

Evaluation of EC comparison on the determination of ²²⁶Ra, ²²⁸Ra, ²³⁴U and ²³⁸U in mineral waters

Y. Spasova, U. Wätjen, L. Benedik, M. Vasile, T. Altzitzoglou and M. Beyermann

EUR 24694 EN - 2011

The mission of the IRMM is to promote a common and reliable European measurement system in support of EU policies.

European Commission Joint Research Centre Institute for Reference Materials and Measurements

Contact information

Uwe Wätjen Institute for Reference Materials and Measurements Retieseweg 111 B-2440 Geel • Belgium E-mail: uwe.waetjen@ec.europa.eu Tel.: +32 (0)14 571 882 Fax: +32 (0)14 584 273

http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/

Legal Notice

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

Europe Direct is a service to help you find answers to your questions about the European Union

Freephone number (*): 00 800 6 7 8 9 10 11

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/

JRC 62731

EUR 24694 EN ISBN 978-92-79-19069-8 ISSN 1018-5593 DOI 10.2787/36764

Luxembourg: Publications Office of the European Union

© European Union, 2011

Reproduction is authorised provided the source is acknowledged

Printed in Belgium

SUMMARY

In anticipation of new European requirements for monitoring radioactivity concentration in drinking water, IRMM organised this comparison. The report describes in detail all phases of the comparison for the determination of natural radionuclides in mineral waters among 45 European laboratories monitoring radioactivity in the environment and foodstuff. Commercial mineral waters were purchased as their activity concentration of natural radionuclides is higher (and, therefore, more reliably measurable) than in most drinking waters. Reference values traceable to SI units were established at IRMM and the homogeneity of the batch of distributed samples was demonstrated. The sample preparation and measurement processes applied in the participating laboratories are described and the results of the comparison are presented and discussed in detail. A small selection of these results was also presented at the most recent ICRM conference (Wätjen et al., 2010).

A robust evaluation of the performance of individual laboratories is performed using three different approaches: relative deviations, E_n numbers and 'POMPlots'. The comparison results show that there are many highly discrepant measurement results for the radium isotopes; about one fourth and more than one third of the laboratories have severe problems with the determination of ²²⁶Ra and ²²⁸Ra, respectively. For radium, 19 results, corresponding to 14 % of all, are even off by a factor of two or more. For uranium, this proportion is slightly better, with 6 % (9 results out of 150) off by a factor of two or more. In terms of the E_n criterion, still 14 % to 23 % of the uranium results are not compliant, and as many as 25 % to 35 % of all radium results are incompatible. These are problems which need to be addressed by the concerned laboratories.

As these samples had rather low activity concentrations – around the detection limits required by the draft EC directive – and not all laboratories are routinely analysing water for these radionuclides yet, unsatisfactory comparison results for ²²⁶Ra and ²²⁸Ra may not be unexpected. The comparison clearly demonstrates, however, that a number of monitoring laboratories need to improve their analysis procedures for radium in order to correctly identify drinking water sources for which remedial action (with respect to their natural radioactivity concentration) needs to be taken.

CONTENTS

SUI	MMARY	1
CO	NTENTS	3
GLO	DSSARY	4
1.	Introduction	5
2.	Homogeneity and stability	10
3.	Determination of the reference values	11
4.	Methods used by the participating laboratories	50
5.	Reported results	54
6.	Data evaluation and comparison of data	90
7.	Conclusions	125
8.	Acknowledgements	125
9.	References	126
10.	List of participating laboratories (in alphabetical order)	129
11.	Annexes	138
	Annex 1: Questionnaire for participants sent prior to sample distribution	
	Annex 2: Result reporting form	

Annex 3: Questionnaire

GLOSSARY

BIPM	Bureau International des Poids et Mesures
CCRI(II)	Comité Consultatif des Rayonnements Ionisants, Section 2
DG	Directorate-General of the European Commission
GUM	Guide to the Expression of Uncertainty in Measurement [3]
IRMM	Institute for Reference Materials and Measurements
ICP-MS	inductively coupled plasma mass spectrometry
ICRM	International Committee for Radionuclide Metrology
ISO	International Organization for Standardization
LSC	liquid scintillation counter, liquid scintillation counting
SI	Système International d'Unités, International System of Units
SIR	Système International de Référence, International Reference System for radionuclides
UTC	Coordinated Universal Time
WHO	World Health Organization
A _{lab}	mean laboratory result of activity concentration
A _{ref}	reference value of activity concentration
D	difference between the reported and the reference activity concentration
En	performance statistic <i>E_n</i> number
k	coverage factor according to GUM
MAD	median absolute deviation
S	standard deviation
и	standard uncertainty according to GUM
Uc	combined standard uncertainty according to GUM
U _{lab}	expanded uncertainty of mean laboratory result
U _{ref}	expanded uncertainty of reference value

1. Introduction

The activity concentration of natural radionuclides in drinking water is quite variable, depending on the properties of the aquifer rock and the prevailing lithology. Whereas the radionuclide activity concentration in waters usually poses no health concern, there are regions in which the geological situation can render radioactivity levels which need to be monitored in order to reduce the potential health risk of the public. Concerns about the radioactivity concentration of water intended for human consumption have been described (L. Benedik et al., 2008, 2009), and a variety of regulations implemented (WHO, 1993, 2006; European Communities, 1998, 2001) to limit public exposure to radioactivity from drinking water. In anticipation of new requirements (European Communities, 2011) for monitoring radioactivity in drinking water, IRMM has organized this comparison among member state laboratories requesting the determination of low levels of activity concentrations (around the detection limits prescribed in the future legislation) of the naturally occurring radionuclides ²²⁶Ra, ²²⁸Ra, ²³⁴U and ²³⁸U in three commercially available mineral waters.

The European Atomic Energy Community (EURATOM) Treaty obliges the member states of the European Union to monitor (Art. 35) and regularly report (Art. 36) the levels of environmental radioactivity on their territory. Some details of sample taking and measurement requirements (sample types, sampling intervals, radionuclides, etc.) are regulated at European level (e.g. Commission Recommendation 2000/473/Euratom of 8 June 2000). In order to verify the quality and in particular comparability of the values reported by the member states, comparison exercises were introduced by the European Commission after the reactor accident of Chernobyl. Since 2003, the JRC Institute for Reference Materials and Measurements, IRMM, organises these comparisons in support to the Directorate-General for Energy, Unit Radiation Protection (DG ENER D.4).

The metrological approach of IRMM in conducting such comparisons using samples carrying reference values traceable to SI units and to the International Reference System for gamma–ray emitting radionuclides (SIR) was presented at a recent ICRM conference (Wätjen et al., 2008), and is sketched in Fig. 1. As member of the Consultative Committee for Ionising Radiation (CCRI), IRMM is participating in key comparisons among National Metrology Institutes (NMIs), which serve to "realise" the unit of radioactivity, the becquerel. Results of key comparisons, which are based on primary measurement techniques, i.e. without resorting to other activity standards, are introduced in the International Reference System for radionuclides (SIR) to determine the SIR calibration factor for that particular nuclide. Thus, the SIR system at BIPM, the Bureau International des Poids et Mesures in Sèvres close to Paris, is the world-wide standard for radioactivity.

Due to IRMM's participation in key comparisons and its direct link to the SIR, it can work with standardised solutions which are directly traceable to the SI unit. National metrology institutes, having the same short traceability link to the SIR, usually provide calibration standards through their national calibration services. Such standards can be used for example by radioactivity monitoring laboratories to calibrate their measurement equipment. Parallel to this traceability chain, IRMM offers intercomparisons with samples which have their own traceable reference value. Usually such samples are, in physical properties as well as amount of radioactivity, closer to the routine measurement conditions of a monitoring laboratory than the calibration standards. Thus, this kind of intercomparison can serve as an independent and impartial performance check with samples of high credibility.

Fig. 1: Key comparisons of CCRI(II) and traceability of reference values for samples provided by IRMM for intercomparisons amongst monitoring laboratories (KCRV = key comparison reference value)

Intercomparison material

In order to cover a range of different radionuclide concentrations (well above the detection limits given in the future regulation on radionuclides in drinking water as well as close to them), mineral water from three different companies in Hungary was bought. All water samples were bottled in 1.5 L PET (polyethylene terephthalate) bottles. Whereas drinking water is falling under the European regulation, it was decided to use mineral waters in this comparison for practical reasons: next to its higher levels of radioactivity, mineral water can be purchased in larger batches bottled at the same time, thus offering an intrinsic homogeneity of the activity concentration. Furthermore, the determination of natural radioactivity was preferred over the analysis of spiked drinking water, since spiked samples were considered to differ too much from realistic water samples measured in the monitoring routine of the laboratories.

The companies were requested to produce a batch with bottled mineral water without any label or other indication on the origin of the water. Prior to bottling the water was treated as routinely done at the companies. No information on the routine treatment of the water was available from the producers. During bottling no precautions were taken to prevent adsorption of radionuclides on the walls of the bottles, e.g. by adding an acid. Chapter 2 of this report summarises the control measurements performed at IRMM in this respect. Table 1 gives a list of the waters with sample identifications. Waters 2 and 3 were bought from one company, but in two separate deliveries of more than 2 months in between. Therefore, these two waters are divided into sub-batches having different sample numbers.

Sample ID	Sample name	Supplier	Sample number	Quantity
Water 1 - W1	Norbi Aqua	Buszesz Rt.	IM-RN-2006- 02-001446	912 bottles
			IM-RN-2006- 05-001448	504 bottles
Water 2 – W2	Balfi	Pet-Pack Kft	IM-RN-2006- 07-001449	504 bottles
	Pannon Aqua	Pet-Pack Kft	IM-RN-2006- 05-001450	504 bottles
vvater 3 – vv3			IM-RN-2006- 07-001451	504 bottles
Water 4 – W4	Szentkiralyi	Szentkiralyi Kft	IM-RN-2006- 06-001447	1008 bottles

Table 1:	Mineral water	samples	purchased	for the co	mparison	exercise

Nominated and participating laboratories

Most of the laboratories (47) in this comparison were nominated to participate by the national representatives^{*} in the expert group according to EURATOM Treaty Art. 35 and 36. These laboratories represent 24 of the 27 EU member states. In addition, four laboratories from three neighboring countries participated on a voluntary basis. All 51 laboratories were requested to fill in a questionnaire (Annex 1). Information was requested about the type and accreditation status of the laboratory, the methods it intended to use in the comparison, and the volume of water it expected to need for duplicate analysis of all radionuclides (see Question 8, Annex 1). Of the 51 laboratories, 48 sent back a filled in questionnaire. Four of the nominated laboratories declared that they were not able to participate, since their analysis methods were not sensitive enough for the low activity concentrations (gamma-ray spectrometry), or not specific for the determination of Ra-226 (precipitation method and proportional counting) or of the uranium isotopes (spectrophotometry). These four laboratories are not mentioned in the list of participating laboratories below.

According to their statements regarding the type of the laboratory, 18 laboratories do monitoring of the radioactivity in the environment (RE), 1 laboratory performs strictly Research and Development (R&D), 12 laboratories combine R&D with RE

^{*} They generally represent their national regulatory bodies for radiological protection.

measurements, 3 labs combine RE measurements with monitoring of nuclear facilities (MNF), 7 labs perform R&D, RE and MNF, 1 laboratory is an activity calibration lab, 2 laboratories do RE measurements together with other activities, and the last laboratory did not declare anything.

Regarding the status of accreditation, authorization or certification, the laboratories gave the following declarations:

- accredited 11 laboratories with Quality Management System (QMS) according to ISO 17025;
- accredited, authorised and certified 2 laboratories: 1 lab with QMS according to ISO 17025 and 1 lab with QMS according to ISO 9000 (!);
- accredited and authorised 5 laboratories: 4 labs with QMS according to ISO 17025 and 1 lab without QS (!);
- accredited and certified 3 laboratories with QMS according to ISO 17025 and ISO 9000;
- authorised and certified 1 laboratory with QMS according to ISO 17025;
- certified 2 laboratories: 1 lab with QMS according to ISO 17025 (!) and 1 lab without QMS (!)
- authorised 14 laboratories: 5 without QMS (one with ISO 17025 in progress),
 9 with QMS (one according to ISO 9000, one according to ISO 9000 and 17025, one with a "Home quality management system", one according to "GLP with SOP" and 5 labs according to ISO 17025)
- no accreditation, authorization, or certification 7 labs: 5 working under a QMS according to ISO 1705 and 2 labs without a QMS.

The laboratories were also asked how many measurements of this type they perform per year, and if the comparison samples were treated following the same analytical

	Number of measurements per year			
Radionuclide	Not declared	<25	25-100	>100
²²⁶ Ra	5	10	16	14
²²⁸ Ra	13	16	10	6
²³⁴ U	6	17	14	8
²³⁸ U	4	15	16	10

Table 2:	Number of laboratories performing this type of analysis more or less on a
	routine basis

Table 3: Comparison samples treated with same procedure as in the routine

Radionuclide	Number of labs not declaring	Number of labs treating the sample in the same way	Number of labs NOT treating the sample in the same way
²²⁶ Ra	5	37	3
²²⁸ Ra	13	27	5
²³⁴ U	7	36	2
²³⁸ U	4	38	3

procedure as routinely used in the laboratory for the same type of samples. The answers are summarised in Tables 2 and 3.

The names and addresses of all nominated (and voluntary) participants are given in chapter 10 (except for the four laboratories which declared early that their methods did not allow them to participate). As this programme of comparisons requires anonymity, the identity of the participating laboratories is not shown in the compilation of the results. The order of the listing of participants in chapter 10 is not the same as the laboratory code number used throughout the data evaluation and presentation of comparison results.

Distribution of samples

According to the filled in questionnaires, the minimum required amount for the analyses of all four radionuclides was 4.5 L while the maximum volume was 30 L. The majority of the laboratories requested 10-20 L of mineral water. Subsequently, more than 1000 bottles of mineral water were dispatched from IRMM to the participating laboratories. In the comparison exercise only three kinds of water were used. Water 4 was not included in the comparison, because the activity levels of the radionuclides were far below the detection limits given in Annex III to the proposal for a Council Directive on radioactive substances in water intended for human consumption (European Communities, 2011).

Reporting of the results

The reporting was done through a WEB-based reporting system, consisting of two parts, the numerical results and a description of the procedures used (see annexes 2 and 3). The latter part also repeated the questions concerning laboratory type and accreditation status. Of the 51 nominated (and voluntary) laboratories, 45 reported measured values.

Time table and deliverables

November 2007	national representatives nominate the participating laboratories
November 2007	the nominated laboratories are requested to fill in a questionnaire to obtain an overview of used methods and to determine the water volume needed
December 2007	more than 1000 bottles of mineral water of three different kinds (W1, W2 and W3) are dispatched to the participating laboratories
29 February 2008	on-line registration
15 April 2008	deadline for submitting the results and questionnaire to IRMM
June 2008	preliminary results reported to the laboratories in the frame of a workshop held at IRMM
May 2009	provisional reference values sent to all participants by email

2. Homogeneity and stability

The reference value of a comparison material is assumed to be valid for the whole batch at the level of a subsample with a minimum mass. Therefore, any inhomogeneity in the radionuclide concentration increases the uncertainty of the corresponding reference value. Likewise, any instability in an activity concentration would contribute additionally to the uncertainty of the corresponding reference value. Accordingly, the expanded uncertainty, U_{ref} (k = 2), of the reference value can be expressed as the quadratic sum of the three independent components

- combined standard uncertainty of the mean of measurement results contributing to the reference value (u_{char}),
- inhomogeneity among bottles of the whole batch (s_{bb}) ,

- short-term instability of samples for the duration of the comparison (u_{sts}). More precisely, the expanded uncertainty is given by the formula

$$U_{\rm ref} = k \cdot \sqrt{u_{\rm char}^2 + s_{\rm bb}^2 + u_{\rm sts}^2} \quad . \tag{1}$$

In order to determine the inhomogeneity s_{bb} among bottles of the whole batch, a dedicated homogeneity study was performed which is documented in a separate report (Spasova and Vasile, 2011). The results can be summarised as

- *s*_{bb} (²²⁶Ra) are 3.5 % and 10 % in W1 and W2, respectively;
- s_{bb} (²²⁸Ra) are 7.2 % and 5.0 % in W1 and W2, respectively;
- *s*_{bb} (²³⁴U) are 7.0 %, 3.0 % and 2.0 % in W1, W3-50 and W3-51, respectively;
- s_{bb} (²³⁸U) are 7.0 %, 4.0 % and 3.0 % in W1, W3-50 and W3-51, respectively.

The stability of the intercomparison samples was checked in the following way. Since during bottling no special treatment of the water was carried out, the adsorption of uranium on the walls of the bottles was checked as possible source of instability. This was done by filling empty bottles of mineral water with distilled water and addition of few mL of concentrated nitric acid. The bottles were stored for a period of at least 1 month. Then solid sources were prepared following the same radiochemical procedure as the one used for evaluating the homogeneity. The sources were counted for 4 days. The measured activity concentrations were below the detection limit (< 0.2 mBq·L⁻¹). Therefore, the samples were considered to be stable over time of the complete comparison exercise ($u_{sts} = 0$), and no uncertainty due to adsorption was taken into account when evaluating the combined uncertainty of the reference value.

The (in)homogeneity values, s_{bb} , mentioned above were taken into account in determining the uncertainty of the reference values (see chapter 3, pp. 48/49).

3. Determination of the reference values

The reference values for these comparison samples (activity concentration) were determined by consensus between two independent expert laboratories according to clause 5.5 of the standard ISO 13528 (ISO, 2005) with the additional constraint that the analyses had to be performed in such a way that the determined values are traceable to SI units and the SIR (Wätjen et al., 2008). IRMM and the Bundesamt für Strahlenschutz (BfS), Department for Radioprotection and the Environment, Berlin, as expert laboratories applied two largely different, independent methods (three in the case of ²²⁸Ra).

