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Abstract

In March 2022 the JRC (Units B.6, C.4, E.3) organized an Exploratory Workshop entitled "Toward explainable,
robust, and fair AI in automated and autonomous vehicles", bringing together experts in fields such as Trustworthy
AI, autonomous driving, and vehicle testing. This report summarizes the steps that followed the organization of
the workshop, including the definition of the scientific objectives, the list of invited presenters and participants,
and the conditions under which the workshop took place.

The report also presents the main findings of each talk that occurred during the workshop and an analysis of
the discussions that occurred during collaborative working sessions. Topics of interest included, among others,
current regulations and standards regarding automated and autonomous road vehicles and analysis of their
limitations; explainability of artificial intelligence ; accuracy, robustness, security, and fairness of AI systems.

These insights are used to provide concluding remarks on the outlook of the Workshop, in particular how the
findings of the Workshop can help to promote further research within and outside of the JRC on this topic, with
the goal of making safer transport through innovative ecosystems and effective regulations. We identified gaps
in the scientific literature on the relationship between AI and safety of Automated and Autonomous Vehicles
(A&AVs) such as:

— establishment of reasoning vocabulary for acceptable factual and/or counterfactual interpretations,

— certification readiness matrix must be developed for each cyber scenario for different adversarial attacks
and for naturally occurring perturbations,

— behavioural models aremissing for motion prediction of different social agents and tests with standardized
dummies lack the features of different social groups,

— currently there are not enough data to assess the fairness of A&AV vehicles and how fairness or bias
influences safety.

In our next report, we will focus on the above points by involving experts of the fields.
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Executive summary

This report summarizes the discussions that took place during the JRC Exploratory Workshop organized in March
2022 entitled "Toward explainable, robust and fair AI in automated and autonomous vehicles". The aim of the
workshop was to bring together experts to present and discuss the latest advances in testing the safety and
security of Automated and Autonomous Vehicles (A&AV), in particular connected to the adoption of Artificial
Intelligence (AI) in vehicles. This workshop is part of a larger project whose purpose is to gain insight into the
future directions of testing practices in the automotive sector from a regulatory point of view, in a context
of increased digitalization of the transport sector. The scientific objectives of the Workshop have been defined
through a series of research questions grouped into three main topics:

— Explainability and testing of AI systems in vehicles;

— Cybersecurity of AI systems;

— Fairness of AI systems.

To comprehend the complexity and the multi-disciplinarity of the topic, the organization of the workshop has
been shared between three units of the JRC:

1. Sustainable transport (C4) works on all aspects of the road transport system, including testing automated
and autonomous vehicles.

2. Cyber & Digital Citizens’ Security (E3) is concerned about risk mitigation, cybersecurity, cybercrime, data
protection, and privacy;

3. Digital Economy (B6) studies the social and economic impacts of Artificial Intelligence (AI), data and digital
platforms, advancing research on methodologies to ensure trustworthy AI.

All three units have developed expertise on specific facets of the interplay between automated vehicles and
trustworthy artificial intelligence, presenting in a joint effort a comprehensive and unique selection of relevant
research topics such as the robustness, security, fairness, and explainability of AI systems, and their testing in
field conditions.

The workshop included 14 talks, during which the following topics, among others, have been discussed:

— current regulations and standards regarding automated and autonomous road vehicles and analysis of
their limitations;

— safety issues that can occur in real environment;

— the explainability of artificial intelligence and its use to gain insight into the behaviours of A&AV, the
assessment of the trustworthiness of autonomous and automated vehicles, in particular regarding the
accuracy, robustness, security, and fairness of AI systems; the review of ex-post explanations and concrete
examples of accidents of A&AV and their possible causes;

— broad considerations on the influence of the environment on A&AVs’ decision-making processes.

Discussions were held each day involving the use of collaborative tools on-line to gather and structure the
information consistently.

Among the main findings of the workshop, the need for additional research to understand how individual AI
components can be integrated into the broader A&AVs testing framework has been particularly discussed, with
current limitations of vehicles to demonstrate the absence of risks in terms of accuracy, robustness, cybersecurity
or fairness. Experts concluded that edge cases of an A&AV can be very different from the edge cases of human
driver, therefore testing of challenging scenarios for human maybe misleading. Explainability may help to very
if a particular vehicle passed an edge case because it recognized the scenario and not because an artificial
test condition has changed. In a perfect world traffic rules are a means by which road safety is achieved, but
non-compliance is sometimes necessary to achieve greater road safety (i.e. the ethics of AV driving behaviour
and whether they will deviate from the rules of the road to maximize safety). However, current regulation cannot
have this flexibility.
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These conclusions can help promote further research within and outside of the JRC on this topic, with the goal of
making safer transport through innovative ecosystems and effective regulations. They will also provide fruitful
information for the following steps of the project and, in particular, the appointment of a group of experts to
draft a comprehensive report on this topic at the attention of regulatory bodies.
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1 Introduction

This JRC Exploratory Workshop was dedicated to the safety and security of Automated and Autonomous Vehicles
(A&AV), and aimed to bring together leading scientists and engineers to explore and discuss state-of-the-art
research on the accuracy, robustness, fairness and explainability of Artificial Intelligence (AI) and Machine
Learning (ML) and testing of modern vehicles.

Currently, A&AVs are tested in a black-box approach, based on limited traffic and cybersecurity scenarios. The
behaviour of AI-ML systems is studied through descriptive statistics of kinematics and/or interaction with other
road users and the infrastructure, using mainly knowledge of the mechanical engineering domain. However,
unlimited variations of traffic situations exist and their consideration in testing is out-of-reach.

So far, no scientifically sound methodologies have been developed to audit the decisions made by the AI and ML
systems during driving, especially in safety critical scenarios. In addition to functional and operational safety,
other challenges related to the uptake of AI and ML in automated and autonomous driving have emerged in
recent years, such as the assessment of the cybersecurity, explainability and fairness of systems, in line with
the recent initiative from the European Commission to promote Trustworthy AI in high-risk systems.

An innovative testing and explanatory framework of AI and ML systems embedded in A&AV requires a deep and
improved understanding of the interplay of AI techniques and their limitations, cybersecurity, ethical principles,
and road safety regulations. A promising approach to consider for the evolution of testing practices relies on
techniques and methodologies developed in the field of Explainable AI (xAI) to analyze and understand the
output of AI-ML components. In the context of A&AVs, these approaches may help detect and mitigate false
decisions and attacks on automated functions while providing a better understanding of biases that arise with
the use of large sets of data, e.g. toward minority groups, and their potential impact on the safety in A&AVs.

To explore these questions, JRC organized a multi-disciplinary Exploratory Workshop dedicated to testing ap-
proaches of A&AVs, with the objective to provide an overview of the challenges linked to the use of advanced AI
systems in vehicles, and explore ways to address them.

2 Research Questions

The main research questions identified prior to the workshop were grouped into three blocks related to the main
issues to be addressed, i.e. explainability and evidence, cybersecurity and equity. Experts were selected based
on their expertise in these topics, to contribute to the identification of possible solutions or approaches, or to
identify gaps where clear answers were not available. The main research questions were as follows.

Explainability and testing

— What are the current testing methods for AI-ML components in automotive environment?

— How can we test the AI-ML components in terms of safety in an automotive environment?

— How to define and quantify the robustness and accuracy, of an A&AV’s AI-ML component?

— Are the behaviours of AI-ML components of an A&AV reproducible and repeatable in controlled environ-
ments and in the wild?

— How is it possible to explain the decisionsmade by AI-ML components in A&AV from a software engineering,
vehicle safety testing and accident investigation perspectives?

Cybersecurity

— What are the cybersecurity threats and vulnerabilities associated with AI component in A&AVs?

— What are the limitations of current vehicle testing methods for evaluating AI cybersecurity risks?

— How can we measure the resilience of vehicle systems against cyberthreats targeting AI components?

— How can we handle the security vulnerabilities discovered in the AI components of automated and
autonomous vehicles?
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— What are the AI-related cybersecurity challenges connected to the supply chain of A&AVs?

— What is the state of cybersecurity standards for AI in automated driving and what gaps would need to be
addressed?

Fairness

— What elements would be affected, and howwould we consider fairness as a requirement in test procedures?

— How to detect biases in automated decisions and assess their impact in terms of fairness and robustness?

— Is it possible to guarantee the same level of safety for all types of road users and how?

3 Methodology, participants and agenda

The Exploratory Workshop took place as a virtual event using the Webex platform on 29-30 March 2022.

Participants, experts and presenters were instructed to use the chat to ask questions and concerns, and to raise
their hands (with the raised hand icon) when they wanted to intervene directly. They were also encouraged to
participate in the collaborative work set up on the Mural online platform to collect questions and answers in a
structured way for each topic and for each presentation, adding virtual sticky notes before, during or after the
workshop. A workplace was created by the organizers, with one row per topic (i.e., explainability, robustness and
fairness) and one column per presentation (see Figure 1). Different colours were used depending on the type of
commentary, including open questions, answers, starting points and key conclusions.

Figure 1: Workplace created in Mural to collectively gather information from participants
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conclusions of the discussions 

• Answers: It will be consolidated during the wrap-up session but if you already have an 

answer feel free to add  

 

 

 

To practice with the Mural follow this link:  

https://app.mural.co/t/extraisaef8328/m/extraisaef8328/1648410518340/e22b924c3059af5cc4b8f

40a2c8b6719f1a48887?sender=u88e8bd06647eba3b74bb2927  

To access the live system please follow this link: 
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the presentations 
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The most important 

take away of the 

presentations 

During the wrap-up we 
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possible answers and 

the main conclusions 

source: JRC analysis

The list of participants, together with their role in the workshop and their affiliations, is provided in Table 1 (they
are presented alphabetically according to surname). Only invited speakers and organizers are listed, leaving out
the rest of the audience.

The agendas for Day 1 and Day 2 are shown in Tables 2 and 3, respectively. As can be observed, the duration
of each presentation was 30 minutes including time for questions and discussion. In addition, each day was
planned with two breaks and a final recap session.

Experts and presenters were provided with a session briefing document, including the most relevant supporting
materials for the workshop. The working materials were the following:
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Table 1: List of participants.

Participant Role Affiliation

Javier Alonso Mora Invited Speaker TU Delft (The Netherlands)

Alexandre Alahi Invited Speaker EPFL (Switzerland)

Ensar Becic Invited Speaker NTSB (USA)

Christian Berghoff Invited Speaker BSI (Germany)

Matthieu Cord Invited Speaker Valeo (France)

Rafaël De Sousa Fernandes Invited Speaker UTAC (France)

Yuval Elovici Invited Speaker Ben-Gurion University (Israel)

David Fernández Llorca Organizer JRC (Spain)

Emilia Gómez Organizer JRC (Spain)

Katrin Grosse Invited Speaker University of Cagliari (Italy)

Ronan Hamon Organizer JRC (Italy)

Henrik Junklewitz Organizer JRC (Italy)

Philip Koopman Invited Speaker Carnegie Mellon University (USA)

Akos Kriston Organizer JRC (Italy)

Lars Kunze Invited Speaker Oxford Robotics Institute (UK)

Nick Reed Invited Speaker Reed Mobility (UK)

Ignacio Sánchez Organizer JRC (Italy)

Patrick Seiniger Invited Speaker BASt (Germany)

Asaf Shabtai Invited Speaker Ben-Gurion University (Israel)

Jack Stilgo Invited Speaker University College London (UK)

Robert Swaim Invited Speaker HowItBroke (USA)

— The Future of Road Transport - Implications of automated, connected, low-carbon and shared
mobility (Alonso Raposo et al., 2019): this JRC report looks at some of the main enablers of the trans-
formation of road transport, such as data governance, infrastructures, communication technologies and
cybersecurity, and legislation. The paper discusses potential impacts on the economy, employment and
skills, energy use and emissions, the sustainability of rawmaterials, democracy, privacy, and social fairness,
as well as on the urban context.

— Testing the Robustness of Commercial Lane Departure Warning Systems (Re et al., 2021): this
work presents a novel robustness assessment methodology and defines a robustness index determined
from regulatory tests to analyze the real-world performance of lane departure warning (LDW) systems to
bridge the gap between regulatory and real-world performance.

