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Abstract 
As data becomes more important, so does the need to protect privacy, in the sense of protecting the personal, 
confidential and/or private information that it contains. Privacy Enhancing Techniques (PETs) are a key enabler 
technology for ensuring that privacy is maintained while extracting value from the data. 

This report has two primary objectives: firstly, to analyse and assess the usability and maturity of various 
PETs within data sharing scenarios, specifically within common European data spaces; secondly, to 
demonstrate the practical application of one PET in a collaborative scenario involving multiple entities. To 
achieve these objectives, the report follows a two-phase approach. 

In the first phase, a detailed analysis of state-of-the-art PETs was conducted, evaluating their strengths, 
limitations, and maturity levels. Based on this assessment, Federated Learning, was selected for further 
exploration in a collaborative scenario. 

The second phase focused on implementing a realistic use case within the healthcare domain, which is highly 
relevant to the European Health Data Space. Healthcare data can be highly heterogeneous across different 
healthcare providers. This heterogeneity can make it challenging to apply federated learning algorithms 
effectively. Using Federated Learning as the selected PET, the report presents the results and evaluates their 
effectiveness. 

By addressing these objectives and highlighting the issued posed by healthcare data, the report provides 
valuable insights into the usability and applicability of PETs, while showcasing the benefits and challenges of 
implementing collaborative data sharing scenarios. Overall, this report offers valuable guidance for 
stakeholders seeking to protect privacy and unlock the potential of data in various domains and data spaces. 
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Executive summary 

Policy context 

The European Union has put forward an ambitious agenda for the establishment of a single market for data 
that can facilitate a plethora of different use cases ranging from business innovation to improved public 
services and environmental protection. Through its European Strategy for Data, the EU is establishing a legal 
framework for improving the trust and fairness of the data economy. In addition, thematic common European 
data spaces should ensure that data can be shared at scale in a trustworthy and secure manner. Within that 
context, improving the availability of data is a core step for harnessing the potential of the digital transition, 
allowing the economy and society to extract value from data. However, these benefits cannot come at the 
expense of privacy rights. Privacy Enhancing Techniques (PETs) offer a wide variety of technological solutions 
to achieve both data utility and privacy, each suited to specific scenarios. This report summarises the 
following consecutive activities. 

1. PET Analysis 

The analysis presented here is divided into several phases. First, a landscape analysis of privacy-enhancing 
techniques (PETs) was conducted, and a wide range of techniques were evaluated, at a high level, for their 
suitability for privacy-sensitive data sharing scenarios. The results of this analysis are contained in Section 3. 

Then, Section 4 goes into further detail and brings together an analysis of the state of the art for each of the 
selected technologies, and for each of them: 

— Evaluates its relevance to data sharing scenarios. 

— Evaluates its degree of usability by creators and users of data spaces. 

— Lists and analyses real-world use cases enabled by that technique. 

— Explains the level of security achieved, enabling data holders to take informed decisions. 

— Lists and evaluates existing implementations and references. 

— Provides and justifies the technology’s readiness level (TRL). 

2. Experimental Evaluation of PET 

Section 5 shows the design and specification of a selected use case that represents a typical data space 
scenario. It is consisting of the construction of a federated model for the classification of skin lesions, some 
of which are of cancerous nature, based on data from 4 medical institutions in different countries. A possible 
approach from the perspective of common European data spaces is presented and data pre-processing 
(mainly homogenization), modelling and training are outlined. 

Three datasets of skin lesions freely available on the Internet were used. Two of these contained images from 
a single institution and the third from two. The latter was partitioned to separate the images from one and 
the other. Finally, the federated learning system was formed with four nodes, each containing data from a 
single institution. The main problem at this point was to standardize the images to make them compatible 
with the deep learning architecture of the global model. The developed application, which is installed on each 
node, transforms the data into a previously agreed common format when loading the data. 

As this is an image classification task, it was approached using convolutional neural networks. Two different 
architectures - both implemented with PyTorch - were experimented with: a lightweight three-layer network 
and a pre-trained EfficientNet network. Although the latter achieved much better metrics, the former was 
chosen to reduce the running time of the experiments. Both federated and centralized models were trained to 
compare the two approaches. In the federated case, the framework chosen to implement the infrastructure 
was Flower FL, due to its flexibility and ease of use. The model aggregation procedure was federated 
averaging. The model has been evaluated by comparing it with a centralized version and with local versions; 
the results are presented in Section 6.  

While the selected use case is in the healthcare domain, therefore relevant to the European Health Data 
space, the findings and technical approaches provided can be reused in other data space contexts relatively 
easy. The developed code can be reused in cases requiring the utilisation of sensitive personal or private data.  
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Objectives and target audience 

The goal of this report is to explore the potential of PETs in improving the utilisation of existing personal and 
sensitive private data within the EU policy context. There are two main goals: first, the report analyses and 
evaluates various PETs, their usability, and maturity, in the context of data sharing scenarios, particularly 
within common European data spaces as defined in the European strategy for data. The intention of the 
report is to serve as a reference guide for policymakers and data space stakeholders who are our main target 
audience. The work presented here would allow them to navigate this complex landscape and to understand 
the possibilities and opportunities made possible by PETs. Secondly, we demonstrate their application in a 
practical collaborative scenario between different entities. By running a realistic simulation, we give a 
practical example that can be used as a template for real-world projects. We intended to encompass every 
aspect, starting from the initial investigation to model evaluation, addressing practical challenges that are 
frequently overlooked in scientific publications. 

 

Key conclusions 

This report provides a detailed evaluation of each PET with an emphasis on their applicability in a data space 
context. As a general overview, PETs have reached a level of maturity that makes them suitable for real-world 
applications. Therefore, they hold the potential to play a crucial role in balancing the need for data utility and 
user privacy. Although some level of specialized knowledge is usually required to use PETs, their usability and 
technology readiness level is constantly improving thanks to the growing number of mature open-source 
implementations. 

Furthermore, the implementation of a prototype in this study sheds light on the challenges encountered when 
dealing with healthcare data. The highly heterogeneous nature of healthcare data, characterized by 
differences in data collection protocols, formats, and standards across various providers, presents obstacles 
for the effective application of federated learning algorithms. It becomes evident that addressing this 
heterogeneity is essential to ensure the successful deployment of PETs in healthcare settings. 

Next Steps 

Several improvements have been suggested to improve the implemented prototype such as, including more 
data holders and data subjects, a more prominent role of data intermediaries and data altruism 
organisations, using different models, considering a better aggregation method for the Federated Learning. In 
addition, privacy can be improved by integrating another PET like Differential Privacy to ensure that no 
sensitive data can be extracted from the final model. Another idea is to combine the local evaluations using 
Secure Multi-Party Computation (SMPC) so that only global metrics are revealed instead of per-node metrics. 
Furthermore, it is recommended to test the usability and effectiveness of different PETs in realistic 
environment and to investigate their integration within common European data spaces. Raising awareness 
and educating data space stakeholders is another crucial step in order to enable the application of PETs. 
Finally, it is essential to enrich open-source frameworks with further development based on the state-of-the-
art advances from academia.  
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1 Introduction 
The European data strategy [1] aims to empower researchers, public administrations, and businesses by 
creating a single market for data. This is a key step in tackling and benefiting from the digital transition 
currently taking place. Within that context, while access to data and the ability to use it are essential for 
innovation and growth, they must not come at the cost of the citizen’s privacy rights. The tension between the 
promotion of data access and the protection of privacy rights is an important policy-relevant problem that 
must be tackled. Privacy Enhancing Techniques (PETs) are defined by the European Union Agency for 
Cybersecurity (ENISA) as “a coherent system of information and communications technologies (ICT) measures 
that protects privacy by eliminating or reducing personal data or by preventing unnecessary and/or undesired 
processing of personal data; all without losing the functionality of the data system [2]”. In other words, they 
aim to extract value from data without compromising data privacy. 

The goal of this report is to explore the potential of PETs in addressing this tension and promoting both data 
utility and privacy, tailored to the EU policy context. There are two main goals: first, we analyse and evaluate 
various PETs, their usability, and maturity, in the context of data sharing scenarios, particularly within 
common European data spaces as defined in the European strategy for data. The intention of the report is to 
serve as a reference guide for policymakers and data space stakeholders, allowing them to navigate this 
complex landscape and to understand the possibilities and opportunities made possible by PETs. Secondly, we 
demonstrate their application in a practical collaborative scenario between different entities. By running a 
realistic simulation, we give a practical example that can be used as a template for real-world projects. We 
intended to encompass every aspect, starting from the initial investigation to model evaluation, addressing 
practical challenges that are frequently overlooked in scientific publications. 

Following this brief introduction, the report is organised in six consecutive sections. Section 2 briefly 
introduces the most prominent PET together with their relevance to privacy-sensitive data-sharing scenarios. 
Section 3 each of those PET are evaluated against a set of predefined criteria including their relevance to 
common European data spaces. Section 4 is dedicated for the prototype design for our selected use case. 
Section 5 elucidates the implementation of the prototype and the results. Finally, we draw some conclusions 
and recommendation for future work. 
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2 Overview of PET 
The purpose of this section is to have a landscape analysis of privacy-enhancing techniques (PET). A high-
level set of techniques is reviewed, having a preliminary assessment of their relevance in privacy-sensitive 
data-sharing scenarios. This section should inform the scoping and implementation of approaches for the 
reuse of citizen and other sensitive data for the establishment of European Data spaces (as defined by the 
European Strategy for Data [1]). 

2.1 Data Sharing Scenarios 
One of the main points that we discuss in this document is the “data-sharing” scenario, that is, there is not a 
one-size technique that can solve the complex problem of sharing data in a secure way, so every technique 
covers different use cases and has its own specific advantages and disadvantages. 

From a research point of view, data sharing is the practice of making raw (and derivative) data available to 
other researchers. Data sharing increases the transparency of research by allowing confirmation of the 
interpretation of the results, maximizing the usefulness of the data by allowing it to be used in other research. 

While the idea of data sharing and combined use is feasible, and there are different mechanisms to achieve 
it, we have already discussed how carrying it out becomes tedious when the data contains sensitive 
information or other interests intervene. Three roles are clearly identified [3, 4]: 

 Data provider: Refers to an entity or organization, including both aggregators and individuals, that 
shares data for collaborative learning purposes while preserving data privacy. Typically, a data 
provider acts as the custodian or curator of the data and seeks to share various types of data. This 
may include raw data, such as point-of-sale or time series data, as well as pre-processed, curated 
data that already contains analytics and insights. In the context of Federated Learning, the role of a 
data provider can vary depending on the scenario. In cross-silo1 Federated Learning, it is normally 
organizations who serve as data providers, while in cross-device2 Federated Learning, they use to be 
individuals.  

 Data consumer: It is the organization that is receiving data from a data provider. The data 
consumer may be wanting to join the shared data with their own data to derive insights. 

 Data intermediary: It acts as a trusted entity. This optional role can be viewed as the one that 
provides mechanisms to help you trust and collaborate on data sharing, for example by providing 
metadata about what is available, or validation of claims by the other actors.  

Related to the following PET techniques, the next figure depicts two data-sharing scenarios, where the main 
requirement is that the output data must be consumed in a private way, that is, preserving data privacy. 

— Figure 2.1 (left). Data providers have some interest in common, that is, the output data consumed is a 
kind of computation where all the data providers are involved. One example of this scenario is in finance. 
Banks could collaborate to train a model to detect fraud. Each bank would train its own model on its own 
data, and then the models would be combined to create a more accurate model. This would allow the 
banks to fight fraud more effectively without sharing sensitive financial data. 

This scenario allows for collaborative analysis and knowledge sharing among the participating 
organizations. By combining their datasets and expertise, data providers can collectively tackle complex 
research questions and potentially achieve a more comprehensive understanding of the data. However, 
this scenario also presents challenges related to data governance, coordination among providers, and 
ensuring privacy protection for the shared data. 

                                                       

 
1 Cross-silo federated learning is used when the data is partitioned into silos, where each silo is owned by a different organization. 
For example, a hospital might have data on its patients, and a bank might have data on its customers. The data from the hospital and the 
bank would be stored in separate silos. 
2 Cross-device federated learning is used when the data is partitioned into devices, where each device is owned by a different individual. 
For example, a phone might have data on the user's location, and a laptop might have data on the user's browsing history. The data from 
the phone and the laptop would be stored on separate devices. 
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— Figure 2.1 (right). Data providers are independent organizations that just want to provide their datasets to 
external consumers. Each data provider operates autonomously, sharing their dataset with the intention 
of enabling external consumers to access and utilize the data for their own analysis and research 
purposes.  

For example, a company that collects data on customer behaviour could sell its dataset to a research 
company. The research company would then use the data to conduct research on new marketing 
strategies. Another example of this scenario is also in the finance industry: a bank could provide its data 
to a credit rating agency. The credit rating agency would then use the data to assess the risk of lending 
money to businesses. 

This scenario offers advantages such as increased access to diverse datasets, fostering innovation and 
facilitating novel research opportunities. However, it also brings considerations related to data 
compatibility, standardization, trust between data providers and consumers, and establishing mechanisms 
for data discovery and access. 

  

The functionality of the data intermediary in these scenarios is not closed, so some examples are detailed in 
the description of the privacy techniques. 

 
 

Figure 2. 1 Data-sharing scenarios. Left: Data providers have some interest in common, that is, the output data consumed 
is a kind of computation where all the data providers are involved. Right: Data providers are independent organizations 
that they just 

 

2.2 Techniques 
In this section, we delve into various privacy-preserving technologies (PETs) and explore their relevance in the 
context of data-sharing scenarios. The selection of PETs discussed in this section, as well as in the following 
chapter, is based on their widespread adoption, effectiveness, and relevance to the challenges faced in data-
sharing scenarios. From cryptographic techniques to anonymization methods and differential privacy, each 
technology offers unique advantages and addresses specific privacy concerns. By understanding these 
technologies and their practical applications, we can navigate the landscape of data sharing while upholding 
the principles of privacy and data protection. 

2.2.1 Secure Multi Party Computation 

Secure Multi Party Computation (SMPC) [5] is an umbrella term encompassing techniques in which a set of 
mutually distrusting data holders want to jointly compute a function without revealing anything beyond the 
function’s output. For example, consider a group of friends who wish to learn the group’s average salary 
without disclosing any of their individual salaries. SMPC provides techniques for achieving this goal, even 
when not all parties can be trusted. It was originally studied as a theoretical curiosity, but recent advances in 
SMPC algorithms, network speed, and computing power have made it suitable for real world usage [6].  

There are several possible classifications for SMPC techniques: 

 Generality: Some techniques are optimized for a single type of operation (e.g., Private Set 
Intersection) while others allow evaluating arbitrary arithmetic or Boolean circuits. This second group 
usually works by using Secret Sharing to encrypt the input values and then securely evaluating each 
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gate, transforming shared secrets of the inputs into secret shares of the output [6]. There are other 
approaches not based on Secret Sharing, such as Yao’s Garbled Circuits [7]. 

 Adversarial model: Not all techniques are resistant against all types of attackers. Adversaries 
might be honest-but-curious, meaning that they will follow the protocol while trying to extract as 
much information as possible from any intermediate values. Covert adversaries will deviate from the 
protocol to obtain secret information or compromise the result, while keeping its presence secret. 
Malicious adversaries are not constrained by trying to appear honest, giving them a wider range of 
possible attacks [6]. 

 Proportion of corrupted parties: Shamir’s secret sharing [8] allows choosing t such that a secret 
distributed between n parties will need at least t cooperating parties to reveal it. Choosing a small t 
will make the scheme more resistant to parties going offline, but less resistant against parties 
becoming corrupted. Beyond secret sharing, some approaches require an honest majority, while 
others relax this requirement at the cost of having to abort the computation if an adversary is 
detected. 

 Performance: Multi Party Computations are usually constrained by network latency and bandwidth, 
rather than computational cost. Research is focused on lowering the frequency and size of 
communication. For example, Beaver Triples [9] greatly improve the performance of arithmetic circuit 
evaluation by shifting the burden of communication to an offline phase. 

We will now study a simple example to understand how SMPC works. Going back to the salary example, each 
of the friends can encrypt their data by splitting it into “additive shares”: for example, to encrypt the number 
24, pick random numbers that sum to 24, such as {10, 20, -6}. Knowing only two of them gives no 
information; all three are required to obtain the secret value. Thus, a data owner can distribute two of these 
numbers while keeping the third one secret. Each friend does this, leaving them with a share of their own data 
and shares of their friend’s data. Operations on the encrypted data work by having each friend perform local 
operations on their available shares. For example, the sum of all the secret data can be obtained by simply 
summing the local shares; this will generate a share of the result, which can then be broadcasted to 
reconstruct the result. Other operations, such as multiplying the data or finding the maximum, are more 
involved and require intermediate communication rounds since they cannot be fully performed by local 
operations.  

This example can be easily extrapolated, for example, the reuse of patient data, where the data is spread into 
different health centers. In this case, we can think replace the attribute salary with the diagnosis of a medical 
treatment to compare the treatment between hospital without sharing the value of it. 

SMPC is highly relevant to data-sharing scenarios, since it allows data holders to jointly compute arbitrary 
functions using their private data, with strong cryptographic guarantees of security. It is suited for data-
sharing scenarios such as the one depicted in Figure 2.1 (left), in which the data holders share a common 
goal. Data providers need to agree beforehand in the exact computation to be performed and the data 
schema to be used, which might be facilitated by the intervention of the intermediary role. SMPC can be used 
for simple statistical analysis, such as computing the average, standard deviation, maximum, etc. of a 
distributed private dataset, as well as for training complex models such as neural networks. Some of these 
protocols require a trusted dealer that provides trusted cryptographic material [9] to be used for the rest of 
entities, fitting this role with the aforementioned data-provider.  

Notice also that this technology has already been used in the real world, with positive results [6]. SMPC is also 
suited for encrypted inference, in which a private model is applied to private data without the data owner 
gaining access to the mode and vice versa.  

However, SMPC requires the data holders to perform computations which require online availability and a fast 
connection, constraining the applications it can be used for. Performance is generally orders of magnitude 
worse than operating on clear data, which limits the size of models that can benefit from SMPC; still, it might 
be the right choice for small datasets or models, and/or appropriate infrastructure and connection. 