Preparation, separation and measurement procedures used at IRMM and BfS

Determination of ²³⁴U and ²³⁸U

At IRMM, a known amount of 232 U tracer was added, for monitoring the chemical recoveries and correct results and to improve precision and accuracy. Uranium is coprecipitated with Fe(III) as Fe(OH)₃, acid leached (as a CI-form) and isolated by anion exchange chromatography (Benedik et al., 2008). This fraction is converted to nitric form (with HNO₃) and U is separated and cleaned from other actinides using UTEVA resin. At the end uranium sources are prepared by coprecipitation with Nd in the fluoride form. The sample volume was 1.5 and 3 liters of mineral water. The samples were acidified using concentrated HCl to pH of approximately 1, a magnetic stirrer was used for a good homogenisation. We added Fe (III) carrier for uranium coprecipitation and also U-232 tracer for determination of recovery. All the time the samples were stirred and heated. The pH was adjusted near to 9 using NH₄OH and the precipitate was settled down overnight. The supernatant was decanted and the precipitate centrifugated. Again the supernatant was decanted.

Traceability of the ²³⁴U and ²³⁸U results to the International Reference System (SIR) for radioactivity measurement was ensured by primary standardization of the tracer nuclide ²³²U with defined solid angle α -particle counting (Sibbens et al., 2004) and subsequent submission to the SIR following appropriate procedures described elsewhere (Ratel, 2007).

At BfS, the determination of uranium isotopes was performed with proven methods of radiochemical separation and activity measurement (Bundesminister, 2006). Whereas the radiochemical separation by extraction chromatography and the use of ²³²U as a tracer is very similar to the method used at IRMM, the preconcentration consisted of evaporating water samples of 1 L to dryness and wet ashing of the residues. The thin sources for α -particle spectrometric measurement were prepared by electrodeposition on stainless steel discs (Spasova et al., 2009).

Determination of ²²⁶Ra

At IRMM an analytical scheme adapted from Lozano et al.(1997) was applied.

The method is specified for the determination of ²²⁶Ra in water with activity (drinking water, rain water, ground water and surface water) in the following range: 0.01 Bq/L to 10 Bq/L. In certain cases, the range of application may be changed by variations in

the working conditions (e.g. sample volume, pre-concentration techniques, sensitivity ranges of detectors, etc.).

In the case of ²²⁶Ra measurement by alpha spectrometry, the sample requires extensive chemical separation prior to counting in order to remove peak interferences from other alpha emitters.

The procedure is based on coprecipitation of radium as Pb(Ra)(Ba)SO₄ from acidified water samples between 0.7 L and 3 L. Adding, together with barium carrier, a known amount of ¹³³Ba as tracer for the chemical yield of radium and, furthermore, Pb²⁺ allowed to coprecipitate radium and barium with lead sulfate. Dissolution of the precipitate with EDTA/NAOH and micro-coprecipitation of Ba(Ra)SO₄ at pH = 4.5 led to a suspension which was filtered (polypropylene), whereas Pb²⁺ ions remained in solution. The filter, mounted on a stainless steel disc, was measured by α -particle spectrometry to determine ²²⁶Ra and by γ -ray spectrometry for the ¹³³Ba yield. A chemical recovery between 74 % and 98 % was obtained.

At BfS, the standardized radon emanation method H-Ra-226-TWASS-01-1 (Bundesminister, 2006) was applied. Radium was preconcentrated by coprecipitation with BaSO₄ from water samples of 1 L, using the natural Ba carrier addition as a tracer by determination with atomic absorption spectroscopy. The precipitate was dissolved in EDTA/NH₄OH and transferred to a radon bubbler. The sample was deemanated and stored for a minimum of 14 days to allow ²²²Rn to grow in. The grown-in ²²²Rn was then transferred to a Lucas-type scintillation chamber, where the α-emission of ²²²Rn and its short-lived decay products were counted. The system was calibrated with a ²²⁶Ra standard solution.

Determination of ²²⁸Ra

At IRMM, two independent methods were applied.

The first method is based on the chemical separation procedure described by Nour et al. (2004).

Sample preparation

Two types of bottled mineral water were analysed, W1 and W2. Because of the low activity concentration of ²²⁸Ra in the waters under investigation, volumes of 1.5 L and 3 L were used for each single determination. Pre-concentration of ²²⁸Ra was done using MnO_2 co-precipitation. The pH was adjusted to 2 with concentrated hydrochloric acid and then a known amount of ¹³³Ba tracer was added to be used for determination of the chemical yield of the radiochemical separation procedure. Depending on volume of the water taken for the analysis, precipitation of radium with MnO_2 was done by adding 0.375 or 0.75 mL of saturated solution of KMnO₄ and 0.75 or 1.5 mL of 0.5M MnCl₂, and adjusting the pH to 8 - 9 with 2M NaOH. The sample was stirred for two hours and then left overnight to allow the precipitate to settle. The supernatant was decanted, the MnO_2 precipitate was centrifuged for 5 minutes at 3500 rpm and the precipitate was dissolved in the mixture of concentrated HCl and H₂O₂.

After the pre-concentration of radium isotopes from the mineral water samples with MnO_2 , ²²⁸Ra was separated applying the following procedure.

Fig. 2: Radiochemical separation of radium and ²²⁸Ac from mineral water

After dissolving the precipitate with concentrated HCI and H_2O_2 , de-ionised water was added to adjust to 2M HCI and the sample was ready to be loaded onto the first Diphonix resin column. The resin column (0.5 cm i.d., 15 cm long) was conditioned with 10 mL of 2M HCI, then the sample was loaded onto the column and the non-retained ions (Ra, Ba) were eluted with 15 mL of 2M HCI. The eluted fractions were collected and stored for approximately two days to allow ²²⁸Ac to reach equilibrium with its parent ²²⁸Ra. A second Diphonix resin column (0.8 cm i.d., 2.3 cm long), conditioned with 10 mL 2M HCI, was used for the separation of ²²⁸Ac, which was eluted with 5 mL of 1M of 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) in a polyethylene liquid scintillation vial. A blank was prepared in the same way as the samples using the same reagents and deionised water.

For the second method of IRMM, use was made of sources prepared a year earlier for the determination of ²²⁶Ra by α -particle spectrometry as described above. The basic idea is to separate and determine by α -particle spectrometry the ²²⁸Th grown in as granddaughter nuclide of ²²⁸Ra after more than a year. The Ba(Ra)SO₄ precipitates of the existing sources were dissolved with EDTA/NaOH and ²²⁹Th added as tracer for determination of the chemical recovery. Coprecipitation with Fe(OH)₃, extraction chromatography on TEVA columns and micro-coprecipitation with CeF₃ were applied as preconcentration, separation and source preparation steps. The procedure is described in detail in Vasile et al. (2009).

The BfS laboratory followed the standard procedure H-Ra-228-TWASS-01-1 (Bundesminister, 2006). Adapted from Burnett et al. (1995), radium and actinium were preconcentrated by coprecipitation with barium sulfate, the sulfate was converted to a more soluble carbonate, and – after a waiting time of at least 30 hours – the grown-in ²²⁸Ac was separated by extraction chromatography on RE Spec resin. Sources were prepared using micro-coprecipitation of actinium on cerium fluoride, immediately followed by β -particle measurement in a low-level proportional counter. The chemical yield of the radium separation was determined via atomic absorption spectrometry of the barium carrier. The proportional counter was calibrated with a standardised ⁸⁹Sr source.

²²⁶Ra, ²³⁴U and ²³⁸U measurements at IRMM

Alpha-particle spectrometry equipment and calibration

The experimental set-up used for ²²⁶Ra, ²³⁴U and ²³⁸U measurements is an alpha spectrometry system for environmental samples which consists of Canberra alpha spectrometer chambers (Model 7401 VR) and PIPS detectors with 450 mm² sensitive area.

The measured source was deposited on a flat substrate that was placed in a parallel plane, centred at the symmetry axis of the detector at a distance (varying a bit amongst chambers) of about (5.0 ± 0.5) mm.

Each source was measured 4 days (345600 s); two measurements per source were performed. The data acquisition and analysis was done using the Genie-2000 Alpha

Analysis Software. For the analyses of ²²⁶Ra also Alpha Analyst Control Application V.2.1 was used.

The energy calibration of the alpha chambers was performed by measuring single nuclide sources and a mixed source. Each source was measured for 30 minutes and the sum spectrum was used for performing the calibration. The list of the sources and the energy lines used for the energy calibration of the alpha-spectrometry system is given in Table 4.

Table 4:	Sources used for	the energy calibration	of alpha-particle spectrometers
----------	------------------	------------------------	---------------------------------

Source	Nuclide	Energy, keV*
IRMM 7.4.89-5	²⁴³ Am	5275.3
IRMM 310395-1	²³³ U	4824.2
	¹⁴⁸ Gd	3183 [#]
IRMM 070292-1	²³⁸ Pu	5499.03
	²⁴⁴ Cm	5804.96

* Nucléide (2004)

[#] Predefined nuclear library in the software of Canberra

Activity concentration determination and uncertainty estimation (IRMM)

²²⁶Ra

The activity concentration of 226 Ra (A_{Ra-226}) was calculated by:

$$A_{Ra-226} = \frac{N_{Ra-226}}{t_{Ra-226} \cdot \varepsilon \cdot V_{sample} \cdot R_{chem}} \cdot f_{decay}$$
(2)

where N_{Ra-226} is the net peak area of ²²⁶Ra; t_{Ra-226} is the counting time of the sample; ε is the detection efficiency; V_{sample} is the sample volume; R_{chem} is the radiochemical yield of the sample; f_{decay} is a correction factor for decay of ²²⁶Ra (including decay correction to reference date and decay during measurement).

The half-life of 226 Ra used for the calculations is (1600 ± 7) years (Nucléide, 2004).

Uncertainty of ²²⁶Ra determination

Uncertainty due to sample preparation and chemical recovery

For the determination of the chemical yield of the radiochemical procedure ¹³³Ba was used as a tracer (see section "Sample preparation"). Its activity concentration in the sample was determined by γ -ray spectrometry with a high-purity germanium detector (HPGe) with an endcap having a 0.15 mm thick Be window. The γ -ray peak analysis was done with the GammaVision-32 software.

The chemical yield was determined by relative measurements based on the comparison of the measured peak areas of the ¹³³Ba tracer in the water samples ($N_{Ba-133sample}$) and a ¹³³Ba standard source ($N_{Ba-133Std}$) that was prepared in the same manner. The recovery factor of the standard ($R_{Ba-133Std}$) was determined by

measuring the activity left in the filtrate and the washing solution after the filtration of BaSO₄.

The chemical yield R_{chem} was calculated from:

$$R_{chem} = \left(\frac{N_{Ba-133sample}}{t_{Ba-133sample} \cdot m_{Ba-133sample}}\right) \cdot \left(\frac{t_{Ba-133Std} \cdot m_{Ba-133Std}}{N_{Ba-133Std}}\right) \cdot R_{Ba-133Std}$$
(3)

in which N_{Ba-133} is the net area of ¹³³Ba in the sample and the standard source, respectively; t_{Ba-133} is the counting time of the sample and the standard source; m_{Ba-133} is the mass of added ¹³³Ba in the sample and in the barium standard source, respectively; and $R_{Ba-133Std}$ is the recovery factor of the standard source.

In evaluating the uncertainty due to the sample preparation and the chemical yield, the contributions of the weighing of the tracer, and peak area determination have to be taken into account. Also the use of ¹³³Ba for yield correction must be taken with caution, as one may suspect a different microscopic chemical behaviour between radium and barium. It has been shown in literature, Lozano et al.(1997), that the yield ratio Y_{Ra-226}/Y_{Ba-133} is slightly higher than 1 (\approx 1.04), with a typical uncertainty of 8 %. As this value is taken from the literature, it leads to a 4.6 % standard uncertainty contribution (with a rectangular distribution as type B uncertainty (GUM, 1995)) to the combined uncertainty. This is the major uncertainty component in the chemical procedure.

A squared sum was taken of the independent components due to the sample preparation and the chemical recovery, including uncertainty on the ¹³³Ba standard (2 %), weighing (1 %), counting uncertainty (1 %) and yield ratio uncertainty (4.6 %), leading to a 5.2 % combined standard uncertainty for the separation and chemical yield.

Uncertainty on the solid angle

The detection efficiency is obtained directly from the relative solid angle, i.e. the ratio of the solid angle to 4π steradian. The solid angle Ω of the measured sources depends on dimensional parameters such as the source-detector distance *d*, the detector radius R_D , the source radius R_s and eccentricity of the source. Also, the activity distribution within the sources is very important in estimating the uncertainty on the solid angle (Spasova et al., 2007).

Realistic sources are somewhat inhomogeneous and out-of-centre. Autoradiographs were taken of sixteen ²²⁶Ra sources, in order to assess their activity distribution (Sibbens et al., 2003). The sources were not as homogeneous and of reproducible geometry as would be desired. The activity was sometimes concentrated in the centre or in a 'moon shaped' structure. Variation of 3 % in the calculated Ω ($s(\Omega) = 3$ %) was estimated, which is completely due to a different activity distribution within the sources.

The eventual value of the source-to-detector distance *d* was evaluated from the measurement of a ²²⁶Ra reference source with known activity (source ID: STD-11) and similar geometry, and taking into account possible variation amongst sources. The source was made by mounting a known amount of calibrated ²²⁶Ra solution and ¹³³Ba solution, as a sulphate in the same manner as the samples were prepared. It was standardised at IRMM by defined solid angle counting and its activity was 12.0 Bq \pm 0.2 % (*k* = 1). The uncertainty of the distance *d* (≈ 5 mm) was estimated as

2 %. The uncertainty caused by a possible tilt of the source or detector is considered to be negligible compared to the other uncertainty components.

A squared sum was taken of the independent components due to the radial activity distribution (including source inhomogeneity, internal eccentricity and source radius) (3%), distance d (1.2%), detector radius and tilt (0.5%), external eccentricity of 1 mm (1%), leading to a combined standard uncertainty of 3.4% for the solid angle.

Uncertainty due to spectral deconvolution

The data acquisition and analysis was done using the Genie-2000 Alpha Analysis Software and Alpha Analyst Control Application V.2.1. The fit was restricted to the energy region 3.7 MeV to 4.8 MeV around the ²²⁶Ra peak, hereby not fully subtracting the tailing of the daughter peaks situated at higher energy. The residuals of the fit showed systematic structure, whereas for the uncertainty calculations to be valid it is required that the residuals are randomly distributed (S. Pommé, 2006a).

As an alternative to the fit, the net peak area (N_{Ra-226}) was calculated by taking the numerical integral of the number of counts in the peak region (N_g) instead and correcting for background (B) and subtracting the low-energy tail of the interfering peak at 5.49 MeV (T):

$$N_{Ra-226} = N_g - T - B$$
 (4)

A tail-to-peak ratio of $T/N_{Ra-226} \sim 0.05$ was derived from the well isolated peak at the end of the spectrum (7.68 MeV) and this ratio was applied to subtract the tailing from the 4.78 MeV peak. The uncertainty was calculated from the sum of the counting uncertainties (Poisson) and an additional, estimated 10 % uncertainty on the tailing:

$$u(N_{Ra-226}) = \sqrt{N_g + B + T + (T/10)^2}$$
(5)

which is only slightly higher than the uncertainty delivered by the software. In the case of Water 1 (W1), a typical relative uncertainty is 1 % to 1.5 %.

Uncertainty budget for ²²⁶Ra activity concentration

In the uncertainty budget for the determination of ²²⁶Ra in mineral water (Table 5), the typical standard uncertainties $(1 \ s)$ for a single measurement are given. The individual uncertainty contributions are combined by taking the square root of the sum of the squared uncertainty components. The major contributions come from the sample preparation and the chemical recovery (5.2 %) and the solid angle determination (3.4 %). The uncertainties due to system dead time, counting time and decay correction (i.e. half-life) are considered to be negligible compared to the other uncertainty components (in total < 0.1% of the combined uncertainty). In the example presented (Water 1 – W1), the uncertainty on the counting statistics is a minor uncertainty contribution (1.3 %).

Table 5: Uncertainty budget for ²²⁶Ra in mineral water sample W1. The uncertainty budget shows the standard uncertainties (1 *s*) for a single measurement. The combined standard uncertainty is the quadratic sum of all components.

Uncertainty component	Uncertainty ²²⁶ Ra (%)
Chemical yield	5.2
Solid angle	3.4
Counting statistics (incl. background)	1.3
Volume of sample	0.1
Counting time	0.005
Dead time	0.005
Half-life (T _{1/2} = 1600 a)	9.3E-05
Combined standard uncertainty <i>u</i> c	6.4
Expanded uncertainty <i>U</i> (<i>k</i> = 2)	12.7

²³⁴U and ²³⁸U

The activity concentrations A_U of 234 U and 238 U, respectively, were determined by relative measurements based on the comparison of the measured peak areas of these uranium isotopes (N_U) and the 232 U tracer (N_{tracer}):

$$A_{U} = \frac{N_{U} \cdot m_{tracer} \cdot A_{tracer}}{N_{tracer} \cdot V_{sample}} \cdot f_{decay}$$
(6)

where N_U and N_{tracer} are the net peak areas of the corresponding uranium isotopes; A'_{tracer} is the activity per mass of the tracer solution; m_{tracer} is the mass of the added ²³²U solution in the sample; V_{sample} is the sample volume; f_{decay} is a correction factor for decay of the uranium isotopes (including decay correction to reference date and decay during measurement).

The net peak area (*N*) was calculated by taking the numerical integral of the number of counts in the peak region (N_g) and correcting for background (*B*):

$$N = N_g - B \tag{7}$$

The half-lives used for the calculations are $(245.5 \pm 0.6) \cdot 10^3$ years for 234 U, $(4.47 \pm 0.02) \cdot 10^9$ years for 238 U and (70 ± 1) years for 232 U (Nucléide, 2004).

