers pick the items from a package order. The system also involves task allocation 
and coordination capabilities to optimise the operation of the system (Enright and Wurman, 
2011). Several companies now offer similar systems in the market. For instance, Prime 

,120 which can be integrated with warehouse management 
systems such as JDA/RedPrairie, Manhattan Associates, Highjump, Netsuite and other 
Warehouse Management Systems. Other examples are: the SCOTT AGV121 from SCOTT, the 
Grenzebach L1200S-Li AGV122 used by Audi, and ASTI logistic robots.123 

In this level, typically routes for the robots are predefined. Systems include safety measures 
to stop if obstacles are present, and proceed when they are removed, but no obstacle 
avoidance is considered. Furthermore, in these goods-to-person systems, persons are not 
involved/present in the operation of transportation. In some cases, the systems transport 
shelves, in others the systems can fetch and carry pallets and other items. But there is no 
manipulation and picking of goods involved. Overall, systems in level 1, as mentioned, have 
already acquired a high readiness level. However, they typically require significant investment 
in factory infrastructure. They also lack flexibility, as in many cases they follow predefined 
paths, the required separation from persons, etc. 

The departure from level 1 to level 2 is not sharp, but gradual, depending on the requirements 
that are now not needed from the factory. For instance, there are already systems that do 
not require markers or lasers for localisation and can use Simultaneous Localization and 
Mapping (SLAM) techniques (Beinschob and Reinke, 2015) in the factories. For example, this 
approach was demonstrated in 2015 in relevant and operational environments in the EU-
funded research project PAN-Robots.124 Some of the ASTI robots mentioned above use this 
for localisation. Another example is provided by robotic fulfilment systems by Fetch 
robotics.125 The robots use map-based localisation and are also able to plan and replan routes 
around static and dynamic obstacles, not requiring predefined paths. 

The level of maturity of this kind of system has improved greatly in the last few years. Most 
of the aforementioned companies now incorporate AMRs in their portfolios (and we also find 
similar solutions from companies such as Locus robotics,126 or PAL Robotics127). We are 
witnessing how investment in these technologies has grown steadily in recent years, including 
relevant public EU funding under Horizon Europe which is likely to be directed to projects in 

this area (see, e.g., the AI, Data and Robotics for the Green Deal128 call). On the other hand, 
we find that the use of other types of robots, such as drones, for intra-logistics has achieved 
lower readiness levels overall. Drones are considered mainly for inventory management (Beul 
et al., 2018; Kalinov et al., 2020), while applications for transportation of goods are at most 
at the level of prototype demonstrations (TRLs 6 7, Wawrla et al., 2019). 

Finally, while these systems consider safety measures and obstacle avoidance, and can be 
now deployed in zones where people are present, in most cases the system does not reason 
about people's motion and destinations. Considering this could be an important step to 

                                           

120 https://primerobotics.com/   

121 https://www.scottautomation.com/products/automated-guided-vehicles/  

122 https://www.grenzebach.com/products-markets/intralogistics/automated-good-transport-solutions  

123 https://www.astimobilerobotics.com/  

124 https://pan-robots-eu   

125 https://fetchrobotics.com/fulfillment/   

126 https://locusrobotics.com/  

127 https://pal-robotics.com/logistics/  

128 https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl4-2021-digital-
emerging-01-09 
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https://fetchrobotics.com/fulfillment/
https://fetchrobotics.com/fulfillment/
https://locusrobotics.com/
https://pal-robotics.com/logistics/


 

61 

 

improve the performance and efficiency of robots, and would also involve improving the 
security, safety and comfort of people when robots have to co-work with them in carrying 
out their tasks at work. All this has already been considered in some works (Rey et al., 2021), 
but at lower TRL levels (TRLs 6 7)  

Note that the above levels of generality mainly deal with robot navigation functions, as the 
main role of the robot is to transport goods between points in the factory. But, when required, 
the handling of the goods themselves is mostly performed by people. In this regard, there 
are several logistic tasks that require manipulation tasks, such as loading and unloading, 
sorting of goods, picking, packaging or palletising, and they too could benefit from robotics 
technologies. They are, in general, more complex tasks (compared to navigation), as they 
require new perception abilities for detecting and separating objects, and different degrees 
of dexterity. Therefore, generality level 3 deals with robots that perform these abilities and, 
in general, we find that this sort of technology shows lower readiness levels given the 
challenges that are posed by grasping and manipulation tasks (Mason, 2018; Goldberg, 
2021). 

In certain tasks, such as picking and transporting pallets, it is possible to impose sufficient 
constraints and provide sufficient structure to the problem thus facilitating the development 
of the solution. (e.g., adding standard dimensions, visual markers, etc.). Some of the 
aforementioned companies present solutions for automatic handling and transportation of 
pallets. For instance, the palletising operations can also be automated using industrial robots 
if boxes of homogeneous sizes are used. Here we find examples such as the robot TORO by 
Magazino,129 which is able to pick and stow small boxes to and from shelves with a vacuum 
gripper. The robot is oriented towards more open-ended environments, including people. Or 
the ER-FLEX robot by Enabled Robotics,130 which can fetch part bins of different sizes and 
positions in manufacturing facilities. Again, the use of a defined class of objects (e.g., boxes 
or bins, with some degree of variation in sizes) helps in achieving higher levels. 

When focusing on general random picking tasks, the solutions are less mature. Amazon 
funded the Robotics Picking Challenge, which had editions between 2015 and 2017, which 
showed the advances but also limitations of bin picking (Correll et al., 2018; Causo et al., 
2020). The use of deep learning is also allowing generalising manipulation abilities to more 
general contexts (Levine et al., 2018; Cui and Trinkle, 2021), and these new advances are 
beginning to be reflected in new industrial applications for logistics. The investments in 
companies like Ambi Robotics,131 Covariant132 or Dexterity Robotics133 show the great interest 
in these technologies and the surge of new picking systems for industrial logistics that, while 
still in controlled scenarios, can deal with more general objects. 

 

5.6.4 Technology: Inspection and Maintenance Robotics 

Inspection and Maintenance (I&M) robotics is a growing application area with great impact in 
hazardous and dangerous environments. Bringing robot automation to these environments 
helps to significantly reduce the risks associated with the operation, also improving the 
working conditions. Indeed, there exist numerous I&M tasks that are performed periodically 

                                           

129  https://www.magazino.eu/products/toru/  
130  https://www.enabled-robotics.com/manufacturing  
131  https://www.ambirobotics.com  
132  https://covariant.ai  
133  https://dexterity.ai  

https://www.magazino.eu/products/toru/
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in both industry and the service sectors that might expose workers to serious risks, or they 
are tedious and developed in harsh conditions: sewers, off-shore oil and gas platforms, wind 
turbines, gas/power transportation tunnels, mines, or industrial storage tanks are good 
examples (but not the only ones). 

Ground or aerial robots are preferred depending on the environment and the requirements 
of the task to perform. For instance, ground robots used to be selected when the task must 
be performed at ground level or in confined spaces (sewers, tunnels, pipes, industry at floor 
level, etc). On the other hand, aerial robots are often the choice for inspecting large areas 
above the floor (wind turbines, oil and gas platforms, under bridges, etc). Both robotic 
technologies have evolved differently, driven by the different maturity levels of their 
corresponding markets. For this reason, the generality levels for I&M robotics have been split 
into ground and aerial robotic technologies. 

5.6.4.1 Ground robots 

Ground robots, mostly teleoperated, have been used for I&M for decades now. For instance, 
pipe inspection solutions have existed in the market since the 1990s, and many prototypes 
were developed in the 1980s (Tur & Garthwaite, 2010). However, the integration of AI 
technologies for autonomous navigation, automatic assessment or autonomous intervention 
have been delayed to the last decade in most cases. We identify the following four levels:  

— Level 1  Teleoperated robotic I&M: The robot platform is operated completely by 
humans. The inspection and maintenance are also performed by people by analysing the 
data provided by the robot or controlling the intervention tools. 