2.2.2 Federated Learning 

Federated learning [10] [11] is a form of distributed computing aimed at preserving the privacy and 
confidentiality of data owned by different organizations when they agree to collaborate to obtain, in a 
common way, a machine learning model. Under this approach, a model is trained through multiple servers 
(nodes) each of them containing their own data, without this data leaving where it is stored and, therefore, 
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without being accessible to the different parties that participate in the training. It is said that in federated 
learning it is the models that move to where the data is and not the other way around, as in traditional 
machine learning. The basic idea is that each node builds a local model that periodically sends its parameters 
to a server, where it is combined with models from other nodes into a global model. This model, once 
updated, is sent back to the nodes to continue learning in an iterative process that ends after a predetermined 
number of cycles. The architecture of a federated learning system is shown schematically in Figure 2.2.  

 
Figure 2. 2 Architecture of a federated learning system [103] 

When training a model in a federated way, however, it must be taken into account that the fact that the data 
does not leave the server where it is stored is not a sufficient guarantee to ensure its confidentiality, since a 
malicious user can find out a large amount of information from other parties with only local model 
parameters and their own data, so it is common to use some additional privacy mechanism, such as 
aggregating local models on a central server trusted by all parties, or encrypting data parameters models, for 
example using a secret sharing technique like in multi-party computation. 

In general, when talking about federated learning, it is assumed that all participants share the same schema 
for the data; that is, that the columns -or components- of the data set are the same for everyone, in a 
collaborative framework in which each participant contributes rows (records) to the global set. This is what is 
known as federated learning with horizontal partitioning, and it is the most common approach in research 
articles and the one contemplated by the main frameworks. However, a novel approach within federated 
learning is vertical partitioning, in which each part contributes columns, rather than rows, to the whole. This 
approach is technically more complex as it requires aligning the database records of the different parties and 
is also more prone to errors due to failures that occur when carrying out this alignment, which will hardly be 
perfect, however, it is a little explored field with great room for improvement that opens the door to 
innumerable business cases. The assumption of having the same schema can be carried out by the data 
intermediary role, where the metadata associated to the data can be requested to know if it is possible to 
perform a federated learning training or not. 

There are several scenarios in which federated learning combined with other techniques described here can or 
must be applied to maintain the privacy of all the parties, all of them related with the data-sharing scenario 
depicted in Figure 2.1 (right). Some of these techniques are:  

 A central party wishes to train a model on the data of several distinct data holders. In addition, the 
central party wishes to keep their model private. A possible solution would be to encrypt both the data 
and the model with Homomorphic Encryption and then do the training with Federated Learning. 

 Two or more data holders have similar data on different entities, that is, they have different rows of the 
same dataset (Horizontal Partition). They may wish to jointly train a model on the global dataset as to 
mitigate the effects of their local biases. They may, for example, use Federated Learning to jointly train a 
model, and use Differential Privacy to fully ensure that no sensitive data is revealed in any model update. 
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 Two or more data holders have recorded different features of the same entities (Vertical Partition), that 
is, they have different columns of the same dataset. They may wish to jointly train a model on the global 
dataset, with access to all the combined features. They must first align their records; this can be done 
privately, even when there is not a global ID both datasets share, via private Entity Resolution (ER). A 
Bloom filter-based approach is normally used to accomplish this task, although some papers have 
demonstrated that no strict (sample to sample) alignment is required to obtain a good approximation of 
the optimal model. Once the entities are somehow aligned, the parties can train a model using any of the 
above techniques.  

The Machine Learning models that can be trained are mostly those of traditional Machine Learning. In 
particular, the following operations are supported:  

 Classification: Within supervised learning, classification consists in predicting the class, or label, of 
given data points on the basis of a training data set containing instances whose label is known. 

 Clustering: Consists in dividing the dataset in several groups of instances with similar features. In 
this case the instances are not labelled and thus it is a type of unsupervised learning. 

 Regression: Is the task of modelling the relationship between a dependent variable, or target, and 
one or more explanatory variables (or independent variables). Like classification, regression is framed 
within supervised learning, and also requires a training data set to build the model. 

 Dimensionality reduction: Is the transformation of data from a high dimensional space to a low 
dimensional space so that the low dimensional representation retains some significant properties of 
the original data. 

 Anomaly detection: (or outlier detection) is the identification of rare items, events or observations 
which raise suspicions by differing significantly from the majority of the data. 

 Neural Networks: A collection of connected units (artificial neurons) capable of recognizing 
underlying patterns in a data set. There exist neural networks architectures/algorithms for both 
supervised and unsupervised learning. 

 

2.2.3 Differential Privacy 

Differential Privacy (DP) [12] [13] is a privacy preserving technique in which noise is added to the data to 
avoid the identification of any individual record when this data is queried through any aggregation function, 
like mean, sum, variance, etc. This noise is added in such a way that the global dataset retains the maximum 
of its statistical properties to guarantee a certain degree of privacy for a particular query, which is the key 
aspect that makes the difference between DP and just “adding noise” to the data. In this sense, differential 
privacy mathematically guarantees to those who contribute sensitive data to a database that the risk (which 
will be very low) that their personal information can be discovered through one or successive queries to the 
database will always remain below a threshold. This guarantee is based on the idea that making queries 
invariant to the removal of a record from the database makes the data immune to membership and 
reconstruction attacks, no matter how much side knowledge about a particular individual the adversary has. 
This is a powerful argument in favour of a user agreeing to share their data in a database, as it ensures that 
query results will be very similar regardless of whether the user is included in the database or not. 

Formally, differential privacy is normally defined as follows: a randomized algorithm K is ε-differentially 
private if for all data sets D and D’ differing on at most one row, and S ⊆ Range(K), 

 

Pr[𝐾𝐾(𝐷𝐷) ∈ 𝑆𝑆] ≤ exp(𝜀𝜀) × Pr [𝐾𝐾(𝐷𝐷′) ∈ 𝑆𝑆] 
 

While this definition does not create differential privacy, it is a measure of how much privacy is afforded by a 
query K. Specifically, it is a comparison between running the query K on a database (D) and a parallel 
database (D’), where parallel databases are defined to be the same as a full database (D) with one 
entry/person removed.  

Thus, this definition says that for all parallel databases, the maximum distance between a query on database 
(D) and the same query on database (D’) will be epsilon. 
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Intuitively, noise addition masks the differences between the query on the original data set and the set 
resulting from excluding a record. The main consequence of this is that the result of an analysis that has been 
carried out using differential privacy is actually an approximation, and not an exact result. Similarly, if the 
same analysis is performed twice on the same dataset using differential privacy, different results will be 
obtained, as random noise has been introduced. However, it is usually possible to calculate accuracy bounds 
for the analysis that measure how much an analysis result is expected to differ from the noiseless result.  

In a DP setting, increasing the amount of noise will make the data more private at the cost of the query’s 
accuracy, while decreasing the amount of noise will have the opposite effect. Thus, in DP there is a natural 
trade-off between privacy and accuracy. This compromise is controlled by the privacy loss parameter (ε) 
which determines to what extent each individual's information needs to be hidden and therefore how much 
noise needs to be added. This parameter is considered, in turn, what is called "privacy budget", which will be 
spent in the successive analyses that are made of the data using differential privacy. If only a single analysis 
is to be performed, then this analysis can be allowed to exhaust the entire privacy budget, however the most 
typical scenario is one where multiple analyses are expected to be performed on a dataset, and it is necessary 
to calculate what total use has been made of the budget through these analyses. Several composition 
theorems for differential privacy have been developed that state that the composition of two analyses results 
in a privacy loss that is limited to the sum of the privacy losses of each of them. According to this, if a privacy 
loss parameter 𝜀𝜀 = 0.1 has been set, an analyst could perform one analysis consuming 0.1 epsilon, or two 
analyzes each consuming 0.05, without violating the loss-limiting policy privacy to 0.1.  

There are two ways of introducing differential privacy, which refer to the two different places where noise can 
be added: local DP and global DP. While local DP involves adding noise individually to each of the records in 
the database before performing a query, global DP incorporates the noise at the end, on the result of an 
aggregation. In a local DP setting users are more protected, as they do not have to trust the database owner 
to use their data responsibly. However, if the database operator is trustworthy, global DP leads to more 
accurate results with the same level of privacy.  

A large number of analyses can be performed with differential privacy guarantees. Differentially private 
algorithms are known to exist for a wide range of statistical analyses such as count queries, histograms, 
cumulative distribution functions, and linear regression; techniques used in statistics and machine learning 
such as clustering and classification; and statistical disclosure limitation techniques like synthetic data 
generation, among many others. 

It is worth mentioning that, whereas the roles of data provider and data consumer are clear, the data 
intermediary is optional (the technique by itself does not require this role). However, one of their 
functionalities could be to provide a description of the domain of the datasets. In this way, the data consumer 
can refine the queries in order not to consume the whole budget in one request. 

2.2.4 Homomorphic Encryption 

In 1978, R.L. Rivest presented a sketch of how to solve the problem of performing operations on encrypted 
data securely [14] using a loan company as example. In parallel, and after the public key cryptosystem 
scheme invented by Diffie and Hellman [15], Rivest, Shamir and Adleman revolutionized the world of secure 
communications by presenting what is commonly known as the RSA cryptosystem, valid both for encrypting 
messages and for the authentication of them [16].  

In these and subsequent investigations, the key concept is to perform operations on encrypted data and not 
on raw data, and it is precisely this idea that lies behind what mathematicians define as homomorphic 
encryption.  

In a more rigorous way, a scheme is defined as homomorphic encryption if  

 

𝐸𝐸(𝑚𝑚1) ▲𝐸𝐸(𝑚𝑚2) = 𝐸𝐸(𝑚𝑚1 ▲𝑚𝑚2) ∀ 𝑚𝑚1,𝑚𝑚2 ∈ 𝑀𝑀, 

  

where 𝑀𝑀 is the set of messages and 𝐸𝐸 is the encryption algorithm over an operation ▲. This scheme is 
characterized by four main steps:  
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 KeyGen: This is the process of generating a set of keys that will be used to encrypt and decrypt. It if 
the encryption and decryption keys are the same the protocol is called symmetric and otherwise 
asymmetric. 

 Enc: This the process of transform the input from plaintext to cyphertext. Typically, this is done using 
the asymmetric public key. 

 Dec: This is the process of transform the input from cyphertext to plaintext. Typically, this is done 
using the asymmetric private key. 

 Eval: This is the most important point. In this step the evaluation is perform over cyphertext and the 
output must guarantee the preservation of the format, that is, a cyphertext. 

A significant effort has been made to find a cryptographic scheme that would allow any type of operation. So 
much so that it was not until 2009 [18] that it was demonstrated that homomorphic encryption could be valid 
for any type of operation. Because of this, a taxonomy of homomorphic encryption types has been created:  

 Partially Homomorphic Encryption (PHE) allows only one type of operation with an unlimited number 
of times. Example of PHE schemes are:  

 RSA [16]: It is homomorphic over multiplication. 

 ElGamal [18]: It is homomorphic over multiplication. 

 Paillier [19]: It is homomorphic over addition. Additionally, it allows cross-relation between 
plaintext and cyphertext, i.e., being possible the multiplication between a cyphertext and a 
plaintext. 

 Somewhat Homomorphic Encryption (SHE) and Fully Homomorphic Encryption (FHE) allows 
computation over addition and multiplication but a limited (e.g., evaluate a set of circuits with a 
limited depth) and non-limited number of times, respectively. Recent examples of SHE and FHE are: 

 CKKS [20]: This scheme proposes an approximate HE, that is, it does not satisfy the 
correctness property, meaning that the decrypted result of an operation ▲ is not the same 
as if we would perform it with plaintexts. 

 TFHE [21]: In this work a fast implementation is showed. 

One of the challenges in this type of encryption is the multiplication, and the increase of the 
dimension of the cyphertext in each iteration. The step to preserve the dimension is known in the 
bibliography as relinearization. 

Nowadays, HE is still a field that is progressing continuously. Namely, one of the concerns of security teams is 
to know what will happen when quantum computing becomes a reality and what new cryptography schemes 
will be necessary to guarantee the security of our communications.  

2.2.4.1 Relevance to privacy-sensitive data-sharing scenarios  

HE works always with the idea of sending encrypted datasets to carry out encrypted operations over them. 
This idea fits with Figure 2.1 (right) where there is a group of data-consumers that want to make analysis 
without revealing the raw data. Namely, one the most cited applications is the outsourcing of computational 
resources.  

In this scenario, the data provider and the data consumer may belong to the same organization, but they do 
not have enough computational resources, so they have to delegate the computation to an external provider 
such as a cloud service. The point here is that once that data is outside the security controls of the data 
holders there is a clear risk of information leakage, as many times we do not know what interests are behind 
these external providers. 

2.2.5 Anonymization  

Data anonymization [22] [23] [24] is known as the set of models and techniques aimed at protecting personal 
or private information in a data collection (relational, graph-oriented, etc.) using procedures that alter, delete 
or encode the identifiers that either directly reveal personal information or allow establishing a relation 
between the information in the database and specific persons or entities.  
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Anonymization allows organizations to share data to improve processes or create new business opportunities. 
For example, in the field of medical research it is an essential procedure for sharing patient information that 
has led to important scientific advances. Anonymization, while not perfect, minimizes the risk of disclosure of 
sensitive information in order to comply with strict privacy regulation (like GDPR), at the same time that 
preserves data credibility and consistency to carry out statistical analyses or build machine learning models.  

There are multiple data anonymization techniques, which have the same common principle: to achieve privacy 
by preserving, on the one hand, the utility of the data, that is, minimizing the loss of information, and on the 
other, truthfulness, in the sense that each anonymized record corresponds to a single record of the original 
table.  

An important concept in anonymization before going on to review the different techniques is that of quasi-
identifier (QID). Quasi-identifiers are attributes, like zip, sex or date of birth that, despite they do not allow to 
identify a person on their own, when combined can be joined with information obtained from diverse sources 
(e.g., public voting registration data) in order to reveal the identity behind individual records.  

Some techniques of data anonymization are:  

 Generalization: Replaces QIDs by other less specific values, for example grouping numerical values 
by ranges or replacing different categorical values by the same label. Although generalization entails 
a considerable loss of information, which decreases data utility, there are several methods that 
reduce information loss. 

 Suppression and relocation: These techniques are used to reduce over-generalization. While 
suppression consists of eliminating outliers, relocation simply modifies their QIDs, but without 
eliminating them. In general, the existence of outliers leads to over-generalization, since these points 
are distant from other records and since there are usually not too many of them, they cannot be 
grouped in the same equivalence class. With these methods the outliers are eliminated or changed.  
 
Suppression can be accomplished in two different ways: by deleting the entire record or by deleting 
only the QIDs that cause a tuple to violate privacy constrains, which reduces information loss.  

 Perturbation: Consists of replacing sensitive QIDs with modified values. Some specific alteration 
strategy is usually followed, such as character shuffling, encryption, term, or character substitution, 
which makes identification by reverse engineering difficult. This technique is useful for preserving the 
utility of the data since the degree of generalization is limited by the use of fake records instead of 
equivalence classes like in generalization. 

 Bucketization: Consists of partitioning the tuples into buckets and then separating the sensitive 
attribute from the QIDs by randomly permuting the values of the sensitive attributes in each bucket. 
The sanitized data then consists of buckets with permuted sensitive values. This way better utility 
than generalization is achieved. However, because bucketization publishes the QID values in their 
original forms, an adversary can find out whether an individual has a record in the published data or 
not, and therefore does not prevent membership disclosure. 

 Slicing: This technique aims at ensuring that highly correlated attributes are grouped together by 
partitioning the data both horizontally and vertically. First, vertical slicing is performed by grouping 
attributes into columns based on their correlations. As a result, each column contains a subset of 
attributes highly correlated. Then performs horizontal slicing by grouping tuples into buckets where 
each bucket contains a subset of tuples. The main idea is to break the association between columns 
but retain the association within each column. This way the data dimensionality is reduced while 
preserving data utility better than bucketization and generalization. 

 Synthetic data: Consists of the algorithmic creation of artificial data with no direct relation to the 
records whose privacy is to be preserved, but generated from mathematical models derived from the 
patterns and statistical properties of the original dataset.  

An anonymized database is susceptible to what is known as a re-identification attack, which consists of 
attempting to trace the supposedly anonymized records to the records of another database or related data 
source in order to extract confidential information from it. 

To address reidentification attacks, the k-anonymity model was proposed: a data set is said to be k-
anonymous (k≥1) if for every record there are at least k − 1 other records indistinguishable to it on the quasi-
identifier attributes. Records with identical quasi-identifier values constitute an equivalence class, and each 
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individual remains anonymous within it. The larger the value of k, the better the privacy is protected. k-
anonymity is usually implemented through generalization or suppression, which implies information loss. 
However, because data should retain as much information as possible to remain useful for analytics, a trade-
off between privacy and accuracy arises at this point. In addition, it has been demonstrated that a lack of 
diversity in the sensitive attributes (e.g., all persons suffer from the same disease) leads to severe privacy 
issues.  

Luckily, the concept of l-diversity comes here to the rescue by considering diversity among sensitive 
attributes. l-diversity prevents uniformity and background knowledge attacks by ensuring that at least l 
sensitive attributes values are well-represented in each equivalence class (e.g., the probability to associate a 
tuple with a sensitive attribute value is bounded by 1/l)  

In a context where Artificial Intelligence and Machine Learning have gained great importance in recent years, 
the need to share data to feed algorithms becomes increasingly important. However, the existence of 
sensitive data does not allow many databases to be shared in raw, making anonymization, due to its relative 
simplicity and ease of implementation, normally the first choice to prevent the disclosure of sensitive data 
and comply with GDPR.  

In this scenario various algorithms and techniques like classification, clustering, regression, neural networks, 
association rules, decision trees, genetic algorithm, nearest neighbour method etc., are used for knowledge 
discovery from anonymized databases. However, due to the relatively high probability of re-identification, 
especially in high-dimensional databases, and the high cost in terms of information loss incurred to prevent it, 
other methods presented in this document are usually preferred. 

2.2.6 Trusted Execution Environment 

Trusted Execution Environment (TEE) is defined as a secure area inside a main processor [25] , that is, the 
code and data executed within a TEE is guaranteed to be secure against unauthorized entities from altering 
what is running. 

 
Figure 2. 3 Trusted Execution Environment 

To illustrate what a TEE is, let us consider a mobile phone. In these devices there are several applications 
which provide different functionalities, some of them related with mobile wallets with access to our bank. It is 
especially important that the information managed by this application is secure, but not only in terms of the 
application itself, but also in its interaction with the rest of the apps that we have installed. There may be 
others with malicious intent that are trying to attack and alter their original behaviour. The isolation of this 
app with the rest of the word is what TEE provides (it can be also found in the bibliography as “enclave”).  
An important feature of a TEE is that a remote user can receive attestation that the enclave has not been 
modified, so what is running is exactly what is expected [26].  