Uncertainty of uranium determination

Table 6 shows a typical uncertainty budget of the 234 U and 238 U activity concentrations for a single measurement at the 1 *s* level (Spasova et al., 2009). The first uncertainty contributions concern counting statistics in the 234,238 U peaks and the

tracer peak calculated from the number of gross counts N_g and the background counts *B*:

$$u(N) = \sqrt{N_g + B} \tag{8}$$

Also the choice of the regions of interest (ROI) around the analysed peaks plays a role. The corresponding uncertainty was estimated to be 2 %, and taken as a systematic uncertainty, which does not reduce with repeated measurements.

With respect to sample preparation, a 232 U tracer solution standardised at IRMM within 0.6 % by defined solid angle counting was used (Sibbens et al., 2004). Furthermore, the estimated uncertainty on the volume of the sample and the uncertainty on the weight of the tracer solution is 0.1 % and 0.5 %, respectively. The propagated uncertainty due to the decay correction factor of the different isotopes (i.e. half-life) is negligible.

The uncertainty on the chemical yield cannot be easily determined. The uranium isotopes in the sample and as tracer should have the same chemical behaviour and, therefore, the same yield. Nevertheless, one cannot completely exclude that the uranium in the mineral water could behave differently from the tracer because of matrix effects; for example, if they were encapsulated in silica grains which are not easily dissolved. At this stage no uncertainty component is added for such possible effects.

Uncertainty component	²³⁴ U (%)	²³⁸ U (%)
Counting statistics (incl. background)	2.0	2.5
Counting statistics tracer (incl. background)	1.0	1.0
Choice of ROI	2.0	2.0
Activity of tracer	0.6	0.6
Weighing of tracer	0.5	0.5
Volume of sample	0.1	0.1
Half-life	8.0E-07	8.0E-07
Combined standard uncertainty <i>u</i> c	3.2	3.5
Expanded uncertainty <i>U</i> (<i>k</i> = 2)	6.4	6.9

Table 6: Uncertainty budget for 234 U and 238 U in mineral water sample W3-50, giving the standard uncertainties (1 *s*) for a single measurement. The combined standard uncertainty is the quadratic sum of all components.

The individual uncertainty contributions are combined as quadratic sum. The major contributions come from the counting statistics and the choice of region of interest (ROI, 2 %). The uncertainty due to sample preparation (sample volume, weight and activity of tracer solution) contributes 0.8 % to the combined standard uncertainty.

Results for ²²⁶Ra, ²³⁴U and ²³⁸U (IRMM)

The results from the activity concentration measurements of ²²⁶Ra, ²³⁴U and ²³⁸U in mineral water are presented in the tables and figures below. The uncertainties were estimated according to the GUM (1995) and their components are approximations of the corresponding relative standard deviations for typical measurement parameters (Tables 5 and 6).

Data were corrected for:

- Decay reference date 1 May 2006, 0:00 h UTC;
- Decay during measurement;
- Dead time (automatically made by the counter) in case of ²²⁶Ra.

The activity concentration values obtained for the three studied radionuclides according to the sample volume used are given in Tables 7 to 21. In the tables, the results for each sample as well as the arithmetic mean and the weighted mean are given for all measurements. In addition, the corresponding uncertainties, the absolute and relative standard deviations are presented as well.

During the ²³⁴U and ²³⁸U analyses, a difference between the two sub-batches of Water 3 (W3) indicated as W3-50 and W3-51 (IM-RN-2006-05-001450 and IM-RN-2006-07-001451) was observed. The difference was almost 10 %. Therefore, these two sub-batches were analysed separately and results are given for each of them. Furthermore, it has to be noted that in all the batches both uranium isotopes are not in equilibrium and the activities measured for ²³⁸U are lower than those measured for ²³⁴U.

The results from all prepared sources for each radionuclide measured with their corresponding combined standard uncertainties u_c (as given in Tables 5 and 6) are plotted in Figures 3-13. In the figures, the red solid horizontal line indicates the mean and the dashed lines indicate the ± 1 *s* range.

The mean activity concentrations of ²²⁶Ra, ²³⁴U and ²³⁸U in mineral water were calculated as weighted means of the results from all prepared sources (0.7/0.8 L, 1.5 L and 3 L sample volume). Tables 13, 22 and 23 summarise the basic characteristics of the distribution of all measurement results.

Samplo	Measure	ment 1	Measurem	ent 2	Weighted mean value (mBg·L ⁻¹)		
ID	Act. conc.	u _c	Act. conc.	и _с	Act. conc.	u _c	
W1-12	98.10	6.25	96.32	6.13	97.17	6.11	
W1-13	90.71	5.80	84.53	5.41	87.52	5.52	
W1-15	98.40	6.27	97.93	6.25	98.17	6.18	
W1-31	91.89	5.84	90.88	5.78	91.39	5.74	
W1-32	94.69	6.03	95.49	6.08	95.08	5.98	
W1-33	94.64	6.01	91.77	5.81	93.06	5.84	
W1-34	101.35	6.45	99.48	6.33	100.38	6.31	
W1-35	89.91	5.71	89.66	5.70	89.79	5.64	
W1-36	94.74	6.03	95.02	6.03	94.89	5.96	
W1-37	94.92	6.04	96.04	6.12	95.46	6.00	
W1-38	92.10	5.86	94.54	6.02	93.28	5.86	
W1-39	101.91	6.47	106.82	6.78	104.29	6.55	
W1-40	98.56	6.28	99.52	6.35	99.03	6.23 6.25 6.07	
W1-41	103.75	6.58	96.29	6.09	99.59		
W1-42	98.00	6.24	94.82	6.05	96.42		
W1-43	97.33	6.20	100.12	6.37	98.73	6.21	
W1-44	104.78	6.67	100.45	6.39	102.52	6.44	
Mean	96.81	6.02	95.86	5.95	96.28	5.99	
Weighted mean	96.52	6.00	95.51	5.94	95.90	5.96	
Minimum	89.91		84.53		87.52		
Maximum	104.78		106.82		104.29		
St. dev. (abs)	4.44		5.02		4.44		
Rel. st. dev. (%)	4.59		5.23		4.61		

Table 7: Measured activity concentrations of ²²⁶Ra (mBq·L⁻¹) in sample batch 1 (W1 - IM-RN-2006-02-001446). Sources prepared from a volume of 0.7 L to 0.8 L.

Table 8: Measured activity concentrations of ²²⁶Ra (mBq·L⁻¹) in sample batch 1
(W1 - IM-RN-2006-02-001446). Sources prepared from a volume of 1.5 L.

Sample	Measure (mBq·L ⁻¹	ment 1)	Measurem (mBq·L ⁻¹)	ent 2	Weighted mean value (mBq·L ⁻¹)		
ID	Act. conc.	U _c	Act. conc.	U _c	Act. conc.	И _с	
W1-20	104.19	6.57	111.32	7.01	107.69	6.74	
W1-21	101.56	6.39	106.82	6.72	104.11	6.51	
W1-22	101.23	6.37	99.08	6.23	100.12	6.26	
W1-23	96.30	6.07	97.27	6.12	96.82	6.05	
W1-24	103.76	6.52	105.02	6.60	104.37	6.52	
W1-25	100.88	6.34	99.09	6.23	99.97	6.25	

W1-26	104.68	6.60	107.18	6.76	105.90	6.63
W1-27	93.71	5.90	100.33	6.31	97.10	6.07
W1-29	95.05	5.99	97.72	6.16	96.34	6.03
W1-45	98.21	6.17	105.48	6.63	101.47	6.34
Mean	99.96	6.22	102.93	6.40	101.39	6.30
Weighted mean	99.74	6.20	102.51	6.38	101.11	6.29
Minimum	93.71		97.27		96.34	
Maximum	104.68		111.32		107.69	
St. dev. (abs)	3.93		4.83		4.01	
Rel. st. dev. (%)	3.93		4.69		3.99	

Table 9:Measured activity concentrations of 226 Ra (mBq·L⁻¹) in sample batch 2
(W2 - IM-RN-2006-05-001448 / IM-RN-2006-07-001449). Sources
prepared from a volume of 0.7 L to 0.8 L.

Sample	Measure (mBg·I ⁻¹	ment 1	Measurem (mBq·l ⁻¹)	ent 2	Weighted mean value (mBɑ·L⁻¹)		
ID	Act. conc.	U _c	Act. conc.	U _c	Act. conc.	u _c	
W2-24	43.07	2.80	41.98	2.72	42.48	2.70	
W2-25	38.52	2.54	40.35	2.66	39.40	2.52	
W2-26	40.39	2.64	38.24	2.50	39.25	2.50	
W2-27	42.59	2.82	40.77	2.70	41.63	2.67	
W2-30	43.16	2.80	41.08	2.68	42.12	2.68	
W2-31	37.17	2.45	39.09	2.58	38.06	2.44	
W2-32	41.32	2.69	42.37	2.76	41.83	2.66	
W2-33	41.46	2.73	40.13	2.64	40.77	2.61	
W2-34	40.89	2.67	39.27	2.57	40.07	2.55	
W2-35	42.98	2.80	40.47	2.66	41.76	2.66	
W2-36	35.79	2.35	37.77	2.48	36.72	2.35	
W2-37	38.95	2.58	39.18	2.58	39.07	2.51	
W2-38	40.13	2.62	42.10	2.74	41.11	2.62	
W2-39	41.99	2.77	42.86	2.81	42.43	2.72	
W2-40	39.86	2.61	40.12	2.63	39.99	2.55	
W2-41	36.55	2.42	40.14	2.64	38.24	2.45	
W2-42	42.40	2.75	38.61	2.53	40.55	2.58	
W2-43	40.70	2.68	39.24	2.57	39.89	2.55	
W2-44	39.46	2.58	42.37	2.77	40.84	2.60	
W2-45	38.86	2.57	39.18	2.58	39.02	2.50	
Mean	40.31	2.50	40.27	2.50	40.26	2.50	
Weighted mean	40.24	2.50	40.23	2.50	40.15	2.50	
Minimum	35.79		37.77		36.72		
Maximum	43.16		42.86		42.48		
St. dev.	2.18		1.48		1.58		

(abs)				
Rel. st. dev. (%)	5.42	3.69	3.93	

Table 10: Measured activity concentrations of ²²⁶Ra (mBq·L⁻¹) in sample batch 2 (W2 - IM-RN-2006-05-001448 / IM-RN-2006-07-001449). Sources prepared from a volume of 1.5 L.

Sample	Measure (mBq·L ⁻¹	ment 1)	Measurem (mBq·L ⁻¹)	ient 2	Weighted mean value (mBq·L⁻¹)		
ID	Act. conc.	и _с	Act. conc.	U _c	Act. conc.	U _c	
W2-16	53.12	3.38	51.04	3.25	52.03	3.27	
W2-17	46.71	2.98	46.69	2.98	46.70	2.94	
W2-18	47.38	3.04	44.82	2.88	46.08	2.91	
W2-19	44.83	2.87	44.87	2.87	44.85	2.83	
W2-20	47.51	3.04	48.04	3.07	47.78	3.01	
W2-21	56.20	3.57	53.30	3.41	54.82	3.45	
W2-22	50.43	3.22	46.17	2.96	48.18	3.04	
W2-23	39.43	2.52	40.79	2.61	40.09	2.53	
W2-28	41.61	2.66	41.06	2.62	41.33	2.61	
W2-29	38.63	2.47	38.59	2.46	38.61	2.43	
W2-48	45.04	2.89	47.00	3.01	46.00	2.90	
W2-49	50.54	3.23	50.60	3.24	50.57	3.19	
W2-50	42.49	2.73	42.98	2.75	42.75	2.70	
W2-51	45.06	2.87	44.49	2.84	44.77	2.82	
Mean	46.36	2.88	45.75	2.85	46.04	2.86	
Weighted mean	45.58	2.84	45.08	2.80	45.23	2.81	
Minimum	38.63		38.59		38.61		
Maximum	56.20		53.30		54.82		
St. dev. (abs)	5.04		4.16		4.54		
Rel. st. dev. (%)	10.87		9.10		9.87		

Table 11: Measured activity concentrations of ²²⁶Ra (mBq·L⁻¹) in sample batch 3 (W3 - IM-RN-2006-05-001450 / IM-RN-2006-07-001451). Sources prepared from a volume of 1.5 L.

Sample	Measure (mBq·L ⁻¹	ment 1)	Measurem (mBq·L ⁻¹)	ent 2	Weighted mean value (mBq·L ⁻¹)		
ID	Act. conc.	и _с	Act. conc.	И _с	Act. conc.	И _с	
W3-14	3.39	0.29	3.59	0.30	3.48	0.26	
W3-15	2.65	0.24	2.62	0.24	2.63	0.20	
W3-25	2.86	0.25	2.90	0.28	2.88	0.23	
W3-26	2.47	0.22	2.65	0.24	2.55	0.20	

W3-27	2.17	0.23	2.16	0.20	2.16	0.18
W3-28	2.47	0.22	2.39	0.22	2.43	0.19
W3-40	3.86	0.33	4.23	0.34	4.05	0.29
W3-41	3.50	0.30	3.16	0.27	3.32	0.25
W3-42	3.63	0.30	3.70	0.31	3.66	0.27
W3-43	3.58	0.31	3.76	0.30	3.68	0.27
Mean	3.06	0.20	3.12	0.20	3.09	0.20
Weighted mean	2.96	0.19	2.98	0.19	2.92	0.19
Minimum	2.17		2.16		2.16	
Maximum	3.86		4.23		4.05	
St. dev. (abs)	0.60		0.68		0.64	
Rel. st. dev. (%)	19.6		21.9		20.7	

Table 12: Measured activity concentrations of ²²⁶Ra (mBq·L⁻¹) in sample batch 3 (W3 - IM-RN-2006-05-001450 / IM-RN-2006-07-001451). Sources prepared from a volume of 3.0 L.

Sample	Measure (mBa·L ⁻¹	ment 1,	Measurem (mBg·l ⁻¹)	ent 2	Weighted mean value (mBg·I ⁻¹)		
ID	Act. conc.	u _c	Act. conc.	И _с	Act. conc.	u _c	
W3-10	2.55	0.22	2.62	0.23	2.58	0.20	
W3-11	3.18	0.26	3.11	0.25	3.14	0.23	
W3-12	2.81	0.26	2.86	0.24	2.84	0.22	
W3-13	2.94	0.23	2.95	0.23	2.95	0.21	
W3-16	3.47	0.26	3.34	0.26	3.41	0.24	
W3-17	3.18	0.24	3.27	0.25	3.22	0.22	
W3-18	2.81	0.23	2.88	0.24	2.84	0.21	
W3-19	2.71	0.22	2.84	0.24	2.76	0.20	
W3-20	3.11	0.29	2.78	0.27	2.94	0.24	
W3-21	2.72	0.23	2.74	0.24	2.73	0.20	
W3-22	2.84	0.21	2.88	0.22	2.85	0.20	
W3-23	3.20	0.24	3.44	0.26	3.31	0.23	
W3-24	3.06	0.24	3.07	0.23	3.06	0.21	
W3-39	3.04	0.23	3.28	0.25	3.15	0.22	
W3-44	3.42	0.26	3.37	0.25	3.40	0.23	
Mean	3.00	0.19	3.03	0.19	3.02	0.19	
Weighted mean	3.01	0.19	3.05	0.20	3.00	0.19	
Minimum	2.55		2.62		2.58		
Maximum	3.47		3.44		3.41		
St. dev. (abs)	0.27		0.26		0.25		
Rel. st. dev. (%)	8.89		8.54		8.41		

Fig. 3: ²²⁶Ra activity concentration in mineral water - Batch 1 (W1 - IM-RN-2006-02-001446)

Fig. 4: ²²⁶Ra activity concentration in mineral water – Batch 2 (W2 - IM-RN-2006-05-001448 / IM-RN-2006-07-001449)

²²⁶Ra activity concentration in mineral water – Batch 3 (W3 - IM-RN-2006-05-001450 / IM-RN-2006-07-001451) Fig. 5:

				1.
Table 12. Active	ty concontration rac	ulto for ²²⁰ Da ir	minoral water	(mDa.l -')
I able 13. AULIV		uits iui ra ii		(IIIDY'L)
				\ <u>1</u> /

Measurand	W1	W2	W3*
Minimum value	85	36	2.50
Maximum value	112	56	3.50
Standard deviation	5.2	4.3	0.30
Mean value	98.2	42.7	3.02
Standard deviation of mean	0.7	0.5	0.05
Weighted mean value (mBq·L ⁻¹)	97.7	42.0	3.00
Expanded uncertainty <i>U</i> (<i>k</i> =2) (mBq·L ⁻¹)	12.2	5.3	0.38

Reference date - 1 May 2006 0:00 h UTC *Results from 3L samples only

			²³⁴ U (r	nBq·L⁻¹)			²³⁸ U (mBq·L ⁻¹)					
Sample	Measu 1	rement	Measurement 2		Weightee value	d mean	Measure	ment 1	Measure	ment 2	Weightee value	d mean
	Act. conc.	И _с	Act. conc.	U _c	Act. conc.	Uc	Act. conc.	и _с	Act. conc.	U _c	Act. conc.	и _с
W1-16	13.36	0.53	13.39	0.53	13.38	0.43	9.85	0.43	9.51	0.42	9.68	0.33
W1-19	15.67	0.60	15.55	0.60	15.61	0.49	11.19	0.48	11.96	0.50	11.56	0.39
W1-22	13.26	0.52	14.56	0.55	13.89	0.43	9.85	0.42	10.14	0.43	9.99	0.34
W1-23	14.67	0.55	14.56	0.51	14.61	0.43	10.05	0.42	9.93	0.39	9.98	0.32
W1-25	16.75	0.57	15.27	0.52	15.96	0.45	10.80	0.41	10.07	0.39	10.42	0.32
W1-26	14.70	0.54	14.45	0.51	14.57	0.43	10.50	0.43	9.94	0.40	10.20	0.33
W1-28	16.82	0.56	16.29	0.55	16.55	0.46	11.71	0.43	11.83	0.43	11.77	0.35
W1-29	15.46	0.53	15.75	0.56	15.60	0.45	11.58	0.43	10.97	0.43	11.28	0.35
W1-35	15.24	0.58	16.10	0.59	15.67	0.48	11.36	0.47	10.61	0.44	10.96	0.36
W1-36	15.57	0.55	15.63	0.55	15.60	0.46	11.15	0.44	10.89	0.42	11.02	0.35
W1-38	16.23	0.58	16.43	0.58	16.33	0.48	11.53	0.46	11.25	0.44	11.38	0.36
W1-39	17.85	0.69	16.83	0.62	17.28	0.53	12.12	0.53	12.11	0.49	12.11	0.40
Mean	15.47	0.36	15.40	0.36	15.42	0.35	10.97	0.26	10.77	0.26	10.86	0.25
Weighted mean	15.38	0.36	15.34	0.36	15.36	0.34	10.94	0.26	10.68	0.25	10.80	0.24
Minimum	13.26		13.39		13.38		9.85		9.51		9.68	
Maximum	17.85		16.83		17.28		12.12		12.11		12.11	
St. dev. (abs)	1.36		1.00		1.12		0.76		0.88		0.79	
Rel. st. dev. (%)	8.79		6.48		7.29		6.94		8.17		7.30	

Table 14: Measured activity concentrations of ²³⁴U and ²³⁸U (mBq·L⁻¹) in sample batch 1 (W1 - IM-RN-2006-02-001446). Sources prepared from a volume of 1.5 L.