— Fuzzy Surrogate Safety Metrics for real-time assessment of rear-end collision risk. A study
based on Empirical Observations (Mattas et al., 2020): this work discusses two fuzzy Surrogate Safety
Metrics (SSMs) for rear-end collisions. The objective is to investigate its applicability for evaluating the
real-time rear-end risk of collision of vehicles to support the operations of advanced driver assistance and
automated vehicle functionalities (from driving assistance systems to fully automated vehicles).

— Cybersecurity challenges in the uptake of Artificial Intelligence in Autonomous Driving (Dede
et al., 2021): this report by the JRC and the European Union Agency for Cybersecurity (ENISA) analyzes the
cybersecurity risks related to the adoption of artificial intelligence (AI) in autonomous vehicles and provides
recommendations to mitigate them. The report puts forward a set of challenges and recommendations to
improve AI security in autonomous vehicles and mitigate these risks.

— Trustworthy Autonomous Vehicles (Fernández-Llorca and Gómez, 2021): this JRC report aims to
advance toward a general framework on trustworthy AI for the specific domain of Autonomous Vehicles
(AVs). The implementation and relevance of the assessment list established by the independent High
Level Expert Group on Artificial Intelligence (AI HLEG) as a tool to translate the seven requirements that AI
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systems should meet in order to be trustworthy, defined in the Ethics Guidelines, are discussed in detail
and contextualized for the field of AVs.

— Ethics of Connected and Automated Vehicles: recommendations on road safety, privacy, fair-
ness, explainability and responsibility (European Commission, 2020): in 2019, the Commission formed
an independent Expert Group to advise on ethical issues raised by driverless mobility. The group published
this report with 20 recommendations covering dilemma situations, the creation of a culture of responsi-
bility, and the promotion of data, algorithm and AI literacy through public participation.

— European approach to AI (European Commission, 2018): starting in March 2018 with the creation of the
AI Expert Group and the European AI alliance, following the Coordinated Plan on AI, the Ethics Guidelines
for Trustworthy AI, the white paper on AI and, more recently, up to 3 interrelated legal initiatives, the
Commission aims to address the risks generated by specific uses of AI while maximizing its benefits by
building an ecosystem of excellence and trust.

Table 2: Day 1 Agenda - March 29, 2022. Fundamentals of testing AI in AVs - Current situation and challenges.

Time Presenter Title

13:30 -
14:00

JRC Organizers Presentation of the Workshop. Moderator A. Kriston (JRC)

14:00 -
14:30

Patrick Seiniger, BASt, Ger-
many

External testing requirements for active vehicle safety & ADS

14:30 -
15:00

Philip Koopman, Carnegie Mel-
lon University, USA

AV Trajectories: Newtonian Mechanics vs. the Real World

15:00 -
15:30

Matthieu Cord, Valeo, France Explainability methods for vision-based autonomous driving systems

15:30 -
15:45

Break Moderator: R. Hamon (JRC)

15:45 –
16:15

Kathrin Grosse, University of
Cagliari, Italy

Adversarial ML in the Wild

16:15 –
16:45

Yuval Elovici / Asaf Shabtai,
Ben-Gurion University, Israel

Phantom of the ADAS: Securing advanced driver-assistance systems from
split-second phantom attacks

16:45 –
17:00

Break Moderator: E. Gómez (JRC)

17:00 –
17:30

Javier Alonso Mora, TU Delft,
The Netherland

Safe Motion Planning among Decision-Making Agents

17:30 –
18:00

Rafaël De Sousa Fernandes,
UTAC, France

PRISSMA project overview

18:00 –
18:30

All Discussion session and Wrap-up
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Table 3: Day 2 Agenda - March 30, 2022. Implementing Trustworthy AI in AV testing.

Time Presenter Title

13:30 -
14:00

JRC Organizers Welcome and wrap-up from day 1. Moderator R. Hamon (JRC)

14:00 -
14:30

Alexandre Alahi, EPFL,
Switzerland

Towards Robust Autonomous Vehicles

14:30 -
15:00

Nick Reed, Reed Mobility, UK Know the rules well so you can break them effectively - Can we ensure
AVs drive safely?

15:00 -
15:30

Christian Berghoff, BSI, Ger-
many

Robustness testing for automated driving as an example of the BSI’s
approach to AI cybersecurity

15:30 -
15:45

Break Moderator: D. Fernández Llorca (JRC)

15:45 –
16:15

Jack Stilgoe, University Col-
lege London, UK

The actual ethics of AI for AVs: from autonomy to attachments

16:15 –
16:45

Lars Kunze, Oxford Robotics
Institute, UK

Towards Explainable and Trustworthy Autonomous Systems

16:45 –
17:00

Break Moderator: A. Kriston (JRC)

17:00 –
17:30

Robert Swaim, HowItBroke,
USA

Man, Machine, or In Between: The Process of Investigations Into Automa-
tion

17:30 –
18:00

Ensar Becic, NTSB, USA Safe path to vehicle automation: Crash investigation perspective

18:00 –
18:30

All Discussion session and Wrap-up
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4 Day 1: Fundamentals of testing AI in AVs - Current situation and chal-
lenges

This session was planned with the objective of discussing the fundamentals of current AV testing in the context
of increased autonomy. Short presentations with free discussions are planned on current practices in testing
automated capabilities of AV and on how the increasing use of AI and ML techniques in vehicles brings new
challenges. In relation to techniques used in current and future automated and autonomous vehicles, this
session focuses on the following requirements: explainability, robustness (including accuracy and cybersecurity),
and fairness. The session was finally adapted according to the accepted presentations.

4.1 Presentation of the Workshop

The presentation of the workshop is carried out to set the scene and provide useful information to experts
and participants. After introducing the core team, the main rules of the day, and some general information
regarding the Commission, the JRC and the different units involved (C4, E3 and B6), the concept and the agenda
of the Workshop is presented. The main research questions to be addressed during the workshop are discussed,
concerning the three main topics: explainability, robustness, and fairness. Finally, some specific details on the
virtual collaboration tool (MURAL) are given to allow collecting information from all the participants, before,
during and after the workshop.

4.2 External testing requirements for active vehicle safety & ADS

Presenter: Patrick Seiniger, BASt, Germany.

First, the question of what is active vehicle safety is addressed, including the following distinction: Active safety
involves the avoidance of an accident (that is, before it occurs), while passive safety focuses on mitigating the
consequences of an unavoidable accident. The origins of external requirements for active vehicle safety and
automated driving systems (ADS) are discussed, including consumer protection and type approval requirements.

Legal requirements including in Technical Regulations are agreed by Contractual Parties (e.g., UN R 79: Steering
Equipment, R130: Advanced Emergency Braking, etc.). At the European level, Regulations or Directives for Member
States can refer to UN Regulations, e.g., Regulation 858/2018 on Passenger Car Type Approval. And in some
cases, as the UN process is slow, the EU writes its own regulation (e.g., 347/2012 for AEBS).

Three different levels are distinguished for the test concepts. First, consumer ratings (e.g., NCAP and Euro NCAP)
which usually focuses on a large grid of very specific test points with tight tolerances and ranks the vehicles which
are tested on voluntary basis. Second, obligatory vehicle regulations (e.g. UNECE), which usually focus on precise
single-test scenario (e.g. worst-case) with fixed testing conditions and higher tolerances for pass-fail criteria.
Finally, new approaches are being developed. The concept was first proposed with heavy vehicle emissions with
the idea of defining broader requirements with not too strictly specified tests, including semirandom test cases,
on-road test, etc. In market surveillance, this approach may motivate manufacturers to develop robust systems
and not just pass the regulation.

Some examples are described, including the negative feedback control system and some of its components (e.g.,
position measurement sensors and actuators). The targets (ISO19206) and the platforms for testing in proving
grounds are described.

An open discussion concludes the presentations, addressing the current limitations of the test tools, and the
possibility to randomize the tests and to include more realistic conditions.

4.3 AV Trajectories: Newtonian Mechanics vs. the Real World

Presenter: Philip Koopman, Carnegie Mellon University, University of Pennsylvania, USA.

In this talk, the limitations of regulatory testing are highlighted, focusing on the complexity of real world driving,
including limits on trajectory control (e.g., vehicle capabilities, environmental conditions), as well as uncertainty
about both vehicle conditions and environment.

A relatively “simple” example, such as the safe following distance, includes multiple factors to consider, such as
road conditions, braking capacity, equipment condition, braking controls, aerodynamics, suspension, debris, etc.
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Epistemic uncertainty is also considerably complex and includes brake wear and failures, tire pressure, brake
condition, as well as braking capability for vehicle type, aftermarket upgrades, road surface of own and lead
vehicles, etc.

A single (huge) Operational Design Domain (ODD) may not be sufficient to handle all this complexity. One
possible approach is to break it up into smaller pieces (micro ODDs). Some examples that may provide further
assurance of such an approach are included in ANSI/UL 4600, Sections 8.2 and 8.8.

Testing is based on assumptions about the environment and behaviours. An appropriate balance between
permissiveness and safety is needed. Testing also pushes the uncertainty under certain assumptions. And finally,
there will always be edge cases to consider. Edge cases for humans and AVs may be different.

4.4 Explainability methods for vision-based autonomous driving systems

Presenter: Matthieu Cord, Valeo, France.

This presentation is divided in three main parts. First, the explainability of vision-based self-driving cars is
addressed. The concept of explainability has several facets, and the need for explainability is strong in driving,
a safety-critical application. Gathering contributions from several research fields, namely computer vision, deep
learning, autonomous driving, and explainable AI (X-AI), this presentation discusses definitions, context, and
motivation to gain more interpretability and explainability from self-driving systems. It also briefly describes
methods providing explanations to a black-box self-driving system in a post-hoc fashion and approaches that
aim at building more interpretable self-driving systems by design. The remaining open challenges and potential
future research directions are identified and examined.

Second, post-hoc explainability by steering counterfactual explanations with semantics is carefully described.
For simple images, such as low-resolution face portraits, the synthesis of visual counterfactual explanations
has recently been proposed as a way to uncover the decision mechanisms of a trained classification model. In
this case, the problem of producing counterfactual explanations for high-quality images and complex scenes for
the self-driving domain is addressed. Leveraging recent semantic-to-image models, a generative counterfactual
explanation framework is presented that produces plausible and sparse modifications which preserve the overall
scene structure. Furthermore, the concept of “region-targeted counterfactual explanations”, and a corresponding
framework are described, where users can guide the generation of counterfactuals by specifying a set of semantic
regions of the query image the explanation must be about. Extensive experiments conducted on challenging
datasets, including high-quality portraits (CelebAMask-HQ) and driving scenes (BDD100k) are summarized.

Finally, this presentation summarizes how to design explanations of driving behaviour with multilevel fusion.
The idea is to generate high-level driving explanations as the vehicle drives using a deep learning architecture
which explains the behaviour of a trajectory prediction model (the so called BEEF, for BEhavior Explanation with
Fusion). The model is supervised by annotations of human driving decision justifications, and it learns to fuse
features from multiple levels by modeling the correlations between high-level decisions and midlevel perceptual
features. The experiments are finally presented and discussed.

4.5 Adversarial ML in the Wild

Presenters: Kathrin Grosse, University of Cagliari, Italy.

This presentation focuses on the practical, e.g. industry perspective on AML. More concretely, our findings are
from interviewing 15 ML practitioners from start-ups and discuss two intriguing properties emerging from these
interviews: (1) participants do not distinguish between AML and non-ML security, and (2) participants do not just
reason about an individual model, but rather about a workflow and sometimes even the surrounding system.

To better understand this perception of AML, we discuss our findings from a larger survey with more than 140
participants and investigate what threats to AML have been encountered so far and what factors we found to
influence exposure to such threats in the wild.