We have not entered in detail about the current implementations; however, a TEE is not something that can 
be developed, it is provided by integrated circuit manufacturers such as ARM Trustzone, AMD Secure 
Processor, or the best-known Intel Software Guard Extensions. 

TEE applies to every data-sharing scenario because it is not a proper technique by itself like the rest of the 
ones that are explained in this document, it is more a software/hardware solution that tells you that if you run 
your app in a specific way, what is executed is what you expected. 
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Seen in this way, it could be said that TEEs provide an additional layer of security to those discussed here, 
regardless of the privacy techniques that may be implemented and the mathematical protocols behind them. 
TEE is agnostic to data privacy and what it guarantees is that the data has not been modified by any external 
agent, without entering whether the data is sensitive or not. 

For illustration purposes, let us consider a TEE combined with other PET technique such as HE. We have 
already addressed that HE is suitable for outsourcing of computation. Whereas this idea is a clear advantage 
of HE, it is not out of threats because even if our data is encrypted via HE, this encrypted data could be 
modified by this external entity. If this happens, once that the calculation is carried out, the decrypted result 
would be wrong. Here is where TEE could appear, providing a secure layer that guarantees that the data has 
not been modified. 

 

 

2.2.7 Zero Knowledge Proofs 

Zero Knowledge Proofs [27] are a cryptographic method that allows one party (called the prover) to prove the 
validity of a statement to another party (called the verifier) without revealing the secrets that make this 
statement true. For example, the prover might wish to know a secret password without actually revealing it. If 
the prover really knows the password, and both parties follow the protocol, the verifier will be convinced 
(Completeness); if the prover is lying, and the verifier follows the protocol, the verifier will with high 
probability detect the lie (Soundness); finally, the verifier will not learn the password, or any other 
information that would allow them to impersonate the prover (Zero-knowledge). 

This is an umbrella term under which covers many related technologies, each with different trade-
offs:  

 Supported statements: Some methods support arbitrary arithmetic circuits, making them highly 
versatile. Other methods achieve efficiency gains by specializing in specific types of statements, such 
as the satisfiability of instances of a particular NP problem or the validity of another zero-knowledge 
proof.  

 Interactive/Non interactive: The original formulation requires interaction between prover and 
verifier, in the form of challenge-response messages. Newer advances allow for fully local 
generation and verification of proofs, at the cost of increased proof size, computation time, and/or 
trust in third parties [28]  

 Trusted setup: Some methods require a trusted third party to setup the computation. This 
requirement can be sidestepped with the use of other technologies such as SMPC, at the cost of 
lower efficiency.  

 Efficiency: Both the prover and verifier’s complexity must be considered, as well as the 
communication complexity between them. Each method has its own trade-off between these three 
quantities, and the choice will depend on the specific use case; for example, if proofs are verified 
more often than they are checked, the chosen method should shift the computational complexity to 
the prover.  

 Cryptographic assumptions: Most methods rely on standard cryptographic assumptions (e.g., 
hardness of factoring). However, some widely accepted and used methods such as SNARK, require 
nonstandard assumptions. Some other methods are based on stronger assumptions than usual, 
making them post-quantum secure.  

While all applications are related to user privacy and verifying computations or knowledge, the difference in 
supported statements gives rise to different technological applications. These have mostly been motivated by 
blockchain but also are of independent interest: 

 Verify that a given data point is included in a dataset, without revealing the dataset. This can be 
achieved efficiently with the use of Merkle Trees, with the proof size being logarithmic in the dataset 
size [29]  

 Securely prove one’s identity (i.e., knowledge of a secret password) without needing to trust the 
identity checker [30]  
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 Proving some arithmetic relation over private data without revealing the data itself. For example, a 
data owner might wish to prove the truth of a given statistical aggregate without revealing their 
dataset, or a model owner might wish to prove its accuracy on a public dataset without disclosing the 
model [31]  

 Verifiably execute an arbitrary computation. This verification is much faster than executing the 
program (in some specific cases, such as executing the same program with different inputs to 
amortize a per-program setup cost), making it a suitable tool for verifying outsourced computations: 
for example, it could be used to verify that a model has been correctly trained (i.e., no data poisoning 
or backdoor attacks have been added). However, the cost to the prover is immense, making this 
technology still unsuitable for realistic use cases [32].  

Data sharing scenarios are partly defined by the terms governing which data can be accessed by each party, 
and which computations are allowed. Zero-Knowledge Proofs offer a technological trust-free way to enforce 
and verify that contractual obligations are met. This includes user verification, allowing trustless transactions 
of datasets or models, and verifying that an outsourced computation took place as expected. This verification 
might be performed by the data holders, or by a trusted intermediary such as the data intermediary role 
defined.  

However, it can add significant overhead, making it unsuitable for large scale datasets or computations. In 
other cases, it might be rendered unnecessary by other technologies (e.g., some SMPC methods include their 
own verification schemes).  

Given the variety of applications, adoption of this technology must be carefully considered for each scenario. 
It will be most relevant on scenarios where auditing would otherwise require access to sensitive data. 

2.3 Conclusion 
We have addressed a set of techniques that guarantees data privacy via different mechanisms, most of them 
based in cryptography, but also via statistic methods or hardware solutions such as differential privacy and 
trusted execution environments, respectively.  

Different data sharing scenarios have also been addressed, showing the main conclusion: there is no single 
PET that solves all privacy issues or covers all possible use cases. Therefore, it is crucial to know the data 
sharing scenario to determine which technique is the most appropriate.  

Another conclusion is that privacy does not come for free. It often requires sacrifices, which usually involves 
having to find a compromise been privacy, accuracy, and performance. These sacrifices can be reduced by 
combining some of the techniques. For example, SMPC and HE guarantees privacy of the inputs, that is, 
neither organization learns anything in the computation flow but they do not say anything about the output 
(the reader can think in a SMPC average aggregation with only two parties, if the output is analysed by one of 
the two parties, it can learn the input of the other one because SMPC guaranteed the inputs, no what can be 
learnt from the output, and for specific use cases this is a privacy leak). In this scenario SMPC could be 
combined with DP to aggregate a statistical noise to the output (sacrificing the accuracy of the result).  
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3 PET Evaluation 
This section analyses the state of the art of privacy-enhancing techniques (PET). For each of the relevant 
technologies, we: 

 Evaluate its relevance to data sharing scenarios. 

 Evaluate its degree of usability by creators and users of data spaces. 

 List and analyse real-world use cases enabled by that techniques. 

 Explain the level of security achieved, enabling data holders to take informed decisions. 

 List and evaluate existing implementations and references. 

 Provide and justify the technology’s readiness level (TRL). 

Overall, the section aims to serve as a quick but detailed reference for data holders, data subjects, data 
analysts and data intermediaries when evaluating a technique’s applicability to any data sharing scenario.  

There is a wide variety of Privacy Enhancing Techniques. While all of them aim to protect the data subject’s 
privacy, each has its own unique drawbacks and strengths. Understanding the state of the art is a key step in 
designing and regulating data spaces. Before accepting and adopting data spaces, participants must 
understand the risks incurred and the potential benefits. 

3.1 Secure Multi Party Computation 
Secure Multiparty Computation (SMPC) is a technology which allows a group of data holders/subjects to 
jointly compute a function on their combined private inputs, without revealing anything other than the result. 
It is a key enabling technology for privacy preserving computations: it allows the group to act as a trusted 
third party with access to all the group's private data, without any of the individual members seeing any data 
besides their own [6]. 

As a toy example, SMPC enables a group of friends to compute the group's average age, or find the oldest 
one, without any of them revealing their age. Realistic use cases include:  

 Statistical analysis of distributed datasets: In a healthcare use case involving several hospitals, 
each hospital has data on their patients but is unable to share it with others to obtain statistical 
insights form the global dataset. SMPC enables such a collaboration, while keeping the datasets 
private. Possible computations include:  

 All common statistical analysis, such as the average, standard deviation, maximum, etc.  

 Specialized analysis, such as the Kaplan-Meier survival curve [33]. 

 Record linkage: In the financial domain, fraud is easier to detect when the same fraudulent 
customer can be traced through several banks. SMPC enables several banks to find which 
problematic customers they have in common, without revealing any information about any other 
customer, using Private Set Intersection [34].  

 Encrypted Inference: SMPC enables a data owner and a model owner to jointly compute the result 
of applying the model to the data, without either the data or the model’s parameters being revealed 
to the other party. For example, a hospital could detect genomic diseases for a patient, without the 
patient’s genome being revealed or the patient gaining access to the hospital’s model [35]. 

 

In general, SMPC is useful for all applications in which a group would benefit from pooling their data but have 
legal barriers or incentives preventing them from sharing it. In particular, SMPC is well suited to the data 
sharing scenario of Figure 2.1 (left): Data providers have a common interest, and they will actively participate 
in the computation. In this case, each data provider ensures their own safety: they only need to trust 
themselves to know the data is secure (assuming strong security parameters).  

SMPC can also be used for the other scenario: data providers can outsource their data to a SMPC cluster 
acting as a trusted third party. While this has the risks associated with moving data, it mitigates them: the 
data is encrypted before leaving the data provider's premises, and the distributed nature of the SMPC cluster 
removes the single point of failure inherent in a single-node third party. The technical and computational 
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costs of running a SMPC node are shifted from the data provider to the data intermediaries running the 
cluster, at the cost of having to trust the data intermediaries to collude.  

3.1.1 Effectiveness & Usability  

The main drawback of SMPC technology is the performance overhead: computations will be several 
orders of magnitude slower than operating on unencrypted data, due to the communication cost inherent in 
SMPC protocols. This performance cost is non-trivial and must be considered: SMPC is currently not suitable 
for training large-scale machine learning models, operating on terabyte-sized datasets, or complex real time 
applications. However, most data-sharing scenarios consist of one-off computations, simple statistical 
queries, inference of large-scale machine learning models, and analysing gigabyte-sized datasets. For these 
common applications, SMPC is efficient enough to be used in practice, making it an effective technology.  

The effectiveness of SMPC has been shown in several real world uses:  

 The Danish Sugar Beet Auction was performed in 2008, using SMPC to run a double auction while 
keeping individual bids private. SMPC proved to be cheaper and more practical than hiring an external 
consultancy to act as a trusted third party. The computation was performed between 3 parties: the 
buyer, a group representing all sellers, and the data intermediary responsible for setting up the 
computation, as in the data sharing scenario of Figure 2.1 (left) [36]. 

 IKT erialade tudengite töötamine (employment of ICT students), a 2015 social study by the 
Estonian Government, had the goal of finding if there was any relation between the high dropout rate 
of college students enrolled in ICT and the early hirings of the ICT industry. To answer this question, 
two different datasets had to be linked: 10 million tax records from the Ministry of Finance, and 
600.000 education event records from the Ministry of Education. To circumvent the legal restrictions 
that prevent these organizations from sharing the data between themselves, the data was encrypted 
between 3 parties: an association representing ICT universities, the Ministry of Finance, and the SMPC 
platform owner, which acted as a data intermediary. Note that most of the data preprocessing and 
transformation was done after encrypting the data, reducing the data provider’s technical burden but 
increasing the computation’s complexity. The technical report offers a detailed account of the 
challenges present when bringing SMPC into practice [37].  

 The Boston Women’s Workforce Council 2017 Report analysed data from 114 companies to 
assess the gender wage gap in the Boston area. The scope and detail of the study wouldn’t have 
been possible without SMPC, since it required analysing sensitive data from competing companies. 
There was a strong focus on usability: data holders/subjects encrypted and uploaded their data via 
the browser, without needing to download or configure anything, or to stay online during 
computation. Once encrypted, the data was processed by the data intermediary orchestrating the 
computation and the data analyser which gets the decrypted results. Note that the protocol used only 
supports additive aggregation, instead of arbitrary operations. This has important practical 
advantages: its simplicity aids comprehensibility and trust, reduces the technical cost of 
implementation, and improves performance [38].  

As these examples show, SMPC is an effective technology for enabling privacy preserving analysis in 
a data sharing environment. The technical reports give us a glimpse into SMPC’s usability:   

 SMPC is usable without specialized knowledge. Data analysts can use existing frameworks to express 
their computations in a high-level language, without needing to implement or even understand the 
underlying complexity inherent in SMPC protocols. Data holders only need to understand the security 
assumptions behind the chosen protocol, and optionally take part in the computation. Most of the 
burden falls on the SMPC platform operator, which deploy the technical solution, coordinates all the 
computation nodes, and optionally acts as an extra node. Data intermediaries might either act as 
platform operators or as intermediaries between platform operators and the data holders & 
analysts.  

 For realistic use cases, SMPC’s performance is not a major roadblock. While computations might take 
minutes instead of seconds, this cost is dwarfed by the weeks or months required to set up any 
study, with or without SMPC technology.  

 There are legal, bureaucratic, and technical barriers to processing sensitive data. The mathematics 
behind an SMPC protocol ensure that no data will be revealed. However, this is far from enough to 
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allow sidestepping the legal barriers protecting private data: the security claims must be confirmed 
by cryptographic experts, the code implementation must be audited, and legal departments must 
ensure that data protection laws are respected. This process will hopefully get easier with more 
awareness of SMPC and more standardized solutions, but it is currently a time-consuming obstacle.  

 SMPC expects all data providers to have clean, numerical, preprocessed data, with the same clearly 
defined scheme. This is rarely the case in practice; one of the key duties of the data intermediary is 
to enable this standardization. Note that it i’s also technically possible to clean or preprocess data 
once encrypted, thanks to SMPC’s computing flexibility. While useful for simple adjustments, such as 
subtracting the mean value from a column, complex ad hoc transformations should be avoided in 
practice since they will require operating blindly or revealing data.  

3.1.2 Security  

SMPC offers strong security guarantees based on standard cryptographic assumptions. In contrast to standard 
centralized processing, an attacker must compromise a majority of (or all) computing nodes to disrupt the 
computation or obtain private data. While all protocols offer a baseline level of security, they make different 
assumptions on the power level of an attacker and the number of expected corrupted nodes. The level of 
security will depend on these choices:  

 How many data holders will take place in the computation? A higher number of nodes makes 
it harder to attack a majority of them, while a lower number makes it easier to audit and trust all 
nodes. Some protocols are specialized for 2, 3, or 4 parties, while others allow an arbitrary number. 
Note that 2 data holders can still perform a 3-party protocol, by employing a non-colluding third 
party to aid as a computation node.  

 How many participants are necessary to complete the computation? Choosing a number 
lower than the number of parties will make the computation tolerant to faulty nodes going offline, at 
the cost of lowering the number of parties an attacker must corrupt to access private data. Realistic 
use cases usually have a small number of parties and do not require critical availability, so most 
protocols require all parties to be present to avoid the increased risk of attack.  

 What severity of attack is expected? Honest participants will follow the protocol and not collude 
by sharing their private intermediate results. However, an attacker might compromise some of the 
nodes, gaining access to their data (honest-but-curious attacker) or deviating from the protocol 
(malicious attack). Protocols range from resisting 1/3 of corrupted nodes, to resisting all nodes but 
one being corrupted. Resistance against more powerful attacks has a performance cost.  

 Is there a trusted third party that will not collude with any data owner? Some protocols 
have a costly pre-processing phase, which improves the performance of the actual computation. A 
"trusted dealer" can make these protocols more efficient, at the risk of adding a single point of 
failure.  

This flexibility of hyperparameters is a two-edged sword. These choices are specific to each project and 
require both domain knowledge and a mild degree of cryptography knowledge to answer effectively. While 
the data intermediary might offer expertise and recommended configurations, data holders should 
understand these choices before engaging in the computation, since their privacy depends on them.  

Note that SMPC only ensures the privacy of the computation; an attacker might still extract sensitive 
information from the computation’s output or manipulate the input data to generate an incorrect result. These 
attacks aren’t specific to SMPC.  

3.1.3 Implementations and References  

There are several implementations, both open source and proprietary, of SMPC technologies. They range from 
academic implementations of cryptographic protocols to production-ready applications focused on real world 
deployment and usage. Overall, the existing implementations make it possible to use SMPC without 
specialized cryptographic knowledge.  

At the time of writing, these are some of the most interesting solutions, roughly ordered from easier to use to 
more focused on real world deployment. Unless specified otherwise, they are open-source:  
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 MPyC (MIT License) is a Python package suitable for local prototyping SMPC computations. It 
features a high-level interface mimicking standard python operators, extensive documentation, and 
several examples of adapting common algorithms to a SMPC setting. It’s easy to install and the 
examples can be tried online, making it a perfect fit for getting familiar with SMPC [39].  

 MP-SPDZ (MIT License) is a benchmarking-focused academic framework. It features reference 
implementations of 34 different SMPC protocols, as well as a high-level language based on python 
for seamlessly switching between them. Protocols cover the whole range of security choices, making 
this library a valuable resource to benchmark the performance cost of different options without 
needing specialized cryptographic knowledge [40].  

 CrypTen (MIT License) and tf-encrypted (Apache License 2.0) are two unrelated frameworks 
with a common focus on usability by machine learning specialists, by mimicking PyTorch and 
TensorFlow interfaces respectively. While not yet production ready, they are useful tools for 
prototyping and benchmarking complex machine learning models, while working with a familiar 
interface [41] [42]. 

 JIFF (MIT License) is an open source, production-ready, JavaScript library for building web-based 
SMPC applications. It features high level abstractions to avoid direct contact with the SMPC protocols. 
It’s highly usable, since it can be integrated within existing applications, runs in any JavaScript 
environment (browsers, mobile, & servers), and is resistant to nodes going offline [43]. It has been 
successfully used in the real world [38]. 

 FBPCF (MIT License) is a SMPC C++ library ready to be deployed on the cloud. Originally created for 
running randomized controlled trials without revealing user data, it allows custom computations with 
a moderately abstract layer [44] [45].  

 Sharemind (closed source) is a production-ready proprietary platform for running secure 
multiparty computations. Programs are written in a custom C-like language which gets compiled to 
SMPC protocols. [46]. It has been successfully used in the real world [37].  

Due to the nature of the static document, the above list might be outdated; we refer the reader to the living 
documents of [47] and [48] for updated references.  

Two standards exist for SMPC: IEEE 2842-2021 includes a technical framework for SMPC, security levels, and 
example use cases. ISO/IEC DIS 4922-1 defines all the relevant properties for an SMPC protocol, with the 
intention of using these to standardize specific protocols.  

3.1.4 Conclusion  

To sum up, we briefly summarise the upsides of SMPC technology: 

 Allows aggregating data from several data holders, even if they distrust each other.  

 Offers strong security guarantees, based on traditional cryptographic assumptions.  

 Has a high hyperparameter flexibility, allowing to tailor the balance between security and 
performance.  