	²³⁴ U (mBq·L⁻¹)							²³⁸ U (mBq·L ⁻¹)						
Sample	Measu 1	rement	Measurement 2		Weighted mean value		Measurement 1		Measurement 2		Weighted mean value			
	Act. conc.	и _с	Act. conc.	и _с	Act. conc.	и _с	Act. conc.	и _с	Act. conc.	и _с	Act. conc.	и _с		
W1-10	13.09	0.38	12.88	0.38	12.98	0.33	9.60	0.30	9.10	0.29	9.34	0.25		
W1-11	13.33	0.41	12.89	0.40	13.11	0.35	10.00	0.33	9.65	0.32	9.83	0.27		
W1-12	13.49	0.41	13.10	0.40	13.29	0.35	9.88	0.33	9.87	0.32	9.88	0.27		
W1-13	13.30	0.42	12.71	0.40	12.99	0.35	9.88	0.33	8.99	0.31	9.40	0.27		
W1-14	13.54	0.40	12.84	0.39	13.18	0.34	9.64	0.31	9.23	0.30	9.43	0.26		
W1-17	13.69	0.49	13.35	0.49	13.52	0.40	10.19	0.39	9.66	0.38	9.92	0.31		
W1-18	14.23	0.55	14.22	0.56	14.22	0.45	9.91	0.43	9.98	0.43	9.94	0.34		
W1-21	15.50	0.47	15.14	0.46	15.31	0.40	11.53	0.38	10.66	0.35	11.07	0.31		
W1-24	15.26	0.47	14.06	0.45	14.66	0.39	10.82	0.36	9.81	0.34	10.32	0.29		
W1-27	15.80	0.47	14.54	0.45	15.16	0.40	10.87	0.35	10.42	0.35	10.64	0.30		
W1-30	15.73	0.54	15.73	0.52	15.73	0.44	11.32	0.42	11.94	0.42	11.64	0.35		
Mean	14.27	0.33	13.77	0.32	14.01	0.31	10.33	0.24	9.94	0.23	10.13	0.23		
Weighted mean	14.10	0.32	13.57	0.32	13.83	0.30	10.24	0.24	9.78	0.23	10.00	0.22		
Minimum	13.09		12.71		12.98		9.60		8.99		9.34			
Maximum	15.80		15.73		15.73		11.53		11.94		11.64			
St. dev. (abs)	1.08		1.04		1.04		0.68		0.84		0.73			
Rel. st. dev. (%)	7.57		7.55 7.42		7.42		6.62		8.44		7.21			

Table 15: Measured activity concentrations of ²³⁴U and ²³⁸U (mBq·L⁻¹) in sample batch 1 (W1 - IM-RN-2006-02-001446). Sources prepared from a volume of 3.0 L.

			²³⁴ U (I	mBq·L⁻¹)			²³⁸ U (mBq·L ⁻¹)						
Sample ID	Measurement 1		Measurement 2		Weighted mean value		Measurement 1		Measurement 2		Weighted mean value		
	Act. conc.	и _с	Act. conc.	и _с	Act. conc.	и _с	Act. conc.	и _с	Act. conc.	и _с	Act. conc.	и _с	
W2-12	4.58	0.26	4.13	0.24	4.51	0.17	1.04	0.12	1.17	0.13	1.17	0.08	
W2-13	3.61	0.23	4.01	0.21	3.92	0.15	0.76	0.10	1.22	0.12	1.01	0.07	
W2-22	4.48	0.34	3.37	0.26	3.84	0.19	0.75	0.14	0.67	0.13	0.85	0.09	
W2-26	4.02	0.25	3.87	0.22	3.94	0.18	0.75	0.11	0.71	0.10	0.72	0.07	
W2-27	3.96	0.25	3.77	0.21	3.92	0.15	0.91	0.11	1.07	0.12	0.97	0.07	
W2-28	4.05	0.23	4.22	0.22	4.13	0.18	0.89	0.11	0.83	0.10	0.86	0.07	
W2-30	4.19	0.24	4.18	0.24	4.18	0.19	1.03	0.11	0.95	0.11	0.99	0.08	
W2-31	3.96	0.25	3.98	0.21	3.97	0.18	1.17	0.13	1.09	0.12	1.13	0.09	
Mean	4.11	0.12	3.94	0.12	4.05	0.10	0.91	0.05	0.96	0.05	0.96	0.03	
Weighted mean	4.07	0.12	3.96	0.15	4.05	0.10	0.90	0.05	0.95	0.05	0.96	0.03	
Minimum	3.61		3.37		3.84		0.75		0.67		0.72		
Maximum	4.58		4.22		4.50		1.17		1.22		1.17		
St. dev. (abs)	0.31		0.27		0.22		0.16		0.21		0.15		
Rel. st. dev. (%)	7.55		6.96	6.96		5.35		17.25		21.88		15.35	

Table 16: Measured activity concentrations of ²³⁴U and ²³⁸U (mBq·L⁻¹) in sample batch 2 (W2 - IM-RN-2006-05-001448 / IM-RN-2006-07-001449). Sources prepared from a volume of 1.5 L.

	²³⁴ U (mBq·L ⁻¹)							²³⁸ U (mBq·L ⁻¹)						
Sample ID	Measurement 1		Measurement 2		Weighted mean value		Measurement 1		Measurement 2		Weighted mean value			
	Act. conc.	И _с	Act. conc.	и _с	Act. conc.	и с	Act. conc.	и _с	Act. conc.	и _с	Act. conc.	и _с		
W2-15	3.91	0.20	3.72	0.19	3.81	0.15	0.89	0.09	0.82	0.08	0.85	0.06		
W2-16	4.16	0.21	4.36	0.21	4.13	0.14	0.83	0.08	1.06	0.09	0.93	0.05		
W2-17	4.03	0.18	4.22	0.19	4.12	0.15	1.00	0.08	0.97	0.08	0.99	0.06		
W2-19	3.87	0.20	3.85	0.19	3.93	0.13	0.97	0.09	1.18	0.10	1.07	0.06		
W2-20	3.49	0.18	3.73	0.20	3.60	0.15	0.86	0.09	0.85	0.09	0.85	0.06		
W2-21	4.25	0.20	4.19	0.21	4.34	0.16	1.10	0.10	1.38	0.11	1.16	0.07		
W2-23	3.75	0.20	3.89	0.20	3.88	0.13	0.83	0.09	0.95	0.09	0.90	0.05		
W2-24	3.69	0.17	3.89	0.16	3.79	0.13	0.85	0.07	0.77	0.06	0.81	0.05		
W2-25	3.67	0.16	3.68	0.17	3.67	0.13	0.70	0.06	0.73	0.07	0.71	0.05		
W2-29	3.84	0.17	3.94	0.18	3.77	0.12	1.01	0.08	0.87	0.08	0.88	0.05		
Mean	3.86	0.10	3.95	0.11	3.90	0.09	0.90	0.03	0.96	0.04	0.92	0.03		
Weighted mean	3.84	0.10	3.91	0.10	3.89	0.09	0.89	0.03	0.88	0.03	0.90	0.03		
Minimum	3.49		3.68		3.60		0.70		0.73		0.71			
Maximum	4.25		4.36		4.34		1.10		1.38		1.16			
St. dev. (abs)	0.23		0.23		0.23		0.12		0.20		0.13			
Rel. st. dev. (%)	6.01		5.91	5.91		5.88		12.79		21.14		14.20		

Table 17: Measured activity concentrations of ²³⁴U and ²³⁸U (mBq·L⁻¹) in sample batch 2 (W2 - IM-RN-2006-05-001448 / IM-RN-2006-07-001449). Sources prepared from a volume of 3.0 L.

	²³⁴ U (mBq·L ⁻¹)							²³⁸ U (mBq·L ⁻¹)						
Sample	Measurement 1		Measurement 2		Weighted mean value		Measurement 1		Measure	ement 2	Weighted mean			
	Act. conc.	и с	Act. conc.	и _с	Act. conc.	Uc	Act. conc.	Uc	Act. conc.	и с	Act. conc.	и _с		
W3-14	43.02	1.18	43.40	1.19	43.21	1.07	21.88	0.68	21.64	0.67	21.76	0.58		
W3-15	44.05	1.36	42.90	1.29	43.43	1.15	21.38	0.78	21.49	0.75	21.44	0.63		
W3-16	44.32	1.47	43.99	1.44	44.15	1.23	21.92	0.86	21.01	0.82	21.45	0.68		
W3-17	42.41	1.58	43.05	1.61	42.72	1.30	21.18	0.96	21.57	0.98	21.37	0.76		
W3-18	45.32	1.50	45.86	1.52	45.59	1.27	22.53	0.87	22.57	0.88	22.55	0.71		
W3-19	43.04	1.73	43.56	1.76	43.30	1.40	21.54	1.04	22.49	1.07	22.00	0.82		
W3-20	43.27	1.74	45.04	1.82	44.11	1.43	21.18	1.03	21.53	1.06	21.35	0.81		
W3-50_4	47.28	1.36	45.63	1.32	46.44	1.18	23.23	0.77	23.24	0.77	23.24	0.65		
W3-50_5	48.20	1.41	46.11	1.37	47.14	1.22	24.66	0.82	23.42	0.80	24.03	0.68		
W3-50_6	44.29	1.56	46.67	1.63	45.43	1.32	21.93	0.94	23.99	1.00	22.90	0.77		
W3-50_7	48.44	1.71	46.26	1.58	47.24	1.37	22.74	0.99	22.95	0.94	22.85	0.77		
W3-50_8	45.22	1.64	47.49	1.74	46.28	1.39	22.06	0.98	22.61	1.02	22.32	0.78		
Mean	44.90	1.03	45.00	1.04	44.92	0.99	22.18	0.54	22.38	0.55	22.27	0.50		
Weighted mean	44.97	1.03	44.78	1.03	44.87	0.99	22.31	0.54	22.32	0.54	22.31	0.50		
Minimum	42.41		42.90		42.72		21.18		21.01		21.35			
Maximum	48.44		47.49		47.24		24.66		23.99		24.03			
St. dev.														
(abs)	2.06		1.56		1.62		1.00		0.93		0.86			
Rel. st.														
dev. (%)	4.58		3.47		3.61	3.61		4.50		4.14		3.88		

Table 18: Measured activity concentrations of ²³⁴U and ²³⁸U (mBq·L⁻¹) in sample batch 3 (W3 - IM-RN-2006-05-001450). Sources prepared from a volume of 1.5 L.

			²³⁴ U (1	mBq·L⁻¹)			²³⁸ U (mBq·L ⁻¹)						
Sample	Measurement 1		Measurement 2		Weighted mean value		Measurement 1		Measurement 2		Weighted mean value		
	Act. conc.	и _с	Act. conc.	и _с	Act. conc.	и _с	Act. conc.	и _с	Act. conc.	и _с	Act. conc.	и _с	
W3-10	43.79	1.14	43.02	1.12	43.40	1.04	20.91	0.60	21.35	0.60	21.13	0.53	
W3-11	42.67	1.11	43.40	1.13	43.03	1.03	21.48	0.61	22.00	0.62	21.74	0.55	
W3-12	44.22	1.08	43.86	1.07	44.03	1.01	21.70	0.57	21.60	0.57	21.65	0.52	
W3-13	44.08	1.12	42.05	1.07	43.00	1.01	21.76	0.60	20.68	0.57	21.19	0.52	
W3-21	45.54	1.79	45.54	1.80	45.54	1.45	21.22	0.97	22.11	1.01	21.65	0.77	
W3-22	43.90	1.30	45.18	1.34	44.51	1.15	21.51	0.70	21.65	0.71	21.58	0.60	
W3-23	44.47	1.30	44.45	1.31	44.46	1.15	22.87	0.73	22.05	0.72	22.45	0.62	
W3-24	45.22	1.39	44.18	1.36	44.69	1.19	21.40	0.73	21.85	0.75	21.62	0.62	
W3-50-9	44.74	1.18	48.63	1.29	46.49	1.12	22.37	0.64	24.00	0.69	23.11	0.59	
W3-50-10	46.81	1.23	47.39	1.26	47.08	1.13	23.85	0.68	23.79	0.69	23.82	0.60	
Mean	44.54	0.99	44.77	0.99	44.62	0.97	21.91	0.52	22.11	0.52	21.99	0.48	
Weighted mean	44.35	0.99	44.32	0.98	44.34	0.97	21.90	0.51	21.96	0.52	21.93	0.48	
Minimum	42.67		42.05		43.00		20.91		20.68		21.13		
Maximum	46.81 48.63			47.08		23.85		24.00		23.82			
St. dev.													
(abs)	1.13		2.00		1.39		0.88		1.03		0.87		
Rel. st.													
dev. (%)	2.53		4.47		3.12		4.04		4.66		3.96		

Table 19: Measured activity concentrations of ²³⁴U and ²³⁸U (mBq·L⁻¹) in sample batch 3 (W3 - IM-RN-2006-05-001450). Sources prepared from a volume of 3.0 L.

			²³⁴ U	(mBq·L ^{₋1})			²³⁸ U (mBq·L ⁻¹)						
Sample ID	Measu 1	Measurement 1		Measurement 2		ed mean	Measure	ement 1	Measure	ement 2	Weighte value	ed mean	
	Act. conc.	и _с	Act. conc.	и _с	Act. conc.	<i>u</i> c	Act. conc.	и _с	Act. conc.	<i>u</i> c	Act. conc.	и _с	
W3-37	39.95	1.22	40.34	1.27	40.14	1.07	19.71	0.71	21.43	0.78	20.49	0.61	
W3-38	41.33	1.28	39.59	1.21	40.41	1.07	19.78	0.73	19.20	0.71	19.48	0.59	
W3-40	40.97	1.18	40.21	1.14	40.57	1.03	20.22	0.67	19.36	0.64	19.77	0.55	
W3-41	41.16	1.18	40.82	1.15	40.98	1.03	20.04	0.68	19.66	0.65	19.84	0.56	
W3-42	39.39	1.21	38.95	1.20	39.17	1.04	21.03	0.73	20.37	0.73	20.70	0.60	
W3-45	41.22	1.21	41.64	1.22	41.42	1.06	21.77	0.71	20.87	0.71	21.34	0.60	
W3-51_4	38.90	1.21	41.28	1.27	40.05	1.07	19.99	0.73	20.77	0.75	20.37	0.61	
W3-51_5	39.13	1.17	40.96	1.27	39.94	1.05	19.99	0.69	19.98	0.73	19.98	0.59	
W3-51_6	40.89	1.18	39.77	1.14	40.31	1.02	18.56	0.64	20.96	0.69	19.70	0.55	
W3-51-8	39.16	1.22	41.07	1.25	40.10	1.06	20.42	0.72	20.84	0.73	20.63	0.60	
W3-51-9	39.73	1.28	42.67	1.33	41.19	1.12	19.54	0.73	20.98	0.75	20.26	0.61	
W3-51-10	39.99	1.18	41.82	1.26	40.82	1.06	19.65	0.67	21.15	0.73	20.32	0.58	
W3-51-11	38.84	1.15	41.35	1.26	39.95	1.04	19.06	0.65	20.45	0.72	19.66	0.57	
W3-51-12	42.29	1.28	41.66	1.27	41.98	1.10	21.82	0.75	21.50	0.74	21.66	0.62	
W3-51-13	40.50	1.24	41.60	1.26	41.05	1.08	21.28	0.73	21.58	0.73	21.43	0.61	
W3-51-14	40.62	1.28	43.38	1.37	41.91	1.13	21.46	0.77	20.66	0.75	21.05	0.63	
Mean	40.26	0.92	41.07	0.94	40.62	0.89	20.27	0.47	20.61	0.48	20.42	0.45	
Weighted mean	40.25	0.92	40.97	0.93	40.60	0.89	20.21	0.47	20.56	0.48	20.38	0.45	
Minimum	38.84		38.95		39.17		18.56		19.20		19.48		
Maximum	42.29 43.38			41.98		21.82		21.58		21.66			
St.dev. (abs)	1.02		1.13		0.77		0.96	0.96			0.68		
Rel. st. dev. (%)	2.54		2.76		1.89		4.72		3.55		3.32		

Table 20: Measured activity concentrations of ²³⁴U and ²³⁸U (mBq·L⁻¹) in sample batch 3 (W3 - IM-RN-2006-07-001451). Sources prepared from a volume of 1.5 L.