— Level 2  Assisted teleoperated robotic I&M: The robot integrates technologies to 
facilitate the operation or inspection: environment awareness to prevent falling or getting 
stuck, automatic 3D reconstruction for better scene understanding of the operator, 
approximate robot localisation with respect to the starting point, etc. Intervention is also 
assisted by sensors or systems to simplify the operator interaction. 

— Level 3  Autonomous robot inspection: The robot is able to autonomously move in 
the environment, following people or just a sequence of waypoints. While mostly static, 
the environment is subject to change in small areas due to daily tasks (moved pallets, 
closed doors) or human interaction. No physical intervention is automatically performed 
by the robot; it is assisted by sensors and other systems. 

— Level 4  Autonomous robot I&M: The robot is able to autonomously move in the 
environment, following people or just a sequence of waypoints as well as to perform 
autonomous interventions or interactions with the environment for repairing, picking or 
placing objects. While mostly static, the environment is subject to change in small areas 
due to daily tasks (moved pallets, closed doors) or human interaction.  
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Figure 16: Readiness-vs-generality chart for home logistics robot technology. While TRL 9 
has been clearly reached by those solutions with limited functionalities performed in adapted 
scenarios, lower TRLs are estimated when considering more complex scenarios involving 
moving among people or more complex tasks involving manipulation or coordination at any 
level. 

 

 

The first level is addressed by teleoperated robotic solutions used nowadays in the industry, 
or as a service. They are widespread, robust and very use-case oriented in general, which 
evidence their associated TRL 9. Pipe/sewer I&M is a good example. Most of the solutions in 
the market are teleoperated and oriented to human inspection by means of video recording 
(RedZone Robots,134 PureRobotics Robots135). Robot intervention is also teleoperated by 
means of special tools as high-pressure water spray, glue/resin/mortar dispensers, or drillers 
(Geolyn,136 IBAK,137 JettyRobot138). Robotic tank inspection is also a prominent level 1 
application area. Most of the solutions are oriented to storage tank integrity assessment 
using magnetic crawlers and ultrasonic sensing for metal thick assessment, such as the 
Eddyfi Inspection Robots.139 This is a well-established technology, mostly in the oil and gas 
industry. As with the pipe/sewer inspection, most solutions are teleoperated with human 
supervision.  

The level 2 comprise normally level 1 systems upgraded with new AI technologies in order to 
decrease the stress on the operators. A good example is the RedZone Solo robot,140 designed 
to perform untended inspections in small tubular sewers. The robot is able to automatically 
launch detailed visual inspections, detect holes where the robot might get trapped, or return 
home automatically, to name a few. Another example is the Intero Tank Explorer,141 designed 
to safely explore tank bottoms in the oild and gas industry. The system integrates automatic 

                                           

134  https://redzone.com/technology/inspection-equipment/responder/  
135  https://puretechltd.com/technology/purerobotics-pipeline-inspection-system/  
136  http://www.geolyn.ca/equipment  
137  https://www.ibak.de/en/produkte/ibak_show/frontendshow/category/fraeser/  
138  https://www.jettyrobot.com/  
139  https://eddyfi.com/en   
140  https://redzone.com/technology/inspection-equipment/solo/ 
141  https://www.intero-integrity.com/services/inspection  

https://redzone.com/technology/inspection-equipment/responder/
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http://www.geolyn.ca/equipment
https://www.ibak.de/en/produkte/ibak_show/frontendshow/category/fraeser/
https://www.jettyrobot.com/
https://eddyfi.com/en
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assessment of the tank integrity in the presence of soils or assisted teleoperation for safe 
navigation into the tank.  

Autonomous robotic inspection capabilities are considered in level 3. Robot autonomous 
navigation technologies are close to market and tested in numerous operational 
environments, but not offered yet by the main players in the I&M industry, which justifies the 
TRL 7. In the last decade, both national/international research frameworks and private 
research has pushed autonomous navigation technologies closer to market by means of 
demonstrators and competitions. The ARGOS Challenge142 funded by Total is a good example, 
where ground robots had to perform inspection and basic intervention in oil and gas offshore 
platforms. The PDTI on Urban Robotics143 (FP7 ECHORD++ Project) focused on the 
development of new autonomous inspection technologies for sewers. The H2020 ESMERA144 
project also developed new autonomous I&M robots for the oil and gas industry in its Energy 
Challenge. Again, further EU funding under Horizon Europe is likely to be directed to projects 

in the area based on the work programme of for 2021 2022.145 Therefore, the current state 
of the art of autonomous way-point navigation in known environments and automatic 
inspection is well-established, and these challenges and projects demonstrated they can be 
applied to robotics inspection. 

Finally, level 4 extends autonomous inspection with autonomous intervention. Autonomous 
robot intervention needs dexterous manipulation in partially or unknown environments, which 
significantly reduces the application of current state-of-the-art manipulation technologies 
(as in factories). According to the IEEE,146 the goal of autonomous mobile manipulation is the 
execution of complex manipulation tasks in unstructured and dynamic environments. To get 
there, scientists must advance in generality, high dimensional state space estimation and 
actuation, sensing uncertainty, and high system complexity. Thus, although the necessary 
technology elements (mobile platforms, robot manipulators, vision and tooling) are, to a large 
extent, available from off-the-shelf components (Robotnik RB-KAIROS+,147 PAL TIAGO148), 
relatively simple tasks such as grasping and placing objects in open-ended scenarios, 
grasping and cutting pipes, or opening and closing vales are still under development 
(Wermelinger et al., 2021; Buchanan et al., 2021; Arriola-Rios et al., 2020; Stückler et al., 
2016; Monk et al., 2021). For these reasons, we consider level 4 to be at TRL 3. 

 

5.6.4.2 Aerial robots 

Specially for inspection and maintenance, aerial robot applications have increased in the last 
decade (Grau et al., 2018; Ollero et al., 2018). This application area has been benefited by 
the maturity of the aerial robots market, currently offering industrial grade platforms. The 
high manoeuvrability and the chance to place the robot in 3D space make aerial robots a 
very convenient tool for I&M in many different industrial and service settings. We identify 
the following three generality levels: 

 

                                           

142  https://totalenergies.com/special-features/argos-challenge-building-tomorrows-oil-and-gas-robot  
143  https://echord.eu/pdti/pdti-urban-robotics-sewer-inspection/index.php.html  
144  http://www.esmera-project.eu/foce/  
145  https://ec.europa.eu/info/files/horizon-europe-investing-shape-our-future_en 

146  https://www.ieee-ras.org/mobile-manipulation  
147  https://robotnik.eu/products/mobile-manipulators/rb-kairos/  
148  https://pal-robotics.com/es/robots/tiago/  

https://totalenergies.com/special-features/argos-challenge-building-tomorrows-oil-and-gas-robot
https://echord.eu/pdti/pdti-urban-robotics-sewer-inspection/index.php.html
http://www.esmera-project.eu/foce/
https://www.ieee-ras.org/mobile-manipulation
https://robotnik.eu/products/mobile-manipulators/rb-kairos/
https://pal-robotics.com/es/robots/tiago/
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— Level 1  Aerial inspection in open areas: This includes teleoperated, assisted 
teleoperated and autonomous navigation systems. The robot does not interact with the 
environment, acting as a remote sensor (cameras, gas detection, 3D reconstruction, etc.)  

— Level 2  Aerial inspection and simple maintenance: This level extends Level 1 with 
simple interaction with the environment for maintenance. 

— Level 3  Aerial inspection and dexterous manipulation for maintenance.  

 

 
Figure 17: Readiness-vs-generality chart for home logistics robot technology. While TRL 9 
has been clearly reached by those solutions with limited functionalities performed in adapted 
scenarios, lower TRLs are estimated when considering more complex scenarios involving 
moving among people or more complex tasks involving manipulation or coordination at any 
level. 

 

Aerial inspection in open areas with assisted or autonomous navigation is the current state 
of the art of aerial robots, and as such, they comprise level 1. The market offers platforms 
with different payloads and battery autonomy to perform inspection in both GPS and GPS-
denied areas (ANAFI,149 DJI Matrice 300,150 Flyability151). These systems have been tested 
intensively for I&M in different settings with very good results. They are easily accessible and 
relatively easy to manage, which justify their TRL 9. There are also enterprises that have 
developed their own aerial robot solutions for inspection, such as CyberHawk152 or 
PrecisionHawk153 developing solutions for the oil and gas industry.  