 Can perform arbitrary computations on the input data, revealing only the end result.  

 Has a vibrant development ecosystem with a wide variety of open-source frameworks.  

 Does not require data holders or subjects to have a deep knowledge of SMPC.  

On the other hand, SMPC has the following limitations: 

 Performance will be several orders of magnitude worse (4~6) than operating on unencrypted data.  

 Computation nodes require a high bandwidth, low latency connection during the computation.  

 All participant nodes must agree beforehand on the exact computation to be performed.  

 For most cases, data must be preprocessed, clean, and numerical before uploading.  

 Data holders require some degree of specialized knowledge to choose the right privacy settings.  

 Only protects the computation itself; sensitive data might still be extracted from the result.  
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Overall, we consider SMPC to be a key technology for privacy aware data processing. While not yet widely 
available in production environments, it has been used for real-world use cases, giving it a Technology 
Readiness Level of 6~7.  

3.2 Federated Learning  
Federated learning (FL), by having a larger set of training samples available from multiple organizations, 
allows better models to be created than if each federated entity were trained only on its own data. For 
example, in medical research this is especially advantageous considering that a hospital's patient data and 
images are obtained from a specific subset of the population, and they are therefore unlikely to have been 
seen or shared with other hospitals. Moreover, if the hospitals in the federation are located in different 
geographic regions, patient traits differ substantially: the sex ratio, age distribution and ethnicities of the 
patient populations may differ, which introduces diversity into the training set and thus increases its 
generalization capabilities. Federated learning also makes a difference when dealing with atypical patients. If 
the model is built with data from only one hospital, a few outlier cases will be treated as noise and will not be 
captured by the model, as it will not have the opportunity to see enough cases, but in a federated 
environment, where data availability is greater, these rare cases could be integrated into the model and, by 
generalizing better, increase its diagnostic capability. This type of cooperation therefore enables the 
advancement of precision medicine. However, the advantages of FL can be extrapolated to other domains. An 
example is the detection of banking fraud. In general, cases of fraud are exceptional compared to the total 
volume of operations, and are not sufficient to develop a model, so this problem is usually addressed from an 
anomaly detection approach, which presents major shortcomings, but in a federated environment where the 
learning algorithm can see enough cases of fraud can develop a model that captures the fraud in an 
operation, leading to greater accuracy than the mere detection of anomalies.  
However, when referring to federated learning we do not have to think exclusively of organizations that 
collaborate by providing their data repositories and their servers (what is known as cross-silo FL). Another 
common way -if not the most common- of doing FL is cross-device FL, where clients are a very large number 
of mobile or IoT devices. There are several examples of successful applications of cross- device FL in 
consumer digital products, including the following:  
 

 Google’s Gboard, a virtual keyboard for smartphones which suggest the next word while typing a 
text thanks to a recurrent neural network model trained in millions of phones with a miniature 
version of TensorFlow. The training only happens when the device is idle, plugged in on a wireless 
connection to avoid any impact on the phone’s performance.  

 Messages (formerly known as Android Messages) is an SMS, RCS, and instant messaging application 
developed by Google for its Android mobile operating system. In addition to using FL to improve its 
features, Google also claims to use secure aggregation to protect users' contributions to the global 
model.  

 Now Playing feature on Google’s Pixel phones -a tool that shows what song is played-, when 
recognizes a song, records the track name into the on-device Now Playing history, where users can 
see recently recognized songs and add them to a music app’s playlist. Later, when the phone is idle, 
plugged in, and connected to WiFi, Google’s federated learning and analytics server may invite the 
phone to join a “round” of federated analytics computation, along with several hundred other phones. 
Each phone in the round computes the recognition rate for the songs in its Now Playing History, and 
uses the secure aggregation protocol to encrypt the results. The encrypted rates are sent to the 
federated analytics server, which does not have the keys to decrypt them individually. But when 
combined with the encrypted counts from the other phones in the round, the final tally of all song 
counts (and nothing else) can be decrypted by the server. The result enables Google engineers to 
improve the song database (for example, by making sure the database contains truly popular songs), 
without any phone revealing which songs were heard.  

 Apple also uses cross-device FL, in this case together with DP, in iOS 13, for applications like the 
QuickType keyboard and the vocal classifier for Siri.  

Also, edge federated transfer learning methods can be applied to personal health measurement devices [49]. 
Some personal healthcare devices, such as blood pressure monitors and activity recognition devices, are used 
to observe health conditions and raise health alarms, which plays an important role in smart health systems. 
For users, it is necessary to have a pre-trained model at the beginning and train a personalized model (fine 
tune) updated by their physical conditions in real time.  

https://en.wikipedia.org/wiki/SMS
https://en.wikipedia.org/wiki/Rich_Communication_Services
https://en.wikipedia.org/wiki/SMS_language
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Android_operating_system_version_history
https://arxiv.org/abs/1902.01046
https://arxiv.org/abs/1611.04482
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3.2.1 Effectiveness & Usability  

A few aspects to consider when implementing a FL system are listed below:  
 
IID data 
Having Independent and Identically Distributed (IID) data is always desirable in a FL environment. Formally, 
IID at the clients means that each mini-batch of data used for a client’s local update is statistically identical 
to a uniformly drawn sample (with replacement) from the entire training dataset (the union of all local 
datasets at the clients). However, since the clients independently collect their own training data, which vary in 
both size and distribution, and these data are not shared with other clients or the central node, the IID 
assumption almost never holds in practice. It turns out that the federated averaging (FedAvg) algorithm which 
is the most common technique for aggregating local models into a global model, fails to achieve a 
satisfactory model and system performance when the datasets produced by different clients are not 
independent and identically distributed (Non-IID) and the communication cost is high, so challenges arise 
when training federated models from data that is not identically distributed across devices, both in terms of 
modelling the data and analysing the convergence behaviour of associated training procedures.  
 
Efficient Communication across the federated network 
In cross-device FL, communication is a bottleneck, and it is necessary to use efficient communication methods 
that minimize information transfer. To achieve this, two possibilities arise: (1) reducing the total number of 
communication rounds, or (2) reducing the size of transmitted messages at each round. Local updating 
methods allow for a variable number of local updates to be applied on each machine in parallel at each 
communication round, which in turn reduces the total number of communication rounds. Model compression 
schemes can significantly reduce the size of messages communicated at each update round. Also, 
decentralized topologies are an alternative when communication to the server becomes a bottleneck, 
especially when operating in low bandwidth or high latency networks.  
 
Systems Heterogeneity  
Due to variability in hardware (CPU, memory), network connectivity (3G, 4G, 5G, WiFi) and power supply 
(battery level), differences in storage, computing and communication capabilities of devices across the 
federated network may occur. Moreover, only a few of them are available at a time and, even then, not all of 
them are reliable, as it is not uncommon for an edge device to go down due to connectivity or power issues.  
For this reason, it is essential for a federated learning platform to be fault tolerant, as participating devices 
may drop out before completing a given training iteration. Therefore, federated learning methods have to be 
developed in such a way that they (1) anticipate a low amount of participation, (2) tolerate heterogeneous 
hardware, and (3) are robust against devices dropping out of the network. For example, asynchronous 
communication can be used to enable parallelization of iterative optimization algorithms, which will prevent 
slow devices from blocking an entire training round.  

3.2.2 Security  

FL protocols may contain vulnerabilities for both (1) the (potentially malicious) server, who can observe 
individual updates over time, tamper with the training process and control the view of the participants on the 
global parameters; and (2) any participant who can observe the global parameter and control its parameter 
uploads. For example, malicious participants can deliberately alter their inputs or introduce stealthy backdoors 
into the global model [43]. This means that an adversary might attempt to prevent a model from being 
learned at all, or they might attempt to bias the model to produce inferences that are preferable to the 
adversary (poisoning attacks). On the other hand, observations of model updates can be used to infer a 
significant amount of private information, such as class representatives, membership as well as properties 
associated with a subset of the training data. Even worse, an attacker can infer labels from the shared 
gradients and recover the original training samples without requiring any prior knowledge about the training 
set.  
To address poisoning attacks differential privacy [12] can be used, as in [50] and [51]. Data poisoning can be 
thought of as a failure of a learning algorithm to be robust: a few attacked training examples may strongly 
affect the learned model. Thus, one natural way to defend against these attacks is to make the learning 
algorithm differentially private, improving robustness. Intuitively, an adversary who is only able to modify a 
few training examples cannot cause a large change in the distribution over learned models. While differential 
privacy is a flexible defense against data poisoning, it also has some drawbacks. The main weakness is that 
noise must be injected into the learning procedure. While this is not necessarily a problem—common learning 
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algorithms like stochastic gradient descent already inject noise—the added noise can hurt the performance of 
the learned model.  
Client-level differential privacy can also be used to prevent any client from trying to reconstruct the private 
data of another client by exploiting the global model [52]. Client-level differential privacy is achieved by 
adding random Gaussian noise on the aggregated global model that is enough to hide any single client’s 
update. In addition, we propose another defense technique: secure aggregation. It is a functionality for n 
clients and a server. It enables each client to submit a value (often a vector or tensor in the FL setting), such 
that the server learns just an aggregate function of the clients’ values, typically the sum. Multi-party 
computation SMPC [6] can be used to carry out this aggregation, in such a way that the server aggregates 
shares of each client’s contribution to the model instead of their clear values.  

3.2.3 Implementations & References  

There are a variety of federated learning frameworks that provide the basic algorithms and infrastructure 
required to perform PPML. Some that stand out from the rest are:  

 PySyft/PyGrid (Apache License 2.0) is an open source developed by the OpenMined community. 
PySyft is a library that supports federated and secure learning on PyTorch, with support for Deep 
Learning algorithms, while PyGrid is the platform that allows to set up a peer-to-peer network to 
exploit PySyft's functionality (https://github.com/OpenMined/PySyft). 

 TensorFlow Federated (TFF) (Apache License 2.0) is an open-source framework, developed by 
Google, for machine learning and other calculations on de-centralized data. TFF has been developed 
to facilitate open research and experimentation with federated learning 
(https://www.tensorflow.org/federated). 

 FATE (Federated AI Technology Enabler) (Apache License 2.0) is an open-source project 
initiated by Webank's AI Department to provide a secure computing framework to support the 
federated AI ecosystem. It implements secure computation protocols based on homomorphic 
encryption and multi-party computation (MPC). It supports federated learning architectures and 
secure computation of various machine learning algorithms, including logistic regression, tree-based 
algorithms, deep learning and transfer learning (https://github.com/FederatedAI/FATE). 

 uTile PET (closed source) a secure calculation and federated learning platform based on the 
PySyft/PyGrid framework. uTile allows for training a machine learning model in a collaborative 
manner between various parties without the data leaving where it is stored, additionally 
guaranteeing data privacy by means of multi-party computation and/or differential privacy 
techniques. uTile enables PySyft/PyGrid for production environment and enhances it with a data 
loading utility and allows the users to incorporate schemas to properly handle dataset feature 
headers across the participating entities. While it is mainly focused in horizontal federated learning 
at this moment, uTile can carry out clustering on vertically partitioned datasets, and it is planned to 
incorporate soon more algorithms to the vertical federated learning setting ( 
https://www.gmv.com/en-es/products/utile). 

 Flower (Apache-2.0 license) is an open-source project agnostic to which library/framework is used 
for training, focusing on the aggregation strategies of the local models. It also provides an interface 
for training on devices (https://github.com/adap/flower). 

 Fed-ML (Apache-2.0 license) is very similar to Flower, focusing on the deployment in production 
environments (https://github.com/FedML-AI/FedML). 

  

3.2.4 Conclusion  

Federated Learning is of great interest in research and new techniques and algorithms are constantly being 
presented, as well as new frameworks and use cases in different application domains. However, while FL on 
devices has proven to be an indisputably successful technique, which has been commercially exploited, in its 
so-called cross-silo version (including vertical FL) the results do not seem to have been transferred to 
production environments with the same ease. Although there are a variety of possible causes, we dare to 
guess the following:  
 

https://github.com/OpenMined/PySyft
https://www.tensorflow.org/federated
https://github.com/FederatedAI/FATE
https://www.gmv.com/en-es/products/utile
https://github.com/adap/flower
https://github.com/FedML-AI/FedML
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1) These types of FL deployments have not had the support of the technology giants such as Google or Apple, 
who have preferred to focus on FL on devices.  
2) The difficulty of homogenizing data between different organizations poses a problem that cross-device FL 
does not have, as Google/Apple create the applications that collect/contain the data.  
3) The reluctance of organizations with large volumes of data whose privacy is vital (think of medical records 
or bank account movements) towards a novel technology that "promises" not to reveal private information, 
but which is not impregnable, particularly if it is not complemented by other PETs such as SMPC or DP.  
 
A TRL of 8-9 can be assumed, since at least in its cross-device mode this technology has not only gone 
beyond mere prototypes but has even been commercially exploited.  

3.3 Differential Privacy  
Differential Privacy (DP) addresses some of the limitations of previous approaches like k-anonymity. In the words of its 
authors [12], Differential Privacy promises to protect individuals from any additional harm that they might face due to 
their data being in the private database x that they would not have faced had their data not been part of x. For example, 
this may contribute to the advancement of medical science to the extent that it facilitates the availability of datasets 
(which would otherwise be private, and thus, not accessible) as well as encourages patients to participate in clinical 
studies. In addition, DP can help companies comply with data privacy regulations, such as the GDPR and CCPA, without 
undermining their ability to analyze their customers' behavior, and therefore generate value from data insights that would 
otherwise be unfeasible without a privacy protection technique.  
However, the application domain of DP is not limited to statistical queries. Sometimes the private dataset is used to train 
a ML model. In this case DP plays a fundamental role to protect privacy by adding noise while ensuring that the model still 
gains insight into the overall population, and this way provides predictions that are accurate enough to be useful, while 
makes it tough for the adversary to make any sense from the data queried. This applies not only to centralised learning; in 
fact, Differential Privacy is an essential complement to enhance the privacy of other PET technologies such as Federated 
Learning.  
To this day, companies such as Google, Apple and Uber, as well as government agencies such as the US Census Bureau, 
have implemented various real-world implementations of differential privacy.  

3.3.1 Effectiveness & Usability  
There are a few aspects to consider when implementing a DP system, which are explained in the following: 

Utility 

Utility evaluates the quality of a query output. One popular approach to measure utility in the context of differential 
privacy is (α, δ)-usefulness, defined as follows:  
A mechanism is (α, δ)-useful if every query output is within α of the correct output with a probability of at least 1-delta, 
i.e.:  

Pr[|Kf(D)-f(D)|≤ α] ≥1- δ  
 

Where K is a randomized function used to respond to query f.  
 

Setting epsilon  

Setting a value for epsilon is not an easy task, as there is no way for ordinary data holders to figure out the exact level of 
privacy protection of a dataset given by a specific epsilon value. Furthermore, this question is not adequately covered in 
the Differential Privacy literature.  
While there exists no experimental evaluation to guide the user on choosing an appropriate epsilon value, authors 
normally suggest values in the range (0,1), sometimes greater than 1, but always lower than 10. In a recent attempt at 
finding general guidelines for setting appropriate epsilon values, the authors in [53] found that epsilon cannot be defined 
in general but will always depend on the dataset in question. Similarly, the authors in [54], [55], state that, given an 
epsilon value, the probability of re-identification is not fixed, it rather depends on data values in the data set and even on 
data for individuals outside the data set.  
 

Sensitivity  

In addition to epsilon, sensitivity is another parameter that comes into play to regulate the amount of noise introduced 
when querying with differential privacy. To determine sensitivity, the maximum of possible change in the result of a query 
when removing an individual from the database needs to be calculated. While properly set sensitivity guarantees that the 
query meets the ε-DP requirements, adhering strictly to this theoretical concept (whose value can many times be infinite) 
can undermine the usefulness of a query. For this reason, DP frameworks usually offer the possibility to introduce upper 
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and lower bounds (i.e., a reasonable range of possible values in the queried data) which they use to perform a sensitivity 
estimation.  
 
A relaxation of DP: (ε-δ) differential privacy  

A relaxed version of differential privacy described in [56], (ε-δ)-differential privacy, only requires that ε-differential privacy 
is satisfied with a probability of at least 1-δ, in other words, ε-differential privacy can be violated for some tuples, 
however the probability of that occurring is bounded by δ. Unlike the canonical version of DP where the noise is drawn 
from a Laplace distribution, here a Gaussian distribution is used. The major advantage of using a Gaussian mechanism is 
that in some applications it allows adding much less noise, due to a different calculation of sensitivity, although there is a 
chance of failing at protecting privacy.  

3.3.2 Security  
Differential Privacy is supported by a rich and rapidly advancing theory that allows for mathematically rigorous reasoning 
about privacy risk. Systems that adhere to the strong formal definitions of differential privacy provide protection that is 
robust to a wide range of potential privacy attacks, including re-identification, record linkage, and differencing attacks, but 
also attacks that are unknown at the time of deployment. This means that an analyst using differentially private tools 
need not anticipate particular types of privacy attacks, as the guarantees of differential privacy hold regardless of the 
attack method that may be used.  
Also, Differential Privacy provides provable privacy guarantees with respect to the cumulative risk from successive data 
releases. The limit set by the privacy budget makes it possible to keep track of the privacy leakage of each query to 
prevent a potential attacker from inferring information from successive queries. So far, it is the only existing approach to 
privacy that provides such a guarantee [13].  

3.3.3 Implementations & References  

 Microsoft’s OpenDP (MIT License): OpenDP is a suite of open-source tools developed by Microsoft and 
Harvard. OpenDP was developed to provide a privacy-protective analysis of sensitive personal data. The project 
is focused on algorithms for generating differentially private statistical releases.  

 IBM’s Diffprivlib (MIT License): Developed by IBM, Diffprivlib is a general-purpose library. Developers can 
experiment, investigate and develop DP applications using this library.  

 Google’s Differential Privacy library (Apache License 2.0): Google released its open-source library last 
year to meet the needs of developers. It supports most common data science operations. It can be used to 
compute counts, sums, averages, medians and percentiles, which are widely used techniques for differential 
privacy.  