	²³⁴ U (mBq·L ⁻¹)							²³⁸ U (mBq·L⁻¹)						
Sample	Measurement 1		Measurement 2		Weighted mean value		Measurement 1		Measurement 2		Weighted mean value			
	Act. conc.	И _с	Act. conc.	и _с	Act. conc.	Uc	Act. conc.	Uc	Act. conc.	и _с	Act. conc.	и _с		
W3-26	38.37	1.47	39.84	1.49	39.10	1.20	19.52	0.83	19.96	0.83	19.74	0.66		
W3-36	40.97	1.14	40.15	1.12	40.56	1.01	19.71	0.61	19.79	0.62	19.75	0.53		
W3-39	39.77	1.14	40.51	1.16	40.14	1.02	20.22	0.65	19.36	0.63	19.78	0.54		
W3-51-7	39.61	1.19	43.05	1.30	41.18	1.08	20.75	0.69	22.59	0.75	21.59	0.60		
W3-51-15	43.16	1.27	42.79	1.24	42.97	1.10	21.49	0.70	20.89	0.68	21.17	0.58		
W3-51-16	40.58	1.23	42.56	1.27	41.55	1.09	20.36	0.69	21.19	0.71	20.77	0.59		
W3-51-17	41.50	1.22	41.65	1.18	41.58	1.06	19.87	0.65	20.89	0.65	20.41	0.56		
W3-51-18	41.42	1.22	42.52	1.25	41.96	1.08	21.19	0.70	20.80	0.70	20.99	0.59		
W3-51-19	40.53	1.29	41.27	1.31	40.90	1.11	21.41	0.76	21.08	0.75	21.24	0.62		
W3-51-20	40.30	1.20	40.72	1.26	40.49	1.06	20.72	0.68	20.65	0.71	20.69	0.59		
W3-51-21	43.05	1.32	41.67	1.28	42.34	1.12	21.14	0.73	20.51	0.71	20.82	0.60		
Mean	40.84	0.95	41.52	0.97	41.16	0.90	20.58	0.49	20.70	0.49	20.63	0.46		
Weighted mean	40.90	0.95	41.52	0.97	41.20	0.90	20.55	0.49	20.64	0.49	20.60	0.46		
Minimum	38.37		39.84		39.10		19.52		19.36		19.74			
Maximum	43.16		43.05		42.97		21.49		22.59		21.59			
St. dev. (abs)	1.42		1.12		1.09		0.69		0.85		0.64			
Rel. st. dev. (%)	3.49		2.69		2.64		3.37		4.11		3.11			

Table 21: Measured activity concentrations of ²³⁴U and ²³⁸U (mBq·L⁻¹) in sample batch 3 (W3 - IM-RN-2006-07-001451). Sources prepared from a volume of 3.0 L.

Fig. 6: ²³⁴U activity concentration in mineral water - Batch 1 (W1 - IM-RN-2006-02-001446)

Fig. 7: ²³⁸U activity concentration in mineral water - Batch 1 (W1 - IM-RN-2006-02-001446)

Fig. 8: ²³⁴U activity concentration in mineral water - Batch 2 (W2 - IM-RN-2006-05-001448 / IM-RN-2006-07-001449)

Fig. 9: ²³⁸U activity concentration in mineral water - Batch 2 (W2 - IM-RN-2006-05-001448 / IM-RN-2006-07-001449)

Fig. 10: ²³⁴U activity concentration in mineral water - Batch 3-50 (W3 - IM-RN-2006-05-001450)

Fig. 11: ²³⁸U activity concentration in mineral water - Batch 3-50 (W3 - IM-RN-2006-05-001450)

Fig. 12: ²³⁴U activity concentration in mineral water - Batch 3-51 (W3 - IM-RN-2006-07-001451)

Fig. 13: ²³⁸U activity concentration in mineral water - Batch 3-51 (W3 - IM-RN-2006-07-001451)

Measurand	W1	W2	W3-50	W3-51
Minimum value	13.0	3.60	42.8	39.1
Maximum value	17.3	4.50	47.4	43.0
Standard deviation	1.3	0.30	1.5	1.0
Mean value	14.8	4.00	44.9	40.9
Standard deviation of mean	0.3	0.05	0.3	0.2
Weighted mean value (mBq·L ⁻¹)	14.4	3.90	44.8	40.9
Expanded uncertainty <i>U</i> (<i>k</i> =2) (mBq·L ⁻¹)	0.6	0.20	2.0	1.8

Table 22: Activity concentration results for ²³⁴U in mineral water (mBq·L⁻¹)

Reference date - 1 May 2006 0:00 h UTC

Table 23. Activity concentration results for 238 U in mineral water (mBq·L⁻¹)

Measurand	W1	W2	W3-50	W3-51
Minimum value	9.4	0.74	21.1	19.7
Maximum value	12.1	1.24	24.0	21.7
Standard deviation	0.8	0.14	0.9	0.6
Mean value	10.5	0.95	22.2	20.6
Standard deviation of mean	0.2	0.03	0.2	0.1
Weighted mean value (mBq·L ⁻¹)	10.3	0.90	22.1	20.5
Expanded uncertainty <i>U</i> (<i>k</i> =2) (mBq·L ⁻¹)	0.4	0.04	1.0	0.9

Reference date - 1 May 2006 0:00 h UTC

Measurements of ²²⁸Ra at IRMM

The activity concentration of ²²⁸Ra was determined via its daughter ²²⁸Ac and measured by a liquid scintillation counter, Wallac Quantulus 1220TM.

The activity concentration of 228 Ra is calculated from equation (9):

$$A = \frac{N}{Eff \times R_{chem} \times V \times e^{-\lambda t_1}} \times \frac{\lambda \times t_2}{1 - e^{-\lambda t_2}}$$
(9)

where,

N = net counting rate (cps)

Eff = counting efficiency (%)

 R_{chem} = chemical recovery (%)

V = volume of the sample (L)

 t_1 = time from the first rinse of the column till start of measurement of ²²⁸Ac (min)

 t_2 = measurement time (min)

 λ = decay constant of ²²⁸Ac

The activity concentration of ²²⁸Ra and, therefore, that of the resulting ²²⁸Ac in the studied mineral waters is very low. In addition, the decay of ²²⁸Ac occurs very fast ($T_{1/2} = 6.13$ h), too fast to allow for lengthy measurements. The background contribution is very significant and any means to reduce it must be employed. A volume of 7 mL of Insta-Gel Plus cocktail was enough to assure a homogeneous single phase mixture with the sample and at the same time obtain a low background in the measurement window from 350 to 850 channels. To compensate for fluctuations, the blank was measured for 120 minutes each time before and after each sample.

The chemical recovery of radium was determined using the 356 keV gamma-ray line of ¹³³Ba. The chemical recovery R_{chem} was calculated according to equation (10):

$$R_{chem} = \left(\frac{A_{sample}}{t_{sample}} m_{sample}\right) \cdot \left(\frac{t_{Std} \cdot m_{Std}}{A_{Std}}\right),$$
(10)

where:

 $A_{sample,} A_{Std}$ are the net areas of ¹³³Ba peak from the sample and the standard sample, respectively;

*t*_{sample}, *t*_{Std} are the counting times of sample and standard sample, respectively;

 $m_{sample,} m_{Std}$ are the masses of added ¹³³Ba in the sample and of ¹³³Ba in the standard sample respectively.

Separate experiments were performed for the determination of the chemical recovery of ²²⁸Ac from the second Diphonix column. A 1 mg·mL⁻¹ natural thorium solution in equilibrium was used and the ²²⁸Ac was isolated. The latter was determined by measuring its 911 keV gamma-ray line using a HPGe detector and it was used to evaluate the chemical recovery. The mean value for the chemical recovery obtained from three replicate experiments was (83 ± 5) %.

To determine the liquid scintillation counting efficiency, ²²⁸Ac was separated from $1 \text{mg} \cdot \text{mL}^{-1}$ natural thorium standard solution in equilibrium applying the same radiochemical procedure as described above. A detection efficiency of (80.3 ± 6.3) % in the window from 350 - 850 channels was obtained.

Measurement results and plots of the obtained activity concentrations of ²²⁸Ra in W1 (1.5 L and 3 L) and W2 (1.5 L and 3 L), together with their combined standard uncertainties u_c , are presented in Tables 24 to 29 and Figures 14 and 15. The solid and the dashed red lines in the figures indicate the mean values and the standard deviations. The error bars represent combined standard uncertainties u_c of the individual measurements.

Sample ID	Activity concentration (mBq·L ⁻¹)	Uncertainty <i>u</i> c (mBq·L ⁻¹)	
W1-10	20.36	2.58	
W1-11	26.21	3.24	
W1-12	28.52	3.79	
W1-13	26.06	3.46	
W1-14	24.75	3.28	
W1-15	22.42	3.08	
W1-16	20.38	2.70	
W1-18	27.44	3.76	
W1-19	21.11	2.85	
W1-22	23.31	3.18	
Mean	24	24.06	
Weighted mean	23.40		
Minimum	20.36		
Maximum	28.52		
Standard deviation	2.97		
Relative standard deviation (%)	12.35		

Table 24: Measured activity concentrations of ²²⁸Ra in sample batch 1(W1 - IM-RN-
2006-02-001446). Sources prepared from a volume of 1.5 L.

Sample ID	Activity concentration (mBq·L ⁻¹)	Uncertainty <i>u</i> c (mBq·L⁻¹)	
W1-24	22.76	2.97	
W1-25	22.95	3.00	
W1-29	21.08	2.54	
W1-30	24.47	2.92	
W1-31	24.81	2.97	
W1-33	21.64	2.62	
W1-34	20.59	2.50	
W1-35	25.04	3.00	
W1-37	26.42	3.16	
W1-38	20.24	2.43	
Mean	23.00		
Weighted mean	22.69		
Minimum	20.24		
Maximum	26.42		
Standard deviation	2.12		
Relative standard deviation (%)	9.20		

Table 25: Measured activity concentrations of ²²⁸Ra in sample batch 1 (W1 - IM-RN-
2006-02-001446). Sources prepared from a volume of 3.0 L.

Table 26: Measured activity concentrations of ²²⁸Ra in sample batch 2 (W2 - IM-RN-
2006-05-001448 / IM-RN-2006-07-001449). Sources prepared from a
volume of 1.5 L.

Sample ID	Activity concentration (mBq·L ⁻¹)	Uncertainty <i>u</i> c (mBg·L ⁻¹)
W2-29	69.78	8.37
W2-30	69.13	8.32
W2-27	72.23	8.60
W2-31	75.17	9.00
W2-25	63.19	7.70
W2-33	70.00	8.42
W2-37	65.98	7.98
W2-35	61.52	7.52
W2-26	63.93	7.92
W2-38	69.51	8.18
Mean	68.04	
Weighted mean	67.80	
Minimum	61.52	
Maximum	75.17	
Standard deviation	4.29	
Relative standard deviation (%)	6.31	

Table 27: Measured activity concentrations of ²²⁸Ra in sample batch 2 (W2 - IM-RN-
2006-05-001448 / IM-RN-2006-07-001449). Sources prepared from a
volume of 3.0 L.

Sample ID	Activity concentration (mBq·L ⁻¹)	Uncertainty <i>u</i> c (mBg·L ⁻¹)
W2-40	69.88	9.18
W2-41	60.54	7.09
W2-45	61.04	7.21
W2-47	70.92	8.38
W2-51	66.93	7.66
W2-52	66.19	7.66
W2-53	70.74	8.13
W2-54	61.66	7.06
W2-55	66.99	7.69
W2-56	61.22	7.11
Mean	65.61	
Weighted mean	64.97	
Minimum	60.54	
Maximum	70.92	
Standard deviation	4.19	
Relative standard deviation (%)	6.39	

Table 28: Measured activity concentrations of ²²⁸Ra in sample batch 1 (W1 - IM-RN-
2006-02-001446). Sources prepared from volumes of 1.5 L and 3.0 L.

	Activity	
Sample ID	concentration	Uncertainty <i>u</i> c
	(mBq·L⁻¹)	(mBq·L⁻¹)
W1-10	20.36	2.58
W1-11	26.21	3.24
W1-12	28.52	3.79
W1-13	26.06	3.46
W1-14	24.75	3.28
W1-15	22.42	3.08
W1-16	20.38	2.70
W1-18	27.44	3.76
W1-19	21.11	2.85
W1-22	23.31	3.18
W1-24	22.76	2.97
W1-25	22.95	3.00
W1-29	21.08	2.54
W1-30	24.47	2.92
W1-31	24.81	2.97
W1-33	21.64	2.63
W1-34	20.59	2.50
W1-35	25.04	3.00
W1-37	26.42	3.16

W1-38	20.24	2.43	
Mean	23.53		
Weighted mean	22.96.		
Minimum	20.24		
Maximum	28.52		
Standard deviation	2.57		
Relative standard deviation (%)	10.92		

Table 29: Measured activity concentrations of ²²⁸Ra in sample batch 2 (W2 - IM-RN-2006-05-001448 / IM-RN-2006-07-001449). Sources prepared from volumes of 1.5 L and 3.0 L.

Sample ID	Activity concentration	Uncertainty <i>u</i> c	
14/0.00	(mBd.r)		
VVZ-29	69.78	8.37	
W2-30	69.13	8.32	
W2-27	72.23	8.60	
W2-31	75.17	9.00	
W2-25	63.19	7.70	
W2-33	70.00	8.42	
W2-37	65.98	7.98	
W2-35	61.52	7.52	
W2-26	63.93	7.92	
W2-38	69.51	8.18	
W2-40	69.88	9.18	
W2-41	60.54	7.09	
W2-45	61.04	7.21	
W2-47	70.92	8.38	
W2-51	66.93	7.66	
W2-52	66.19	7.66	
W2-53	70.74	8.13	
W2-54	61.66	7.06	
W2-55	66.99	7.69	
W2-56	61.22	7.11	
Mean	6	66.83	
Weighted mean	6	6.26	
Minimum	60.54		
Maximum	75.17		
Standard deviation	4.31		
Relative standard deviation (%)	6.46		

Fig. 14: ²²⁸Ra activity concentration in mineral water - Batch 1 (W1 - IM-RN-2006-02-001446). Sources prepared from volumes of 1.5 L and 3.0 L.

Fig. 15: ²²⁸Ra activity concentration in mineral water - Batch 2 (W2 - IM-RN-2006-05-001448 / IM-RN-2006-07-001449). Sources prepared from volumes of 1.5 L and 3.0 L.

Uncertainty budget for ²²⁸Ra (IRMM)

The combined standard uncertainty is calculated from equation (11):

$$u(A_{228_{Ra}}) = A_{228_{Ra}} \times \sqrt{\left(\frac{u(N)}{N}\right)^2 + \left(\frac{u(R_{chem})}{R_{chem}}\right)^2 + \left(\frac{u(V)}{V}\right)^2 + \left(\frac{u(Eff)}{Eff}\right)^2}$$
(11)

The uncertainty associated with the *count rate* taking into account the standard deviation of the count rate for the sample and standard deviation for the count rate of the background.

Net count = counts (sample) – counts (background)

The uncertainty associated to the *net* count rate is then the sum of the squares of the two uncertainties.

$$u(N) = \sqrt{\left(\frac{counts(sample)}{time(sample)} + \frac{counts(bkg)}{time(bkg)}\right)}$$
(12)

The uncertainty associated with *weighing* of the tracer was estimated using the data from the repeatability of the balance on standard deviation as 0.02 mg. The uncertainty associated with the weighing of the tracer represents 0.2 %.

The uncertainty of the *radiochemical recovery* of the method is determined according to equation (13):

$$u(R_{chem}) = \sqrt{\left(u(R_{228_{Ra}})^2 + \left(u(R_{228_{Ac}})^2\right)^2\right)}$$
(13)

The relative standard uncertainty of the chemical yield of ²²⁸Ra is calculated with equation (14):

$$u(R_{Ra-228}) = R_{Ra-228} \sqrt{\left(\frac{u(A_{133}_{Ba-sample})}{A_{133}_{Ba-sample}}\right)^2 + \left(\frac{u(m_{133}_{Ba-sample})}{m_{133}_{Ba-sample}}\right)^2 + \left(\frac{u(A_{133}_{Ba-std})}{A_{133}_{Ba-std}}\right)^2 + \left(\frac{u(m_{133}_{Ba-std})}{m_{133}_{Ba-std}}\right)^2$$
(14)

Uncertainty of the chemical recovery of ²²⁸Ac is taken as standard deviation of three replicate experiments.

The uncertainty associated with the *volume of the sample* is estimated using data from the manufacturer: for a flask of 1000 mL the uncertainty is ± 5 mL measured at a temperature of 20°C. The value of the uncertainty is given without confidence level or distribution information; therefore, it is necessary to make an assumption and the standard uncertainty is calculated assuming a triangular distribution (Eurachem, 2000). A negligible contribution of 0.1% to the uncertainty budget of ²²⁸Ra is coming from the sample volume

The efficiency of the Wallac Quantulus 1220^{TM} is calculated using equation (15):

$$\varepsilon = \frac{N_{Ac-228Std}}{m_{Th} \times A_{Th} \times R_{Ac-228}}$$
(15)

where: *ɛ*

efficiency of beta-particle detector

*R*_{Ac-228} recovery of the ²²⁸Ac standard

 N_{Ac-228} net counting rate of ²²⁸Ac standard

 m_{Th} mass of added Th natural standard solution (g)

A_{Th} activity of Th natural standard solution (Bq/g)

and yields the uncertainty expression

$$u(\varepsilon) = \varepsilon_{\sqrt{\left(\frac{u(A_{Th})}{A_{Th}}\right)^{2} + \left(\frac{u(m_{Th})}{m_{Th}}\right)^{2} + \left(\frac{uN_{Ac-228Std}}{N_{Ac-228Std}}\right)^{2} + \left(\frac{u(R_{Ac-228Std})}{R_{Ac-228Std}}\right)^{2}}$$
(16)

The uncertainty on the measurement time is negligible.