Level 2 is comprised of robots that perform inspection and also basic 
intervention/maintenance. These systems are very use-case oriented, integrating end-
effectors or tools to develop particular maintenance tasks. Different prototypes have been 
tested in operational environment with good results. The SkyGauge drone154 is able to 
perform ultrasonic tests in large industrial infrastructure for integrity assessment. The 

                                           

149  https://www.parrot.com/es/drones/anafi-ai  
150  https://www.dji.com/es/matrice-300  
151  https://www.flyability.com/  
152  https://thecyberhawk.com/  

153  https://www.precisionhawk.com/oilandgas  
154  https://www.skygauge.co/the-skygauge  
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Aerones High-Power Drone155 is able to perform cleaning, de-icing and coating application at 
high altitude for wind turbine maintenance. The AEROX Drone156 developed by the Advance 
Center for Aerospace Technologies within the framework of the H2020 AEROARMS Project157 
also performs contact inspection for integrity assessment in industry. Nevertheless, these 
solutions are not yet ready to market. In general they are TRL 7, although they are expected 
to be TRL 9 in the next three to five years. 

Finally, level 3 is comprised of aerial inspection systems able to perform dexterous 
manipulations and, hence, general maintenance tasks (e.g., sealing and filling of cracks 
(Chermprayong et al., 2019)). The required technologies for aerial dexterous manipulation 
are currently under development (Ollero and Siciliano, 2019). Limitations exist in terms of 
hardware technologies. These systems are heavy and complex to manage, with a reduced fly 
time due to payload limitations in aerial robots. Also, the state of the art must advance in 
motion planning (Tognon et al., 2018; Caballero et al., 2017), environment perception 
(Lippiello et al., 2016) and advance control (Ding et al., 2019; Orsag et al., 2018) in order to 
solve the physical interaction problems of aerial robots reliably. As a result, the associated 
TRL is 2/3. 

 

5.7 Social and collaborative intelligence 

One of the key characteristics for the success of some species and human collectives is that 
they act as swarms, herds or social communities. Being able to interact successfully and 
collaborate with a diversity of other agents is an important capability that AI has focused on 
quite intensively, particularly in the area of multi-agent systems (Wooldridge 2009). In the 
last category of this section, we again look for a technology that has limited overlap with 
some other categories (e.g., a robotic swarm would belong to this category and the previous 
one). Accordingly, we have selected a paradigmatic case of these kinds of social and 
collaborative agents, the technology of negotiation agents. This AI technology is 
representative of systems that collaborate socially.  

5.7.1 Technology: Negotiation Agents 

Negotiation is complex decision-making between two or more peers to reach an agreement, 
such as an exchange of goods or services (Jonker et al., 2012). Even if decision theory (Steele 
et al., 2016), game theory (Myerson, 2013) and multi-agent theories (Janssen, 2002) are 
consolidated disciplines, many of the promises for the technology of negotiation agents are 
usually expressed as partial automation, i.e., as assistants for a negotiation. Here, we do not 
want to consider a third dimension of the level of automation, so we will cover the levels of 
generality and the levels of readiness assuming full autonomy: agents that negotiate 
autonomously (Jennings et al., 2001). Of course, guidelines and supervision may be given by 
humans (apart from the objective functions), but these agents should operate autonomously 
 the typical example is a stock market agent performing transactions during the night. For 

instance, this was the premise of the Automated Negotiating Agents Competition (ANAC) 

                                           

155  https://www.aerones.com/other/drone/  
156  https://newsletter.catec.aero/Final-meeting-of-the-AEROARMS-project-where-our-AEROX-aircraft-successfully-performed-

a-contact-inspection_a324.html  
157  https://cordis.europa.eu/project/id/644271/es  
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(Baarlag et al., 2015), although it has incorporated new challenges over the years158 (e.g., 
preference elicitation, human-agent negotiation, supply chain management, etc.). 

By negotiation we also consider trading agents (Rodríguez-Aguilar et al., 1998; Wellman, 
2011), and we are transparent with respect to the techniques that are used (argumentation 
techniques159 or others), but we are a bit more specific than some umbrella terms such as 

, 2012; Heras et al., 2012). In the end, the history of this 
area dates back to decision theory and game theory, which can find optimal policies when 
the protocol is known as well as the behaviour of other agents (Parsons et al., 2012). Things 
become more complicated in situations where agents can reach local optima instead of more 
desirable equilibria, or the rules of the game change during operation. In more general multi-
agent systems, especially heterogeneous multi-agent systems (Perez et al., 2014), things 
become even more complicated as one has to consider that other agents may have different 
functions (proactiveness, involving different goal-directed behaviours) or they may even 
change. Finally, a more open-ended situation happens when there is bounded rationality, 
usually given by resources or by constraints imposed by real-time scenarios (Rosenfeld and 
Kraus, 2009) and cases where theory of mind is needed for negotiation or coalitions (Von 
Der Osten et al., 2017). 

 
Figure 18: Readiness-vs-generality chart for negotiation agents technology. Level 1 reaches TRL 9, 

with some negotiation bots running in simple scenarios. Level 2 is more challenging, and TRL ranges 
between 3 and 5. Finally, level 3 is still far ahead in the future, with an estimated TRL between 1 and 
3.  

The levels we will use for negotiation agents are as follows: 

 

— Level 1  Homogeneous agents with stable trading rules: Agents can achieve good 
trading and negotiation results if they maximise their utility and choose the immediate 
best action, independently of the other agents, or assuming all agents behave equally 

                                           

158  https://web.tuat.ac.jp/~katfuji/ANAC2020/    

159  Note that considering “argumentation” as a negotiation technique is debatable; different views can be found from the area 

of computational argumentation, where negotiation is considered one of the multiple types of argumentative dialogues (see 
McBurney et al. 2002) 

https://web.tuat.ac.jp/~katfuji/ANAC2020/
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(homogeneous multi-agent system, with similar utility functions but possibly different 
parameters). The market rules are fixed and specific (e.g., a stock market trader), with no 
(frequent) local maxima and deadlocks.  

— Level 2  Homogeneous agents with complex trading rules: The trading rules 
become more complex and the global regulations can change. Local maxima and 
deadlocks are frequent and agents should act or coordinate to avoid them. Here we still 
assume all agents behave equally (i.e., homogeneous multi-agent system, with similar 
utility functions but possibly different parameters). There is no need to model different 
capacities as all the other agents are assumed to work under perfect rationality with 
respect to their functions.  

— Level 3  Heterogeneous behaviour with complex trading rules: Here we can now 
have agents with bounded rationality, changing goals and erratic behaviour, adversarial 
or malicious agents, including humans with very different motivations. At this level, we 
expect agents could benefit from a diversity of social strategies for negotiation such as 
persuasion, alliance-building, decoys, lying, manipulation, etc. This requires modelling the 
capabilities, goals and mental states of other agents, possibly in terms of BDI (beliefs, 
desires and intentions). 

 

Note that the generality increases mostly because of the complexity and diversity of the 
trading rules and the other agents. 

Early negotiation agents can be found at level 1 using the basics of decision theory (Parsons 
et al., 2012), and at this level many negotiating agents do not even need AI (Lin and Kraus, 
2012) but are coded manually with a few rules. Many of these systems populate restricted 
scenarios, such as the electricity grid, where participants must follow certain strict regulations 
(which seek to avoid deadlocks and shortages), but still leave enough flexibility for trading 

al., 2012). Still today, some systems exist at the macro-level, i.e., companies in electricity 
markets (Pereira et al., 2014), illustrated with real-data simulations, but the generalised use 
of smart agents at homes is still very incipient. Clearly, the area where trading agents are a 
developed product is in the stock and the currency markets, and more recently in 
cryptocurrencies. While they reach high TRLs at this level, there is the question of whether 
they really help their users (or owners) make profits.160 Another common case both in 
research and with commercial applications is auction sniping as happens with online 
platforms such as ebay (Hu and Bolivar, 2008). According to all this, we can assign TRL 9 to 
this level. 