4.6 Phantom of the ADAS and the translucent patch

Presenters: Yuval Elovici and Asaf Shabtai, Ben-Gurion University, Israel.
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This research investigates the "split-second phantom attacks," a scientific gap that causes two commercial
advanced driver-assistance systems (ADASs), Telsa Model X (HW 2.5 and HW 3) and Mobileye 630, to treat a
depthless object that appears for a few milliseconds as a real obstacle/object. We discuss the challenge that
split-second phantom attacks pose for ADASs. We demonstrate how attackers can apply split-second phantom
attacks remotely by embedding phantom road signs into an advertisement presented on a digital billboard,
which causes Tesla’s autopilot to suddenly stop the car in the middle of a road and Mobileye 630 to issue false
notifications. We also demonstrate how attackers can use a projector in order to cause Tesla’s autopilot to apply
the brakes in response to a phantom of a pedestrian that was projected on the road and Mobileye 630 to issue
false notifications in response to a projected road sign. To counter this threat, we propose a countermeasure that
can determine whether a detected object is a phantom or real using only the camera sensor. The countermeasure
(GhostBusters) uses a "committee of experts" approach and combines the results obtained from four lightweight
deep convolutional neural networks that assess the authenticity of an object based on the object’s light, context,
surface, and depth. We demonstrate our countermeasure’s effectiveness (it obtains a TPR of 0.994 with an FPR
of zero) and test its robustness to adversarial machine learning attacks.

Physical adversarial attacks against object detectors have seen increasing success in recent years. However,
these attacks require direct access to the object of interest in order to apply a physical patch. Furthermore, to hide
multiple objects, an adversarial patch must be applied to each object. In this paper, we propose a contact-less
translucent physical patch containing a carefully constructed pattern, which is placed on the camera’s lens, to
fool state-of-the-art object detectors. The primary goal of our patch is to hide all instances of a selected target
class. Furthermore, the optimization method used to construct the patch aims to ensure that the detection of
other (untargeted) classes remains unharmed. Therefore, in our experiments, which are conducted on state-of-
the-art object detection models used in autonomous driving, we study the effect of the patch on the detection of
both the selected target class and the other classes. We show that our patch was able to prevent the detection
of 42.27% of all stop-sign instances while maintaining high detection of the other classes.

4.7 Safe Motion Planning among Decision-Making Agents

Presenter: Javier Alonso Mora, TU Delft, The Netherlands.

In smart cities, where mobile robots will co-exist with humans, autonomous vehicles will provide on-demand
transportation while making our streets safer. Therefore, the motion plan of mobile robots and autonomous
vehicles must account for the interaction with other agents and consider that they are also decision-making
entities that may cooperate. Towards this objective several methods for motion planning and multi-robot
coordination are discussed that leverage constrained optimization and reinforcement learning and ways to
model and account for the inherent uncertainty of dynamic environments. The methods are of broad applicability,
including autonomous vehicles, mobile manipulators and aerial vehicles.

4.8 PRISSMA project: Current testing and validation approaches, main limitations
and challenges of AVs

Presenter: Rafaël De Sousa Fernandes, UTAC, France.

The PRISSMA project aims at proposing a platform that will allow to lift the technological barriers preventing the
deployment of secure AI-based systems and to integrate all the elements necessary for the realization of the
type-approval activities for autonomous vehicles and their validation in their environment for a given use case.

By identifying the safety and security objectives for AI-based autonomous mobility systems, comprehensive
reliability validation processes are developed for the commercial operation of autonomous mobility services.
The proposed approach ensures the availability of shared concepts to address the complexity of AI-based
autonomous mobility systems that can be used internationally.

The project also attempts to enhance the participation of France in the implementation of prerequisites, allowing
to position itself at the European level to host one of the Testing Facilities for autonomous mobility that will be
developed in the coming years.

Multiple test scenarios, methodologies and associated intervention procedures for real-life tests of autonomous
mobility systems in addition to the previous tests are designed and proposed, including practical implementation
of the qualification processes of the testing facilities in controlled environments.

The proposal focuses on the practical implementation of test plans in addition to simulation, with identification of
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the optimum perimeter of the system of systems, i.e. vehicle, infrastructure and supervision. This implementation
also includes dysfunctional through injection of failures. Finally, a detailed specification of the necessary testing
facilities (infrastructure, equipment, supervision systems, personnel) and their qualification is evaluated and
discussed in a national or European perspective.

5 Day 2: Implementing trustworthy AI in AV testing

This session was planned to address the question of implementing the requirements of Trustworthy AI in the
context of Automated and Autonomous Vehicle testing. The requirements of robustness and accuracy, fairness,
and cybersecurity are likely to be major elements in future testing strategies to ensure the safe, secure,
and ethical adoption of AI in automated vehicles. Finally, the session was adapted according to the accepted
presentations.

5.1 Towards Robust Autonomous Vehicles

Presenter: Alexandre Alahi, EPFL, Switzerland.

The AI of autonomous vehicles is based on the 3 P: Perception, Prediction, and Planning. Both industry and the
research communities have acknowledged the need for such pillars by providing public benchmarks. While the
state-of-the-art methods are impressive, they still do not generalize well to cities outside of the benchmarks.
Focusing on the prediction pillar, this work shares the current limitations of state-of-the-art work.

5.2 Know the rules well so you can break them effectively - Can we ensure AVs
drive safely?

Presenter: Nick Reed, REED Mobility, UK.

This talk begins with the presentation of Reed Mobility, an initiative that began in June 2019 to focus on
automated vehicle safety. It participated in the Commission Expert Group appointed by the Commission to
advise on specific ethical issues raised by driverless mobility. The presentation summarizes the main conclusions
achieved by the expert panel regarding safety, transparency and responsibility.

The main discussion then focuses on some recommendations. For example, consider the revision of traffic rules
to promote the safety of connected and automated vehicles. Rules are a means by which road safety is achieved,
but non-compliance is sometimes necessary to achieve greater road safety (i.e. the ethics of AV driving behaviour
and whether they will deviate from the rules of the road to maximize safety). How should an automated vehicle
handle this? Looking at the UK regulatory framework and the views expressed in its consultation, it is clear that
there is no agreement from industry and experts.

Some examples are analyzed and discussed, including crossing a red light or exceeding the speed limit, in cases
where it makes sense to increase safety. The proposal to address these examples is to define ethical goal
functions that may go beyond traffic rules in some cases.

Furthermore, the presentation focuses on recommendations related to safety and inequalities. Some safety
metrics are discussed, including the distribution of risk to address inequalities and dilemmas.

Finally, the importance of data and some of its features are analyzed, including new tools such as digital
commentary driving.

5.3 Robustness testing for automated driving as an example of the BSI’s approach
to AI cybersecurity

Presenter: Christian Berghoff, BSI, Germany.

The talk covers the BSI’s strategy for the secure, robust and transparent application of AI in automated driving. It
sets out the BSI’s general perspective on the problem, steps already taken, and actions planned in the future. The
generic considerations are complemented by the presentation of a case study on the robustness assessment of
traffic sign classifiers, which was carried out by BSI.
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5.4 The actual ethics of AI for AVs: from autonomy to attachments

Presenter: Jack Stilgoe, University College London, London, UK.

This presentation discusses some general aspects of the ethics of autonomous vehicles. It begins by mentioning
the Moral Machine experiment and Waymo’s annual safety reports, and continues with some of the myths of
autonomy, highlighting the fact that AVs are conditioned and somehow “driven” by people outside the vehicle
(e.g., pedestrians, cyclists, other drivers, etc.)

The concept of attachment is presented, including its social and technical dimensions. Some famous accidents are
presented, including the Uber fatal crash and the Toyota e-Palette incident in the Tokyo 2020 Paralympic Athletes’
Village. Some strategies are proposed, including heterogeneous engineering and reducing the complexity of the
space.

Some reflection is given to the different layers of rules (i.e. physical, legal, advisory, and normative) from concrete
to culture, which are technologically and socially mediated.

Finally, some preliminary information is provided regarding the forthcoming report on “Ethics and responsible
innovation for AVs” (UK CDEI/CCAV), which includes road safety, explainability and data sharing, data privacy,
fairness and transparency.

5.5 Towards Explainable and Trustworthy Autonomous Systems

Presenter: Lars Kunze, Oxford Robotics Institute, UK.

Autonomous systems operating in real-world environments are required to understand their surroundings, as-
sess their capabilities, and explain what they have seen, what they have done, what they plan to do, and
why to different stakeholders, including end users, developers, and regulators. This talk discussed the results
and objectives of three research projects: SAX (https://ori.ox.ac.uk/projects/sense-assess-explain-sax/), RoAD
(https://ori.ox.ac.uk/projects/road/), and RAILS (https://ori.ox.ac.uk/projects/rails/). In our work, we focus on au-
tonomous vehicles and their application in challenging open-ended environments. As it is essential that these
systems are safe and trusted, we design, develop, and evaluate fundamental technologies in simulation and real-
world applications to overcome critical barriers which impede the current deployment of autonomous vehicles
in economically and socially important areas.

5.6 Man, Machine, or In Between: The Process of Investigations Into Automation

Presenter: Robert Swaim, HowThingsBroke, USA.

This presentation introduces how to start an investigation at the vehicle level by an experienced accident
investigator. It begins with aspects that engineers and programmers do not normally encounter but should be
aware of, such as types of investigation and jurisdiction about investigation leadership. The discussion relates
why it is necessary to establish functional groups and limit initial efforts to gathering facts before analysis.
Types of failure analysis are introduced, including a mention of their limitations. The layers of man-machine
interface in aviation accident case examples involving autopilots show how design assumptions led to accidents
in the real world.

5.7 Safe path to vehicle automation: Crash investigation perspective

Presenter: Ensar Becic, NTSB, USA.

Crash investigations provide a unique view of the real-world risks that affect vehicle automation. By taking a
holistic approach to crash investigations, NTSB determines not only the specific failures of vehicle automation,
but deficiencies extending to regulatory oversight and the safety culture of the developer. This presentation
provides examples of crash investigations that identified limitations of vehicle automation, the role of a human,
and the erroneous assumptions of the developer related to the interaction of AVs with the environment.
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6 Conclusions

In this report, we summarized the outcome of the Exploratory Research workshop entitled "Toward explainable,
robust and fair AI in automated and autonomous vehicles" hold online on 29-30 of March 2022. 36 participants
attended the workshop and 14 presentations were given. We selected six experts who will further elaborate on
selected topics (work in progress). The participants came from 12 countries, as Figure 1 shows, including regions
outside the EU as well.

Figure 2: The distribution of participants in the workshop

Source:JRC analysis

After each day, all attendees were asked to participate in a group exercise using MURAL. We grouped the
questions and jointly agreed on possible answers or approaches to answer or further research them. In Figure
3 the green, yellow and orange boxes represent questions, comments or answers, and highlighted answers,
respectively, to the main scientific questions.

Figure 3: Example of the results of the collaborative work carried out with Mural for Day 1.

20

Day 1 

brainstorming 

exercise

Source:JRC analysis

After the group exercises, we performed a keyword and phrase analysis separately for explainability (Figure 4),
cybersecurity (Figure 5) and fairness (Figure 6). Although both explainability and robustness (cybersecurity) were
intensively discussed and commented on, fairness generated fewer questions. Therefore, we identified gaps in
the scientific literature on the relationship between fairness and safety of A&AVs.

Current physical safety testing methods do not cover all cases of real-world driving. Edge cases always exist in
the real world, they can depend on the actual system, and may be different from human edge cases. Therefore,
physical tests are not enough and evidence of good AI safety engineering is needed. Since AI is difficult to
integrate into the V-shaped development process, recent safety audit standards may not be enough to ensure
safety on real roads during all normal driving scenarios. Explainable AI can bridge this gap. There are several
established interpretability methods, for example, factual and counterfactual reasoning, etc., that can be used for
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development; however, during testing, they may only be suitable to ensure if the A&AVs passes the test for the
right reason. Further research is needed to understand how individual AI components can be integrated into the
broader A&AVs explainability. Furthermore, the explainability of accidents can help in post-crash investigation,
but it requires a different taxonomy than applied during development and regulations. Therefore, agreement
between the stakeholders of A&AV on the different use cases and the establishment of reasoning vocabulary is
of great importance.

Figure 4: Keywords and phrase analysis for the topic on explainability.
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Phrases

edge cases

real world

ai components into broader view

av transparency explainabilty approaches

know that test passed for the right reason

av transparency explainabilty

integrate explainability of 

individual AI components

Source:JRC analysis

Evaluation of an autonomous product for cybersecurity is an emerging topic. Both adversarial attacks on sensors
and data privacy are important to consider, and recently they are not assessed at the vehicle level. Training
data set audit and collection of real traffic data must be performed in addition to physical tests. A certification
readiness matrix must be developed for each cyber scenario for different adversarial attacks and for naturally
occurring perturbations. Understanding how individual AI components interact in an embedded system also plays
a critical role in cybersecurity.