Table 30: Uncertainty budget for the efficiency determination of ²²⁸Ac in the Quantulus 1220TM. The combined standard uncertainty is the quadratic sum of all components.

Uncertainty component	%
Chemical recovery of Ac-228	5.3
Counting statistics	0.8
Weighing	0.2
Th activity	5.6
Half-life Ac-228 (T1/2 = 6.13 h)	1
Combined standard uncertainty	7.8

Table 31: Uncertainty budget for 228 Ra in mineral water sample W1. The uncertainty budget shows the standard uncertainty components (1 *s*) for a single measurement.

Uncertainty component	%
Chemical recovery	6.1
Counting statistics (incl. background)	8.0
Efficiency	7.8
Volume	0.1
Half-life Ra-228 (T _{1/2} = 6.13 h)	0.15
Half-life Ac-228 (T _{1/2} = 6.13 h)	0.5
Combined standard uncertainty	12.7

Table 32: Uncertainty budget for 228 Ra in mineral water sample W2. The uncertainty budget shows the standard uncertainty components (1 *s*) for a single measurement.

Uncertainty component	%
Chemical recovery	6.01
Counting statistics (incl. background)	6.7
Efficiency	7.8
Volume	0.1
Half-life Ra-228 (T _{1/2} = 6.13 h)	0.15
Half-life Ac-228 (T _{1/2} = 6.13 h)	0.5
Combined standard uncertainty	11.9

For the second method of IRMM, use was made of sources prepared a year earlier for the determination of ²²⁶Ra by α -particle spectrometry as described above. The basic idea is to separate and determine by α -particle spectrometry the ²²⁸Th grown in as a granddaughter nuclide of ²²⁸Ra after more than a year. The procedure is described in detail in Vasile et al. (2009).

Reference values for ²²⁶Ra, ²²⁸Ra, ²³⁴U and ²³⁸U

As mentioned in the beginning of chapter 3, the reference values were determined by consensus between the results of IRMM and those of the Bundesamt für Strahlenschutz (BfS), Department for Radioprotection and the Environment, Berlin. Two largely different, independent methods were applied by the two laboratories, three in the case of ²²⁸Ra. The summary of laboratory results of IRMM and BfS and of the derived **comparison reference values** *A*_{ref} is given in Table 33.

As is outlined in chapter 2, the uncertainty of the reference values has to take a possible instability of the samples and inhomogeneity among them into account. This is expressed by the formula for the expanded uncertainty, U_{ref} (k = 2), of a reference value

$$U_{\rm ref} = k \cdot \sqrt{u_{\rm char}^2 + s_{\rm bb}^2 + u_{\rm sts}^2} \quad , \tag{17}$$

where s_{bb} is the standard deviation in activity concentration between bottles of the same batch and u_{sts} is the short-term stability (for the duration of the comparison exercise) of the samples; u_{char} is the combined standard uncertainty of the mean of the two (or three, ²²⁸Ra) measurement results from IRMM and BfS contributing to the reference value:

$$u_{\rm char} = \frac{\sqrt{\sum_{i=1}^{n} (u_{\rm c,i})^2}}{n} , \qquad (18)$$

where $u_{c,i}$ is the combined standard uncertainty of the laboratory's (or method's) result (Pauwels et al., 1998).

As no wall adsorption could be found as source of a potential short-term instability, $u_{\rm sts}$ = 0 (compare chapter 2), only $u_{\rm char}$ and $s_{\rm bb}$ are contributing to the expanded uncertainty U_{ref} of the reference values A_{ref} given in Table 33.

Activity concentrations in mineral waters determined by the two Table 33: laboratories, IRMM and BfS, and comparison reference values A_{ref} calculated as arithmetic mean of these results (reference date 1 May 2006). Values A_{ref} given in brackets were not required to be determined by comparison participants. Uncertainties of laboratory results given as combined standard uncertainty u_{c} , uncertainty of reference values as expanded uncertainty $U_{ref} = u \cdot k$ with a coverage factor k = 2, corresponding to a level of confidence of about 95 %.

Water	Nuclide	lab combi	oratory mean value ned standard uncert	reference value A _{ref} with expanded uncertainty U _{ref}	
Wator	Tuonae	activ	ity concentration / m	Bq·L⁻'	activity concentration
		IRMM ¹	IRMM second method ²	BfS	/ mBq·L ⁻¹
W1	U-238	10.3 ± 0.2		12.1 ± 0.4	11.2 ± 1.7
	U-234	14.4 ± 0.3		15.7 ± 0.5	15.0 ± 2.2
	Ra-226	98 ± 6		97 ± 11	98 ± 15
	Ra-228	23.0 ± 2.3	29.1 ± 1.6	32 ± 5	28 ± 6
W2	U-238	0.91 ± 0.02		0.85 ± 0.06	(0.88 ± 0.29)
	U-234	3.94 ± 0.09		4.0 ± 0.2	(4.0±0.5)
	Ra-226	42.0 ± 2.6		44 ± 5	43 ± 11
	Ra-228	66 ± 7	69.4 ± 3.7	87 ± 13	74 ± 12
W3-50	U-238	22.1 ± 0.5		21.2 ± 0.5	21.6 ± 1.9
	U-234	44.7 ± 1.0		42.3 ± 0.9	43.5 ± 3.0
	Ra-226	3.0 ± 0.2		4.3 ± 0.5	(3.6±0.8)
	Ra-228	< 9	6.5 ± 0.6	6.9 ± 1.4	(6.7 ± 1.2)
W3-51	U-238	20.5 ± 0.8			20.5 ± 1.6
	U-234	40.9 ± 1.2			40.9 ± 2.4
	Ra-226	3.0 ± 0.2		4.3 ± 0.5	(3.6±0.8)
	Ra-228	< 9	6.5 ± 0.6	6.9 ± 1.4	(6.7 ± 1.2)

^{1 228}Ra via liquid-scintillation counting of ²²⁸Ac ² via ²²⁸Th ingrowth and alpha-spectrometry

4. Methods used by the participating laboratories

Participants were free to use separation procedures and measurement methods of their own choice. Of the 45 laboratories, which reported results, not all determined all four radionuclides. Table 34 gives an overview of the measurement techniques used.

²³⁴U and ²³⁸U:

Thirty two laboratories (2, 3, 4, 8, 12, 13, 14, 17, 18, 22, 23, 25, 26, 27, 31, 32, 33, 34, 35 (W1 only), 36, 37, 38, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51) used **\alpha-particle spectrometry** for the determination of ²³⁴U as well as ²³⁸U (except for lab 38). All laboratories added isotopic tracer (²³²U, in one case ²³⁶U) at the beginning of the chemical procedure in order to determine the radiochemical yield of the procedure.

Except for one (lab 49), all laboratories preconcentrated uranium from the water samples and carried out radiochemical separation from the matrix components. For preconcentration from water volumes between 0.2 L and 6 L, nine laboratories applied evaporation (12, 14, 25, 26, 35, 36, 37, 41 and 51) and 17 laboratories carried out co-precipitation, using phosphates (2, 34, 40, 43, 45 and 47), $Fe(OH)_3$ (3, 13, 18, 23, 27, 33, 38, 48 and 50) and MnO_2 (22 and 31), respectively. Several laboratories did not report the corresponding details. The radiochemical purification was performed with ion exchange chromatography, extraction chromatography and solvent extraction, respectively. Some laboratories used a combination of the mentioned techniques. Sources for alpha-particle spectroscopic measurement were prepared by electrodeposition (17 labs: 4, 17, 18, 23, 25, 26, 31, 33, 35, 37, 41, 42, 43, 45, 48, 50 and 51), micro-coprecipitation with rare earth fluorides (9 labs: 2, 12, 13, 14, 34, 36, 38, 40 and 47) and micro-coprecipitation with cadmium chloride (lab 22), respectively. Again, several laboratories did not report the details of source preparation.

The four laboratories (5, 20, 21 and 28) using **\gamma-ray spectrometry** for ²³⁸U evaporated the water and measured the dry residue directly. The activity concentration of ²³⁸U was determined via ²³⁴Th (at 63 keV and 93 keV) assuming equilibrium between ²³⁸U and its progeny ²³⁴Th.

Lab 38 determined ²³⁸U by **radiochemical neutron activation analysis**. After irradiation, the induced ²³⁹U ($t_{1/2}$ = 23 min, E_{γ} = 74.5 keV) was separated with tributylphosphate in toluene from 5 M HNO₃. Addition of natural uranium to the sample after irradiation allowed determination of the radiochemical yield via ²³⁵U at 185.7 keV.

Laboratory 7 determined the uranium isotopes with **inductively-coupled plasma mass spectrometry** (ICP-MS) from sample aliquots of 1 mL without sample preparation.

Three laboratories used **liquid scintillation counting** (LSC, labs 11, 29 and 35 (W3 only)) in α/β -discrimination mode. The ²³⁴U and ²³⁸U activity concentrations were evaluated applying spectral deconvolution of the uranium α -peaks.

Laboratories 16 and 46 determined total uranium using **fluorimetry** after evaporating the water samples and fusing the residues with a mixture of NaF and NaCO₃ at 900°C. The activity concentration of 238 U was calculated assuming the average natural isotopic composition and that of 234 U based on the assumption of equilibrium.

Table 34:	Number	of	laboratories	reporting	results	and	measurement	techniques
	used for	det	ermining the	four radior	nuclides			

		1			1
radionuclide	U-234	U-238	U tot	Ra-226	Ra-228
reported results (all methods)	36	41	2	41	32
reported results by metho	od:				
α-particle spectr.	31 ¹	30 ¹		11	1 (via ²²⁴ Ra)
gross-α counting				3	
ICP-MS	1	1			
γ-ray spectr.		4		6	24
radiochemical NAA		1			
LSC	1 ²	2 ²		12	3
fluorimetry	2	2	2		
gross-β counting					4
sorption emanation technique				9	

¹ Plus one additional laboratory (Water-1 only)

² Plus one additional laboratory (Water-3 only)

²²⁶Ra:

α-particle spectrometry was applied in eleven laboratories (2, 13, 18, 23, 26, 31, 36, 38, 41, 47 and 49), all of them including the use of tracers. One laboratory (no. 49) determined ²²⁶Ra directly from a Ra-adsorbing disc (MnO₂) which had been immersed into the sample for 6 hours. The radiochemical recovery of 95 % was determined with an external ²²⁶Ra standard. Laboratory 47 purified ²²⁶Ra from unconcentrated water samples of 100 mL with ion exchange resins and prepared α-sources by micro-coprecipitation with BaSO₄. Lab 26 coprecipitated similar sources with BaSO₄ carrier from 100 mL samples merely evaporated from volumes of 1 L.

Eight laboratories used a large variety of coprecipitation techniques for preconcentration: three labs with MnO₂ (no. 13, 18, 31), two as Pb(Ra)(Ba)SO₄ (labs 2, 38), one lab each with Pb(NO₃)₂ (no. 41), with BaSO₄ and Fe(OH)₃ (no. 23) and with Pb(CrO₄)₄ (no. 36). Labs 2, 13 and 38 coprecipitated radium sources with BaSO₄ directly after the preconcentration step. Laboratories 31 and 41 reported purification of radium from the other precipitated radionuclides by ion exchange chromatography. Sources for α-spectrometric measurement were prepared by electrodeposition on stainless steel discs, and the recovery of the radiochemical procedure was determined with the tracer ²²⁵Ra (via its progeny ²¹⁷At) in equilibrium with ²²⁹Th (lab 41, 68 %). Lab 31 (tracer ²²⁴Ra) obtained a recovery of 30 % for its radiochemical procedure. Lab 23 purified radium from coprecipitated uranium and thorium by extraction chromatography on a Microthene TOPO column and subsequently separated radium from barium with an ion exchange resin. Sources were prepared by electrodeposition, a recovery of 75 % was obtained (tracer ²²⁵Ra in equilibrium with ²²⁹Th). Labs 18 and 36 separated radium from interfering radionuclides in the precipitates by solvent extraction using TBP or DTPA

complexation, respectively, followed by precipitation with BaCl₂ or BaSO₄ for source preparation.

Where the radium sources for α -spectrometry were coprecipitated with BaSO₄ or BaCl₂ (labs 26, 47, 2, 13, 38, 18 and 36), ¹³³Ba added to the sample as tracer before preconcentration enabled determination of the chemical recovery with γ -ray spectrometry. The yields obtained varied for the different procedures between 25 % and 90 %.

Six laboratories applied **\gamma-ray spectrometry** (labs 5, 19, 20, 21, 24 and 28), five of them evaporating the water samples (between 3 L and 12 L) to dryness. Only one lab (no. 19) preconcentrated radium by coprecipitation with BaSO₄. The Ba(Ra)SO₄ precipitate or residues after evaporation were sealed and ²²⁶Ra was determined by the 351 keV and 609 keV γ -ray lines of its ²¹⁴Pb and ²¹⁴Bi progenies after an ingrowth period of at least 3 weeks. Lab 19 assumed a radiochemical recovery of the radium coprecipitation of 100 %.

Nine laboratories (4, 25, 27, 29, 33, 34, 39, 43 and 46) applied the **sorption emanation technique** similar to the procedure described above for BfS (chapter $3 - ^{226}$ Ra). One laboratory (no. 43), however, did not carry out a preconcentration step, and lab 33 coprecipitated radium with calcium as phosphomolybdate instead of using BaSO₄. Chemical yields obtained varied from 65 % to 100 %.

Twelve laboratories (3, 7, 8, 11, 12, 15, 22, 32, 35, 42, 45 and 48) used the **liquid scintillation technique** for measurement after different preconcentration procedures had been applied. Laboratories 7, 8, 15, 22, 32 and 42 coprecipitated radium with MnO₂ or as Ba(Ra)SO₄, respectivelly. The precipitate was purified in order to remove interfering radionuclides, dissolved and mixed with scintillation cocktail. The scintillation vial was tightly closed and stored up to 1 month (labs 15, 32 and 42) to allow ingrowth of ²²²Rn and its daughters. Lab 22 measured radium as soon as possible after sample preparation. Laboratories 3 and 11 preconcentrated with freeze drying, mixed the sample with a liquid scintillation cocktail, and stored for 1 month for radon ingrowth. Laboratories 35 and 45, on the other hand, thermally preconcentrated the sample desorbing at the same time all dissolved radon, followed by the usual waiting time in scintillation vials. Laboratory 12 mixed the sample with a mineral oil scintillator and measured directly by LSC. Laboratory 48 used the Empore Radium Rad disc which selectively extracts radium from an acidic solution, here with 0.01 M EDTA.

Laboratories 16, 17 and 37 applied one of the preconcentration varieties of coprecipitating radium with lead sulfate and/or BaSO₄, and the determination of ²²⁶Ra was carried out by measuring the **gross-** α **activity** of the Ba(Ra)SO₄ precipitate on a filter using a low- background gas proportional counter.

²²⁸Ra:

About half of the laboratories used evaporation to a certain reduced volume or to dryness as preconcentration step. A bit less than half performed coprecipitation, where $Ba(Ra)SO_4$ was the most often formed precipitate. Some of the labs applied a combination of preconcentration procedures or added purification steps; Figure 16 gives an overview of the methods used.

Not all laboratories determined the recovery of their concentration and purification procedures. Some used ¹³³Ba as tracer or stable Ba in form of added carrier, determined by photometry or ICP-MS. The laboratory which determined ²²⁸Ra via α-particle spectrometry of ²²⁴Ra used ²²⁵Ra in equilibrium with ²²⁹Th as a tracer. A few laboratories used external standards (²²⁶Ra, ²²⁸Ra) or gravimetry to determine the chemical yield.

Fig. 16: Summary of preconcentration and radiochemical separation procedures used for the determination of ²²⁸Ra by the comparison participants.

5. Reported results

In total, 45 laboratories reported results in this comparison exercise, although not all of them measured all four radionuclides requested. The participants were asked to perform duplicate analysis of all radionuclides. Therefore, it was possible to report up to 2 individual results per radionuclide and per sample in the reporting form (Annex 2 – Result reporting form). If more than one result was submitted, the unweighted laboratory mean A_{lab} of the reported values was calculated by us and taken into account in the evaluations below (starting with Figure 27).

The number of laboratories that have reported results and the number of individual values submitted for a certain radionuclide and per sample is given in Table 35.

Nuclide	Nr. of results	W1	W2	W3-50	W3-51
226-	Labs	41	41	_	_
²²⁶ Ra	Individual values	77	77 (1 <dl)*< td=""><td>_</td><td>_</td></dl)*<>	_	_
²²⁸ Ra	Labs	32	32	_	_
	Individual values	56 (6 <dl)*< td=""><td>56 (6<dl)*< td=""><td>_</td><td>_</td></dl)*<></td></dl)*<>	56 (6 <dl)*< td=""><td>_</td><td>_</td></dl)*<>	_	_
²³⁴ U	Labs	36	_	20	15
	Individual values	67 (1 <dl)*< td=""><td>-</td><td>36</td><td>28</td></dl)*<>	-	36	28
²³⁸ U	Labs	41	_	21	19
	Individual values	74 (1 <dl)*< td=""><td>_</td><td>37</td><td>35</td></dl)*<>	_	37	35

Table 35: Reported results in the comparison exercise.

*Results below the detection limit (DL)

Figures 17 to 26 show the individual activity concentrations (decay-corrected to the reference date 1 May 2006) and expanded uncertainties (with a coverage factor k = 2) as they were reported by the participants. If a coverage factor different from 2 was reported, we recalculated the expanded uncertainty for k = 2. The solid red lines indicate the reference activity concentration and the dashed lines the expanded uncertainty $\pm U_{ref}$ (k = 2) of the reference value. Results below the detection limit are represented with symbols on the abscissa.