3.3.4 Conclusion  
Although the security guarantees offered by Differential Privacy on a theoretical level are beyond any doubt, the practical 
aspects when building a system that implements DP raise all kinds of concerns, since when it comes to aspects such as 
which epsilon to choose, establishing a privacy budget or what bounds to set for estimating sensitivity, there are more 
questions than answers. For example, how can we explore or experiment with DP-protected data without exhausting the 
budget? What if there are several users accessing the same dataset? Do we assume that they don't know each other and 
assign a budget to each one or do we assume that they can collude and therefore assign a budget to the whole dataset? 
There is also the question of estimating sensitivity, which, depending on the domain of the data, can be a difficult task 
requiring a number of assumptions about the boundaries of the dataset that can lead to a privacy leak or reduce the 
utility of the results.  
As stated in [57], when implementing a DP setting the challenge is to find a differentially private mechanism that can (a) 
answer random queries (any type of queries), (b) answer a large number of queries while providing non-trivial utility for 
each of the queries, (c) be efficient, (d) achieve ε-differential privacy (the stronger privacy guarantee), and (e) answer 
queries adaptively. However, most algorithms attempt to achieve some of the previous requirements but fail in others.  
Despite this, while the general DP framework does not specify how to implement various practical issues, DP as a core 
technology has already been used in several commercial/institutional applications, giving us a TRL of at least 8.  
  

3.4 Homomorphic Encryption  
Homomorphic Encryption (HE) allows to perform computation on encrypted data without revealing the 
input data or the output. The only way to decrypt the result is to have access to a secret/private key (usually, 
the data holders store this secret key in a safe place). Some use cases related to HE are:  
 

 Outsourcing of data storage and computing resources. In general, small users and large 
companies are tending to store their data on external servers known as Cloud Providers. When we 
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are working with sensitive data, such as health data, sending this data outside my security network 
can have serious consequences, so HE would allow encryption and analytics on it.  
An example of this outsourcing related with healthcare data would the following. I am a Hospital and 
I need to store my cancer patients’ data in a cloud provider because I do not have space on my 
premises, but I want to be able to query/analyze this data, guaranteeing tits privacy and integrity. 
Then, HE would be used to encrypt patients’ data and upload to an external database. Afterwards, the 
doctors and researchers could perform secure remote analytics (SELECT age, COUNT(*) FROM 
breast_cancer GROUP BY age), being them the only one who could see (decrypt) the result.  
  

 Encrypted Inference. This idea can be viewed as a subcase of the previous one. There are many 
Machine Learning Services (Machine Learning as a Service) with pre-trained models that can be used 
in a service way, that is, the ML model is hosted in a remove service, and you have to send a request 
with your data to get the inference. The problem here is again that we have to send our data, so HE 
can help to send our data encrypted and perform computations on it, revealing the value only once I 
get the response from the service.  
An example would be the following: I am a hospital and I want to provide a machine learning service 
for cancer prediction without giving the uses direct access to the model and without making them 
share their patients’ data. He would be used to send encrypted data to the service and performing 
the computation on the remote server, without revealing the input in any case but the data owner.  
 

In general, HE applications are related with the possibility to do operations in a secret way and this can be 
applied to different domains e.g. health, financial, etc. The encryption mechanism is based on Public-key 
cryptography where a public key is used to encrypt your data, and can be shared without restrictions, but only 
the owner of the private key can decrypt it.  

3.4.1 Effectiveness & Usability  

Homomorphic Encryption is a very powerful technique, but this is not free. The main drawback, and one of the 
main reasons is not widely adopted, is the computation overhead. HE, as any PET technique, is an extra layer 
of security and this layer has cost and some limitations.  
The limitations are given by the type of operation can be carried out. The theory stablishes that HE can 
perform any computation [17] (this is known as Fully Homomorphic Encryption), but there other HE schemes, 
such as Somewhat of Partial HE where the number and the type operations (sum, multiplication) are limited. 
In general, the latter are usually quicker to execute but they are not so flexible.  
In 2013 Rass and Slamanig [58] stated that “It must be emphasized that homomorphy is a theoretical 
achievement that merely lets us arithmetically add and multiply plaintexts encapsulated inside a ciphertext. In 
theory, this allows the execution of any algorithm complex manipulations like text replacements or similar, but 
putting this to practice requires the design (compilation) of a specific circuit representation for the algorithm 
at hand. This may be a nontrivial task.”  
  
In next sections, the implementations will be discussed; however, it is important to have an order of 
magnitude about the performance of HE. Then, next figure shows some of the main important libraries used 
at this moment, and the computation time of some operators such as addition, subtraction, and 
multiplication.  
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Figure 3. 1 Overall times for some operations and libraries. For operations of + − ×, values are in form t/r, where t is time 
in ms, and r is the ratio of t and the time execution of the same operation took over plaintexts. E.g. SEAL’ addition is 97,2 
times slower than plaintext addition. Some of these implementations will be discussed in the following sections. From [59].  

  
  

In general, the figure shows that HE is 2-3 orders of magnitude slower than its plaintext counterpart. Partial 
HE (PHE) such as Paillier and ElGamal schemes are faster than Fully HE (SEAL and HElib) but Paillier does not 
allow the multiplication and ElGamal does not allow the addition.  
This performance issue is considered the main reason why HE is almost limited to research projects (see [60] 
and references therein). However, it is worth mentioning how the well-known Apple company tries to apply 
this technology. Private Set Intersection (PSI) allows to perform an inner join between two databases, then 
Apple PSI uses this secure computation into its “password monitoring system” [61]. In its own words: 
“Password Monitoring is a feature that matches passwords stored in the user’s Password AutoFill keychain 
against a continuously updated and curated list of passwords known to have been exposed in leaks from 
different online organizations. If the feature is turned on, the monitoring protocol continuously matches the 
user’s Password AutoFill keychain passwords against the curated list.”  

3.4.2 Security  

Public-key cryptography deal with problems that take so much time to solve that there is no practical solution. 
The classic example is to decompose a number into prime factors, for example, we know that 2*3 = 6, and the 
inverse operation is easy. However, if we take two large prime numbers and multiply them, trying to 
decompose it again is time-consuming. Without entering in detail, new cryptography algorithms are based on 
the ring learning-with-error (RLWE) problem, which is the basis of the public-key algorithms to protect even 
against quantum computers.  
HE is considered the holy grail of cryptography but that does not mean it cannot be attacked. In general, the 
security leaks are more related with the improper use of the protocols (for example, a bad selection of the 
needed parameters) or a poor implementation than the protocols itself.  
Whereas it is difficult to demonstrate mathematically how secure HE is, we will show a particular HE scheme 
such as the famous RSA [Reference] for illustrative purposes. RSA scheme is famous because it allows to sign 
messages, but RSA is also a PHE that holds the multiplicative property:  
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E(m1)∙E(m2)=E(m1∙m2) 
  
where the Encryption is performed using a public key PubKey and the decryption using a private key PrivKey. 
The PubKey is composed by the tuple (n, e) where n=p∙q (being p and q prime numbers) and 1<e<n.  
 
A classical attack deals with the factorization of n, that is, find an algorithm that given the number n, we can 
obtain p and q. 
In 1999 was demonstrated that using an integer factorization algorithm such as General Number Field Sieve 
(GNFS) is possible to break a 512-bit system, being needed to generate larger PubKeys. 
 
  

Parameter Value 

𝒑𝒑 
10,970,103,190,600,829,290,247,338,335,211,965,420,780,388,872,078,099,817,126,41
6,270,434,061,669,554,410,207,492,801,377,661,305,902,226,501,029,112,866,903,671,
523,834,035,826,355,543,324,388,124,920,973 

𝒒𝒒 
13,164,852,671,587,485,455,965,094,125,779,564,950,272,221,281,419,381,826,998,88
8,259,126,654,909,845,464,491,695,166,162,180,575,248,237,990,023,090,913,097,495,
624,605,196,693,623,810,189,612,824,914,243 

𝒏𝒏 = 𝒑𝒑 ∙ 𝒒𝒒 

144,419,792,296,371,725,651,441,968,400,358,744,461,728,782,901,326,239,991,405,9
17,679,201,034,382,007,748,881,971,474,426,385,183,967,758,037,953,533,411,198,07
2,902,015,684,446,787,555,458,034,414,740,963,576,780,520,697,356,780,486,494,558,
406,350,578,084,209,743,407,242,917,060,532,002,122,918,673,464,703,294,445,336,8
08,056,050,381,062,260,909,405,854,189,571,030,915,935,592,600,979,039,849,877,11
8,439 

Figure 3. 2 Example of public key with 51 bits. From https://asecuritysite.com/encryption/random3?val=512 

  
Just to give some numbers, breaking a 512-bit RSA key took around 7 months (the whole project) and 300 
workstations (a total of 35.7 years of CPU-time was consumed). In 2015 researchers from Pensylvalnia 
published Factoring as a service [62], where they demonstrated that a RSA 512-bit system can be factorized 
in just ~4h and $75.  

3.4.3 Implementations & References  

Now we address different implementations and libraries for HE computations. In the following list, academic 
implementations, i.e., developed for demonstration purposes will be omitted, listing those with a minimum of 
a mature: 
 

 HElib is a FHE C++ library developed by IBM which implements Brakerski-Gentry-Vaikuntanathan 
(BGV)1 and approximate of Cheon-Kim-Kim-Song (CKKS) schemes. Licensed under Apache License 
v2.0  

 SEAL is a FHE C++ library developed by Microsoft which implements BGV, CKKS and Brakerski-Fan-
Vercauteren (BFV) schems. License under MIT.  

 TFHE is a FHE C++ library that works with Boolean gates. This implementation is under the hood of 
commercial companies such as Enveil or Inpher. https://tfhe.github.io/tfhe/ 
https://eprint.iacr.org/2018/421.pdf  

 Python-Paillier is a PHE python library that implements paillier scheme (Homormorphic under 
aggregation). License under Apache License v2.0 and GPLv2. https://github.com/data61/python-
paillier  

 PyFhel is a FHE python library. It is a python binding of SEAL. Licensed under GPLv3.  
 Palisade/OpenFHE. Palisade, recently migrated to OpenFHE, is an open-source project that provides 

efficient extensible implementations of the leading post-quantum Fully Homomorphic Encryption 
(FHE) schemes (BGV, BFV and CKKS). Licensed under BSD-2. 

https://www.enveil.com/
https://inpher.io/
https://tfhe.github.io/tfhe/
https://eprint.iacr.org/2018/421.pdf


 

28 

 Concrete is a Rust implementation of TFHE. It also provides a Python client via the numpy library. It 
is licensed under BSD-3  

The reader can observe that most of the implementations are done in a low-level programming language 
such as C++, trying to get the maximum performance out of the hardware. This also means that these 
libraries have not reached a more general public and therefore their expansion is limited.  

3.4.4 Conclusion  

We showed how useful HE is, making emphasis that solves the big problem of secure computation. To sum 
up, HE:  

 Can perform arbitrary computations (from a theoretical point of view).  
 Offers strong security guarantees, providing protection against quantum computers.  
 Tools are under active development.  

 
However, HE has the following limitations: 

 Performance is still a challenge; the existing implementations cannot cover all the possible use 
cases.  

 Great knowledge about cryptography is required. There are several cryptographic schemes, and the 
user has to know which one is suitable for a given use-case.  

 HE is secure (nobody but you can see your data), but if encrypted data is accessible by third parties, 
they cannot see the values, but they could alter/modify the encrypted one. This can be solved 
providing an authorization system or adding an extra layer of security such as Trusted Execution 
Environment.  

 Only protects the computation itself; sensitive data might still be extracted from the result.  
 

To conclude, HE is one of the more powerful existing PET, the theory is well-stablished, but it is still not ready 
to cover an arbitrary number real-world use cases. It has been used for limited prototypes, so this gives us a 
Technology Readiness Level of 5~6.  
 

3.5 Anonymization  
Data anonymization aims to ensure every data subject’s anonymity in a dataset, while keeping the 
dataset’s utility. This is achieved by removing or altering any personal information, as well as any attributes 
that, when paired together or with other data sources, might allow a data subject’s identification.  
Ideally, anonymization enables all data use cases by removing privacy concerns: a data owner could 
anonymize their data and then publish it without any further concerns, as in the second data sharing scenario.  

3.5.1 Effectiveness & Usability  

 
Data anonymisation is by far the most mature technology explored on this document and the simplest at a 
theoretical and technical level. It is widely accepted and used in the real world: it is routine to share 
anonymized datasets. It does require some specialized knowledge, since “anonymisation processes need to be 
tailored to the nature, scope, context and purposes of processing as well as the risks of varying likelihood and 
severity for the rights and freedoms of natural person” [65]. Existing legislation takes anonymisation into 
account, greatly reducing the legal and bureaucratic barriers when working with anonymised data. To sum up, 
data anonymisation has a high degree of usability.  

3.5.2 Security  

There are two main drawbacks when using data anonymization:  
 Risk of re-identification: By cross-referencing the anonymized dataset with other data sources, an 

attacker might be able to re-identify the original data subjects. [63] This is not a merely theoretical 
concern; the strength of these attacks has been proven in real-world cases [64]  

 Loss of utility: When removing or altering too many attributes, the dataset’s statistical utility 
diminishes. For example, the data subject’s address or date of birth might be useful to the data 
analyst, but unavailable due to anonymization.  
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There is a fundamental and subjective trade-off between both drawbacks: removing more data will reduce 
the effectivity of re-identification attacks, at the cost of lower data accuracy. Anonymization techniques try to 
get the best of both worlds. For example, keeping only the ZIP code or year of birth will keep most of the 
utility while keeping most of the privacy.  
 
Regarding anonymization, there is an ongoing discussion over whether its techniques are sufficient to protect 
the data subject’s privacy: on one hand, there are multiple real-world examples of successful reidentification 
attacks [66]; on the other, the attacks were performed on poorly anonymized data, required a non-trivial 
amount of external data about the data subjects, or had low success rates [63]. Proper data anonymization 
greatly reduces the risk of re-identification, but the risk remains, especially for high-dimensional datasets.  
Unlike the other technologies explored in this document, data anonymisation relies on not having been proved 
to be insecure, rather than being proved to be secure. Data anonymization algorithms, and the privacy 
measures they provide (k-anonymity, l-diversity, t-closeness) are purely heuristic: they lack solid theoretical 
grounding that ensure the level of protection or utility achieved. There are some efforts to translate data 
anonymization concepts into the language of Differential Privacy [67], showing there is limited value in them.  
Existing standards include:  

• Section 164.514(a) of the HIPAA Privacy Rule, tailored to protecting medical information  
• ISO/IEC 20889:2018 specifies terminology and techniques for data anonymisation  
• ITU-T Rec. X.1148 describes a versatile de-identification process framework  

3.5.3 Conclusion 

Overall, data anonymization is suitable as a first step for data holders but should no’t be used on its own due 
to the privacy risk and information loss it entails. We give it a Technology Readiness Level of 9.  

3.6 Trusted Execution Environment  
Trusted Execution Environments (TEE) is an environment in which the executed code and the data that is 
accessed are physically isolated and confidentially protected so that no one without integrity can access the 
data or change the code or its behaviour. A trusted execution environment (TEE) is a portion of the main 
processor device that is separate from the system and the main operating system (OS) [68]. It ensures that 
the stored and processed data is protected in a secure environment. It provides protection for connected 
things such as Trusted Applications (TA) and enables isolated cryptographic electronic structures to provide 
end-to-end security. Some existing providers are:  

Intel SGX [69] is the instruction ser architecture that enables the creation of enclave.  
ARM TrustZone [70] is a security extension to the ARM architecture with modifications.  
AMD Secure Processor [71] is a microcontroller coprocessor integrated within chipsets of AMD.  

3.6.1 Effectiveness & Usability  

The main concern while using TEE is compatibility with current systems. Since the currently popular process-
based model requires existing applications that are supposed to run need to be partly rewritten for TEEs, the 
virtual machine-based model does not need refactored applications and could be more readily adopted. The 
first research to improve the compatibility gap has been undertaken, as an abstraction layer on top of the 
process model to reduce refactoring needs. As a drawback of an abstraction layer, it was noted that an 
adversary or malware within a TEE cannot be detected by current standard security measures. A solution for 
this problem is currently not known and is a topic for further research [73].  
Major hardware vendors are also focusing on closing the compatibility gap with current systems in their 
upcoming releases of AMD's Secure Nested Paging and Intel's Trusted Domain Extension. The research 
community could therefore help to improve organizational understanding of TEEs.  

3.6.2 Security  

One of the biggest concerns is the security of confidential corporate data and databases. To overcome these 
security risk, TEE assumes that everything is isolated. However, TEE are not always isolated in practice, and as 
a result, it is possible to release information from the environment. From the ongoing technical discussion 
surrounding TEEs, it is evident there are several possible attacks undermining TEE security guarantees [72]. 
These attacks rely on the assumption that the attacker has full control over the platform. Successful 
mitigations for these attacks implement additional security primitives to guard memory and I/O accesses.  
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3.6.3 Conclusion 

Overall, the TEE establishes an isolated execution environment that runs parallel to a standard operating 
system. It is becoming a new form of computing in today’s hardware, but there are not many real-world use 
cases. We give it a Technology Readiness Level of 6~7.  
  

3.7 Zero Knowledge Proofs  
Zero Knowledge Proofs (ZKP) allow proving statements about private data, without revealing anything else 
about the data. It allows one party (the Prover) to convince another party (the Verifier) that they know the 
data, or that it includes a certain element, or obeys a given constraint, without the Verifier having access to 
the data or having to trust the Prover. [74]. They are a powerful tool for auditing a system without having to 
break its privacy. Some of the uses of ZKP relevant to data sharing scenarios are:  
 

 Data auditing: ZKP enable external auditors to verify the integrity of a dataset without giving them 
access to the sensitive data it contains. This includes the ability to check if the dataset contains 
information for a specific data subject (and thus enabling the subject’s right to erasure), if the data 
for that subject is correct (enabling the subject’s right to rectification), or verifying the whole dataset 
has not been tampered with (eliminating the risk of faulty or malicious cloud storage) [75] [76].  

 Verifiable Model Accuracy: When using MLaaS, data holders send their data and get the inference 
results. However, they have no guarantee that the model used is the model they are paying for (e.g., 
the model provider might be using a smaller model with lower accuracy to reduce inference cost). 
ZKP allows the model owner to prove the inference was performed with a model with a given 
accuracy on a public dataset, without revealing any further details about the model [77] [78]. 

 Verifiable Computing: Generalizing the previous point, a client might wish to outsource any generic 
computation without fully trusting the cloud provider. ZKP allows the computing party to generate a 
proof of the computation’s correctness, which can be checked by the client in less time that it would 
take them to run the original computation. Note that this technology is not yet considered practical 
due to the high computational burden imposed on the prover. In addition, it’s only useful for doing 
the same computation with different outputs [79]. 

 Identity Verification: ZKP allow a user to prove knowledge of a secret password without sharing it. 
Beyond this, they can be used for more involved checks: proving they meet a certain age requirement 
without disclosing their age, or that they appear on a public list of trusted elements without 
disclosing any further information. These applications are closely related to the concept of Self-
Sovereign Identity, which aims to create a decentralised identity management system while 
respecting user’s privacy, using blockchain technology [80].  