Figure 5: Keywords and phrase analysis for the topic on robustness.
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Robustness Phrases

aml attacks

evaluation of autonomous products

ul 4600

Attack library

Data privacy

Robustness is not only cybersecurity

Source:JRC analysis

Experts also highlighted that behavioural models are missing for motion prediction of different social agents
and tests with standardized dummies lack the features of different social groups. Therefore, currently there are
not enough data to assess the fairness of A&AV vehicles and how fairness or bias influences safety.
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Figure 6: Keywords and phrase analysis for the topic on fairness.
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Source:JRC analysis
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3P Perception, Prediction and Planning

A&AV Automated and Autonomous Vehicles

ACC Adaptive Cruise Control

ADAS Advanced Driving Assistance System

ADS Automated Driving Systems

AI Artificial Intelligence

AML Adversarial Machine Learning

AV Automated/Autonomous Vehicle

BEEF Behavioural Explanation with Fusion

BSI Bundesamt für Sicherheit in der Informationstechnik (Federal Office for Information Security)

AV Connected & Automated/Autonomous Vehicle

EURONCAP European New Vehicle Assessment Program

FCW Forward Collision Warning

JRC Joint Research Centre

LDW Lane Departure Warning

ML Machine Learning

NHTSA National Highway Traffic Safety Administration

NTSB National Transportation Safety Board

ODD Operational Design Domain

TTC Time to Collision

VUT Vehicle Under Test

xAI Explainable Artificial Intelligence
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Annex II. External testing requirements for active vehicle safety & ADS

Testing of ADAS/ADS

2Patrick Seiniger

What is Active Vehicle Safety?

 Active Vehicle Safety

Avoidance of Accidents!

 Passive Vehicle Safety

Mitigation of Consequences

 Sight

 Driver Conditions

 Ride and Handling

 Automotive Lighting

 Driver Assistance in general
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3Patrick Seiniger

Requirements?

 Consumer Protection

• Tests conducted on own

proprietary criteria

• Comparative review of vehicle

safety after marked entrance

• Does not cover all vehicles and is by no means required

• Quicker for new technology

 Type Approval (=Legal Requirements)

• Requirements discussed on international level

• Threshold for entrance into market – minimum standard

• Tests conducted by technical services

• Approval issued by type approval authority

• Mandatory

good

average

marginal

poor

passed

failed

consumer testingtype approval

4Patrick Seiniger

Legal Requirements

Contracting Parties
agree on

Technical Regulations
(e.g. UN R 79:

Steering Equipment)

Regulations or Directives
for Member States

can reference UN Regulations
e.g. in Regulation 858/2018 on 
Passenger Car Type Approval

Text and
Requirements

Things made
mandatory*

* If UN process is slow, EU writes own regulations (Ex.: 347/2012 for AEBS)

33



5Patrick Seiniger

Test Concepts

 Consumer Protection: 

Implicit requirements by test procedures

• Requires a large set of test cases

• Typically on „sterile“ test track

• Extreme tight tolerances for comparability

 Conventional Vehicle Regulations:

Implicit requirements by test procedures

• Typically only worst-case test cases

• Typically on „sterile“ test track

• Higher tolerances (e.g. no robots used)

6Patrick Seiniger

New sv. Conventional Approach for Regulations

Not too strict
specified
tests, broad
requirements

„Semi-random“
test cases

Precise test cases,
narrow requirements

Disadvantage:
Technical Service could select easy cases

With market surveillance this turns into an advantage:
Manufacturers are forced to develop robust systems

Market Surveillance 

NEW (concept first used
with heavy vehicle emissions) CONVENTIONAL
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High Test Repeatability with Position and Speed 

Control

 Negative Feedback Control System

12.12.2016Dr. Patrick Seiniger Slide No. 7

Controller System

Sensor

+

Desired
Value

Actual Value

-

Actuator

8Patrick Seiniger

Sensor: Position Measurement

12.12.2016

Inertial Navigation Satellite Navigation Local error
correction

Combination: 
ca. 1 cm

Ca. 5 m

Ca. 20 cm

Short time - high precision
Long time – low precision
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9Patrick Seiniger

Actuator: Driving Robot

12.12.2016Dr. Patrick Seiniger Slide No. 9
9

Steering Actuator

Pedal Actuators

10Patrick Seiniger

Targets (ISO19206) + Platforms
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Conclusions and Potential

 Freely programmable tools to set up all kinds of scenarios

 Predefined test cases and procedures on test track

 Why not randomize tests on the spot?

 Why not test in realistic conditions?

12Patrick Seiniger

Semi-Randomized Test
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13Patrick Seiniger

Testing in Realistic Surroundings  In JRC Left and 

Right represent 

different challenge 

to ADAS:

• Left: arrives from 

grass covered area, 

legs are partially 

covered

• Right: dummy 

arrives on the 

asphalt hence there 

is visually less 

distraction 
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Annex III. AV Trajectories: Newtonian Mechanics vs. the Real World

AV Trajectories:
Newtonian Mechanics

vs. The Real World

Prof. Philip Koopman

@PhilKoopman

2© 2022 Philip Koopman

 Limits on trajectory control
 Vehicle capability
 Environmental conditions

 Uncertainty
 About vehicle conditions
 About environment

Managing ODD variations
 Micro-ODDs as an approach

Overview

https://bit.ly/2QEOZoP
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3© 2022 Philip Koopman

 Follower stops with space left behind leader  (RSS example)
 Different initial speeds
 Follower initially accelerating during response time
 Different braking capabilities
 Considered safe if any gap between vehicles at rest

Example: Safe Following Distance
RESPONSE STOP

4

F=MA

Sir Isaac Newton

Not Just
A Good Idea

…

It’s the Law!
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5© 2022 Philip Koopman

 F = MA   A = M / F
 BUT …  F is limited by tire friction force

 Example: braking depends upon:
 Ability of vehicle to exert force on roadway (Ffriction)
 Driver applying full Ffriction via brakes (braking capacity)

But, Where Does the “A” Come From?

6© 2022 Philip Koopman

 Slopes
 Decreases friction AND pulls car

Curves:
 Friction maintains centripetal force
 Banking (superelevation)

– Reverse bank reduces normal force

Road surface condition
 Dry concrete  μ = 0.75
 Snow μ = 0.2 – 0.25
 Ice μ = 0.1 – 0.15

Road Conditions Affecting Braking

Slope θ

F  = mg cosnormal θ

A
 = g sin

hill

θ

Abrake

µ

µ
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7© 2022 Philip Koopman

Braking capability:
 Tire capability (“sticky” tires might have μ > 1)
 Brake maximum friction (pad wear)

 Equipment condition
 Tire condition:  temperature, pressure, tread
 Brake condition: hot, wet, damaged, …
 Vehicle suspension, weight distribution, …

Braking controls
 Driver leg strength and willingness to brake hard
 Braking assist force (multiplies driver leg strength)

Aerodynamics, suspension, debris, …

Other Factors Affecting Brake Force

https://bit.ly/2lyjq3u

8© 2022 Philip Koopman

Own vehicle weak braking (less than expected)
 Brake wear & failures
 Loss of brake assist
 High tire pressure / bald tires
 Brakes hot from recent use
 Brakes wet from recent puddle

Other vehicle strong braking
 Braking capability for vehicle type
 Aftermarket brake upgrade?
 Aftermarket tire upgrade?  Low tire pressure?
 Leg strength of lead driver to press brakes?

Epistemic Uncertainty – Vehicles

https://bit.ly/2jXhLE8
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9© 2022 Philip Koopman

Road surface of own vehicle
 Might not be same as lead vehicle surface

Road surface of lead vehicle
 Might have dramatically different friction properties

Epistemic Uncertainty – Environment

https://bit.ly/2lSBPYT

https://bit.ly/2jZqnu5

10© 2022 Philip Koopman

A single huge ODD leads 
to poor permissiveness
 Want better performance 

on a warm dry day
Approach: break up ODDs 

into pieces
 Default cautious behavior
 Prove safe trajectory for an 

ODD segment
 Optimize segments based 

on customer value

Segmenting Into Micro-ODDs
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11© 2022 Philip Koopman

Turns ODD growth on its head:
 Over time: Improve permissiveness for fixed ODD size
 Operate across a diverse ODD safely (and cautiously!)
 Incrementally improve performance in high value ODD segments
 Use finer grain ODD segments for high value operational situations

– Note: important to address transition between segments
References:
 Micro-ODD paper:    https://arxiv.org/abs/1911.01207
 ODD parameter paper:   https://bit.ly/33K26uA
 UL 4600

– Sections 8.2 (ODD) & 8.8 (Trajectory & Control)

Micro-ODD Benefits

12© 2022 Philip Koopman

Proofs are great, but rely upon assumptions
 In particular, about environment & behaviors
 Permissiveness vs. safety tradeoffs

Proofs push uncertainty into the assumptions
 Uncertainty about own system
 Uncertainty about other actor behaviors
 Uncertainty about the environment

 You might forget the edge cases…
… but they won’t forget you!

Conclusions

?
?
?
?

? ?

? ?
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Annex IV. Explainability methods for vision-based autonomous driving sys-
tems

Explainability methods for vision-based autonomous 
driving systems

Matthieu Cord 

Sorbonne University, valeo.ai

Joint work with Eloi Zablocki, Hedi

Benyounes, Patrick Perez (valeo.ai)

3

01 Explainability of self-

driving cars

Under review (revision) IJCV journal
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6

From historical modular pipelines to end-to-end learning models

6

End-to-end 

models

2016

PilotNet

Deep learning revolution

Modular systems

2005

STANLEY

Race in the desert

2008

BOSS

Urban driving

DARPA Challenges

European Eureka Prometheus

Explanations — Why? Who? What?

Societal point-of-view:

- High-stake and safety critical

- Cannot test every situation then explanation

System point-of-view:

- poor performances: understand failure modes

- average performances: raise users’ trust

- super-human performances: machine teaching

Machine learning point-of-view:

- training objectives are only proxies for real

End-users and citizens for trust

Legal and regulatory bodies for liability, accountability

Researchers and Engineers for debugging, improving

Why?

Who?

What?
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Input saliency visualization - Post-hoc methods

1212

(Bojarski et al. 2017)

(Liu et al. 2019)

Limits

● Need to be interpreted

● Not well suited for human-machine 

interactions

(Kim et al. 2021)

Provide intermediate representations - By design methods

13

(Zeng et al. 2019) (Kim et al. 2017)

Limits

● Need extra annotations

● The auxiliary tasks may hinder driving 

performances

47



14

02 Post-hoc explainability

STEEX model

STEEX: Steering Counterfactual Explanations with Semantics

Paul Jacob, Éloi Zablocki, Hédi Ben-Younes, Mickaël Chen, Patrick Pérez, Matthieu Cord

Under review, [code] github.com/valeoai/STEEX, [pdf] arxiv.org/abs/2111.09094

Counterfactual explanations for classification models

15

Predictive 
model

Loan application

Deny loan

Counterfactual 
generation algorithm

Increase your salary by 
500$/month and pay your 
credit card bills on time 
for next three months

A counterfactual explanation is a version of the input with minimal and meaningful 

perturbations that changes the output decision of the model (Wachter et al. 2017)
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Counterfactual explanations for image classification models?

19

Change the 
model’s decision

Imperceptible 
changes

Counterfactual explanations for image classification models?

21

(Goyal et al. ICML’19)

A counterfactual explanation is a version of the input with minimal and meaningful 

perturbations that changes the output decision of the model (Wachter et al. 2017)

DiVE(Rodriguez et al. ICCV’21)
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STEEX — Instantiation

24

Generator G and Semantic encoder Ez :

→SEAN (Zhu et al. 2020)

Semantic segmentation Eseg :

→DeepLabv3 (Chen et al. 2017)

Losses

Datasets and classifiers

25

CelebA (128x128) SMILE-

classifier

YOUNG-classifier

CelebAMask-HQ (256x256)

SMILE-classifier

YOUNG-classifier

BDD100k (512x256)

STOP-classifier

50



Qualitative results on CelebAMask-HQ (256x256)

26

Smile-classifier Young-classifierQuery

STEEX STEEXPE (ICLR’20) DiVE (ICCV’21) PE (ICLR’20) DiVE (ICCV’21)

28

Qualitative examples: Stop → Move Forward

51



Sparsity: How many facial attributes change?