Level 2 expects the global regulations to change and the utility functions to have different 

since ., 2017), 
with some research in terms of online or incremental preference extraction (Baarslag et al., 
2015b; Baarslag et al., 2017b), as well as in domain modelling (Hindriks et al., 2008; Sanders 
et al., 2008; Simonsen et al., 2012). However, in some scenarios such as e-commerce 
between companies, some patents have been filed161 (Krasadakis, 2016). Furthermore, in 
(Fatima et al., 2014) [chapter 12] a number of applications (e.g., grid computing, load 

                                           

160  https://medium.com/@victorhogrefe/how-effective-are-trading-bots-really-1684acc1f496, https://3commas.io/blog/best-

crypto-trading-bot  
161  https://medium.com/innovation-machine/a-buyer-bot-negotiating-with-a-seller-bot-7026f79ac51e  
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balancing, resource allocation, etc.) can be found regarding trading agents with bounded 
rationality and limited knowledge about the domain. Given all of the above, we consider a 
range between TRL 3 and TRL 5 for this level as all the activity is still in the research and 
prototyping phases.  

When it comes to level 3, we have seen much activity on the research level, with methods 
with bounded rationality and heterogeneous utility functions, working for simulations, with 
specific contexts (Rosenfeld and Kraus, 2009) or theoretically (Sofy and Sarne, 2014), or 
considering volatility of information or partial knowledge (Adam et al., 2014). Only a few are 
trying to use mind modelling in a general way (Von Der Osten, et al. 2017), but still in 
restricted scenarios (games). Because of the lack of working evidence in general settings we 
assume a value of TRL between 1 and 3 for this level.  

Level 3 captures a wide spectrum of possibilities and could be refined in the future as agents 
start to have better mind modelling capabilities. However, if we take the high edge of this 
level, such as understanding and performing well in complex machine-human environments, 
even if only restricted to trading, these are clearly challenging scenarios even for human 
scientists (Rahwan et al., 2019), so we expect a long time to reach high levels at this level. 
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6 Discussion: rearranging the generality 

According to the series of examples of AI technologies seen in the previous section, organised 
into one of the seven AI categories, we can extract general insights from what we observe in 
the readiness-vs-generality plots more globally.  

Methodologically, the examples serve to illustrate the challenges of estimating the TRLs, a 
problem that is not specific to AI. The use of levels of generality on the x-axis, however, has 
helped us be more precise with the TRLs than would be otherwise. In fact, there is no such a 
thing as TRL 3 or TRL 7 for machine translation, unless we also specify the level of generality 
(scope of functionality) for the technology. This is the first take-away of this methodology. 
Of course, the levels in these examples could be refined and made even more granular, 
possibly reducing the error bars in some cases. In those cases where there is no standardised 
scale for the generality axis (as for self-driving cars or machine translation), an open 
discussion in the particular community to find a consensus would be very welcome. 

The shapes of the curves seen in the charts of the previous section are informative with 
respect to where the real challenges are for some technologies. Going from 70% to 80% in 
a benchmark is usually a matter of time and can be circumvented without a radical new 
innovation, but in many cases going from TRL 1 to TRL 7, for instance, needs something more 
profound than incremental research and development. Consequently, it seems that those 
curves that are flatter (see Figures 4  recommendation engines, 6  Audio-visual content 
generation, 9  massive multi-modal models, 10  facial recognition, 12  transport 
scheduling systems, 13  self-driving cars, and 15 17  Logistic, inspection and maintenance 
robots) look more promising (i.e., they are closer to being more general-purpose in terms of 
not being restricted to specific tasks or scenarios) than those for which there is a steep step 
at some level on the x-axis (see Figures 3  expert systems, 5  apprentice by demonstration, 
11  text recognition, 14  home cleaning robots, and 18  negotiation agents). Importantly, 
the shape of the curves depends on the definition of levels in the x-axis (all charts are 
summarised in the following subsection, see Figure 20).  

Refining one level into two or three more granular levels may produce a flatter curve (e.g., 
smoothing the step curves). This is also a good indication of a way in which an 
insurmountable level of generality can be disaggregated into more gradual steps, which may 
lead to new research and development tracks taking AI to high TRLs. This is also what 
happened in the past with some technologies. For instance, robotic vacuum cleaners added 
a small, yet relevant, intermediate step that took the technology to TRL 9, creating an 
ecosystem of companies and users, which in the end paves the way for more research effort 
and investment in the following steps or refinements on the x-axis. 

In the opposite direction to disaggregation, there is also a unifying trend to consider 
technologies that, by definition, are expected to integrate many capabilities. A very good 
example of these integrating AI technologies is represented by virtual assistants, because 
they are expected to cover a wide range of tasks that integrate capabilities that are 
associated with many categories in AI, including knowledge representation and reasoning, 
learning, perception, communication, etc. Let us explore this technology in particular and 
derive its readiness-vs-generality charts. 
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6.1 An integrative AI technology: virtual assistants 

Virtual Assistants (VA), also known as intelligent personal assistants or digital assistants, are 
applications or devices meant to interact with an end user in a natural way, to answer 
questions, follow a conversation or accomplish other tasks. VAs have expanded rapidly over 
the last decade with many new products and capabilities (EC Report 2018, Hoy, 2018). Alexa, 
Siri, Cortana or Google Assistant are very well-known examples of this technology. The idea 
of a computer humans could meaningfully and purposely dialogue with is also one of the 
early visions of AI (Turing, 1950), but as with many early visions, it has taken decades to 
materialise. Having a meaningful conversation is not always easy with humans of different 
backgrounds, cultures and knowledge, and making it purposeful (so that the speaker gets 
things done) is also a challenge in human communication. It is no surprise then that these 
are two important hurdles to overcome when trying to achieve something similar with 
machines.  

As mentioned above, domain generality is very important because we want these systems to 
perform a wide range of tasks. However, this is more a desideratum than a reality, or even a 
necessity for some applications. This is similar to the cases with other AI technologies 
analysed in the previous section, such as expert systems. In particular, producing an assistant 
for a narrow domain (a telecommunication company assistant or a ticket-purchasing service 
avatar) is easier than a more general assistant (an executive assistant in the workplace).  

Given these considerations, we introduce a tentative three-level scale for generality of virtual 
assistants as shown in Figure 19, which may of course be refined in the future.  

 
Figure 19. Readiness-vs-generality chart for virtual assistant technology. TRL 9 has been reached 
for systems that work with predetermined written queries (generality level 1); high TRLs are more 
diverse with open-ended spoken queries (generality level 2). Finally, the most advanced level requires 
generality in terms of domains, types of interactions and queries from the user (generality level 3). 
Error bars show some uncertainty in the assessment.   

 

The x-axis of Figure 19 reflects three generality levels of virtual assistants:  
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— Level 1  Predetermined written queries in one domain: Queries are restricted or 
should contain some keywords the system recognises in order to find the topic and some 
related information. Answers are either template-based or pre-recorded as text (possibly 
read by synthesisers). 

— Level 2  Multi-domain spoken queries: Text and voice commands can be received 
with an unrestricted language. The answers are constructed and not stored. Questions 
and queries may cover a diverse range of domains.  

— Level 3  Fully open-ended, with user modelling, routine learning and 

anticipation: The most advanced level requires generality in terms of domains, types of 
interactions and queries from the user. The system may be proactive rather than just 
reactive. 

 

In terms of capabilities, and as shown in Figure 14, the simplest VAs (generality level 1) are 
conceived as straightforward software agents able to perform simple tasks or give straight 
answers based on templates or predefined commands or questions. We can find examples 
of these types of VAs in commercial products, in the form of simple chatbots in customer-
service applications on websites and other apps for restricted (simple) domains (e.g., ticket 
purchase assistants, VAs for QA of Coronavirus-related content,162163 etc.). Consequently, we 
could assign TRL 9 to these assistants. 