 Privacy Preserving Blockchain: Blockchain offers a decentralized alternative for health data 
storage, creating an immutable record of patient data while giving them control over it via smart 
contracts. However, all operations performed on a blockchain are public and traceable, limiting their 
utility for this use case [81]. ZKP can be combined with this technology to create privacy-oriented 
blockchains, whose correctness can be verified without access to any sensitive data [82].  

 Trustless transactions of datasets: When conducting online business, a trusted third party is 
required to ensure that both parties get the agreed goods. Blockchain-based smart contracts offer a 
trust-free alternative to ensure that the payment is tied to the delivery. For the specific case of 
selling data, ZKP can offer an extra layer of security and modularity: the seller can prove to the buyer 
the integrity of the dataset, as well as allow per-query payment by proving the correctness of 
specific query outputs [83].  

ZKP are usually interactive, requiring communication between Prover and Verifier. In this situation, data 
holders must remain available even after providing their data. However, non-interactive ZKP also exist, 
removing this constraint. As the above list shows, ZKP have a wide range of possible uses, making them 
potentially relevant to both data sharing scenarios. The last three use cases are based on blockchain and thus 
require a high degree of cooperation between data holders, making them relevant to the first data sharing 
scenario. On the other hand, the first three cases only deal with a single data owner, making them a particular 
case of the second data sharing scenario.  
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3.7.1 Effectiveness & Usability  

The use of ZKP adds computation and storage overhead. For the use cases listed above, existing protocols are 
optimized enough to be used for practical applications (except for verifiable arbitrary computations). This is 
especially true for one-off uses or low traffic services: a verified model inference might take seconds instead 
of milliseconds, but for a medical diagnosing application this might be an acceptable trade-off.  
While ZKP promise a wide range of possible applications, actual real-world implementations are scarce. At the 
time of writing, there are no existing deployed services for most of the listed applications. This limits the 
available information on ZKP’s real-world usability. Still, they have been successfully used in these projects:  
 

 Zcash is a cryptocurrency based on ZKP technology. Traditional blockchains are fully public: all 
transactions and users can be traced, to allow decentralised auditing of the system. In contrast, 
Zcash transactions are private. Each transaction is represented via a proof ensuring its correctness 
(sender had enough funds, recipient correctly got the fund, etc.) which can be efficiently verified by 
any network node, without having access to the transaction’s details [82]. While Zcash is purely a 
financial product and not relevant to data sharing scenarios, the underlying technology could be 
employed for creating privacy preserving blockchain-based data storage [81].  

 ZKAttest created and deployed by Cloudflare, is a privacy-preserving identity verification scheme. 
Traditional hardware-based authentication allows the user to prove their identity by interacting with 
a trusted USB security key. During this process, the hardware’s model information is revealed to the 
identity verifier. While not too sensitive, this information might be paired with other public 
information to identify users. To avoid this, the ZKAttest protocol allows the user to prove that the 
hardware’s model is included in the public list of trusted models, without revealing any further 
information. The code runs directly in the browser, without requiring any extra effort from the user 
[84].  
 

These projects’ technical reports, along with the contrast between the high number of theoretical uses and the 
lack of actual working applications, show us the main takeaways for ZKP usability:  
 

 ZKP are considerably more complex than other cryptographic technologies [85]. While 
standardization efforts are underway, both at the usability level [86] and the mathematical level [87], 
there is no single theoretical or technical framework that captures all the different flavours of ZKP. 
Applying ZKP to new use cases requires new ad hoc protocols, which currently require significant 
specialized cryptography knowledge to develop and implement.  

 Most aspects of the technology are hindered by its novelty: for example, auditing-based products 
can’t benefit from existing standards and widespread trust in the technology; there are no specialized 
companies that can be used to outsource the development of new ZKP applications; etc. We expect 
this situation to improve over time, as data spaces gain awareness of the technology.  

 ZKP are inherently two party, requiring a certain degree of cooperation between prover and verifier 
(or adherence to a common standard).  

3.7.2 Security  

The security of a given ZKP must be analysed by both the prover and the verifier. The prover must ensure that 
they aren’t sending any sensitive information to the potentially malicious verifier; the verifier must ensure 
that the potentially malicious prover isn’t producing a fake proof. While proving these properties requires a 
specialized mathematical background, this work has already been done for all commonly used ZKP, removing 
this burden from the users.  
Due to the probabilistic nature of ZKP, a malicious prover has a small chance of success. To mitigate this, the 
ZKP is run multiple times, exponentially reducing this possibility. There is a natural trade-off between 
performance and security: more iterations reduce the possibility of failure, at the cost of a higher computing 
cost.  
ZKP derive their security from traditional cryptographic assumptions. As such, they are only vulnerable to 
brute force attacks, which can be mitigated by selecting appropriate security parameters, such as a high 
number of bits for secret keys. Other security risks include those suffered by all other technologies: faulty or 
malicious implementation, malware, phishing for secret keys, denial of service, etc.  
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3.7.3 Implementations & References  

At the time of writing, ZNP implementations are still in an early state. Except for some cryptocurrency-related 
projects, implementations require a high degree of specialized cryptographic knowledge and are far from 
production ready. This list gives a representative element for each use case and level of abstraction:  

 Libsnark (custom permissive license) is a low-level library for generating and verifying non-
interactive proofs. It offers flexibility and performance, but requires specialized knowledge and 
manual labour for expressing and implementing protocols in the low-level language expected by the 
library. It should be considered only when implementing a higher-level library: most of the other 
entries in this list use it as a backend [88].  

 Zksk (MIT License) is a medium-level Python library for creating and running interactive ZKP. It 
includes a library of common building blocks, the tools to define new ones, and allows composing 
them to create complex protocols. It is well documented, but still requires specialized knowledge to 
use effectively [89].  

 Pysnark (custom license) is a high-level library for automatically converting python functions to 
non-interactive zero knowledge proofs. This substantially lowers the barrier of entry to developing 
new applications based on ZKP. It is actively maintained and supports several low-level backends, 
improving its interoperability with other libraries [90]. 

 Pequin (BSD-style license) is a toolchain which enables verified computation by generating zero 
knowledge proofs for arbitrary C programs. This enables a data owner to outsource computations to 
an untrusted cloud provider, guaranteeing the correctness of the output. Note that the cloud provider 
will incur in a x1000 performance cost, heavily limiting the practical application of this technology 
until better ZKP are developed [91].  

 Merkletreejs (MIT License) is a high-level library for set membership ZKP. It allows the prover to 
efficiently show that a given element is included in a set, without revealing the set’s contents. The 
library can be integrated with smart contracts, to allow blockchain applications such as verifying that 
a transaction comes from a given private list of accounts [92]. 

 ZkLedger (open source, unclear) is a distributed ledger enabling versatile auditing of private data. 
Each data owner stores their data privately, only publishing a “commitment” to the ledger that 
contains no sensitive information. An auditor might ask the data owner to reveal some statistical 
property of their private data (for example, the exact value of the mean, or that the standard 
deviation is below a certain threshold). After computing these values, the data owner proves their 
correctness using the ledger’s commitments. While the applications are promising, the actual code is 
currently in an early stage and lacks documentation [93]. 

Since this is a static document, the above list might be outdated; we refer the reader to [94] and [95] for 
updated references. At the time of writing, there are no official standards for ZKP, but there is an ongoing 
effort to create it [86]. 

3.7.4 Conclusion 

To sum up, ZKP:  
 

 Has a wide variety of applications, mainly focused on auditing private data or computations  
 Offer strong security guarantees, based on traditional cryptographic assumptions  
 Has an acceptable performance cost for most applications.  

On the other hand, ZKP:  

 Require a specialized background to understand and deploy, due to the lack of high-level 
frameworks  

 Are almost untested in real-world settings  
 
Overall, we consider ZKP to be a promising technology with plenty of future applications. However, 
few of the theoretical uses have been developed at the time of writing, giving it a Technology 
Readiness Level of 2~3. 

 
We hope that this section would serve as a guide for data spaces stakeholders and participants to navigate 
the complex landscape of PETs. The key takeaway is that there is no single PET that solves all privacy issues 
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or covers all possible use cases. Therefore, knowledge of the available PETs and the specific data sharing 
scenario is crucial for choosing the right approach.  
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4 Prototype Design 
The purpose of this section is to describe a realistic use case, related to the health domain, where sharing the 
knowledge of different institutions in a privacy-preserving way is critical. The selection of the health use case 
is motivated by the inherent importance of privacy protection when dealing with sensitive and personal 
healthcare data and the fact that the European health data space is currently being rolled out within the 
context of the European strategy for Data. By focusing on the health domain, we can highlight the specific 
challenges and considerations that arise in this context, such as regulatory requirements (e.g., HIPAA, GDPR) 
and ethical concerns surrounding patient data. 

The choice of the health use case also allows us to illustrate the importance of privacy-enhancing 
technologies, such as federated learning, in facilitating collaboration and advancements in medical research, 
disease diagnosis, and treatment. This use case demonstrates how privacy-preserving techniques enable 
knowledge sharing among different institutions while safeguarding individual privacy. Whereas we have 
restricted ourselves to this domain, it is worth mentioning that most of the procedures (data preparation, data 
sharing, etc.) can be widely used in other domains and their respective data spaces. The intention is to provide 
a concrete illustration that can be extrapolated and adapted to different contexts, emphasizing the broader 
applicability and relevance of privacy-preserving techniques across industries. For simplicity reasons, the use 
case is based on the International Data Spaces (IDS) reference architecture as reference [4]3. Then, we will 
show how the privacy enhancing technologies fit in this design. This section deals as well with all the steps 
involved in this kind of data sharing scenarios.  

4.1 Problem Statement 
In the following sub-sections, we elucidate the pertinent problem encountered from both a functional 
perspective (i.e., clarifying the nature of the problem itself) and a data perspective, encompassing aspects of 
data governance, utilization, and sharing.  

We are aware that our data is distributed in different organizations and domains (banking, health, insurance, 
etc.). In addition, these data have an owner and are protected under different regimes defined on the national 
and European level that restrict their use and sharing. This implies that if one wants to use this data, there 
are many steps required before this can happen. This seems to not be fully aligned with to the overarching 
vision data economy and what is known as a data-driven organization, where the data is the value, and the 
applications are responsible for using it properly.  

Under this scenario, and without loss of generality, we focus here on the health domain. Specifically, we work 
with skin diseases, where the problem of the use and sharing of data will be reflected in the fact that the 
data is distributed in different countries.  

The specific problem is to classify skin lesions into one of eight possible types, some of them of cancerous 
nature, by developing artificial intelligence models. Skin lesions image datasets collected by health care 
institutions are increasingly used to train machine learning. However, by using training data from often too 
specific populations, machine learning algorithms are susceptible to over-fitting, as their generalization 
capability is heavily influenced by the participants and images used for training, which are prone to selection 
bias. This way, algorithms used for skin lesion classification frequently underperform when tested on 
independent datasets. Several examples of the susceptibility of machine learning algorithms to bias by clinical 
factors such as age, gender, ethnicity, and socio-economic status have been reported in various areas of 
healthcare and artificial intelligence [96] [97] [98] [99] [100].  

An aggregated training set consisting of samples from different sources that introduces diversity in aspects 
such as patient age, sex, ethnicity as well as lesion location and even imaging devices, could largely correct 
this problem by achieving more robust models in terms of generalisability. However, a scenario in which 
several hospitals agree to contribute their data to a centralised database external to their systems is often 
infeasible due to strict privacy regulations and ethical considerations. On the contrary, a collaborative scenario 
based on federated learning technologies [101] [11] is more feasible, as this results in a (global) model that 
aggregates several locally trained models, without the data leaving the organisations where they are stored. 

                                                       

 
3 There are other third-party initiatives such as Gaia-X [104], and Simpl [105] from the European Commission. During this document 

IDS is used because of the availability of a mature reference architecture and existing technical building blocks. 
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Yet, other difficulties arise, like the need to harmonize/standardize data, since different hospitals might name 
the same features, values or diseases differently, or use different scales for numerical values; on the other 
hand, it is necessary to deal with the probable non iid-ness (non-Independent and Identically Distributed) of 
data. Also, model updates should be securitized, as they may be subject to adversarial attacks.  

4.2 Data Spaces and PET 
We aim to overcome the challenges defined above in the context of a common data space through the use of 
PETs.  
Data Spaces aim, in accordance with the European strategy for data [1], at creating a single market for data 
that will ensure Europe’s global competitiveness and data sovereignty. They are structures that provide trust 
and security context for the sharing of data between various actors in a homogeneous manner through 
combined governance, organisational, legal and technical mechanisms. Data spaces facilitate interoperability 
for accessing or transferring data and enable their efficient and legitimate re-use in a context of sovereignty 
and control for the parties over their own data. The availability of Data Spaces facilitates their exploitation 
and the extraction of value from them through services based on Artificial Intelligence or Big Data.  
Within that context, many prominent initiatives are being established in the EU. Among those, the 
International Data Spaces (IDS) initiative [102] proposes a Reference Architecture Model for this aim and 
related aspects, including requirements for secure and trusted data exchange in business ecosystems. The 
Business Layer of the Reference Architecture Model defines and categorizes the different roles the 
participants in the International Data Spaces may assume. In our specific use case, the following roles are 
applicable: 
 
Data owner: Is the entity or individual who has the legal rights and control over the data and its usage. They 
are responsible for managing, accessing, and sharing the data in accordance with the relevant legal 
frameworks. The Data owner is crucial in ensuring the security and integrity of the data, as well as 
determining its availability and accessibility for other users within the international data space.  
 
Data provider: Makes data available for being exchanged between a Data Owner and a Data Consumer. In 
most cases it is identical to the Data Owner, but not necessarily.  
 
Data consumer: Receives data from a data provider. From a business process modelling perspective, the 
data consumer is the mirror entity of the data provider; the activities performed by the data consumer are 
therefore similar to the activities performed by the data provider. Before connecting to a data provider, the 
data consumer can search for existing datasets by making an inquiry at a Broker Service Provider. The Broker 
Service Provider then provides the required metadata for the Data Consumer to connect to a Data Provider. 
Alternatively, the Data Consumer can establish a connection with a Data Provider directly (i.e., without 
involving a Broker Service Provider).  
 
Data user: Like the data owner being the legal entity that has the legal control over its data, the data user is 
the legal entity that has the legal right to use the data of a data owner as specified by the usage policy. In 
most cases, the data user is identical to the data consumer. However, there may be scenarios in which these 
roles are assumed by different participants.  
 
Broker Service Provider/Data Intermediary: An intermediary that stores and manages information about 
the data sources available in the International Data Spaces. The activities of the Broker Service Provider 
mainly focus on receiving and providing metadata. The Broker Service Provider must provide an interface for 
Data Providers to send their metadata. The metadata should be stored in an internal repository for being 
queried by Data Consumers in a structured manner.  
 
In addition to the above roles, there is a relevant IDS component in the scope of our solution: the Connector. 
As a technological building block of the IDS, the Connector ensures that participants maintain sovereignty over 
the data. At the same time, it functions as an interface between the internal systems of the IDS participants 
and the IDS ecosystem itself.  
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Figure 4. 1 Data Flow. Source: Authors own elaboration 
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Figure 4.1 depicts the data flow of the proposed solution within the frame of Data Spaces. This data flow can 
be summarized as follows:  
 

(1.1) The process begins by uploading zip files of skin lesions and metadata to an imaging software 
platform.  
(1.2) The images with their metadata, stored in XNAT4 will be transformed into the MIDS5 folder 
standard.  
(1.3) A mapping of images metadata stored in the MIDS directory to extended OMOP-CDM is 
performed.  
(1.4) The harmonized images, stored in the MIDS directory, are delivered to the computation server 
via a Python API where they are prepared for use within the federated network.  
(2.1) OMOP compliant data is uploaded to the server.  
(2.2) The data consumer (data scientist) defines the ML model to be trained. As the data do not leave 
the organizations, it is the model that moves to them. The network server is the component in charge 
of distributing the model among the computation nodes.  
(2.3) The model is trained locally in each organization's computation node. Once this operation is 
done, the model (containing only the weights) is sent back to the users' node through the network 
server.  

  

Privacy Enhancing Technologies (PETs) are tools and techniques designed to protect data privacy, without 
losing the functionality of the data System. In this report, we will focus on those that enable processing 
private data and creating value from it without breaching the data subject’s privacy. Data Spaces have a 
built-in concept of security and data sovereignty: data holders can set policies dictating how their data can be 
accessed and used. PETs enable a wider range of policies: in this use case, for example, they enable data 
holders to allow their data to be used for a collaborative model without needing them to also allow access to 
the raw data. In the context of data spaces, PETs are a key enabler that support the sharing and analysis of 
sensitive data.  

4.2.1 Data Preparation 

Before the raw data can be used, it must be cleaned, transformed, and organized to support further 
processing and analysis. This homogenization process, often overlooked in academic studies, can be one of 
the most time-consuming steps in a real-world machine learning project. This is especially true for distributed 
data: different organizations often store different measures, in different formats, with different labels.  
In addition, data privacy must be preserved during data preparation. This introduces challenges unique to the 
distributed data scenario. For example, if two institutions have data on the same patients, how can they align 
their data without revealing the identities of the patients they don’t have in common? One solution would be 
to incorporate a third party for this task, i.e., give access to every data source in every organization with the 
goal of aligning records, however this may raise issues with data access and the associated policies.  
Another challenge that we face, and although it is explained in more detail later in the following sections, is 
that the data is hosted in different hospitals that correspond to different countries, with the legal implications 
that this implies. Fortunately, PETs can help surmount these challenges. 

4.2.1.1 Communication 

The naïve solution is for data holders to directly communicate with each other, manually reviewing each 
variable and agreeing on a common representation for it. This method will produce excellent results and 
provide a common schema for the distributed datasets, but at the cost of requiring a lot of time and many 
iterations by domain experts. The result will also be single use, requiring more work if a new data owner joins 

                                                       

 
4 XNAT is an open source imaging informatics platform developed by the Neuroinformatics Research Group at Washington University. See 

https://www.xnat.org/about/ 
 
5 Medical Imaging Data Structure (MIDS) [106] was therefore conceived with the objective of extending Brain Imaging Data Structure 

(BIDS) methodology to other anatomical regions and other types of imaging systems in these areas. 

https://www.xnat.org/about/
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or if the use case changes. Therefore, such an approach is not scalable. For these reasons, most use cases 
should use an existing common specification relevant to the domain. 