→ Mean Number of Attribute Changes (MNAC)

Proximity: Is the identity preserved?

→ Face Verification Accuracy (FVA)

Quantitative results

Perceptual quality: Are counterfactuals realistic?

→ Fréchet Inception Distance (FID)

30

(128x128)    (256x256)   

(512x256)

Extension: region-targeted counterfactual explanation

32

New setup: Let a user specify a set of semantic regions that the explanation must be about

52



Region-targeted counterfactual explanations

35

Conclusion for STEEX

Saliency methods are region-based (WHERE?)

Counterfactual explanations are content-based (WHAT?)

36

→ Explore more complex decision models:

- e.g., trajectory forecasting, planning models

→ Allow the modification of the semantic map

- e.g., shift objects, add/remove objects…

Going further Neural motion planner (Zeng et al. 2019)

Remove or shit pedestrian?
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03 By design explainability

BEEF model

BEEF: Driving Behavior Explanation with Multi-level Fusion

Hédi Ben-Younes*, Éloi Zablocki*, Patrick Pérez, Matthieu Cord

Pattern Recognition 2021, [code] github.com/valeoai/BEEF, [pdf] arxiv.org/abs/2012.04983

Overview of BEEF: BEhavior Explanation with multi-level Fusion

38

Drive

Explain

Human-friendly explanations for the decisions of a neural driving system.

Goal of this work
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BEEF: Self-driving 3D-conv backbone

39Visual features Blinker signal

Imitation lossTrajectory prediction

Explain

Ground-truth Trajectory prediction

Visual encoder

Video input

3DCNN = R(2+1)D (Tran et al. 2018)
5 residual blocks

BEEF: Explanation module overview

40

Explain

➔ Mid-level features contain perceptual 

information about the scene

➔ High-level features contain 
information of the decision

Different causes collapse 

to a same driving decision

Problem Intuition
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BEEF: Explanation module overview

41

Fusion Classification

High-level decision

Intermediate 

perceptual features

Fusion function

(details later)

Probability 

over classes

42

BEEF: Multi-level fusion with BLOCK

4242

Intermediate perceptual 
features

High-level decision

E.g. “The vehicle chooses 

to make a stop”

E.g. “There is a red light in 

the image”

Bilinear Fusion
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BEEF: Multi-level fusion with BLOCK

4343

Intermediate perceptual 
features

High-level decision

BLOCK (Ben-Younes et al. 2019)

E.g. “There is a red light in 

the image”

E.g. “The vehicle chooses 

to make a stop”

BEEF: Learning

44

Human-annotated 

explanation

Global lossHypothesis

Mimicking driving behavior 

conserves explanations

→ Imitation learning for 
explanations

Explanation loss
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Experiments: quantitative results on HDD

47

SOTA results

Outperforming both online and 

offline models

Slight drop on 
some classes

Complementarity 
of features

→ Comparison to multi-head

→ Does not degrade driver 
MSE

Advantage of accessing 

future frames

Auxiliary branch 
at the output of 

the 3DCNN

48

Extension: natural language justifications

4848

Natural language End-to-end driving Offline setup

Predict driving commands 

(throttle and steering angle)
Auto-regressive LSTM 

language model.

Produce justifications for 

temporal subsequences

Motivations: 

- Open-domain sentences convey finer and richer semantics than predefined classes

- Going towards human-machine dialogs

E.g. “the car stops as traffic ahead is stopped at a red light”
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Extension: qualitative results on BDD-X (77 driving hours)

4949

Conclusion for BEEF

1. BEEF is suitable for real-world self-driving explanations.

2. BLOCK fusion, originally developed to fuse multi-modal inputs, can be efficiently 

leveraged to fuse multi-level inputs.

3. New SOTA results on HDD and BDD-X.

4. Flexible approach (online/offline, cause classification/language generation)

50

59



51

Explainability of vision-based autonomous driving systems: Review and challenges

→ Éloi Zablocki*, Hédi Ben-Younes*, Patrick Pérez, Matthieu Cord

→ under review, arxiv.org/abs/2101.05307

STEEX: Steering Counterfactual Explanations with Semantics

→ Paul Jacob, Éloi Zablocki, Hédi Ben-Younes, Mickaël Chen, Patrick Pérez, Matthieu Cord

→ under review, github.com/valeoai/STEEX, arxiv.org/abs/2111.09094

BEEF: Driving Behavior Explanation with Multi-level Fusion

→ Hédi Ben-Younes*, Éloi Zablocki*, Patrick Pérez, Matthieu Cord

→ Pattern Recognition 2021, github.com/valeoai/BEEF,

arxiv.org/abs/2012.04983

Questions?
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Annex V. Adversarial ML in the Wild

Adversarial Machine Learning in Practice

Lukas Bieringer, Kathrin Grosse, Battista Biggio, Michael Backes, Katharina Krombholz

Department of Electrical and Electronic Engineering

University of Cagliari, Italy

Pattern Recognition
and Applications Lab

Kathrin Grosse (kathrin.grosse@unica.it) - JRX exploratory Workshop March 2022

Adversarial Machine Learning

2

Model

Grosse, Kathrin, et al. "On the security relevance of initial 
weights in deep neural networks." International Conference 
on Artificial Neural Networks. Springer, Cham, 2020.
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Kathrin Grosse (kathrin.grosse@unica.it) - JRX exploratory Workshop March 2022

How to measure AML in practice?

4

Kathrin Grosse (kathrin.grosse@unica.it) - JRX exploratory Workshop March 2022

Qualitative sample – 15 participants

• 14 male  / 1 female

• Age: 34 (+/- 4.27)

• Employer:  European start-ups (<200 employees)

• Application areas:

• Cybersecurity, healthcare, vision, human resources…

• Position:

• Managing (8), engineers (3), researchers (3)

• Education: PhD (9), MSc (4), BSc (1)

5Bieringer, Lukas, et al. "Mental Models of Adversarial 
Machine Learning." arXiv preprint arXiv:2105.03726 (2021).
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Kathrin Grosse (kathrin.grosse@unica.it) - JRX exploratory Workshop March 2022

Key findings – AML versus Non-AML Security

7

AML Non AML
Security

AML                         .  
Non AML
Security

Research Practice

Bieringer, Lukas, et al. "Mental Models of Adversarial 
Machine Learning." arXiv preprint arXiv:2105.03726 (2021).

Kathrin Grosse (kathrin.grosse@unica.it) - JRX exploratory Workshop March 2022

Key findings – Model versus Workflows

9

Model Model

Research Practice

Bieringer, Lukas, et al. "Mental Models of Adversarial 
Machine Learning." arXiv preprint arXiv:2105.03726 (2021).
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Kathrin Grosse (kathrin.grosse@unica.it) - JRX exploratory Workshop March 2022

Open questions

12

VS

Application                 perceived Relevance                   Education

Bieringer, Lukas, et al. "Mental Models of Adversarial 
Machine Learning." arXiv preprint arXiv:2105.03726 (2021).

Kathrin Grosse (kathrin.grosse@unica.it) - JRX exploratory Workshop March 2022

Quantitative Sample – 140 participants

13Forthcoming
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Kathrin Grosse (kathrin.grosse@unica.it) - JRX exploratory Workshop March 2022

Key Findings – Encountered threats

• Privacy

• Poisoning

• Security

• Evasion

• Resource/Data theft

• Reverse Engineering

15Forthcoming

Kathrin Grosse (kathrin.grosse@unica.it) - JRX exploratory Workshop March 2022

Key Findings – Relevance

• Financial/Business Harm

• Wrong decision making

• Introduces bias

• Understand or encountered threat

• Loss of intellectual property

• ….

18

• Easy to spot/fix

• Other threat more likely

• Has not encountered threat

• Threat not relevant in setting

• Hard to do in practice

• ….

Forthcoming
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Annex VI. Phantom of the ADAS: Securing advanced driver-assistance sys-
tems from split-second phantom attacks
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Annex VII. Safe Motion Planning among Decision-Making Agents

Safe Motion Planning among Decision-Making Agents

Javier Alonso-Mora

Autonomous Multi-Robots Lab

Delft University of Technology

Motion planning among decision-making agents

1

Limited interaction, safety and social compliance

Starship TeslaSpencer – robot airline assistant
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2

Environment

Other agents

Robot

Belief update & 
estimator

Motion planner
Trajectory optimization

observations

Trajectory
steering & acceleration

Autonomous vehicles

Image: Udacity

W. Schwarting et al, “Planning and Decision-Making for Autonomous Vehicles ”, Annual Review of CR&AS, 2018

E. Paden et al, “A survey of motion planning and control techniques for self-driving urban vehicles ”, IEEE T-IV, 2016

Receding-horizon Trajectory Optimization

8

•Often refered to as Model Predictive Control (MPC)

Prediction window

• Prediction based on kinematic/dynamic model
• Define the cost per timestep
• Sum up costs to be minimized

• Add constraints

• Solve constrained optimization
using numerical optimization

• Apply first optimal input
• Repeat
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xk ∈ X free
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Collision avoidance
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Receding-horizon Trajectory Optimization

9

Non-convex optimization, efficiently solved with Acado/ForcesPro

N. D. Potdar, et al., ”Online Trajectory Planning and Control of a MAV Payload System in Dynamic Environments”, Autonomous Robots,. 2020

B. Brito et al, “Model Predictive Contouring Control for Collision Avoidance in Unstructured Dynamic Environments” RA-L, 2019 

L. Ferranti, et al, “SafeVRU : A Research Platform for the Interaction of Self-Driving Vehicles with Vulnerable Road Users” IEEE IV, 2019
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s.t.

Why trajectory optimization?

10

MPC allows us to consider:

§ Multiple objectives

§ Vehicle dynamics & obstacle prediction models

§ Constraints à Safety encoded and checked for explicitly

à Flexible & powerful framework

Limitations:

§ Deterministic formulation

§ No interaction with other agents

§ Local method

§ Hand-tuned complex cost function

Challenge 1: Uncertainty

Challenge 2: Interaction

Leverage Learning and MPC
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Safety disclaimers: Trajectory optimization (MPC)

11

Constraints à Safety encoded and checked for explicitly

However:

- Convex problem à We find feasible & optimal solution

- Non-convex problem à Depends on the solver, but in general, we 

may not have guarantees that a feasible and (locally) optimal solution 

is found within the allocated time.  We may need a “back-up” strategy.

à Our problem is non-convex!!!

- Guarantees up to the horizon à Need for recursive feasibility

- Safe if models are accurate! à We recompute at high frequency

•Probability of collision below a specified threshold

Solutions:

§ Ignore uncertainty: deterministic problem with mean values & quick replanning

§ Conservative: enlarge robots’ volume with their 3-sigma confidence ellipsoids

§ Solve with chance-constraints or scenario-based MPC

Challenge 1: Uncertainty

13

Probabilistic avoidance

probability threshold
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x̂k = E[P]
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xk ∼ P

H. Zhu et al., ”Chance-constrained Collision Avoidance for MAVs in Dynamic Environments”, RA-L 2019

O. de Groot, et al., “Scenario-Based Motion Planning in Uncertain Dynamic Environments”, IEEE Robotics and Automation Letters 2021
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Safety disclaimers: Chance-constrained MPC

14

How do we define the probability threshold?

à Very small = conservative behavior

Real-time probabilistic motion planning methods are at their “infancy”

à Mostly deterministic approximations employed

Challenge: Interaction

16Video courtesy of the Intelligent Vehicles group TU Delft  - Driven by a human

Core skills: 

• Understand people’s

intentions

• Read subtle social cues

• Implicitly communicate

own intentions

• Execute safe motions
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Interaction through communication

17

Robots communicate their plans & iterate to agree on collision-free plans

§ Distributed Nonconvex Model Predictive Control (D-NMPC)

L. Ferranti et al, “Coordination of Multiple Vessels Via Distributed Nonlinear Model Predictive Control ” ECC, 2018

Very large communication & computation effort!

+ not all will communicate + hacking….