Focusing on level 2, these VAs should be able to interpret human speech and respond via 
constructed complex answers using synthesised voices, sometimes emulating simple 
dialogues and conversations. Users may be able to ask their assistants (open) questions (with 
limited proactivity), control home automation devices and media playback via voice, and 
manage other basic tasks such as email, to-do lists, and calendars with verbal commands. It 
seems that TRLs are high in this case too. However, although VAs are seen (and marketed) 
as intelligent assistants capable not just of understanding but also of taking decisions and 
fully supporting humans, this vision has not fully materialised yet. Currently, there are a 
number of VAs in the market, with Google Home, Amazon Echo, Apple  Siri and Microsoft  
Cortana (Hoy 2018) being the main examples. These companies are constantly developing, 
testing and demonstrating new features and capabilities for their VAs, and we can see this 
evolution and improvements as new versions are launched on the market. Because of this, 
we plot a range of values between TRLs 7 and 9, as shown in the figure. 

Finally, VAs with level 3 of generality are envisaged to have more advanced capabilities, 
including background knowledge so humans will be able to have (professional) conversations 
and discussions on any topic, more advanced dialogue management, or improved reasoning 
about the world, among other things.164 In this level, VAs are assumed to understand context-
based language complexities such as irony, prosody, emotions, meaningful pauses, etc. We 
think this is at a research stage today (TRLs 1 to 3). Note that, even in level 3, VAs are not 
expected to perform complex rationales or make sophisticated decisions. This is covered by 
technologies such as expert systems or planning. Of course, once high TRLs are obtained in 
these technologies they may end up being incorporated in VAs, as they are usually shipped 
as integrators of AI services. 

                                           

162  https://avaamo.ai/projectcovid/ 
163  https://www.hyro.ai/covid-19 
164  https://www.cnet.com/news/facebook-ai-chief-we-want-to-make-smart-assistants-that-have-common-sense/ 

https://avaamo.ai/projectcovid/
https://www.hyro.ai/covid-19
https://www.cnet.com/news/facebook-ai-chief-we-want-to-make-smart-assistants-that-have-common-sense/
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6.2 Delineating technologies more precisely 

From the previous discussion we see how important it is to refine the levels of generality 
such that levels are sufficiently crisp for a more accurate assessment of TRLs. This becomes 
more difficult as the technology is broader, especially those that are defined by integrating 
capabilities from different categories of AI, such as VAs in the previous section. Precisely 
because of this difficulty, we have to be wary of the bias and misconceptions that our explicit 
or implicit assumptions of generality can create. 

For instance, many funding calls, especially after the H2020 programme, ask for a particular 
TRL. While this is relevant in calls that are oriented towards products that can be distributed 
in the market as the project is completed, it is important to look at the dynamics of readiness-
vs-generality charts and the pressure for avoiding generality. For the purpose of high TRLs, 
some research projects may be tempted to solve simplified versions of the problems or 
solutions for very narrow domains, with many ad-hoc tweaks, rather than solving the general 
problem. These calls even encourage that the technology is illustrated is one domain, which 
is carefully chosen by the researchers as one in which a very specific set of techniques can 
really work. But, in the end, the technology may not extrapolate to other domains, and its 
transformative effect may be very limited. This is particularly important in calls such as FET 
(Future and Emerging Technologies165). Of course, some bottom-up approaches that work in 
a particular domain end up being generalisable to other domains, but this should be explicit 
for evaluation purposes. 

This generality issue is also critical in early stages of research. Research papers and 
benchmarks should consider a wide range of domains, especially when new principles and 
techniques are introduced. Otherwise, their purported performance should be scrutinised very 
carefully. Media and the scientific community itself are usually more amazed by the first 
time something is achieved (e.g., beating a human master in Go) than how it is achieved. For 
instance, the first publications about AlphaGo (Silver et al, 2016) had more public 
repercussions than other research papers that followed generalising the techniques for any 
board game, and without precoded human knowledge (Silver et al., 2017; Silver et al., 2017b; 
Schrittwieser et al., 2019). 

Figure 20 includes a summarised view of all readiness-vs-generality charts. Note that, there 
are many other ways in which we can look at these plots to compare the twelve AI 
technologies we have analysed. We can see, for instance, the highest level with TRL 9 as a 
simple way of comparing the technologies. Alternatively, we can just focus on the narrowest 
(leftmost) level. Although, this would provide a highly promising view of the state of the art 
of AI technologies, it has sometimes been the case that specialised early stages have paved 
the way for more general versions of the technology. 

 

 

                                           

165  https://ec.europa.eu/programmes/horizon2020/en/h2020-section/future-and-emerging-technologies 

https://ec.europa.eu/programmes/horizon2020/en/h2020-section/future-and-emerging-technologies
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Figure 20. A composition of all readiness-vs-generality charts from Figures 3 to 19.   

 

On the other hand, asking for too much generality has the risk of entering an area that is not 
yet well understood (Bhatnagar et al, 2017; Martínez-Plumed et al., 2020a, 2020b), and a 

-
cannot be properly evaluated (Hernández-Orallo, 2020). In contrast, we think that the use of 
TRLs, while at the same time being precise and ambitious on how to certify the position on 
these readiness-vs-generality charts, may be of utmost importance to track the impact 
(Makridakis, 2017) of AI and anticipate the key transformations of the future. We explore this 
in more detail in the following subsection.  

6.3 Assessing TRLs more precisely: the AIcollaboratory 

In this report, we have assessed the TRL of each technology (at a particular level) by asking 
experts (including ourselves) to follow the guideline in the Appendix to estimate the particular 
readiness level in the scale. A wider group of experts, using more extensive training on the 
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TRLs and usual methods for aggregation or consensus of opinions (such as Delphi) would 
bring more robustness to these estimates, including a systematic way of deriving the error 
bars. However, the estimates would still be based on expert evidence but not quantitative 
evidence.  

There are some sources of information that allow us to assess TRLs such as the number of 
patents or the sales of particular AI-related products. However, we do not think that this 
information would be sufficient on its own to understand or quantify the TRL for many AI 
technologies, especially considering such data is historical (i.e., analysing the past), and 
therefore not ideal to address the future-oriented concerns of this report. Coverage in the 
media could also be a relevant source, and we could use relevant sources such as AI topics166 
(Martínez-Plumed et al., 2018b; Hernández-Orallo, 2020). However, there is an important 
source of quantitative information on the progress in AI: benchmarks and competitions 
(Hernández-Orallo et al., 2017). 

The relation between benchmarks and TRLs is more complex than it may seem. Some AI 

description of TRL 5 or TRL 6, depending on whether only some components or a complete 
autonomous system are being assessed through them. Other benchmarks, such as those 
used for self-driving cars would qualify as "operational testing platforms" for TRL 7. Other 
benchmarks, e.g., some Kaggle competitions, involve real cases and their models could be 
applied directly, showing evidence for TRL 8. Benchmarks sometimes contain standardised 
information regarding elements that map onto different TRLs, and therefore can be useful in 
a TRL assessment. We have used these connections in some of the assessments in the 
previous sections. Performing a more systematic analysis of all benchmarks in AI, its 
corresponding technology and what kind of technology readiness level they could be 
associated with, would enable a more quantitative approach to estimating TRLs.  

In this regard, we could use the AIcollaboratory167 (Martínez-Plumed et al., 2020a, 2020b, 
2020c) to collect intrinsic information characterising benchmarks and map out the 
relationships between them and TRLs. This initiative was conceived for the analysis, 
evaluation, comparison and classification of AI systems, creating a unifying setting that 
incorporates data, knowledge and measurements to characterise them. The AIcollaboratory 
is designed to enable this kind of mapping. For the moment, we leave such mapping and 
quantitative analysis for future work and outside of the scope of this report. It is not just the 
sheer volume of the endeavour but also because there are some issues to be discussed and 
solved first in order to undertake this meaningfully and reliably. For instance, most 
benchmarks are not just pass or fail  but are accompanied by one or more metrics, such as 
the performance level, which depend on the application domain and may even be opposed 
to each other for particular tasks. We should determine the minimum level of accuracy in a 
given benchmark that would be considered sufficient evidence for the associated TRL to be 
met.  