4.2.1.2 Data Harmonisation 

Since different organisations may, in their databases, assign different names to variables or values that are 
conceptually equivalent, a standardisation process is necessary across the different nodes of the federated 
network in order to develop a common model. To this end, we rely on the OMOP Common Data Model, as it is 
a widely used infrastructure aimed at standardising the format and content of observational data in the 
medical field.  
 

 

  
Figure 4. 2 OMOP operation scheme: Once a database has been converted to the OMOP CDM, evidence can be generated using 
standardized analytics tools. (Source: https://www.ohdsi.org/data-standardization/) 

  
OMOP-CDM is composed of 37 tables of which 17 contain clinical information including the patients table. 
Another ten tables are used to represent the standardised vocabularies, and the rest contain miscellaneous 
information such as locations, providers, costs, cohorts or metadata. The clinical tables contain unique 
identifiers and allow storing together with the standardised data (e.g., the OMOP standard code of a diagnosis 
or procedure) the original value (e.g., a local coding). The following figure contains the tables that constitute 
OMOP-CDM. 

 

  
Figure 4. 3 OMOP CMD Tables (Source: https://www.ohdsi.org/data-standardization/) 

  

4.2.1.3 PETs for Homogenization 

Pre-processing centralized datasets has no or few privacy concerns: the data never leaves the data owner’s 
control and can be freely accessed to perform any required transformation. The distributed data scenario 
introduces new privacy challenges. We now examine some of the most common problems and how PETs can 
solve them. 

https://www.ohdsi.org/data-standardization/
https://www.ohdsi.org/data-standardization/
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4.2.1.4 Record Linking 

Consider a vertically partitioned distributed dataset. In other words, each data owner has different attributes 
or labels over the same population of data subjects. Assuming all datasets have a common ID, it’s easy to 
align them in the centralized setting, by simply matching the rows with the same ID. However, on a distributed 
dataset, this would breach the data subject’s privacy: all IDs will be revealed to all parties, even if they are 
present in a single dataset.  
Private Set Intersection (PSI) enables different data holders to filter the IDs appearing in all databases, 
without revealing any other ID. This enables record linking without any privacy loss (beyond the fact that other 
data holders have records with the same ID). To use this technique, data holders must be capable of 
performing SMPC, by having each a computation node. [See Annex A]  
Variants of this technique can be used if there is no clearly defined ID, by applying entity resolution 
techniques before running PSI. For example, the data subject’s personal identifiers can be encoded into a 
Bloom filter and used as an ID; distance between filters can be computed with SMPC, allowing fuzzy set 
intersection.  
In our use case, the data sources are in different countries, so we will not use these techniques since there is 
no significant intersection between the datasets.  

4.2.1.5 Data Normalization 

Common normalization techniques (such as scaling all columns to have the same mean and standard 
deviations or filling missing values with an average value) require statistics computed on the global dataset. 
These are not available when working with a distributed dataset. If the data is not Identically Distributed, local 
statistics can’t be used to approximate the global properties. Two solutions exist to securely compute global 
statistics:  
 

 Use SMPC to compute them directly. This is specially recommended if the modelling phase will use 
SMPC data, since in that case the pre-processing step will not add much complexity.  

 Aggregate each data owner’s local statistics. For example, to compute the global mean, take the 
average of each dataset’s mean (weighted by the number of rows). This reveals some private data: 
to avoid it, apply Differential Privacy to each local mean before sharing them for aggregation.  

 

4.2.1.6 Data Auditing 

Before jointly training a model, data users might want to verify that the input dataset has valid and complete 
data. To perform this audit without direct access to the private data, PETs are required. Some options are:  
 

 Privately compute global statistics to verify the dataset’s validity, using the techniques from 4.3.2. 
These global statistics can verify that the data obeys some assumed distribution, ensure it falls into 
the given bounds, quantify the presence of outliers in the data or bias in the labels, etc.  

 Use ZKP techniques to ensure the dataset’s completeness and integrity. This can be achieved by 
generating extra metadata when storing a dataset; when retrieving it, that metadata can be used to 
ensure that the dataset has not been modified while in storage.  

4.2.1.7 Anonymization 

As an additional step, regardless of the technique(s) used, the raw data can be anonymized as a first step. 
Note that this does not fully remove the risk of reidentification, so it should not be taken as a substitute of 
other Privacy Enhancing Techniques.  

4.2.1.8 Conclusion  

Using the OMOP Common Data Model (OMOP-CMD) can help to uniformize and standardize different datasets 
of skin lesion that may have different formats and structures. By using OMOP-CMD, it is possible to transform 
the data into a consistent format, which can make it easier to integrate and analyse the data in a federated 
environment. In addition, using the MIDS folder standard can help to organize and store the data in a 
standardized way, making it easier to access and use. Overall, the use of OMOP-CMD and the MIDS folder 
standard can help to improve the consistency and interoperability of different datasets.  
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4.2.2 Modelling & Training  

Once each data owner’s raw data has been homogenized, it is ready to be used as a single distributed 
dataset. Such a dataset has many potential applications: in this specific use case, we are focusing on training 
a neural network for classification, but other applications include collecting statistics, training other types of 
machine learning models, or generating synthetic data for further reuse.  
Traditional techniques can only perform these operations with a centralized dataset. However, in this case 
(and other realistic cases enabled by data spaces), the data is distributed between several silos which it 
cannot leave. PETs are a key piece to enable collaboration between data holders without compromising 
privacy.  
In the following subsections the different techniques will be discussed, describing the advantages and 
disadvantages for this specific scenario.  

4.2.2.1 Centralized Solution 

Being able to collect the whole dataset in a single location would enable all traditional techniques, making it a 
valuable target. Can it be achieved without breaching privacy? Two PETs can do it: Anonymization and TEE.  
With anonymization, each data owner would remove all personally identifying attributes from their data, 
before sending it to a centralized location. At a first glance, this seems like the perfect solution. However, it 
has two drawbacks: the anonymization process removes valuable information from the data, limiting the 
utility of the dataset; and there is a risk of re-identification, undermining the privacy guarantees.  
Another option is for all data holders to send their data to a centralized Trusted Execution Environment (TEE) 
running the training algorithm. The algorithm will only output the resulting model, without copying or 
distributing the private data. This technique has some drawbacks too: it’s more complex than traditional 
centralized training, since the algorithm must be fully specified in advance and there is no possibility of data 
exploration; and the security offered is based on specific hardware instead of general cryptographic 
protocols.  
Both techniques have another drawback: regardless of the level of security they offer, the data will technically 
be leaving their silos, which automatically activates regulatory restrictions, adding complexity to the process.  

4.2.2.2 Federated Learning 

Federated learning is perfectly suited to our use case: training a neural network across horizontally distributed 
data. To train a model, the participants should be connected as specified in Figure 2.1 (right). The neural 
network architecture is specified by the data consumer, and a copy is sent to each data owner. Each data 
owner trains the model on their data, and the resulting models are then aggregated by the data consumer. In 
our experience, most European hospitals either have the required infrastructure or can obtain it as a routine 
cost of the research project.  
The base technique admits some variations:  

 By using a Split Neural Network architecture, it can be adapted to work with vertically partitioned 
data.  

 A malicious data owner can perform a data poisoning attack, to add a backdoor into the model or 
sabotage its performance. These can be mitigated by performing data auditing before training, and 
by using defensive techniques on the aggregation step.  

 The data consumer might extract private data during the aggregation step by measuring the 
variation between different data owner’s updates. This can be mitigated by using SMPC to perform 
the aggregation step, removing the need for a centralized aggregator. This diminishes the possibility 
of extracting individual data from the model’s updates, and prevents the data being traced to any of 
the data holders.  

 Another option is for the data holders to apply Differential Privacy in each training step. This removes 
the risk of extracting data from the model’s updates, as well as the risk of extracting data from the 
trained model (which is not specific to Federated Learning). However, it will reduce the trained 
model’s accuracy.  
 

Federated Learning has a computational cost and runtime comparable to centralized training and has already 
been tested in real world applications. While it is somewhat vulnerable to privacy and poisoning attacks, these 
require data holders or consumers to be malicious, which can be discouraged with contractual tools. If this is 
not possible, we have shown how to combine Federated Learning with other PETs to improve security.  
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4.2.2.3 Multi-Party Computation 

SMPC allows a group of data holders to jointly compute any function on their private outputs. This technique 
can be used for any use case, including ours: training a neural network on distributed data. However, in this 
specific use case, it offers no advantages over Federated Learning, only adding a high computational and 
runtime cost, and increasing the computational demands from data holders (see the architecture in Appendix 
B). For this reason, we will not be considering SMPC for our use case. However, it enables cases not covered 
by Federated Learning:  
 

 Performing queries to obtain statistics from the global dataset. 
 Training other types of models (such as Random Forest or Kaplan-Meier). 

4.2.2.4 Homomorphic Encryption 

Federated Learning requires, at the very least, as many computational resources as training a traditional 
model. While this usually feasible, it would be valuable to outsource the computation to a specialized third 
party, without compromising privacy in the process. Homomorphic encryption makes this possible: the hospital 
uses it to encrypt its data, which is then sent to a third party which operates on it (for example, training a 
model) without decrypting it. The computation’s result is the sent back to the hospital, which uses its private 
key to decrypt the result.  
However, currently the technology is not mature enough for a real-world use case: the computations are 
slowed by several orders of magnitude, making them infeasible for any useful model. For this reason, we will 
not use this technology for our use case.  

4.2.2.5 Differential Privacy 

All the techniques presented so far focus on preserving the data subject’s privacy while training a model. 
However, this is not enough: a skilled attacker might be able to extract individual data from the final model. 
This can be remedied with the use of Differential Privacy: during training, random noise is carefully added to 
the data, masking the impact of any individual’s contribution. While Differential Privacy cannot be used on its 
own to train a model, it can be combined with any other technique to increase the output’s security.  

4.2.2.6 Conclusion 

For our use case, we will train a neural network using Federated Learning, using the architecture 
described in Appendix A.  

4.2.3 Model Evaluation & Deployment  

Once the model is trained, only two tasks remain: verify it works as expected and deploy it for real world 
usage. When training a traditional model on a centralized dataset, there are plenty of existing solutions for 
both. In our case, however, new technical and theoretical challenges emerge due to the distributed nature of 
the data.  
Evaluation must not breach the privacy of the test data being used, or the model being tested. In a distributed 
training setting, this can be achieved with the help of PETs.  
Deployment also requires special consideration in our use case. The trained model could contain potentially 
sensitive data or be considered valuable intellectual property. For these reasons, the model owner(s) might 
wish to control and limit access to it, for example by allowing inference without allowing free access to the 
model. This raises privacy challenges which again can be solved by PETs.  

4.2.3.1 Accuracy and bias 

Before training, one or several data holders must reserve some data for testing. The model can be evaluated 
by applying it to the unseen data and extracting statistics from this result, such as the average accuracy or 
the bias in the model’s output. The same techniques from section 4.2.1.5 can be used:  

 In the case of a SMPC model, distributed among several data holders, inference results will be 
distributed SMPC values; their accuracy or bias can be collaboratively computed and revealed.  

 For a federated model, each data owner can directly apply it to their test data and extract the 
relevant local statistics. These can then be combined directly (optionally perturbing them with DP) or 
via SMPC.  
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For our use case, we will measure the model’s performance by directly combining each data owner’s local 
performance metrics.  

4.2.3.2 Encrypted Inference  

The goal of the trained model is to perform inference on new data. If the new data is public, it can be sent to 
the model’s location; if the model is public, it can be sent to the data’s location. However, if both the model 
and the data are private, both options will breach privacy. There are two PETs which can be used to solve the 
issue:  

 Homomorphic Encryption can be used if there’s a single model owner. To perform inference on new 
data, the data owner encrypts it using homomorphic encryption and sends it to the model owner; the 
model is used to compute an encrypted prediction, which can only be decrypted by the data owner. 
This technology is not mature enough.  

 SMPC is suitable when there are multiple model holders. The model is shared between all of them, 
using additive secret sharing; it can then be used to perform inference on new data points, without 
any individual model owner having access to the new data. This technique can be combined with 
SMPC training, removing the need to ever reveal the model.  

Note that regardless of the technique used, the model’s privacy might be compromised by a reconstruction 
attack, which uses inference results to extract internal information from the model.  
In our use case, the training is performed with Federated Learning, revealing the model to all participants in 
each communication round. For this reason, we will consider the final model to be public.  

4.2.3.3 Verifiable MLaaS  

When using Machine Learning as a Service (MLaaS), data is sent to the model owner which then returns the 
inference results, allowing the model owner to maintain the model’s privacy. However, in commercial 
applications, the model owner might not be trustworthy: they might be providing results with a smaller, less 
accurate model, to reduce inference costs. This can be prevented using Zero Knowledge Proofs, which would 
allow the consumer to verify that the model performing the inference reaches a certain accuracy on a public 
dataset, without giving them any further information about the model.  
In our use case there are no commercial interests and the data is private, making it a bad fit for a MLaaS 
deployment. 
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5 Prototype Implementation 
This section contains the summary and main learnings from the conducted experiments. We distinguish two 
types of experiments:  

 Local Training, where a Convolutional Neural Network (CNN) model is only trained and evaluated on a 
single dataset.  

 Federated Learning, where the CNN model is trained and evaluated using the distributed datasets.  

As for the goal of providing realistic use cases on data sharing scenarios in a data space setup while using 
privacy-preserving enhancing technologies in the healthcare domain. The following experiments have been 
implemented.  

For this scenario, three different types of experiments were considered, to make the comparison and show the 
reliability of using privacy-enhancing technologies vs. traditional solutions. The final goal of each experiment 
is to use machine learning (ML) to classify skin lesions based on the image datasets.  

  

5.1 Preparing for Experiments  
The following steps are common for all performed experiments. 

5.1.1 Data Collection  

The data for the experiment were downloaded from the public datasets of the three different papers related 
to skin lesions classification.  

  
Dataset  Paper  Country of   

origin  
Imaging  
 modality  

N. patients  N. images
  

Lesions  

PAD-UFES 
-20  

PAD-UFES-20: A skin lesion dataset 
composed of patient data and clinical 
images collected from smartphones  

Brazil  Macroscopic  1373  2298  

Three skin cancer:   
- BCC Basal cell carcinoma   
- MEL Melanoma  
- SCC Squamous cell carcinoma  
Three skin diseases:   
- ACK Actinic keratosis  
- NEV Nevus  
- SEK Seborrheic keratosis  

MED-NODE
  

MED-NODE: a computer-
assisted melanoma 
diagnosis system using non-
dermoscopic images  

Netherlands
  Macroscopic  Not reported

  170   - Melanoma (folder)  
 - Naevus (folder)  

HAM10000
  

The HAM10000 dataset, a large 
collection of multi-
sources dermatoscopic  images of 
common pigmented skin lesions  

Australia 
/Austria  

Dermoscopic
  

Not reported
  10015  

- akiec: Actinic Keratoses  
 - bcc: Basal cell carcinoma  
 - bkl: Benign keratosis  
 - df: Dermatofibroma  
 - nv: Melanocytic nevi  
 - mel: Melanoma  
 - vasc: Vascular skin lesions  

Table 5.1 Information regarding each dataset 

5.1.2 Pre-processing 

The following pre-processing steps have been performed: 

 Image transformation (resize to 224 x 224)  

 Image transformation (normalization of the pixel values using mean and standard deviation)  

 Splitting the dataset into the training set and test set (70% for training set, 30% for test set)  

Note: All the experiments have used the same preprocessing steps.  
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5.1.3 ML Algorithm for Image Classification (CNN) 

 The architecture design of the CNN model:  

 Input Layer: Takes color images of the size of (224 x 224 x 3), the third dimension 3 refers to the 
three color channels: red, green, and blue.  

 Convolutional Layers: Identifies features from the input images (feature map) using the kernel 
size of 5x5, such as textures, corners, and edges.  

 Activation Function: After each convolutional layer, a ReLU activation function has been used to 
remove the negative values from the feature map and introduce nonlinearity into the network.  

 Pooling Layers: Summarizes the results of convolutional layers and reduces the size of feature 
maps. Max pooling was used to calculate the max value in each patch of the feature map.  

 Fully Connected Layers: After applying the mentioned convolution and extracting features two 
flattened layers have been used. The first layer converts the output tensor of the pooled feature map 
to a one-dimensional layer which will be passed to the second flatten layer to perform the final 
classification of the image and map the input data into a set of output classes.  

 Output Layer: Produces the final classification using Softmax Activation Function to normalize the 
output of the network via the probability distribution on the predicted output classes.  

Note: All the experiments have used the same CNN model.  

5.1.4 Model Training 

After the configuration of the model architecture, the model will be trained over the preprocessed data using 
the following hyperparameters and strategies:  
  
Hyperparameters:  
 

 Number of hidden layers: In total there are four, two for convolutional layers and the other two are 
for fully connected layers.  

 Learning rate: To define the step size of updating the model parameters according to the 
optimization function during back propagation process, the leaning rate was set to 0.005.  

 Momentum: To speed up the process of updating the parameters during the training process and 
improve network convergence, it was set to 0.5.  

 Minibatch size: For feeding the data to the CNN model with smaller sample size instead of the entire 
datasets at once the batch size of 32 was considered for both training set and test set.  

 Epochs: As for the number of times of training the whole dataset, 50 was set for the number of 
epochs.  
 

Strategies:  
 

 Optimization algorithm: In order to minimize the loss function, Stochastic Gradient Descent (SGD) as 
the optimization algorithm has been used. This algorithm selects the random subset of the training 
data at each iteration to compute its gradient instead of using the entire training set.  

 Criterion function: For the calculation of the loss function between the actual output and the 
predicted output, the cross-entropy loss function has been used which is common for multi-class 
classification problems.  

5.1.5 Model Evaluation 

In order to calculate the performance of the model, evaluation metrics such as loss, accuracy, and confusion 
matrix have been used on both the training set and test set.  

  
Evaluation metrics:  

  
 Confusion matrix: It represents a summary of the prediction of the ML model that shows the 

number of correct and incorrect predictions per class. Which is displayed as the following:  
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      Actual class  

predicted 
class  

         
         
     P  N  
   P  TP  FP  
   N  FN  TN  

  
  

 Accuracy: It measures the percentage of correctly classified samples: 
  

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

 Recall: It measures the percentage of correctly predicted positive samples out of all actual positive 
samples.  

Recall = TP / (TP + FN) 

Precision: It measures the percentage of correctly predicted positive samples out of all samples 
which were predicted positively.  

Precision = TP / (TP + FP) 
 

F1 Score: It is calculated by the harmonic mean of precision and recall.  
  