Interaction without communication

18Video courtesy of the Intelligent Vehicles group TU Delft  - Driven by a human

Core skills: 

• Understand people’s

intentions

• Read subtle social cues

• Implicitly communicate

own intentions

• Execute safe motions
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•MPC relies on motion predictions

Interaction without communication

19

future trajectories of other robots

H. Zhu, et al., "Learning Interaction-Aware Trajectory Predictions for Decentralized Multi-Robot Motion Planning in Dynamic Environments", IEEE RA-L), 2021

i

0

i
x

i
gx

1

i
x

i

N
x

•RNN-based model to output “interaction-aware” predictions

§ Trained with a multi-robot simulator using centralized sequential planning

query robot states

other robots states

obstacles states

trajectory prediction

Environment encoder module

Decoder module

State encoder module

MPC with interaction-aware predictions

20H. Zhu, et al., "Learning Interaction-Aware Trajectory Predictions for Decentralized Multi-Robot Motion Planning in Dynamic Environments", IEEE RA-L), 2021
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•RNN-based model to output “interaction-aware” predictions

Input to MPC for decentralized multi-robot motion planning

MPC with interaction-aware predictions

21H. Zhu, et al., "Learning Interaction-Aware Trajectory Predictions for Decentralized Multi-Robot Motion Planning in Dynamic Environments", IEEE RA-L), 2021

Safety disclaimers: NN predictions

22

•MPC explicitly checks collision avoidance constraints

•- However, those are a function of predictions from a NN model!

•We ”hope” that those predictions are close to reality

•(and recompute at 10-100Hz to adapt to changes)

90



Social Behavior for Autonomous Driving

24

Model interaction directly in the planner

§ Estimate Social Value Orientation of other drivers

Reward

Reward

Weight reward self vs. others:

𝑔! ⋅ = cos𝜑! 𝑟! + sin𝜑! 𝑟"

W. Liebrand et. al., “The ring measure of social values: A computerized procedure for assessing individual differences […] and social value orientation”, 1988.

W. Schwarting, et al.,” Social Behavior for Autonomous Vehicles”, PNAS, 2019

Social Behavior for Autonomous Driving

25

Model interaction directly in the planner

§ Estimate Social Value Orientation of other drivers

§ Cost function 𝑔! ⋅ = cos𝜑! 𝑟! + sin𝜑! 𝑟" used within MPC framework

§ Formulate and solve a joint dynamic game (Nash equilibrium)

W. Schwarting, et al.,” Social Behavior for Autonomous Vehicles”, PNAS, 2019

Prosocial drivers create a gap for the AV to merge

Autonomous Vehicle Prosocial drivers
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Safety disclaimer: solving a dynamic game

26

•MPC explicitly checks collision avoidance constraints

•We use the estimated Social Value Orientation parameter of other 

drivers and their reward function (obtained through Inverse 

Reinforcement Learning)

• à A better model of their future behavior

•We solve for a Nash equilibrium

•à We are ”assuming” that other agents will also follow this (plan for the 

same Nash equilibrium) and behave accordingly!

Interactive Model Predictive Controller

28

•Human drivers communicate their intentions and negotiate their driving 

maneuvers by adjusting both time headway and distance to others 

•à translated into a velocity reference

B. Brito et al., "Learning Interaction-aware Guidance for Trajectory Optimization in Dense Traffic Scenarios", IEEE T-ITS, 2022
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Interactive Model Predictive Controller

29

•Deep Reinforcement Learning Agent trained in scenarios with varying

cooperation coefficients

B. Brito et al., "Learning Interaction-aware Guidance for Trajectory Optimization in Dense Traffic Scenarios", IEEE T-ITS, 2022

Interactive Model Predictive Controller

30

Recommendation policy for MPC

ü Improves collision avoidance & merging performance

üReduced the complexity of the cost function in the local motion planner

üSafe learning and execution

• MPC for robot dynamics & collision constraints

• RL for interactions with other agents & guidance

B. Brito et al., "Learning Interaction-aware Guidance for Trajectory Optimization in Dense Traffic Scenarios", IEEE T-ITS, 2022
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Safe motion planning among decision-making agents

31

•Trajectory optimization

+ Explicit constraints - Interaction

+ Vehicle dynamics - Local solutions

+ Safety guarantees - Scalability

•Learning

+ Scalable (usage of learned policy) - Lack of guarantees

+ Global solutions - Vehicle dynamics

Learning provides:
cost function, guidance

Trajectory optimization:

Real-time & safety guarantees

Summary

32

§ MPC is a powerful tool that provides guarantees à with some challenges

§ Learning combined with MPC is a promising approach to model real-world 
complexity

§ Challenges:

§Uncertainty

§ Interaction

§ Safety

Prof. J. Alonso-Mora

https://www.autonomousrobots.nl/

j.alonsomora@tudelft.nl
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Annex VIII. PRISSMA project overview

Project Overview
29/03/2022

De Sousa Fernandes Rafael

UTAC, France

GRAND DÉFI

3
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PROJECT STRUCTURE

Global 
specifications

Decision

Ecosystem 
articulation and 

use cases

Functional
AI systems
Associated 

testing strategies

(Cyber)Security
AI systems
Associated 

testing strategies

Simulation
Controlled 

environment 
testing

Real-world 
testing

Evolution 
maintenance 

updating

Approval documentation

Approval strategy according to needs and test 
environments

Specifications, test selection Tool-based processes, testing

SAFE BY DESIGN
❑ Mathematical modeling & learning :

✓ Statistical modeling vs. machine

learning vs. deep learning

✓ Choice according to the problematic

❑ Data exploitation :

✓ Identification of the question/scope of the

study

✓ Set the objective for a tool development,

not just a model

✓ Describe the data used and each

processing step

✓ Involve the final users to be as close as

possible to their needs

❑ Models’ performance :

✓ Ensure generalization of model performance to

unknown/future data

✓ Estimate the variability of the performance by

multiple cross-validation

✓ Choose a metric adapted to the problem

(regression / classification / segmentation) & to the

need (more or less strong penalty for errors, ...)

and data

✓ Supervised or unsupervised model

✓ Optimize the model to reduce prediction errors

❑ Performance validation

✓ The model must perform well even

with unknown data

✓ Future data: simulations or cross

validation with available data

✓ Study the predictions of the model:

bias? outliers?

❑ Method for model 

interpretation :

✓ Direct interpretation // explanation

✓ Interpretation limited to a restricted

number of explanatory variables

✓ Global or local explanation of the

models

✓ Explanation by overlay modeling to

simplify the complete model

✓ Study of individual observations

✓ The objective of the explanation

dictates the tool to be used
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AI SYSTEM LIFE CYCLE

ISO-IEC DIS 22053

ARTS EVALUATION APPROACH

Phase 1 decomposition
Following STRMTG 
methodology

Route analysis ODD

Conditions under which the
system is designed to operate
safely.

OEDR

• Describes the conditions of 
safe operation of the system 
from the generic description

• Defines the situations 
(configurations, object 
types, conditions, ego 
actions) that can be 
encountered on the path 
(within which events will 
then take place)

1. OED Study of the detection, 
recognition, and classification of 
objects and events associated with 
the situations identified in the ODD. 

2. R Study of the system response.

Scenarios

Elaboration of associated 
test scenarios based on 
existing and comparable 
scenarios (NATM catalog) 
but also via generated 
scenarios to test the edge 
cases that can be associated 
with the targeted OD.

• Objective to 
demonstrate safety on 
the course OD

• Results will confirm (or 
not) the "demonstrated" 
ODD

• ODD demonstrated (by 
testing) Vs OD of actual 
course

Subtasks of the Dynamic Driving Task that
include monitoring the driving environment
(detecting, recognizing, and classifying
objects and events and preparing to
respond as needed) and executing an
appropriate response to such objects
and events

OD : "Operational Domain” refers to 

what the world actually is, which 

might (in most cases will) differ from 

the ODD.

ASAM OpenODD
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OEDR

1. OED Study of the detection, 
recognition, and classification of 
objects and events associated with 
the situations identified in the ODD. 

2. R Study of the system response.

Subtasks of the Dynamic Driving Task that
include monitoring the driving environment
(detecting, recognizing, and classifying
objects and events and preparing to
respond as needed) and executing an
appropriate response to such objects
and events

ARTS EVALUATION APPROACH

Scenarios

Elaboration of associated 
test scenarios based on 
existing and comparable 
scenarios (NATM catalog) 
but also via generated 
scenarios to test the edge 
cases that can be associated 
with the targeted OD.

• Objective to 
demonstrate safety on 
the course OD

• Results will confirm (or 
not) the "demonstrated" 
ODD

• ODD demonstrated (by 
testing) Vs OD of actual 
course

Phase 1 decomposition
Following STRMTG 
methodology

Route analysis

OD : "Operational Domain” refers to 

what the world actually is, which 

might (in most cases will) differ from 

the ODD.

ASAM OpenODD

ODD

Conditions under which the
system is designed to operate
safely.

• Describes the conditions of 
safe operation of the system 
from the generic description

• Defines the situations 
(configurations, object 
types, conditions, ego 
actions) that can be 
encountered on the path 
(within which events will 
then take place)

ROUTE ANALYSIS
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Phase 1 decomposition
Following STRMTG 
methodology

Route analysis ODD

Conditions under which the
system is designed to operate
safely.

OEDR

• Describes the conditions of 
safe operation of the system 
from the generic description

• Defines the situations 
(configurations, object 
types, conditions, ego 
actions) that can be 
encountered on the path 
(within which events will 
then take place)

1. OED Study of the detection, 
recognition, and classification of 
objects and events associated with 
the situations identified in the ODD. 

2. R Study of the system response.

Subtasks of the Dynamic Driving Task that
include monitoring the driving environment
(detecting, recognizing, and classifying
objects and events and preparing to
respond as needed) and executing an
appropriate response to such objects
and events

OD : "Operational Domain” refers to 

what the world actually is, which 

might (in most cases will) differ from 

the ODD.

ASAM OpenODD

ARTS EVALUATION APPROACH

Scenarios

Elaboration of associated 
test scenarios based on 
existing and comparable 
scenarios (NATM catalog) 
but also via generated 
scenarios to test the edge 
cases that can be associated 
with the targeted OD.

• Objective to 
demonstrate safety on 
the course OD

• Results will confirm (or 
not) the "demonstrated" 
ODD

• ODD demonstrated (by 
testing) Vs OD of actual 
course

PRIORITIES AND MAIN CHALLENGES FOR SCENARIO DEFINITION

Risk of hidden pedestrian crossing

Strong curve

Traffic jam

Pre-critical scenario to evaluate the level of caution in driving, 
taking account both driving behavior and driving context 

ensure that approved systems provide sufficient robustness 
with regard to their performance

standardized procedure for test repetition e.g. UNR152 
(AEB)

Generate specific and/or random scenarios

Avoid overfitting and evaluate the driving functions with edge-
cases scenarios 
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Phase 1 decomposition
Following STRMTG 
methodology

Route analysis

OD : "Operational Domain” refers to 

what the world actually is, which 

might (in most cases will) differ from 

the ODD.

ASAM OpenODD

ARTS EVALUATION APPROACH

Scenarios

Elaboration of associated 
test scenarios based on 
existing and comparable 
scenarios (NATM catalog) 
but also via generated 
scenarios to test the edge 
cases that can be associated 
with the targeted OD.

• Objective to 
demonstrate safety on 
the course OD

• Results will confirm (or 
not) the "demonstrated" 
ODD

• ODD demonstrated (by 
testing) Vs OD of actual 
course

ODD

Conditions under which the
system is designed to operate
safely.

• Describes the conditions of 
safe operation of the system 
from the generic description

• Defines the situations 
(configurations, object 
types, conditions, ego 
actions) that can be 
encountered on the path 
(within which events will 
then take place)

OEDR

1. OED Study of the detection, 
recognition, and classification of 
objects and events associated with 
the situations identified in the ODD. 

2. R Study of the system response.

Subtasks of the Dynamic Driving Task that
include monitoring the driving environment
(detecting, recognizing, and classifying
objects and events and preparing to
respond as needed) and executing an
appropriate response to such objects
and events

ODD AND ROUTE DESCRIPTORS
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Annex IX. Towards Robust Autonomous Vehicles
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Annex X. Know the rules well so you can break them effectively - Can we
ensure AVs drive safely?