Fig. 17: Measured ²²⁶Ra activity concentration in Water 1 (W1). Error bars represent expanded uncertainty (with k = 2) of individual measurements. Red lines are reference value $A_{ref} \pm$ expanded uncertainty U_{ref} (k = 2).

Fig. 18: Measured ²²⁶Ra activity concentration in Water 2 (W2). Error bars, reference value and its uncertainty as in Fig. 17.

Fig. 19: Measured ²²⁸Ra activity concentration in Water 1 (W1). Error bars, reference value and its uncertainty as in Fig. 17.

Fig. 20: Measured ²²⁸Ra activity concentration in Water 2 (W2). Error bars, reference value and its uncertainty as in Fig. 17.

Fig. 22: Measured ²³⁴U activity concentration in Water 3-50 (W3-50). Error bars, reference value and its uncertainty as in Fig. 17.

Fig. 24: Measured ²³⁸U activity concentration in Water 1 (W1). Error bars, reference value and its uncertainty as in Fig. 17.

Fig. 26: Measured ²³⁸U activity concentration in Water 3-51 (W3-51). Error bars, reference value and its uncertainty as in Fig. 17.

As seen from Figs. 17 to 20, many discrepant results for ²²⁶Ra and ²²⁸Ra were obtained. In the case of Water 1 (W1) the ²²⁶Ra results were often lower than the reference value. One laboratory (no. 24) reported far too high values for ²²⁶Ra in W1

(indicated with an arrow on Fig. 17), while their result for sample W2 agrees with the reference value within the expanded uncertainty (Fig. 18). Laboratories 8 and 21 reported results for W1 much lower than the reference value with very small uncertainties (error bars invisible on the graph, Fig. 17). Laboratory 26 reported four results for ²²⁶Ra in both water samples (W1 and W2). It is interesting to note that their results are discrepant and do not agree within their expanded uncertainties (Figs. 17 and 18). Laboratory 3 reported two results for ²²⁶Ra in W2 as one of them is below the detection limit of their method (< 10 mBq·L⁻¹) (Fig. 18, symbol on the abscissa).

The reported ²²⁸Ra activity concentrations were often too high in both water samples (W1 and W2). Similar to the ²²⁶Ra results, laboratory 24 reported far too high value for ²²⁸Ra in W1 (indicated with an arrow on Fig. 19), while their result for sample W2 is lower than the reference value (Fig. 20). A large number of laboratories reported results deviating from the reference value by more than the sum of its expanded uncertainty U_{ref} and the expanded uncertainty of the individual measurement results. In total, six laboratories (no. 3, 13, 15, 18, 27, 36) reported results below the detection limit of the method used. The reported values are indicated with symbols on the abscissa and the limit of detection is given on top of it (Figs. 19 and 20).

In the case of both uranium isotopes, better agreement of the reported results with the reference values was observed. Only one laboratory (no.16) reported ²³⁴U activity concentrations in W1 much higher than the reference value (Fig. 21). Laboratory 46 reported ²³⁴U results lower than the reference value in both water samples (Figs. 21 and 22). Another two participants (no. 38 and 45) also determined ²³⁴U activity levels deviating from the reference value by more than the sum of its expanded uncertainty U_{ref} and the expanded uncertainty of the individual measurement results (Fig. 23). Laboratory 29 reported only a detection limit below 15 mBq·L⁻¹ (Fig. 21, symbol on the abscissa).

Nearly all reported ²³⁸U results for Water 3 (W3-50 and W3-51) agreed with the reference value within the expanded uncertainties (Figs. 25 and 26). Laboratory 21 with far too high results asked to withdraw their results, albeit after having been informed about a large deviation of its results. The participant reported that the samples have not been treated according to the routinely used analytical procedure. One laboratory (no. 45) determined ²³⁸U activity level in W3-51 lower than the reference value (Fig. 26). In the case of Water 1 (W1), three of the participants (no. 11, 16 and 21) determined much higher activity concentrations (Fig. 23). Again, laboratory 29 reported that the activity concentration of ²³⁸U in the sample is below the detection limit of their method (< 15 mBq·L⁻¹) (Fig. 24, symbol on the abscissa).

The estimation of the expanded uncertainty U_{lab} of the mean laboratory result was based on the information given by the participants in the result reporting form (Annex 2) and in the questionnaire (Annex 3). Laboratories were requested to give the individual expanded uncertainty (and the coverage factor applied) together with the measurement results in the reporting form, and to provide the full uncertainty budget for one measurement of each nuclide and for one sample in the questionnaire. A non-exhaustive list of uncertainty contributions served as budget template for information. Moreover, participants were invited to send their complete uncertainty budget in a free format of their own choice.

The submitted uncertainty budgets were analysed and compared with the numerical values reported with the measurement results. When discrepancies between the individual uncertainty values and the uncertainty budget were observed (or no budget at all was presented), the concerned laboratories were contacted to review their

budgets (or send such if not submitted earlier). Not all of the contacted laboratories responded. Every two of three laboratories reported uncertainty values which were consistent with the given budget. Still, in about 30 % discrepancies between the given uncertainty budget and the reported uncertainty values were observed. The final number of uncertainty budgets not submitted, inconsistent with the reported uncertainties as well as the total number of budgets submitted per radionuclide and per sample is given in Table 36. Admittedly, the budget template provided by IRMM in the questionnaire was not of great help to some of the laboratories for estimating correctly the uncertainty of the activity determination.

Table 36: Overview of the uncertainty budgets provided in the comparison exercise.

Nuclide	²²⁶ Ra	²²⁸ Ra	²³⁴ U	²³⁸ U
Submitted	38	29	32	36
Consistent	26	20	21	24
Inconsistent	12	8	11	12
Not submitted	3	3#	4*	5*

[#]2 of the laboratories did not submit an uncertainty budget as their result is below MDA for all samples *1 of the laboratories did not submit an uncertainty budget as their result is below MDA for all samples

When estimating the expanded uncertainties U_{lab} of the laboratory mean values, two cases had to be distinguished. For the majority of the participants the expanded uncertainty U_{lab} (with k = 2) of the mean activity concentration A_{lab} was calculated based on the information given in the uncertainty budget (approach 1). The following formula was applied:

$$U_{lab} = k \cdot \sqrt{\frac{u_{count}^2}{n} + u_{other}^2}$$
(19)

where

 u_{count} the counting uncertainty as given in the uncertainty budget;

n number of measurements;

*u*_{other} calculated from the reported uncertainty budget.

It is obvious from Eq. (19) that only the counting uncertainty was considered as a random component and, consequently, is divided by \sqrt{n} in the combined uncertainty.

For all radionuclides *u*_{other} is determined from:

$$u_{other} = \sqrt{u_{sample prep}^2 + u_{tracer}^2 + u_{efficiency}^2 + u_{acts \tan dards}^2 + u_{blank}^2 + u_{other contrib}^2}$$
(20)

where u_{index} denotes the *propagated* uncertainty contribution to the combined standard uncertainty of A_{lab} , in detail:

- *u*_{sample prep} propagated uncertainty due to uncertainty in sample preparation, separation etc.;
- *u*_{tracer} propagated uncertainty due to uncertainty in tracer activity;
- *u*_{efficiency} propagated uncertainty due to uncertainty in efficiency of the detection system;

*u*_{act. standards} propagated uncertainty due to uncertainty in the activity efficiency standards;

*u*_{blank} propagated uncertainty due to uncertainty in blank and background measurement;

*u*_{other contrib} other propagated uncertainty contributions.

Equation (20) may lead to an overestimation of u_{other} and U_{lab} in cases where a propagated contribution, e.g. $u_{sample prep}$, represents a random component if this is not taken care of by dividing by \sqrt{n} .

As the laboratories were asked to fill in an uncertainty budget only for one sample, the u_{other} was considered as a systematic component for all water samples. Hence, the counting uncertainty u_{count} for the sample for which no information was available was calculated from the submitted combined uncertainty u_{lab} and the systematic uncertainty u_{other} :

$$u_{count} = \sqrt{u_{lab}^2 - u_{other}^2}$$
(21)

The expanded uncertainties U_{lab} of the laboratory mean values were calculated from the uncertainty budgets following the approach described in the cases where the uncertainties reported with the individual results were found to be consistent with the budget and also in the cases when discrepancies between the individual uncertainty values and the uncertainty budget were observed.

In the case of three laboratories, the expanded uncertainty U_{lab} was calculated by us using the uncertainty budgets submitted although only one result was reported (lab 19 for ²²⁶Ra and ²²⁸Ra results in W2; lab 11 – ²²⁸Ra and ²³⁸U results; lab 36 - ²²⁸Ra in W2). In the case of lab 11, the reported combined uncertainty was calculated as an arithmetic mean of the individual uncertainty contributions. Lab 19 reported the values of the counting uncertainty as combined uncertainty. Finally, lab 36 submitted an example budget for ²²⁸Ra in W2 in which the calculated combined uncertainty was by about a factor of two lower than the reported value.

Only in very few cases (laboratories 3, 16, 25 and 47), where the observed discrepancies between the individual uncertainty values and the uncertainty budget were too big (no. 25 and 47) or no budget at all was presented (labs 3 and 16), a second approach was used^{*}. In that case, U_{lab} was calculated by us as an arithmetic mean (if n > 1) of the reported individual expanded uncertainties (setting the coverage factor, if not given like that, to k = 2).

^{*} Lab 25 did not want to make any changes to the budgets already reported. Lab 47 did not reply to the request for revision. Labs 3 and 16 did not submit any uncertainty budget after being contacted to send such.

Participating laboratories

Fig. 27: Mean laboratory results A_{lab} for ²²⁶Ra activity concentration in Water 1 (W1). Error bars indicate expanded uncertainty U_{lab} (k = 2) of laboratory mean, red lines are reference value $A_{ref} \pm$ expanded uncertainty U_{ref} (k = 2). Laboratory numbers are indicated.

Fig. 28: Mean laboratory results A_{lab} for ²²⁶Ra activity concentration in Water 2. Error bars, reference value, its uncertainty and lab numbers as in Fig. 27.

Participating laboratories

Fig. 29: Mean laboratory results A_{lab} for ²²⁸Ra activity concentration in Water 1. Error bars, reference value, its uncertainty and lab numbers as in Fig. 27.

Fig. 30: Mean laboratory results A_{lab} for ²²⁸Ra activity concentration in Water 2. Error bars, reference value, its uncertainty and lab numbers as in Fig. 27.

Participating laboratories

Fig. 31: Mean laboratory results A_{lab} for ²³⁴U activity concentration in Water 1. Error bars, reference value, its uncertainty and lab numbers as in Fig. 27.

Fig. 32: Mean laboratory results A_{lab} for ²³⁴U activity concentration in Water 3-50. Error bars, reference value, its uncertainty and lab numbers as in Fig. 27.

Participating laboratories

Fig. 33: Mean laboratory results A_{lab} for ²³⁴U activity concentration in Water 3-51. Error bars, reference value, its uncertainty and lab numbers as in Fig. 27.

Fig. 34: Mean laboratory results A_{lab} for ²³⁸U activity concentration in Water 1. Error bars, reference value, its uncertainty and lab numbers as in Fig. 27.

Fig. 35: Mean laboratory results A_{lab} for ²³⁸U activity concentration in Water 3-50. Error bars, reference value, its uncertainty and lab numbers as in Fig. 27.

Fig. 36: Mean laboratory results A_{lab} for ²³⁸U activity concentration in Water 3-51. Error bars, reference value, its uncertainty and lab numbers as in Fig. 27.

Tables 37 to 44 give in detail for each participating laboratory the number of measurements *n*, the unweighted laboratory mean A_{lab} of the reported values and its standard deviation *s*. Furthermore, the expanded uncertainty U_{lab} and its relative value U_{lab}/A_{lab} are given. The uncertainty values U_{lab} printed normally or in bold were

calculated by us based on the reported uncertainty budget (approach 1 above). The values in bold indicate uncertainty budgets not consistent with the reported uncertainties. Values of U_{lab} printed in grey were generated using approach 2.

In Figures 27 to 36 the mean activity concentration A_{lab} with its corresponding expanded uncertainty U_{lab} (k = 2) obtained by one of the approaches described above are plotted in ascending order. Again, the solid line indicates the reference activity concentration A_{ref} , and its expanded uncertainty $\pm U_{ref}$ (k = 2) is plotted with dashed lines. Laboratory numbers are indicated with the results.

Apart from clearly wrong results (e.g. labs 8, 16, 21, 24 and 27 for ²²⁶Ra in W1 and several for the other radionuclides and samples), it is obvious from Figs. 27 to 36 that some laboratories underestimate their uncertainties for one or more radionuclides (e.g. lab 26 for ²²⁶Ra in W2).

Furthermore, an attempt is made to distinguish results obtained with the different methods of separation and measurement. Figs. 37 to 46 show the results plotted in groups of counting methods. It is obvious that in each group there are outlying values but almost always also laboratories which manage to obtain results within the uncertainty limits of the reference value. The group of laboratories using fluorimetry for the determination of the uranium isotopes renders the relatively largest proportion of deviating results. The two laboratories (no. 16 and 46) applying this method measured natural uranium and determined the activity concentrations of ²³⁴U and ²³⁸U by calculations, supposing an equilibrium. The participants (no. 16 and 46) applying this method are too small a group to allow reliable conclusions to be drawn. Nevertheless, a critical review of the implementation of the method should be done by these two laboratories. The results of this comparison, however, do not justify earmarking a particular counting method as being superior or inferior to others.

Although difficult due to the variety and complex nature of separation methods, an attempt is made to group the results by separation procedures (Figs. 47 to 56). The most important conclusion is similar to that for counting methods: For each separation procedure there is a reasonably large number of laboratories which succeed to obtain results close to the reference value, even though some labs in most groups produce largely deviating results. Again, no particular separation procedure can be identified as the source for deviating results, but the reason must be sought in the individual laboratories concerned. Only a small number of results could not be attributed to a particular separation method ("no info").

Participating laboratories

Fig. 37: Same as Fig. 27 but mean laboratory results A_{lab} for ²²⁶Ra activity concentration sorted according to counting method

Participating laboratories

Fig. 38: Same as Fig. 28 but mean laboratory results A_{lab} for ²²⁶Ra activity concentration sorted according to counting method

Fig. 39: Same as Fig. 29 but mean laboratory results A_{lab} for ²²⁸Ra activity concentration sorted according to counting method

Fig. 40: Same as Fig. 30 but mean laboratory results A_{lab} for ²²⁸Ra activity concentration sorted according to counting method

Fig. 41: Same as Fig. 31 but mean laboratory results A_{lab} for ²³⁴U activity concentration sorted according to counting method

Fig. 42: Same as Fig. 32 but mean laboratory results A_{lab} for ²³⁴U activity concentration sorted according to counting method

Fig. 43: Same as Fig. 33 but mean laboratory results A_{lab} for ²³⁴U activity concentration sorted according to counting method

Fig. 44: Same as Fig. 34 but mean laboratory results A_{lab} for ²³⁸U activity concentration sorted according to counting method

Fig. 45: Same as Fig. 35 but mean laboratory results A_{lab} for ²³⁸U activity concentration sorted according to counting method

Fig. 46: Same as Fig. 36 but mean laboratory results A_{lab} for ²³⁸U activity concentration sorted according to counting method

Participating laboratories

Fig. 47: Same as Fig. 27 but mean laboratory results A_{lab} for ²²⁶Ra activity concentration sorted according to separation method

Participating laboratories

Fig. 48: Same as Fig. 28 but mean laboratory results A_{lab} for ²²⁶Ra activity concentration sorted according to separation method

Fig. 49: Same as Fig. 29 but mean laboratory results A_{lab} for ²²⁸Ra activity concentration sorted according to separation method

Fig. 50: Same as Fig. 30 but mean laboratory results A_{lab} for ²²⁸Ra activity concentration sorted according to separation method

Fig. 51: Same as Fig. 31 but mean laboratory results A_{lab} for ²³⁴U activity concentration sorted according to separation method

Fig. 52: Same as Fig. 32 but mean laboratory results A_{lab} for ²³⁴U activity concentration sorted according to separation method

Participating laboratories

Fig. 53: Same as Fig. 33 but mean laboratory results A_{lab} for ²³⁴U activity concentration sorted according to separation method

Fig. 54: Same as Fig. 34 but mean laboratory results A_{lab} for ²³⁸U activity concentration sorted according to separation method

Participating laboratories

Fig. 55: Same as Fig. 35 but mean laboratory results A_{lab} for ²³⁸U activity concentration sorted according to separation method