Defining benchmarks to map onto TRLs could generate tension with assessments of the 
technology s generality. For instance, 70% performance on a face recognition benchmark 
could be considered useful for some applications and a proof of TRL 7, but it may well happen 
that most of the remaining 30% errors would focus on a particular niche of the technology 
(e.g., noisy pictures). Would this be evidence of TRL 7 at that particular level of generality or, 

                                           

166  https://aitopics.org/ 
167  http://www.aicollaboratory.org/ 
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rather, would it indicate the technology belongs to a lower level? We believe that performance 
thresholds to assign a TRL should be much higher (e.g., 99%) to avoid this kind of 
specialisation problem. Nevertheless, there are other issues, such as systems being 
specialised to the benchmark but not to the real problem (so that a TRL 7 would never 
translate into a TRL 9). Despite these challenges, we do think that clarifying and utilising the 
relationship between benchmark results and TRLs is a promising avenue of research, which 
we hope to develop in future work. 

6.4 Issues and risks in AI technologies 

Although the exploration and risk analysis of AI systems is beyond the scope of this article, 
we did not want to miss the opportunity to at least comment on their cross-cutting 
relationship with the different maturity phases of an AI system. 

In practical AI scenarios there are many challenges and risks that need to be identified, 
prioritised, and mitigated. It should be noted that risks and their knock-on effects are endemic 
to all AI technologies (as well as to other advanced analytics) and depend on factors such as 
the complexity of the algorithms, their data requirements, the nature of human-to-machine 
(or machine-to-machine) interaction, the potential for exploitation by bad actors, and the 
extent to which AI is embedded into a business process.  Therefore, as AI generates consumer 
and business benefits and value, it is also giving rise to a host of unwanted, and sometimes 
serious, consequences. The most visible ones include privacy violations, discrimination, 
accidents, and manipulation of political systems. We find well-known examples of these risks 
in applications such as facial recognition systems or virtual assistants which can intrude on 
privacy interests by raising analysis of personal private information to new levels of power 
and speed; or in the automated predictive modelling and decision-making procedures 
included in recommender systems or in self-driving vehicles which could disproportionately 
affect population groups or minorities (Spielkamp 2017, Dastin 2018). However, more 
concerning still are the possible consequences and disastrous repercussion not yet known or 
experienced, e.g., if an AI medical algorithm goes wrong, or the compromise of national 
security, if an adversary feeds disinformation to a military AI system. These are significant 
challenges for organisations, from reputational damage and revenue losses to regulatory 
backlash, criminal investigation, and diminished public trust.   

AI risks and issues span the entire life and maturity of an AI solution, from its conception to 
when it is used and monitored, as we may see in Figure 21, where we show an illustrative 
set of potential issues that may happen when developing a new AI system. Note that the 
estimates about the TRLs do not explicitly depend on risks but, since they are inherent to all 
the different phases of development of an AI system, the existence of these risks can stall 
its expected maturing. The whole development process should thus involve risk-mitigation 
efforts, controls, and monitoring (depending on the nature of the risk) to guide the 
appropriate, fault-tolerant implementation and use of AI systems, ensuring proper oversight, 
and putting into place strong methodologies, policies, procedures, worker training, and 
contingency plans. Without broad-based efforts, the odds rise that risk factors such as the 
ones described in Figure 21 may impede the smooth development, evolution, and maturation 
of an AI system. 
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Figure 21. Illustrative list of potential risks, spanning the entire life and maturity of an AI solution 

process, from planning to development to subsequent use and monitoring.  
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7 AI progress through TRLs: the future 

The analysis of a readiness-vs-generality chart may constitute a useful tool to understand 
the state of the art of a particular technology. However, can it be useful for anticipating the 
future?  

In the first place, as we already mentioned, a static picture can give us hints about what is 
expected in the near future. A very steep curve (such as in Figure 4  apprentice by 
demonstration) suggests that there may be a long way to go from one generality level to the 
next one in the technology. The gap may include significant discoveries, results or inventions 
at some low TRLs, which may involve fundamental research, usually linked to slower 
progress. A flatter curve (such as in Figure 7  facial recognition) may correspond to situations 
where the fundamental ideas are already there, and progress could be smoother. But this 
has another reading: a flatter curve with no level reaching TRL 9 means that the technology 
has not reached the market successfully and the industry ecosystem is non-existent, which 
would otherwise invest money and research teams on the problem. Yet, at the same time, 
this is only partially true, as some sectors already exist before automation. For self-driving 
cars, there is an ecosystem of very powerful automobile multinationals, with no self-driving 
car technology until very recently. These companies have invested huge amounts of money 
in this technology. Also, some tech giants can go from low TRLs emerging from new 
techniques to working products in less than a year, as happened, for instance, with the 

.168 

To better understand the speed of progress, we also need to consider the notion of technology 
hyper adoption which is related to the Gartner Hype Cycle (Linden et al. 2003). This theory 

states that people adapt to and adopt new technologies much faster than they used to in the 
past. This may be partially caused by the so-
innovations, as they become available to large parts of the population as soon as they enter 
the market. For instance, electricity took 70 years for mass adoption, but the internet took 
just 20 years. The same is happening with AI technologies. A clear example is the current 
hyper-adoption of voice-related technology,169 with all the tech giants such as Amazon, 
Google and Microsoft launching new products every few months. It may be the case that 
developments in this sort of technology have enhanced the adoption rates of voice assistants, 
and vice versa. The trend may even stop because of ageing populations in many countries, 
which are more reluctant towards technological innovations. 

In order to have more ground for extrapolations we would need a less-static picture of the 
evolution of AI technologies. Having information about the charts in past years would give us 
data about how curves evolve, and how some TRL transitions are faster than others. Of 
course there may be no clear trends or trends that cease to hold because of some changes 
in the AI playground or in society (e.g., a financial crisis, a pandemic or the lack of market 
enthusiasm and/or low investment). We can perform a simple exercise with the VA technology 
seen in the previous section. Can w -vs-generality 
charts) with a historical perspective? 

7.1 Readiness trends 

Figure 22 shows that, in the case of virtual assistants, there has been important progress at 
level 2 of generality in recent years, and level 3 may be changing rapidly to higher TRLs 

                                           

168  https://www.blog.google/products/search/search-language-understanding-bert/ 
169  https://www.forbes.com/sites/forbestechcouncil/2018/06/08/the-hyper-adoption-of-voice-technology 

https://www.blog.google/products/search/search-language-understanding-bert/
https://www.forbes.com/sites/forbestechcouncil/2018/06/08/the-hyper-adoption-of-voice-technology
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because of high investment and the ubiquity of Virtual Assistants (VA) of level 2 of generality. 
We see this evolution from the 1990s, where digital speech recognition technology became 
a feature of the personal computers of brands such as Microsoft, IBM or Philips, but without 
conversational or uestion and answer  (QA) capabilities. In 1994, IBM launched the very 
first smartphone (IBM Simon) with some assistant-like capabilities: sending emails, setting 
up calendars and agendas, taking notes (with a primitive predictive text system installed) or 
even downloading programmes! However, it was a menu-based interaction, very different 
from the assistants we know today. In this regard we may estimate that some research on 
this was being performed (TRL 1 to TRL 3), mostly focused on the field of speech recognition. 
This went in parallel with advances during the 1970s and 1980s in computational linguistics 
leading to the development of text comprehension and question answering projects for 
restricted scenarios such as the Unix Consultant (Wilensky, 1987) for answering questions 
about Unix OS or LILOG (Rollinger, 1991) in the domain of tourist information. These projects 
never went past the stage of successful demonstrations in relevant scenarios (TRL 7). 

By the 2000s, not only were there relevant advances in speech recognition technology, but 
also in QA (with market-ready products such as Wolfram Alpha (Wolfram, 2009)), information 
retrieval and knowledge-based systems that paved the way for future VA systems. One 
important milestone in this decade was the launch of Google Voice Search in 2002 (Franz et 
al., 2002). The system allowed users to request information by speaking into a phone or 
computer rather than typing in a search box. This can be considered as the first step in 

-
efficient computing paradigm (they offload the processing power to its data centres), but 
because Google was able to collect gigantic amounts of data from billions of searches, which 
could help the company improve its prediction models of what a person is actually saying. At 
the same time, IBM also pushed its research in QA and information retrieval during this 
decade (from 2005 onwards) with a specific goal in mind: to be able to compete successfully 
on Jeopardy! The first prototypes and demonstrations of their system, Watson (Ferrucci, 
2012), were developed and tested between 2007 and 2010, prior to their success in 2011. 
From all of the above, we may extract that much research, testing and development was 
being performed in those areas related to VA (TRL 3 to 7) even without market-ready 
products being launched. 