“Know the rules well so you can break 
them effectively”
Can we ensure AVs drive safely?

March 2022 JRC XAI workshop

About Reed Mobility

• 15+ years in cutting edge transport research, 

background in psychology / HF

• Academy Director at TRL and lead for CAV 

research (2004-2017)

• Led portfolio of £50m+ projects (GATEway, 

SMLL, Helm UK, Move UK, Convex etc.)

• Head of Mobility R&D at Bosch (2017-2019)

• Founded Reed Mobility, June 2019 – current 

activities:

▪ Expert panel producing recommendations on ethics 

of automated driving (European Commission)

▪ CAV standards programme, funded by CCAV (BSI)

▪ Automated Vehicle safety assurance scheme (DfT)
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Project: Horizon 2020 Commission Expert Group to advise on 
specific ethical issues raised by driverless mobility

• 14 experts, variety of 

backgrounds

• Non-exhaustive review

• 18 months: meetings and 

stakeholder workshop

• Not EC position but published 

with support of EC and taken 

as an input to inform future 

research programme
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Nick Reed, Reed Mobility

Paula Palade, JLR

Marieke Martens, TNO

Tania Leiman, Flinders Uni.Leon Kester, TNO

Reed, N., Leiman, T., Palade, P., Martens, M., & Kester, L. (2021).

Ethics of automated vehicles: breaking traffic rules for road safety.

Ethics and Information Technology, 1-13. https://doi.org/10.1007/s10676-021-09614-x

116



European Commission – expert panel on CAV ethics

https://ec.europa.eu/info/news/new-recommendations-for-a-safe-

and-ethical-transition-towards-driverless-mobility-2020-sep-18_en

Image credit: European Commission

European Commission – expert panel on CAV ethics

Image credit: European Commission

Safety

Transparency

Transparency

Responsibility

117



Recommendation 4

W                      …

• Rules are a means by which road safety is achieved but 
non-compliance is sometimes necessary to achieve 

greater road safety

• How should an CAV manage this?

• Change the rule?

• Hand control back to human driver to decide?

• Not comply but CAV must be able to offer reasoned 

explanation as to why it was non-compliant
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• Law Commission of England & Wales / Scottish Law Commission

• Four-year review of regulatory framework for AVs (2018-22):

https://www.lawcom.gov.uk/project/automated-vehicles/

UK review of regulatory framework

First consultation asked respondents to consider two scenarios:

i. exceeding the speed limit

ii. mounting the kerb

• No agreement from industry/experts; wide spectrum of views 
• Breach never permitted

• Breach permitted in minimal circumstances only

• General principles to identify when breach of rules permitted

• Specific description of when & how breach permitted

• Views reflect differing perspectives/assumptions about
• Level of safety risks posed by breach

• Reasonableness of response  

• CAV capability

Views expressed in consultation
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• Not all breaches by human drivers lead to charge for breach

• Often no charges unless 

• Breach observed directly by or reported to police 

• Breach impacts others

• Prosecutorial discretion exercised 

• (rather than in/formal warning/counselling) 

• But availability of CAV data is critical here

• When and how should CAVs be charged?

Enforcement?

• Programming for strict compliance with traffic rules may not 
necessarily achieve optimal road safety

• Programming for discretion is very difficult

• Impossible to anticipate every situation where discretion might need to 
be exercised

• Environmental conditions, traffic and other road users vary dramatically 
between domains and over time in any one domain

• No training data set can exhaust all possibilities

Strict compliance or discretion
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Example 1 – Crossing a red light

AV must wait 
at red light

Green light allows 
vehicles to turn from 

side road

A
M

B
U

L
A

N
C

E

A
M
B
U
L
A
N
C
E

Ambulance cannot 
pass AV waiting at 

red light

AV crosses solid white 
line with traffic light on 

red signal to allow 
ambulance to pass

Human driven vehicle 
edges to side of their 

lane to allow ambulance 
to pass

A
M

B
U

L
A

N
C

E A
M
B
U
L
A
N
C
E

Ambulance can 
pass through gap

Example 2 – Exceeding the speed limit

AV travelling at 
speed limit

Out of control vehicle at 
speed approaching from 

side street

AV cannot changes lanes 
due to oncoming traffic

Collision 
avoided if AV 
accelerates?

Pedestrians 
waiting to cross
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• AI                              ‘     ’                     
human values from human behaviour or human feedback nor apply 

them to new situations

• Even if sufficiently large training datasets were available, CAVs 

cannot develop underlying ethical principles 

• Proposal for ethical goal functions

• How are these developed? By whom?

• Democratic legitimacy?

Ethical goal functions

Recommendation 1 & 5
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Metrics for safety

• Reduce harm, for all and for each category of road user

• No other possible benefits would compensate for an 
increased risk of physical harm

• Risk distribution – redress inequalities in vulnerability 

among road users

• Dependent on ability of CAV to perceive road user 
categories

• Comparison depends on safety data

Recommendation 6
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D        →                

• Driving is a continuous process, balancing multiple objectives and 

risk

• Dilemma situations may emerge organically from adherence to 

ethical principles

• Maintaining adherence to these principles should not conflict with 

ethical / legal requirements

• Importance of:

• Transparency in developing ethically and socially acceptable 

operating criteria

• Data sharing to review outcomes of dilemma situations

All depend on fundamentally on data

• Need to be able to aggregate and analyse continuous 

data from AVs

• Accurate

• Standardised

• Comprehensive

• Shared
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Digital Commentary Driving

Sensor 

data

V2X

data

Stored

data

Perception

Decision

Reaction

Actuators

Feedback

DCD

data

IP bubble

Reed, N., Balcombe, B., Spence, P., Khastgir, S., & Fleming, N. (2021). A review of CAV safety 

                                  “D                  D      ”       q  . BSI R     .
https://www.bsigroup.com/en-GB/CAV/cav-resources/safety-benchmarking-report/

W           …

• Industry standard on data collection

• Agreed protocols for data sharing

• Clarity on ethical goals for automated driving

• Societal engagement on definition of ethical goals
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Annex XI. Robustness testing for automated driving as an example of the
BSI’s approach to AI cybersecurity
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Annex XII. The actual ethics of AI for AVs: from autonomy to attachments
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Annex XIII. Towards Explainable and Trustworthy Autonomous Systems
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Annex XIV. Man, Machine, or In Between: The Process of Investigations Into
Automation

HowItBroke.com

Man, Machine, Or In Between

The Process of Investigations Into Automation

Robert L. Swaim

Founder and Contact:  www.HowItBroke.com

NTSB Engineering National Resource - Retired

HowItBroke.com
Investigations
Engineering

TrainingTesla X, Mountain View, CaliforniaBoeing 777, Emirates flt 521 , Dubai

Usually said by the Design Engineer  - "That can't happen" or "It doesn't work that way"

HowItBroke.comHowItBroke.com

Robert Swaim

31+ Years as NTSB accident investigator

Investigator in Charge, US Accredited Rep, Systems Engineer

Numerous autoflight investigations around the world

Initial 787 investigator for lithium ion battery fires

Led to electric vehicle battery investigations

Retired from NTSB as the Systems Engineering National Resource Specialist

2017 Mountain View, California

2017 Emirates flt 521 2018 Boeing 737-MAX Ethiopia

My contact info 

and more are at:
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HowItBroke.comHowItBroke.com

Contain definitions for features and levels of control such as:
Automation of a feature versus autonomous for a vehicle, 

Advanced driving assistance systems (ADAS) and dynamic driving tasks (DDT)

SAE Levels 0-5 with automated driving systems (DDS) in Levels 3-5

Operational Design Domains (ODD) , etc

This presentation is about the process of investigation

Wording is therefore generalized and not using these standardized definitions

SAE J3016 and ISO 22736 Taxonomy

HowItBroke.comHowItBroke.com

Aviation Has Had Numerous Autopilot Involved Accidents

To Learn From

Boeing 737 MAX, Ethiopian flt 302 Boeing 737 MAX, Lion Air flt 810

Ethiopia, March 10, 2019, 157 fatal October 29, 2018, 189 fatal

AOA sensor failure coupled with design error and training leading to improper pilot responses

Boeing 777, Emirates flt 521 

Dubai, August 2016, 1 fatal, 38 injured 

Pilot expected go-around thrust not realizing ground contact changed flight mode 

Airbus A330, Air France flt 447

Atlantic Ocean, June 1, 2009, 228 fatal

Ice in airspeed probe led to pilot errors

Boeing 737-800, Turkish flt 1951

Amsterdam, February 25, 2009, 9 fatal, 120 injured

Radar altimeter input error and Boeing vs Airbus training differences

Boeing 737-800, Kenya Airways flt 507

Douala, May 5, 2007, 114 fatal

Lack of feedback that autopilot had not engaged when expected to

From Only These Six:

735 fatal, 158 injured
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HowItBroke.comHowItBroke.com

Triple redundant systems in aviation - yet ...

...loss of control found in 43% of 2010-2014 fatal commercial accidents (37)

The #1 Autopilot related cause of accidents is human interface
Typically perception of autopilot performance was not what was expected

The #2 Cause was pilots disconnecting or getting "behind" the airplane
Tesla X, Mountain View, California

Boeing 777, Emirates flt 521 , Dubai

HowItBroke.comHowItBroke.com

"What's it [the autopilot] doing now?" 
Common airline crew saying

"Disappointment [causing stress and errors] is the gap that exists 

between our expectation and reality" – Maxwell

Our goal is to not let reality differ from expectations

Accident investigations provide the ultimate test and judgement
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HowItBroke.comHowItBroke.com
Source: https://code7700.com/pdfs/accident_reports/air_france_447_bea.pdf

Airbus A330 has triple redundant airspeed systems cross checking each other

Differences in data result in two systems voting out third 

Example shows Airbus A330 airspeed architecture

Case Example For What The Process Can Do

- Air France Flight 447, 228 fatal 

HowItBroke.comHowItBroke.com

Air France Flight 447 Circumstances

June 1, 2009, Rio de Janeiro – Paris, 2:14 am in clouds

First Officer (right seat) was pilot flying

Investigation found that:

Ice build-up on one airspeed sensor disrupted that one airspeed system

Two flight computers voted out the inconsistent inputs from the third system 

Autoflight protections degrade in dual computer system (called Alternate Law 2)

Warning alerts were displayed for pilots

Autopilot disengaged and less experienced First Officer began to fly by hand

Source: https://code7700.com/pdfs/accident_reports/air_france_447_bea.pdf
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HowItBroke.comHowItBroke.com

Air France Flight 447 Findings
One wing moved down slightly when autopilot disconnected

First Officer response was excessive to the slight correction needed

He created an increasing series of pitch inputs, each further up and down

The airplane slowed enough to stall [wing lost lift] and began to fall

Repeated misinterpretations in stressful situation led to further improper responses

Source: https://code7700.com/pdfs/accident_reports/air_france_447_bea.pdf

HowItBroke.comHowItBroke.com

Location of the missing airplane was unknown

Debris was fragmented and scattered on ocean bottom

Numerous countries were involved, including:

Where airplane and components were made, 

Brazilian departure, 

French arrival, 

Citizens of numerous countries

Who took the lead?

Standardized process is in ICAO Annex 13

How Did The Process Develop Those Findings When
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HowItBroke.comHowItBroke.com

Various Investigation Processes

5 Why Method:

Why – Battery is dead

Why – No charge system output

Why – Alternator belt broken

Why – Belt worn to failure

Why – Inadequate maintenance

Simplest is to keep asking "Why?"

Too simplistic for most problems

Design defenses and most accidents 

involve multiple contributing factors

Swiss cheese model

Human errors

Sensor failures

Design flaws

Environment challenges

Accidents happen

when enough 

holes line up

Layers of design 

defenses

HowItBroke.comHowItBroke.com

FIRST – Who has jurisdiction and responsibility to lead the investigation?