F1 score = 2 * (precision * recall) / (precision + recall)  
 

Multi-Class F-1 Score (Micro Average):  
 Calculation of the TP, FP, and FN values of all the classes.  
 Calculation of F1 Score based on the following formula.  

  
F1 Score = TP / (TP + ½(FP + FN)) 

  

5.2 Performing Experiments 

5.2.1 First Experiment: Local Training 

Each dataset was downloaded and trained on its local environment. The following steps were performed: 

 Data preparation on each dataset using the same steps for all datasets.  
 Training the CNN model on each prepared dataset separately  
 Calculation of the final performance of each local training  

  

5.2.2 Second Experiment: Centralized Training 

All the datasets were merged and trained on the central host. The following steps were performed: 

 Data preparation on the merged datasets (using the same steps as the first experiment)  
 Training the CNN model on the merged datasets  
 Calculation of the final performance of each local training  

5.2.3 Third Experiment: Federated Learning 

Each dataset stayed in its own local machine considering each machine as a data owner and the server does 
not have access to each machine dataset. Then the CNN model was provided by the server. The following 
steps were performed: 

  
1. Data preparation: General steps for data preprocessing have been sent to each data owner to be 

used over the data of their own machine.  
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2. Model initialization: A base CNN model has been sent to all clients from the server. Each model was 
trained on each client’s dataset separately.  
 

3. Local model training: After each client received the CNN model, it was trained locally over their 
respective data. The training is done in multiple rounds while the model is getting updated and 
downloaded after each round.  

4. Model aggregation: Aggregation on model parameters using Federated Averaging (FedAvg) algorithm 
on the server side and improve the model.  

5. Model evaluation: The aggregated model is then evaluated on each dataset to measure its 
performance.  

6. Repetition the steps from 2 to 4 until the model reaches its global convergence.  
 

5.3 Model Evaluation  

As for the model evaluation we have used accuracy for each epoch on both training and test sets. Also, the 
confusion matrix for the final evaluation of the model was calculated in each experiment.  
Our comparison of federated learning, centralized training, and local training is based on two distinct 
configurations.  
 
In the first configuration, we utilized a low number of epochs (2 and 5) for both centralized and local 
training, while using a high number of rounds (25 and 10) for the FL model.  
  
Results: We divide our findings depending on the kind of label:  
 

 When the labels are presented in all four datasets (labels 0 & 1): 
 The local training model was unable to learn all the labels, whereas both the centralized training 

and the FL model were able to learn all the labels within this group. 
 FL demonstrates F1 scores that are nearly identical to those achieved through centralized 

training, also FL on each machine surpasses the F1 scores achieved through local training. 

 

 When the labels are only present in some nodes (labels 2-7): 
 With 2 epochs and 25 rounds, FL achieve higher F1 scores than centralized training in 2 epochs. 
 FL shows similar F1 scores (5 epochs and 10 rounds) (except for one class) to centralized in 5 

epochs. 
 FL was able to learn all labels except one, whereas centralized training failed to learn two labels. 

 

Note: All models, including local training, were unable to learn the labels of class 7.  
 
  Dataset nev  mel  ack  bcc   sec  df  vasc  scc  
Brazil   0.05  0.0  0.13  0.54  0.0  null  null  0.0  
Australia  0.59  0.04  0.38  0.28  0.42  0.0  null  null  
Austria  0.89   0.29  0.0  0.27  0.10  0.0  0.33  null  
Netherlands  0.76  0.5  null  null  null  null  null  null  

Table 5.2 F1_score on 5 epochs for each local machine 

 

 

nev  mel  ack  bcc   sec  df  vasc  scc  
0.84  0.24  0.53  0.51  0.39  0.0  0.21  0.0  

Table 5.3 F1_score on 5 epochs for the centralized training 
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 Dataset nev  mel  ack  bcc   sec  df  vasc  scc  
Node Brazil  0.258  0.120  0.188   0.467  0.189  nan  nan  0.000  
Node Australia  0.609  0.256  0.092  0.351  0.377  0.154  nan  nan  
Node Austria  0.879  0.414  0.000  0.437  0.401  0.069   0.261  nan  
Node 
Netherlands 0.743  0.581  nan   nan  nan  nan  nan  nan  
Global  0.793  0.349  0.154  0.437  0.351  0.087  0.203   0.000  

Table 5.4 F1_score on 5 epochs and 10 rounds for the Federated learning on each machine and in global 

  
  Dataset nev  mel  ack  bcc   sec  df  vasc  scc  
Brazil  0.0  0.0  0.0  0.0  0.17  null  null  0.0  
Australia  0.54  0.0  0.0  0.0  0.12  0.0  null  null  
Austria  0.88  0.16  0.0  0.0  0.06  0.0  0.0  null  
Netherlands   0.78  0.21  null  null  null  null  null  null  

Table 5.5 F1_score on 2 epochs for each local machine 

  
nev  mel  ack  bcc   sec  df  vasc  scc  
0.80  0.32  0.49  0.25  0.27  0.0  0.0  0.0  

Table 5.6 F1_score on 2 epochs for the centralized training 

  
 Datasets nev  mel  ack  bcc   sec  df  vasc  scc  
Node Brazil  0.331    0.061    0.370    0.492    0.232    nan      nan      0.000  
Node Australia  0.615    0.203    0.291     0.371     0.278    0.000     nan      nan  
Node Austria  0.896    0.371    0.000    0.406    0.397    0.074    0.528    nan  
Node 
Netherlands  0.811    0.581    nan      nan       nan      nan      nan      nan  
Global  0.815    0.317    0.331    0.448    0.325    0.051    0.431    0.000  

Table 5.7 F1_score on 2 epochs and 25 rounds for the Federated learning on each machine and in global 

  

In the second configuration, we utilized a high number of epochs (20, 50) for both centralized and local 
training, while using a low number of rounds (6) for the FL model. 

 When the labels are presented in all four datasets (labels 0 & 1):  
 All three experiments were able to learn all labels.  
 Both centralized and FL show similar results. However, when FL was trained on each machine 

compared to local training, it exhibited lower F1 scores.  
  

 When the labels are only present in some nodes (labels 2-7):  
 FL showed weaker results compared to centralized training.  
 FL exhibited weaker results on each machine, in comparison to local training.  
 FL was unable to learn label 7, while the centralized model was able to detect some labels with 

a shallow score of 0.1 and .03 with 20 and 50 epochs.  
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Local Training  nev  mel  ack  bcc   sec  df  vasc  scc  
Node Brazil  0.39  0.0  0.56  0.24  0.32  null  null  0.0  
Node Australia  0.68  0.13  0.40  0.50  0.39  0.0  null  null  
Node Austria   0.89   0.15  0.0  0.21  0.33  0.26  0.56  null  
Node Netherlands   0.8  0.43  null  null  null  null  null  null  

Table 5.8 F1_score on 20 epochs for each local machine 

  
Local Training  nev  mel  ack  bcc   sec  df  vasc  scc  
Node Brazil  0.56  0.31  0.54  0.6  0.48  null  null  0.03  
Node Australia  0.69  0.35  0.4  0.49  0.51  0.28  null  null  
Node Austria  0.91   0.44  0.4  0.41  0.47  0.34  0.63  null  
Node Netherlands  0.87  0.78  null  null  null  null  null  null  

Table 5.9 F1_score on 50 epochs for each local machine 

  
nev  mel  ack  bcc   sec  df  vasc  scc  
0.84  0.43  0.55  0.51  0.36  0.22  0.5  0.1  

Table 5.10 F1_score on 20 epochs for the centralized training 

  
nev  mel  ack  bcc   sec  df  vasc  scc  
0.86  0.38  0.51  0.55  0.40  0.47   0.51  0.03  

Table 5.11 F1_score on 50 epochs for the centralized training 

  
  Dataset nev  mel  ack  bcc   sec  df  vasc  Scc  
Node Brazil   0.376  0.045  0.259  0.450  0.305  nan  nan  0.000  
Node Australia   0.640  0.214  0.353   0.478  0.364  0.211  nan  nan  
Node Austria  0.869  0.296  0.000  0.301  0.366  0.250  0.560  nan  
Node 
Netherlands  0.550   0.261  nan  nan   nan  nan  nan   nan  
Global  0.810  0.248  0.275  0.420  0.350  0.179  0.459  0.000  

Table 5.12 F1_score on 20 epochs and 6 rounds for the Federated learning on each machine and in global 

  
For all the experiments we have used the following hyperparameters:  

 batch_size: 32  
 lr: 0.005  
 min_fit_clients: 4  

 

5.4 Conclusions and Future Steps 
For some labels and nodes, the federated model performs better than a local model trained on local data. 
Having access to more data improves the model, providing an incentive to collaborate on federated training.  

However, for some other labels, the federated model performs worse. This might be caused by a variety of 
reasons:  

 Insufficient training time: the federated model needs more time to converge. 

 Poor strategy: the local models are combined via averaging; less naïve strategies might yield better 
results.  

 Diverse data: some classes might be too different between nodes, “poisoning” the model’s 
understanding.  
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 Insufficient capacity: only 2 convolutional layers might not be enough to learn all the different data.  

 FL needs a good trade-off between the number of epochs and rounds to outperform the Centralized 
model. 

This prototype could be extended in several ways, to better explore the PET space: 

 Use a more sophisticated technique for aggregating the federated model 

 Use Differential Privacy during training to fully ensure that no model inversion attacks are possible 

 Use Secure Multi Party Computation to compute the global metrics, to avoid revealing any individual 
node’s metrics. 

 



 

50 

6 Final Conclusions  
In this JRC technical report, we have provided the motivation for the use of Privacy Enhancing Technologies in 
a data spaces context, including an overview of their current state, and a practical evaluation for real-world 
usage. We have shown that PETs are a key technology for resolving the tension between data utility and data 
privacy, enabling new use cases but also increasing security for existing ones. 

Among these technologies, Secure Multi-Party Computation (SMPC), Federated Learning (FL), Differential 
Privacy (DP), and Anonymization are notable for their high technological readiness level. These methods offer 
robust solutions for maintaining data privacy while still enabling valuable analysis and insights. SMPC enables 
computation across multiple parties where the raw data is never revealed to any of the parties involved. 
Federated Learning allows machine learning models to be trained across numerous devices or servers holding 
local data samples, without exchanging them. Differential Privacy introduces statistical noise to data or 
queries to provide plausible deniability, which helps to protect individual's data during analysis. However, 
Anonymization, despite its widespread use and technological readiness, has significant shortcomings. While it 
involves removing identifying information from data to protect individuals' privacy, it's increasingly being seen 
as insufficient due to the growing risk of re-identification. Advances in technology and the availability of 
diverse datasets have made it possible, in some cases, to re-identify individuals from data that was thought 
to be anonymous. Therefore, while Anonymization can still be a useful tool in certain contexts, it may not 
provide the level of privacy protection required in scenarios with high privacy risks. 

On the other hand, Homomorphic Encryption (HE), Trusted Execution Environments (TEE) and Zero Knowledge 
Proofs (ZKP), while offering innovative ways to preserve privacy, are not as mature or widely adopted in 
practical applications yet. For instance, Homomorphic Encryption is currently computationally expensive and 
slower than traditional methods, which poses a challenge for its widespread adoption. Similarly, TEEs require 
specific hardware, and their security heavily relies on the physical protection of the hardware. Zero-Knowledge 
Proofs, although powerful in theory, are complex to implement and understand, which can pose a barrier to 
their practical use. 

The key takeaway from the analysis presented in this report is that there is no silver bullet: each PET is 
adapted to different data sharing scenarios, and has different trade-offs (performance, complexity, security, 
utility). Understanding the strengths and limitations of these technologies is essential for data space actors to 
select the most appropriate solutions for their specific needs. As always, the choice of PET should be guided 
by a thorough understanding of the data context, the privacy requirements, and the specific use case. Before 
choosing a PET, data analysts should know what analysis it enables and data holders should know what 
protections it offers. 

While PETs offer robust solutions for maintaining data privacy, their robustness should be assessed within the 
context of specific use cases. The effectiveness and resilience of PETs in protecting data privacy depend on 
various factors such as the implementation, configuration, and adherence to best practices. Robustness 
should be evaluated through rigorous testing, validation, and continuous monitoring to ensure that the chosen 
PETs meet the required privacy standards and can withstand potential attacks or vulnerabilities. 

Some possible future steps to facilitate the uptake and use of PETs within the context of common European 
Data Spaces are: 

 Investigate and test the integration of PETs within different sector-specific European 
Data Spaces: It is critical to explore how PETs can be integrated into European Data Spaces to 
maximize both data utility and privacy. Practical implementation of PETs in such environments could 
allow for secure sharing and analysis of data, opening new possibilities for innovation and research. 
Pilot projects and real-world testing scenarios will be vital in understanding the challenges and 
benefits of this integration. 

 Raise awareness of PETs among policymakers: It's important to bring PETs to the forefront of 
policy discussions about data privacy and security. Policymakers should be educated on the 
capabilities and limitations of different PETs, so they can make informed decisions when drafting 
privacy laws. Ensuring that privacy laws take into account the latest advancements in PETs could 
lead to more robust and effective legislation that protects individual privacy while enabling data 
utility. 

 Support academic research on PETs and open-source projects that implement them: 
Encouraging and funding research into PETs can help push the boundaries of what's currently 
possible, leading to the development of more advanced and effective technologies. Open-source 
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projects are particularly valuable, as they allow for community collaboration and widespread 
adoption. Providing financial and technical support for these projects can accelerate the development 
and refinement of PETs. 

 Promote collaboration between academia, industry, and government: Cross-sector 
partnerships can lead to more rapid advancement and adoption of PETs. Collaboration could lead to 
the development of standardized protocols and best practices for using PETs, making it easier for 
organizations to implement these technologies. 

 Implement training and education programs: Due to the complexity of PETs, it is crucial to 
provide comprehensive training and education programs to data analysts, IT professionals, and other 
data space stakeholders. These programs will equip individuals with the necessary skills and 
knowledge to utilize PETs effectively and responsibly in their respective domains. By investing in 
education and promoting a strong understanding of PETs, organizations can maximize their benefits 
while mitigating risks and ensuring ethical use.. 

 Prioritize the development of user-friendly PETs: To encourage widespread adoption, it is 
essential to prioritize the development of user-friendly PETs. PETs should be accessible and easy to 
use, with clear instructions and adequate support. By simplifying the user experience and reducing 
barriers to adoption, organizations can increase the successful implementation of PETs and promote 
their broader usage. 

 Establish a clear ethical framework for the use of PETs: Given the sensitive nature of the data 
handled by PETs, it is critical to establish a clear ethical framework. This framework should address 
important aspects such as consent, transparency, accountability, and fairness. By adhering to ethical 
guidelines, organizations can ensure the responsible and trustworthy use of PETs while safeguarding 
individual rights and promoting public trust in data sharing initiatives 
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Appendix A. FL Architecture 
This is a Federated Learning simplified architecture of the solution proposed in section Error! Reference 
source not found.. All the tools or software related to data processing have been omitted in order to 
focus on the federated part. This platform is a client-server architecture, where the client is a software 
application that in general is installed on-premise on each Data Provider along with its own connector. On 
the server side, resides the central part of the platform that communicates with all the connectors and 
acts as a coordinator for all operations, following the guidelines of Data Spaces. Next figure includes the 
following items: 

 The data provider prepares the data (according with the other parties for a common data model) 
for training. 

 The aggregation server (aggregates) the results from the different parties and ships the 
consolidated results back to the parties. This can go through multiple rounds until a termination 
criterion is reached. 

 The data consumer/data scientist can make a computation request for training a model and 
receive a computation result from the server. 

 

 
Figure 7. 1 An overview of federated learning 

 

All the components rely on micro-services technology to containerize code, runtime, systems tools, 
libraries, and settings. The infrastructure, for all participants in the model training, must be configured as 
a client, which has access to the data. For the sever, must be configured as a server, and needs to have a 
connection to the clients to share model weights or errors. The central server aggregates the feedback 
from the participants, and based on predefined criteria, updates the global model. The predefined criteria 
allow the model to evaluate the quality of the feedback and therefore to only incorporate that which is 
value-adding. 
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Appendix B. SMPC Architecture 
This is a schematic representation of the secure multiparty computation scenario. All the tools or 
software related to data processing have been omitted in order to focus on the computation part. This 
platform consists of several computing machines installed on-premises at each Data Provider. Next 
figures include the following items: 

 The data provider prepares the data (according with the other parties for a common format) for 
computation. 

 The computation server on which the operations are performed. 
 The data consumer / data scientist can make a computation request for an operation. 

 

 
Figure 7. 2 An overview of SMPC 

 

All the components rely on micro-services technology to containerize code, runtime, systems tools, libraries, 
and settings. The infrastructure, for all participants in the computation, must have a computation server with 
the data loaded for secret share to the rest of computation servers. The data scientist obtains the results, 
combining the individual secret shares without reveal any information about the inputs. 
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Appendix C. DP Architecture 
This is a schematic representation of the differential privacy scenario. All the tools or software related to 
data processing have been omitted in order to focus on the security computation part. This platform 
consists of piece of software that adds noise to the original input datasets provided by the Data 
Providers. Next figure includes the following items: 

 The data provider give access to the databases/datasets on which to perform queries. 
 The aggregator noise is a piece of software that add noise to the output. 
 The data analyst can make a query to the databases/datasets with a noise. 

 

 
Figure 7. 3 An overview of DP 

 

All the components rely on micro-services technology to containerize code, runtime, systems tools, libraries, 
and settings. The infrastructure must contain a piece of software, in this case called noise aggregator, which 
is in charge of executing the algorithm to add noise to the output. The Data Analyst obtain the results with the 
noise that has been added to obtain privacy on the input data. 
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Appendix D. HE Architecture 
This is a schematic representation of the homomorphic encryption scenario. All the tools or software 
related to data processing have been omitted in order to focus on the security computation part. This 
platform consists of a secure server which performs secure computation on encrypted data and returns 
to the data providers/Data consumers the encrypted result of the operation. Next figure includes the 
following items: 

 The data provider encrypts the data with a private key to be able to perform a computation in a 
secure server. 

 The secure server is the one that performs the computation on the encrypted values received, 
returning the encrypted results to the different computation participants. 

 The data consumer can send a secure operation to the secure server using the encrypted data 
and can decrypt the result of the operation. 

 

 
Figure 7. 4 An overview of HE 

 

All the components rely on micro-services technology to containerize code, runtime, systems tools, 
libraries, and settings. The infrastructure must contain a server where the secure computation is 
performed on the encrypted data, applying the algorithm/model/computation to them. The data 
consumer obtains the results encrypted and can decrypt the results with the private key. 
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