Finally, VAs have witnessed a rapid growth in terms of development, products and adoption 
by consumers during the last decade. The very first modern digital virtual assistant with 
voice-based communication capabilities installed on a smartphone was Siri,170 specifically on 

developments and products including Google Now (2012), Microsoft  Cortana (2013) or 
Amazon Echo (2014) (Hoy 2018). As already explained, all these VAs have been further 
developed and improved during the last few years, with manufacturers constantly testing 
and including new and more powerful capabilities (TRL 7 to TRL 9) in terms of interpreting 
human speech (via open questions), answering (via constructed complex outputs, simple 
dialogue and conversational capabilities), and further advanced control over basic tasks 
(email, calendar, etc.) as well as home automation devices and media playback via verbal 
commands.  

For level 3 of generality, VAs are foreseen to have much more advanced capabilities (e.g., 
background knowledge, open-domain conversations, common-sense reasoning, etc.) that 

                                           

170  https://www.apple.com/siri/ 

https://www.apple.com/siri/
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were not found in the research agenda (TRL 1 to TRL 3) of natural language processing, 
planning, learning or reasoning until high TRLs have been obtained for the second level of 
generality. Note that the high TRLs of the latter were largely due to the huge advancements 
in hardware (e.g., computing infrastructure), software (e.g., powerful neural-based 
approaches) and data (e.g., people's behaviour, language corpus, etc.).  

Figure 22. Readiness-vs-generality chart for virtual assistant technology at different moments in 

volved from a steep one 
in the year 2000 located on the first level to another, also steep curve, from the second in 2020.   

 

Even if there are many uncertainties when assessing and inspecting these curves, with time 
we think that the juxtaposed historical view of TRL evolution for a given AI technology is more 
robust than the evolution of a single point (the technology at the same level). Furthermore, 
it is much better than the analysis of the evolution of the technology mixing levels on the x-
axis, because each period has a potential horizon for the technology. With this usual mistake 
we could have said that there has been no progress in smart phones in the past ten years 
once the penetration of devices reached near 100%. The percentage of time we use them 
has increased, because they have increased the generality of tasks and activities they can 
do, so their transformation goes on. 

 

7.2 AI futures 

There are many ways in which AI futures can be extrapolated, from expert panels (Müller and 
Bostrom 2016, Betz et al., 2018) to role-play scenarios (Avin, 2019). There are also many 
visions about what will be possible in the future, with mixed success (Kurzweil, 2005), poor 
specification171 or not meeting any AI forecasting desiderata172 (Dafoe, 2018, Ap. A). By 
relying on measurable indicators, it is possible to connect the progress in AI with some 
economic indicators (such as the PREDICT dataset173). In this paper, however, we have 
adopted an approach based on TRLs to describe the state of the art of a discipline (which 
may be of use in applications such as project assessment or product development). For this 

                                           

171  https://www.lesswrong.com/posts/yy3FCmdAbgSLePD7H/how-to-write-good-ai-forecasting-questions-question-database  

172  Indicators for relevant AI-related achievements (e.g., a new capability that would pose a substantial employment threat to 

a large group of people). 
173  https://ec.europa.eu/jrc/en/publication/2018-predict-dataset 

https://www.lesswrong.com/posts/yy3FCmdAbgSLePD7H/how-to-write-good-ai-forecasting-questions-question-database
https://ec.europa.eu/jrc/en/publication/2018-predict-dataset
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reason, we have outlined some ideas on how to use this methodology for forecasting 
purposes. 

The truth is that we are still terribly bad at predicting what capabilities and products will 
become a reality, even in the short term. This problem is not specific to AI but applies to all 
technology, and particularly digital technologies. We are not always successful, even with 
hindsight (Martínez-Plumed et al., 2018b), in understanding why some potentials are not 
fulfilled, and why some technologies have limitations, and what kind of new technologies 
may replace them (Marcus, 2020). While some criticisms in the early days of AI were related 
to scalability (the ideas worked for toy problems but were intractable in general), more 
recently most criticisms of AI are related to the lack of generality of current AI technologies. 
This is one reason for expressing generality as a dimension in our representations and 
measurements and is key to determine the maturity of a technology and forecast its 
transformative power. 

Generality is also a key element when related to mass production and hence society s digital 
transformation. If a system is specialised for one particular domain, the return on investment 
 R&D investment  would be smaller than if the technology is applicable to a wide range of 

areas. Even a minor gain that takes place in many devices usually represents more money 
than a major gain in a few devices. Of course, many of these devices or apps can still be very 
specific (e.g., a watch), so this does not necessarily go in the direction of full generality but 
can still achieve massive penetration. When a widespread system becomes more general 
(e.g., a mobile phone, useful for calls and text messages, turns into a smart phone with apps), 
the transformation becomes huge. It is no wonder that virtual assistants, which can be 
distributed on every device (from phones to smart homes), if combined with a highly-general 
of tasks, may represent a major transformation in the years to come. Hence the interest by 
tech giants in investing in this technology. 

If the dimensions are right, high TRLs for high-level (i.e., broad) generalities should indicate 
potential short-term or mid-term massive transformative power. However, generality 
requires effort, and has associated costs. There are some internalities and externalities about 
a technology (e.g., environmental footprints, user privacy, skill atrophy, etc.) that should be 
considered as refining these predictions. For instance, a given technology can be ready, but 
the costs of deployment may not be affordable for the consumers (these costs can include 
data, expert knowledge, human oversight, software resources, computing cycles, hardware 
and network facilities, development time, etc., apart from monetary costs for research and 
development) (Martínez-Plumed et al., 2018a; Spelda et al., 2020). For instance, assisted, 
automated and autonomous driving car technology can be based on radar or cheap cameras. 
While mass production can reduce the cost of radars, having self-driving capabilities for 
cheap cars (those most people have) may provide an advantage to technologies that rely on 
computer vision rather than radar tracking.174 Even if a device is flooding the market, that 
does not mean it will be used extensively: if the novelty just wears off, it will be forgotten 
shortly thereafter (as happens with many gadgets). Sometimes products are sold before they 
are effectively ready, just to achieve a positioning in the market, or because of some other 

is therefore an even more difficult variable to estimate, as many social and economic factors 
may interplay (Schilling 1998). For instance, if a technology is deployed too early, it may 

                                           

174  It has been argued that episodes of acceleration in technological progress were driven by particular General Purpose 

Technologies (GPTs) as these sorts of technologies have the power to change the pace and direction of economic progress. 
Illustratively, in (Petralia, 2017) the case of electrical and electronic technologies is discussed. 
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rebound with a backlash from consumers (e.g., Microsoft  Clippy created aversion against 
assistants (Veletsianos, 2007; PC Magazine, 2001)), or human labour costs may fluctuate, 
accelerating or slowing the adoption of certain technology (e.g., mechanisation and 
automation have facilitated an increase in the speed of production (Miozzo et al., 2005; 
Borghans et al., 2006; Suri, 2011)). In other words, technological readiness does not mean 
technological success. Analysing all the factors contributing to such success is beyond the 
scope of this paper, and in the case of AI may require a particular analysis in the same way 
we have done here for the TRLs, but in terms of technology success rather than maturity. 

What we have covered in this paper is an example-based methodology where (1) we identify 
the technology, its category and its scope; (2) we recognise and define the levels of generality 
that are most meaningful for the technology and appropriate to estimate the TRLs accurately; 
(3) we find evidence in the scientific literature and industry to identify the points on the 
readiness-vs-generality chart; and (4) we use the chart to understand the state of the art of 
the technology and extrapolate its future trends. The examples selected in this paper are also 
sufficiently representative for a discussion about the future of AI and how these charts can 
be used for short-term and mid-term forecasting. 