Four types of investigation are:

Criminal - Government

Safety - Government

Civil – Litigation about monetary damages between individuals &/or companies

Technical – Typically manufacturers

Government has first rights, especially with fatalities

Companies support Government

Government must recognize proprietary needs of companies

SECOND – Leadership must agree on process or how to refine to circumstances

THIRD – Gather facts BEFORE analysis

Investigations Follow Time-Proven Process
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Groups work in defined focal areas, such as:

Driver and human factors

People involved, their training, and backgrounds

Vehicle(s) and systems design, 

Previous similar events, 

Maintenance records,

Roadway, including barriers, markings, etc

Weather and other environmental factors, 

Traffic, communications, radar or other recordings,

Conduct daily organizational meetings

Share factual findings with other groups and leadership

Collect Factual Data By Breaking Into Focal Groups

2017 Mountain View, California
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Adapted from 1920s Ishikawa "Fish Bone" diagrams

Record And Categorize Facts Found
Failure and Risk Analysis Typically Based in The 5 Ms & E

Man

Machine 

Method

Material

Measurement

Environment 
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Logic Based Fault Trees Can Get Complex 
Risk analysis software tools can have thousands of cells
Due to compounding of errors, increasing the number of cells results in decreasing validity
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Counted as 

One occurance?

or 

Thousands of cycles?
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Accident Investigation Exercise

CAR STRIKES TREE AT NIGHT

MACHINEMAN

OR

?
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Failure Logic Tree Exercise

MACHINEMETHOD MEASUREMENT ENVIRONMENTMATERIALMAN

Collect basic facts for each of the

5 Ms & E:

CAR STRIKES TREE AT NIGHT
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Failure Logic Tree Exercise – Human Findings of Fact

&

MACHINEMETHOD MEASUREMENT ENVIRONMENTMATERIALMAN

Sleep
deprived

Driving
long distance

No braking
skid marks

&

5 Ms & E:

Without all facts, jumping to an initial analysis may blame the driver

Physical evidence

CAR STRIKES TREE AT NIGHT

Trip time
Dark

No st
reet li

ghts

One
headlight

Physical e
vidence

OR

&Gas receipts in wreckage
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Failure Logic Tree Exercise – Vehicle Findings of Fact

MACHINEMETHOD MEASUREMENT ENVIRONMENTMATERIALMAN

DarkWorn
pavement

Optical
sensors dirty

&

5 Ms & E:

Cruise control disengaged frequently

Without all facts, it may be easy to blame the vehicle

CAR STRIKES TREE AT NIGHT

Phys
ic

al e
xa

mPhysical exam
No st

reet li
ghts

M
aintenace records
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Failure Logic Tree Exercise – FACTS BEFORE ANALYSIS

OR

MACHINEMETHOD MEASUREMENT ENVIRONMENTMATERIALMAN

DarkWorn
pavement

Optical
sensor tolerances

&

5 Ms & E:

Crusie control disengagement creates warning

CAR STRIKES TREE AT NIGHT

&

Sleep
deprived

Driving
long distance

No braking
skid marks

&

One
headlight

OR

&

Now it could be the driver OR the car

Why doesn't warning enough to prevent accident?

Where can we find more facts?
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Machine Side - Continuous Loop of Automation Systems

Requirements Inputs

Outputs Actuators

Design assumptions

Potential software conflicts

Databases & lookup tables

Calculate position

Compute delta to requirement

Buffers, timers, and filters

Compute needed corrections

Mechanical

Electric

Hydraulic

Driver mechanical & switches

GPS & other NAV

Camera and optical sensors

RADAR, LIDAR, & RF based

Environmental sensors

Feedback of device positions

Guidance commands to actuators

Displays to humans

Brains Senses (& feed-back)

Muscles

Most of these get captured in some record

Items in bold involved

in past accidents
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Frequently embedded in multiple devices for various types of information

Vehicle devices typically not hardened like aviation "Black Boxes

May contain dozens to thousands of parameters such as:

Speed, Lat/Long (GPS), seat belt use, airbag deployment, impact sensor states, fault 

logging (OBD), automation engagement and level, cell temps and detailed EV battery data, 

motor temp, transmission status, ABS, ESC, throttle position, atmospheric pressure, OAT, 

headlight use, wiper use, door alerts, etc, 

Parameters recording rates differ (example: seatbelt status vs vehicle speed)

Recordings
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Recording devices to look for
ON VEHICLE*

Vehicle event recorder

Onboard video recorder

Motor controller memory, 

EV Battery Battery Management System (BMS)

Anti-skid braking system memory (ABS)

Other . . . 

OTHER

Cell phone – phone, data, GPS, camera

Roadway system - traffic video, timers, and other devices

Stores and other business security cameras

*Some require continuous 12V source
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Criminal  – Government may not release ANY data

Safety      – Government may release partial data, typically not video or audio

Civil          – Typically requires court subpoena. May be denied.

Technical – May or may not get access

Vehicle Data Recorders

Information Access Depends on Type of Investigation
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Failure Logic Tree Exercise – FACTS LEAD TO ANALYSIS / SEQUENCE

OR

MACHINEMETHOD MEASUREMENT ENVIRONMENTMATERIALMAN

DarkWorn
pavement

Optical
sensor tolerances

&

MAN
&

5 Ms & E:

Crusie control disengagement creates warning

CAR STRIKES TREE AT NIGHT

&

Sleep
deprived

Driving
long distance

No braking
skid marks

&

One
headlight

OR

&

Now we find contributing factors included BOTH the driver AND the car

Driver using cell phone 
misses warning

Sequence found was:

Tired driver

Cruise system degraded

Pavement

Optical system

Cruise disconnected

Driver missed warning

Using cell phone

Driver did not brake

Car struck tree
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SW

Hardware
Softw

are

So
ftw

a
re

So
ft

w
ar

e

SatCom, GPS, ACARS

SatCom, ACARS

IP
 B

ro
ad

b
an

d

IP Broadband

Software

So
ft

w
ar

e

Softw
are

Softw
are

H
ard

w
are

Hardware

ACARS

ACARS

H
a

rd
w

a
re

Navigation Data

Airline, ATM

MRO

Suppliers

HW
 -

SW

HW - SW

Nav Charts

PC Cards

IC’s

Firm
w

are

Elec Parts

Adapted from Boeing Aviation Cybersecurity Diagram

Numerous points create cybersecurity vulnerabilities

Internet

Manufacturers

Airplane

W
ifi

Non-OEM

OEM

SW

Cybersecurity/hacking violations are a crime and require notification of law enforcement!

Despite ISO 26262*, monitor for:

Intentional

Database corruption

Vehicle antenna inputs

Sensor entries

Software attacks

Unintentional

EMI/HIRF environment

Software conflicts

Sensor conflicts

* ISO 26262 - Road Vehicles Functional Safety Package

Attacks have taken place in aviation
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Annex XV. Safe path to vehicle automation: Crash investigation perspective

1

Ensar Becic, PhD

Project Manager / Highway Accident Investigator

Office of Highway Safety

State of Vehicle Automation:  
Crash Investigation Perspective

Overview

2

• The role of the NTSB• Investigate … make recommendations … follow-up on the 

implementation

• Traditional and additional focus areas in the investigations 

of vehicle automation crashes

• Lessons learned from investigations of L2 crashes

• Lessons learned from the investigations of crashes 

involving developmental automated driving systems
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NTSB’s Major Investigation

• Five disciplines

• Highway design

• Survival factors

• Vehicle factors

• Human performance

• Operations (Motor Carrier factors)

• Reconstruction / Scanning

3

• Crashes involving 

vehicle automation

• Dedicated reports related 

to automation

Partial Automation Crashes

4

Williston, FL

Culver City, CA

Mountain View, CA

Delray Beach, FL
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Mountain View, CA – March 2018

5

• Tesla operated in L2:

- Followed a lead vehicle

- Moved into a gore area and no 
longer detected a LV

- Accelerated prior to impact  

• System did not detect attenuator

• Driver did not react

- Inattentive due to phone use

Las Vegas, NV

6

• Navya autonomous shuttle

• No traditional vehicle controls

• Attendant on board

• Low speed (~20 mph)

• ADS detected the truck

• Decelerated the shuttle to a 
near stop

• 11 seconds later the truck 

backed into the stopped shuttle 

Machine: Decision Making

Attendant/ Procedures:      

Operational Error
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Tempe, AZ – March 2018

7

• Uber ATG test vehicle

• Modified 2017 Volvo XC90

• Volvo CAS disabled

• ATG developmental ADS

• Vehicle operator

• Completing a loop on N. Mill 

Ave in automated mode

• Nighttime with roadside lighting

Highway Design Issues

• Lane markings

• Use of HD maps

• Work zones

• Recognizing unexpected changes

• Roadway surface and hardware

• Handling of damaged or differently 
positioned roadway hardware

8
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Survival Issues

• Handling crashes of electric vehicles, 

including fires

• Guidance for first responders

• NTSB report on battery fires in electric 
vehicles 

• Occupant safety

• Seating positions and seat belt use 

• Extrication

9

Vehicle Issues

• Data

• Reliance on the manufacturer for access and data interpretation

• Lack of government recording requirements

• System versions

• Changes in functionality (e.g.,  timing of alerts, detection of 

hazard types)

• Basic maintenance

• System functionality; sensor calibration 

10
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Vehicle Issues: System Limitations

• Limitations of L2 and forward CAS

• Relevance of ODD

• Domain is defined by the manufacturer

• Adherence reliant on the driver

• Rare implementations of system-based ODD

• Identifying errors in developmental ADS

• Limitations of machine perception; developer-induced flaws 

11

Human Issues: Role of a Human

• Human as an essential part of automation system

• General problems of attention, fatigue…
• Automation complacency

• Unintended inattention

• Intentional misuse / distraction

• Monitoring of driver engagement

• Steering wheel torque; camera

• Remote monitoring

12
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Disengagement As a Factor

13

Mountain View, CA

Williston, FL

Delray Beach, FL

Culver City, CA Tempe, AZ

Human Issues: Mental Model

14

• Takeover from the system

• Mental model of system’s functionality
• Trust in the system; expectation of 

system response

• Operational procedures during ADS 

testing

• Task demands during ADS testing

• Tempe operator’s dual task
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Operation Issues

• Examining company’s safety culture
• Organization and independence of safety departments

• Technology company as a transportation company

• Safety management system

• Examining federal and state requirements

• Voluntary standards and guidance

15

Recurrent Issues in L2 Crashes

• Considerable perceptual limitations

• Human drivers are poor monitors of automation

• Failure in partial automation + inattentive driver =  crash 

• Safety vs convenience 

• Does automating lane keeping improve safety?

• NTSB recommendations:

• Improving monitoring of driver engagement

• Limiting operational design domain

16
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Issues in Developmental ADS Crashes

• Testing will contain errors and expose system’s limitations
• Machine perception; human attention

• Risk management in ADS development and operator oversight

• Identify risks; implement safety redundancies

• Holistic view of risks and safety envelope

• NTSB does not instruct developers in building an AV

• Safety goal: How to mitigate the expected risk of testing on 

public roads
17

Safer Path Forward

• Tempe crash probable cause: 

Deficiencies in risk mitigation were due to Uber ATG 

inadequate safety culture

• NTSB Recommendations:

• Implementation of SMS

• Federal and state oversight of developers’ ADS testing process 
• Industry sharing of lessons learned 

18
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GETTING IN TOUCH WITH THE EU 

In person 

All over the European Union there are hundreds of Europe Direct centres. You can find the address of the centre nearest you online 
(european-union.europa.eu/contact-eu/meet-us_en). 

On the phone or in writing 

Europe Direct is a service that answers your questions about the European Union. You can contact this service: 

— by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls), 

— at the following standard number: +32 22999696, 

— via the following form: european-union.europa.eu/contact-eu/write-us_en. 

 

FINDING INFORMATION ABOUT THE EU 

Online 

Information about the European Union in all the official languages of the EU is available on the Europa website (european-
union.europa.eu). 

EU publications 

You can view or order EU publications at op.europa.eu/en/publications. Multiple copies of free publications can be obtained by 
contacting Europe Direct or your local documentation centre (european-union.europa.eu/contact-eu/meet-us_en). 

EU law and related documents 

For access to legal information from the EU, including all EU law since 1951 in all the official language versions, go to EUR-Lex 
(eur-lex.europa.eu). 

Open data from the EU 

The portal data.europa.eu provides access to open datasets from the EU institutions, bodies and agencies. These can be 
downloaded and reused for free, for both commercial and non-commercial purposes. The portal also provides access to a wealth 
of datasets from European countries. 
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