As future work, there are many avenues we would like to see explored. First, the reliability of 
the assessments could be increased by using external experts for each chart. There is an 
opportunity for a consultation with the AI community asking for their views, suggestions and 
evidence of the TRL levels. With a larger and wider group of experts, methods such as Delphi 
could be used. Furthermore, we could develop new scales based on generality, autonomy, 
intelligence, etc., to better understand the different AI technologies and their evolution. We 
could also derive the TRLs from the results of the related benchmarks for each technology, 
as discussed at the end of the previous section. Second, covering many more AI technologies 
and their evolution would give a more complete picture than what we portray here, with a 
choice of representative AI technologies. Third, for many technologies there is an important 

ome cases there may be different scales 
or even multidimensional (e.g., hierarchical) scales to explore. Finally, there is also an 
opportunity to use the proposed methodology and results to generate an agenda of 
challenges for AI, particularly for those higher levels of generality which are currently acting 
as constraints to higher TRLs. 

There is an enormous interest in the futures of AI and its impact. But a massive impact can 
only be reached when the technology is really transformative. This only happens when new 
ideas, expertise and innovation reach maturity and they are widely applicable. Using the 
technology readiness levels and combining them with levels of generality, as we have done 
in this paper, can allow for the exploration of fresh perspectives on the state of the art of 
artificial intelligence, and how it may come to affect our society in the near future. 
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9 Appendix A: Technology Readiness Levels Rubric 

In this appendix, we include more detail about each TRL in the form of a rubric, as has been 
used to assign the TRLs in this document. These extended descriptions have been adapted 

,175176 developed by the US Air Force Research Laboratory 
developed for assisting in the process of evaluating the TRL of a project or product. Each 
entry below includes level, title, rubric question, description and main characteristics. 

 

TRL  1 Basic principles observed  Have basic principles been observed and reported? 

Lowest level of technology readiness. Research begins to be translated into applied research 
and development. Examples might include paper studies with the basic properties of a 
technology.  

 

— "Back of envelope" environment      

— Basic scientific principles observed      

— Research hypothesis formulated   

— Mathematical formulations of concepts that might be realisable in software 

— Initial scientific observations reported in scientific journals, conference proceedings and 
technical reports  

 

TRL  2 Technology concept formulated  Has a concept or application been formulated? 

Invention begins. Once basic principles are observed, practical applications can be invented. 
Applications are speculative and there may be no proof or detailed analysis to support the 
assumptions. Examples are limited to analytic studies.  

 

— Desktop environment      

— Paper studies show that application is feasible    

— An apparent theoretical or empirical design solution identified    

— Basic elements of technology have been identified    

— Experiments performed with synthetic data     

— Individual parts of the technology work (no real attempt at integration)  

— Know what experiments you need to do (research approach)  

— Analytical studies reported in scientific journals, conference proceedings and technical 
reports  

                                           

175
 https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2003/systems/nolte2.pdf, https://faaco.faa.gov/index.cfm/attachment/download/100020.  

176
 http://aries.ucsd.edu/ARIES/MEETINGS/0712/Waganer/TRL%20Calc%20Ver%202_2.xls)  

https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2003/systems/nolte2.pdf
https://faaco.faa.gov/index.cfm/attachment/download/100020
http://aries.ucsd.edu/ARIES/MEETINGS/0712/Waganer/TRL%20Calc%20Ver%202_2.xls
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TRL  3 Experimental proof of concept  Have analytical and experimental proof of 
concepts been demonstrated? 

Continued research and development efforts. This includes analytical studies and laboratory 
studies to physically validate analytical predictions of separate elements of the technology. 
Examples include components that are not yet integrated or representative. 

 

— Academic environment        

— Preliminary system performance characteristics and measures have been identified and 
estimate  

— Outline of software algorithms available       

— Laboratory experiments verify feasibility of application     

— Metrics established         

— Experiments carried out with small representative data sets    

— Algorithms run on surrogate processor in a laboratory environment   

— Existing software examined for possible reuse      

— Limitations of presently available software assessed (analysis of current software 
completed)  

— Scientific feasibility fully demonstrated   

— Analysis of present state of the art shows that technology fills a need  
   

   

TRL  4 Technology validated in the laboratory  Has a breadboard unit been 
demonstrated in a laboratory (controlled) environment? 

Basic technological components are integrated to establish that they will work together. This 
is relatively "low-fidelity" compared to the eventual system. Examples include the integration 

 

 

— Controlled laboratory environment        

— Individual components tested in laboratory or by supplier  

— Formal system architecture development begins      

— Overall system requirements for end user s application are known   

— Analysis provides detailed knowledge of specific functions software needs to perform 

— Technology demonstrates basic functionality in simplified environment   

— Analysis of data requirements and formats completed     

— Experiments with full-scale problems and representative data sets  

— Individual functions or modules demonstrated in a laboratory environment   
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— Some ad hoc integration of functions or modules demonstrates that they will work 
together  

— Low-
environment  

— Functional work breakdown structure developed 

 

TRL  5 Technology validated in a relevant environment  Has a breadboard unit been 
demonstrated in a relevant (typical; not necessarily stressing) environment?   

Fidelity and reliability is significantly increased. The basic technological components are 
integrated with reasonably realistic supporting elements so it can be tested in a simulated 

-  

 

— Laboratory environment modified to approximate operational environment 

— System interface requirements known   

— System software architecture established   

— Coding of individual functions/modules completed       

— High-fidelity lab integration of system completed, ready for test in realistic or simulated 
environment 

— Individual functions tested to verify that they work      

— Individual modules and functions tested for bugs   

— Integration of modules/functions demonstrated in a laboratory environment 

 

TRL  6 Technology demonstrated in a relevant environment  Has a prototype been 
demonstrated in a relevant environment, on the target or surrogate platform? 

Representative model or prototype system, which is well beyond that of TRL 5, is tested in a 
relevant environment. This represents a major step up in the demonstrated readiness of a 
technology. Examples include testing a prototype in a high-fidelity laboratory environment or 
in a simulated operational environment. 

 

— Operating environment for eventual system known   

— Representative model/prototype tested in high-fidelity lab/simulated operational 
environment  

— Realistic environment outside the lab, but not the eventual operating environment 
  

— Prototype implementation includes functionality to handle large scale realistic problems
  

— Algorithms partially integrated with existing hardware/software systems  
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— Individual modules tested to verify that the module components (functions) work together
   

— Representative software system or prototype demonstrated in a laboratory environment
  

— Laboratory system is high-fidelity functional prototype of operational system  

— Limited software documentation available       

— Engineering feasibility fully demonstrated   

      

TRL  7 System prototype demonstration in operational environment  Has a 
prototype unit been demonstrated in the operational environment?   
   

Represents a major step up from TRL 6, requiring demonstration of an actual system 
prototype in an operational environment. Examples include testing the prototype in 
operational testing platforms (e.g., a real-world clinical setting, a vehicle, etc.).  

 

— Each system/software interface tested individually under stressed and anomalous 
conditions 

— Algorithms run on processor(s) in operating environment  

— Operational environment, but not the eventual platform   

— Most functionality available for demonstration in simulated operational environment 

— Operational/flight testing of laboratory system in representational environment  

— Fully integrated prototype demonstrated in actual or simulated operational environment
  

— System prototype successfully tested in a field environment  

 

TRL  8 System complete and qualified  Has the system/development unit been 
qualified but not operationally demonstrated? 

Technology proved to work in its final form and under expected conditions. In most cases, 
this TRL represents the end of true system development. Examples include developmental 
test and evaluation of the system to determine if the requirements and specifications are 
fulfilled. 

 

— Final architecture diagrams have been submitted    

— Software thoroughly debugged         

— All functionality demonstrated in simulated operational environment 

— Certifications and licenses given by regulators   
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TRL  9 Actual system proven in operational environment  Has the 

system/development unit been demonstrated on an operational environment? 

Actual application of the technology in its final form and under mission conditions, such as 
those encountered in operational test and evaluation. Examples include using the system 
under operational conditions. 

 

— Operational concept has been implemented successfully     

— System has been installed and deployed.    

— Actual system fully demonstrated 
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