Fig. 56: Same as Fig. 36 but mean laboratory results A_{lab} for ²³⁸U activity concentration sorted according to separation method

		mean activity	standard	expanded		
lab	n	concentration	doviation uncortainty			
no.	"	$\Delta_{}$ / (mBa·l ⁻¹)	$s / (mBa \cdot l^{-1})$	$II_{\rm ell}$ (mBa·l ⁻¹)		
2	2					
2	2	99.1 25.0	7.07	24 70	70.9	
3	2	06 5	7.07 0.71	17 10	17.7	
4	2	90.0 100.0	0.71	0.01	11.1	
5 7	 	102.0	-	12.00	0.0	
/ 0	4		0.00	12.00	10.0	
0		1.2	-	1.40	19.4	
9	-	-	-	-	-	
10	-	-	-	-	- 10.4	
11		90.0	50.57		13.1	
12	0	100.0	10.97		28.0	
13	2	67.0	24.04	17.86	26.7	
14	-	-	-	-	-	
15	2	78.5	1.78	9.47	12.1	
10	2	20.7	0.93	3.11	۱٥. <i>۲</i>	
17	2	83.0	2.83	7.90	9.5	
18	2	70.9	1.20	11.94	16.8	
19	2	88.0	4.24	17.08	19.4	
20	9	85.5	3.54	15.58	18.2	
21	1	21.0	-	1.00	4.8	
22	2	96.5	3.54	12.37	12.8	
23	2	93.5	0.78	9.79	10.5	
24	4	760.0	-	295.77	38.9	
25	2	93.0	0.00	37.50	40.3	
26	4	49.4	13.40	3.60	7.3	
27	2	17.8	2.90	2.83	15.9	
28	4	83.4	7.42	42.92	51.5	
29	1	83.6	-	15.80	18.9	
31	2	92.5	0.71	10.98	11.9	
32	2	95.0	4.24	16.92	17.8	
33	2	98.6	2.47	13.62	13.8	
34	2	90.5	6.36	12.66	14.0	
35	2	66.4	14.99	8.59	12.9	
36	2	85.5	21.92	15.45	18.1	
37	2	102.0	5.66	11.67	11.4	
38	2	107.5	2.12	8.95	8.3	
39	2	99.3	0.42	14.47	14.6	
40	-	-	-	-	-	
41	2	89.3	4.53	5.06	5.7	
42	4	96.5	3.54	14.28	14.8	
43	2	96.2	1.91	6.07	6.3	
45	1	163.0	-	50.00	30.7	
46	2	70.0	5.66	25.00	35.7	
47	2	81.5	2.12	20.75	25.5	
48	2	89.0	4.24	6.72	7.5	
49	2	89.7	-	8.15	9.1	
50	-	-	-	-	-	
51	-	-	-	-	-	

Table 37: Mean laboratory results A_{lab} for ²²⁶**Ra** activity concentrations in **Water 1**, their standard deviations *s* and estimated expanded uncertainties U_{lab}

		mean activity	standard	expanded		
lab	n	concentration	deviation	uncertainty	uncertainty	
no.		A_{int} / (mBq·l ⁻¹)	$s / (mBa \cdot l^{-1})$	$U_{\rm mb} / (mBg \cdot l^{-1})$	$U_{\mu\nu}/A_{\mu\nu}/(\%)$	
2	2	42 4	1.06			
2	1	10.0	-	20.00	200.0	
4	2	37.5	2 12	7 87	210	
5	2	53.5		7.87	14 7	
7	4	48.0	0.00	6.00	12.5	
7 8	2	12.0	0.00	2 24	18.4	
a						
10	_	_			_	
11	2	50 5	34 6	6 48	12.8	
12	6	82.0	5 66	27 39	33.4	
13	2	51 5	3 54	7 84	15.2	
14	_					
15	2	29 0	5 66	3 66	12.6	
16	2	13.5	0.64	2.80	20.8	
17	2	30.5	0.04	3 87	9.8	
18	2	34.2	0.71	5.82	17.0	
10	1	46.0		12 98	28.2	
20	a	42.5	2 12	7 95	18.7	
20	1	28.0		3.00	10.7	
22	2	41 0	4 24	6.64	16.2	
23	2	42.4	1.06	4 44	10.2	
20	Δ 2	82.0	_ 1.00	34 10	41.6	
25	2	43.0	283	16 56	38.5	
26	<u>2</u> 4	32.5	18 37	2 72	84	
27	2	7 1	0.62	2.72	34 0	
28	4	31.2	2 19	16.07	51.6	
29	1	38.0	-	8 20	21.6	
31	2	30.5	3 54	3 25	10.6	
32	2	50.0	2.83	8 97	17.9	
33	2	43.0	3 18	7 01	16.3	
34	2	42.5	0.10	7.01	16.8	
35	2	40.4	1 77	5 75	14.3	
36	2	53.0	16 97	8 32	15 7	
37	2	49.0	1 41	6 29	12.8	
38	2	46.5	2 12	4 86	10.5	
39	2	44.9	0.14	6.54	14.6	
40	-	-	-	-	-	
41	2	47 7	1 13	6 40	13 4	
42	4	52.5	4.95	8.47	16.1	
43	2	46.4	1.91	2.93	6.3	
45	1	124.0	-	50.00	40.3	
46	2	34.5	2.12	12.01	34.8	
47	2	37.0	2.83	12.50	33.8	
48	2	43.5	3.54	3.67	8.4	
49	2	37.4	-	7 27	19.4	
50	-	-	_		-	
51	-	-	_	-	-	
- ·	1		E			

Table 38: Mean laboratory results A_{lab} for ²²⁶**Ra** activity concentrations in **Water 2**, their standard deviations *s* and estimated expanded uncertainties U_{lab}

		mean activity	standard	expanded	rel expanded	
lab	n	concentration	deviation	uncertainty	uncertainty	
no.		A_{int} / (mBq·L ⁻¹)	$s / (mBa \cdot L^{-1})$	$U_{lab} / (mBa \cdot L^{-1})$	$U_{iab}/A_{iab}/(\%)$	
2	2	31.5	0.71	5 04		
2	2	< 80	-	-	-	
4	2	24.5	0 71	4 84	10 7	
- 	2	34 5		13.26	38.5	
7	1-	-		-		
, 8	2	8.5	0 71	9 27	109 1	
9	-	-	-	_	-	
10	-	-	_	_	-	
11	1	35.0	_	7.86	22.4	
12	6	70.0	_	14.79	21.1	
13	1	< 68	-	-	-	
14	-	-	-	-	-	
15	1	48.0	-	15.00	31.3	
16	-	-	-	-	-	
17	2	111.5	2.12	22.15	19.9	
18	2	< 1046	_	_	_	
19	2	32.0	4.24	9.10	28.4	
20	9	34.0	1.41	5.11	15.0	
21	1	27.0	-	5.00	18.5	
22	2	38.5	0.71	5.93	15.4	
23	2	30.4	1.63	4.46	14.7	
24	4	885.0	-	343.41	38.8	
25	2	31.0	2.83	12.86	41.5	
26	-	-	-	-	-	
27	1	65.9	-	27.00	41.0	
28	4	22.2	2.97	9.63	43.4	
29	1	27.7	-	13.60	49.1	
31	-	-	-	-	-	
32	2	37.5	0.71	11.01	29.4	
33	2	43.0	6.65	12.28	28.5	
34	2	28.4	0.00	8.20	28.9	
35	2	38.0	11.31	10.05	26.4	
36	2	43.5	3.54	45.94	105.6	
37	_	-	-	-	-	
38	2	81.0	5.66	13.49	16.6	
39	2	27.6	2.26	6.03	21.8	
40	-	-	-	-	-	
41	2	30.0	1.41	5.90	19.7	
42	4	34.0	1.41	3.36	9.9	
43		-	_	-	-	
45	_	-	-	-	-	
46	-	-	-	-	-	
47	2	29.5	3.54	9.35	31.7	
48	2	36.5	3.54	8.77	24.0	
49		-	-	-	-	
50	. -	-	-	<u> </u> -	-	
51	-	-	-	-	-	

Table 39: Mean laboratory results A_{lab} for ²²⁸**Ra** activity concentrations in **Water 1**, their standard deviations *s* and estimated expanded uncertainties U_{lab}

		mean activity	standard	expanded	rel expanded	
lab	n	concentration	deviation	uncertainty	uncertainty	
no.	1.	A_{lab} / (mBa·L ⁻¹)	$s / (mBa \cdot L^{-1})$	U_{lab} / (mBa·L ⁻¹)	$U_{iab}/A_{iab}/(\%)$	
2	2	82.5	4 95	7.57	9.2	
3	2	< 100	-	-	-	
4	2	20.5	0 71	4 04	19 7	
5	3	39.3	-	14.39	36.7	
7	- -	-	_	-	-	
8	2	67 0	7 07	15 24	22 7	
9		-	-	-	-	
10	-	-	_	-	_	
11	1	110.0	_	22.44	20.4	
12	6	128.0	-	26.81	20.9	
13	2	112.5	14.85	30.59	30.6	
14	-	-	-	-	-	
15	2	80.5	7.78	16.86	20.9	
16	-	-	-	-	-	
17	2	146.5	2.12	29.33	20.0	
18	2	< 1038	_		-	
19	1	61.0	-	10.72	17.6	
20	9	80.0	4.24	8.33	10.4	
21	1	72.0	-	7.00	9.7	
22	2	92.0	4.24	14.65	15.9	
23	2	70.4	0.78	8.89	12.6	
24	4	26.0	-	10.62	40.8	
25	2	67.5	0.71	26.96	40.0	
26	-	-	-	-	-	
27	1	< 25.8	-	-	-	
28	4	50.7	2.62	21.29	42.0	
29	1	80.3	-	20.80	25.9	
31	-	-	-	-	-	
32	2	98.5	3.54	28.92	29.4	
33	2	103.0	5.66	16.64	16.2	
34	2	55.8	1.48	20.65	37.0	
35	2	65.5	14.85	13.99	21.4	
36	1	118.0	_	65.03	55.1	
37	-	-	-	-	-	
38	2	99.5	12.02	14.73	14.8	
39	2	85.8	2.90	10.36	12.1	
40	-	-	-	-	-	
41	2	77.8	8.84	7.71	9.9	
42	4	94.0	5.66	7.70	8.2	
43		-	_	-	-	
45		-	-	-	-	
46	-	-	-	-	-	
47	2	73.0	1.41	20.25	27.7	
48	2	71.5	6.36	9.89	13.8	
49		-	-	-	-	
50		-	-		-	
51	-	-	-	-	-	

Table 40: Mean laboratory results A_{lab} for ²²⁸**Ra** activity concentrations in **Water 2**, their standard deviations *s* and estimated expanded uncertainties U_{lab}

	50	mean activity	standard			
lab	n	concentration	deviation	uncortainty		
no.	"	$A_{\rm e}$ / (mBayl ⁻¹)	$s / (mBa \cdot l^{-1})$	$II = I (mBa \cdot I^{-1})$		
2	2	12.5				
 っ	2	12.0		5 00	14.9 20 5	
3	2	10.0	0.00	1.50		
4	0	13.3	0.71	1.52	11.3	
о 7	-	-	-		- 07.0	
/ 0	2	14.4		4.00	27.0 12.1	
0	Z	14./	0.92	1.92	13.1	
9	-	-	-	-	-	
10	-	-	-	-	-	
10	- 2	- 15 5	- 0 10	- 2 20	- 21 /	
12	2	12.0	1 2/	1 25	0.0	
17	2	11.7	0.21	1.35	11 0	
14		14.0	0.21	1.7Z	11.9	
10	- 2	- 12 2	- 262	10 00	- - -	
10	2	40.0 11.0		12.22	20.J 25.6	
/ 10	2	11.3				
10		4.	0.04	0.90	0.4	
19	-	-	-	-	-	
20	-	-	-	-	-	
21	-	-	-		-	
22	2	10.0	0.57	0.74	9.2	
23	2	13.3	0.00	0.74	5.0	
24	-	-	-	-	-	
25	2	16.0	0.21	2.12	13.3	
26	2	19.0	0.63	1.65	8.7	
27	2	13.7	1.34	0.75	5.5	
28	-		-	-	-	
29	1	<15	-	-		
31	2	14.6	1.20	1.03	/.1	
32	2	16.8	0.64	1.71	10.2	
33	4	14.3	0.85	3.00	21.0	
34	2	13.8	0.28	2.18	15.8	
35	2	16.4	0.35	2.87	17.5	
36	2	20.4	0.85	1.64	8.0	
37	2	14.0	1.70	1.61	11.5	
38	2	16.5	0.71	2.13	12.9	
39	-	-	-	-	-	
40	1	17.4	-	2.40	13.8	
41	2	14.5	1.72	0.87	6.0	
42	2	14.2	0.14	4.32	30.4	
43	2	13.7	0.78	1.50	11.0	
45	4	15.0	-	4.80	32.0	
46	1	6.2	-	3.10	50.0	
47	2	16.5	0.71	4.00	24.3	
48	2	13.8	0.21	1.55	11.3	
49	4	20.0	-	2.38	11.9	
50	2	14.3	0.06	1.47	10.3	
51	2	13.9	0.28	1.42	10.2	

Table 41: Mean laboratory results A_{lab} for ²³⁴U activity concentrations in **Water 1**, their standard deviations *s* and estimated expanded uncertainties U_{lab}

		mean activity	standard	expanded	rel expanded
lab	n	concentration	deviation	uncertainty	uncertainty
no.	"	$\Lambda_{\rm ev}$ / (mBayl ⁻¹)	$c / (mBa d ^{-1})$	$I_{\rm L}$ / (mBayl ⁻¹)	
14/2	50				
<u>vv</u> 3-;		20 5	0.74	2.70	44.4
4	0	JZ.J 45.6	0.71	5.70 5.10	11.4
0 10		43.0	3.11	5.19	11.4
10	-	-	-	-	-
11	-		-	-	-
13	2	40.0	2.83	3.08	0.0
10	Z	29.5	3.90	12.31	41.7
19	-	-	-	-	-
20	<u> </u>	50.Z	0.14	0.02	12.0
20	<u> </u>	42.0	1.44	4.41	10.3
29		44.0	-	0.00	13.0
32		42.0	0.92	3.51	8.2
35	2	48.6	0.00	5.91	12.2
36	2	51.1	0.07	5.34	10.5
39	-		-		-
40	1	52.9	-	6.40	12.1
41	2	42.6	0.29	2.32	5.5
42	2	41.0	1.41	11.78	28.7
43	2	40.8	1.48	3.14	7.7
46	1	17.5	-	8.70	49.7
47	2	46.0	1.41	6.98	15.2
48	2	44.6	1.06	5.79	13.0
49	4	42.2	_	5.27	12.5
50	2	44.2	1.00	4.49	10.2
51	2	46.4	2.05	4.28	9.2
W3-	51				
2	2	35.7	1.61	6.98	19.6
3	2	36.5	2.12	12.50	34.2
5	-		-	-	
7	2	37.9	0.00	10.00	26.4
9	-		-	-	
12	2	40.0	2.83	8.35	20.9
14	2	39.7	0.49	4.57	11.5
15	-	-	-	-	-
17	2	43.0	0.28	15.29	35.6
18	-	-	-	-	-
20	-	-	-	-	-
21	-	-	-	-	-
22	2	35.5	1.77	2.73	7.7
23	2	40.4	0.28	2.47	6.1
24	- 1	-	-	-	-
27	2	40.4	4.24	2.16	5.3
28	-	-	-	-	-
31	2	37.5	0.71	2.57	6.9
33	4	39.8	5.59	8.89	22.4
34	2	40.0	2.83	4.71	11.8
37	2	41.1	2.55	4.16	10.1
38	1	18.0	-	6.00	33.3
45	4	24.0	_	6.95	29.0

Table 42:Mean laboratory results A_{lab} for 234 U activity concentrations in Waters3-50 and 3-51, their std. deviations s and estimated expanded uncertainties U_{lab}

		mean activity	standard	expanded	rel expanded
lab	n	concentration	deviation	uncortainty	uncertainty
no.		A_{int} / (mBq·l ⁻¹)	$s / (mBa \cdot l^{-1})$	$U_{mh} / (mBg \cdot l^{-1})$	$U_{inb}/A_{inb}/(\%)$
2	2	95	0.50	1 58	
2 3	2	9.5	0.50	5.01	52.8
1	6	10.5	0.71	1 20	12.0
- - 5	3	24.3		0.58	30 4
7	2	10.3		2.00	10 <i>Δ</i>
8	2	10.5	0.00	1 42	13.4
q	<u> </u>	_ 10.0			
10		_	_	_	_
11	1	120.0	_	18 29	15 2
12	2	11 5	2 12	2 49	21.6
13	2	11.0	0.42	1 27	11 4
14	2	10.5	0.12	1.31	12.5
15	-	-	0.20 _	-	-
16	2	45 0	4 60	12.36	27 5
17	2	10.0	0.85	3.57	35.7
18	2	10.0	0.00	0.07	7 0
19		_ 10.2	-	_	
20	6	10.0	1 41	14 32	143 2
21	1	92.0		13.00	14 1
22	2	9.6	0 35	0.96	10.0
23	2	10.1	0.07	0.56	56
20		-	-	-	-
25	2	11.9	0.00	1 64	13.8
26	2	12.5	0.13	1 12	9.0
27	2	10.4	0.59	0.59	57
28	2	13.2	1 34	11 80	89 7
29	1	< 15	-	-	-
31	2	10.2	0.07	0.63	6.2
32	2	12.6	0.42	1.64	13.0
33	4	97	0.37	2.08	21.4
34	2	9.1	0.85	1.74	19.1
35	2	11.3	0.07	2.31	20.6
36	2	15.2	0.78	1.22	8.0
37	2	10.7	1.20	1.25	11.7
38	2	12.0	1.41	1.24	10.3
39	-	-	-	-	-
40	1	12.9	-	2.60	20.2
41	2	11.1	1.00	0.71	6.4
42	2	10.7	0.07	3.22	30.2
43	2	11.1	0.07	1.28	11.6
45	4	8.0	-	2.32	29.0
46	1	6.2	-	3.10	50.0
47	2	12.5	2.12	3.04	24.4
48	2	10.5	0.07	1.19	11.4
49	4	18.0	-	2.32	12.9
50	2	10.9	0.85	1.10	10.1
51	2	10.6	0.57	1.42	13.4

Table 43: Mean laboratory results A_{lab} for ²³⁸U activity concentrations in **Water 1**, their standard deviations *s* and estimated expanded uncertainties U_{lab}

		mean activity	standard	ovnandod	
lab	n	concontration	doviation	uncortainty	
no.	"	$\Lambda / (m Rad^{-1})$	ueviation	$U = \frac{1}{1000}$	
14/0		A _{lab} / (mbq·L)	s/(mbq·L)	U _{lab} / (MBQ·L)	$U_{lab}/A_{lab}/(70)$
<u>W3-</u>	50				40.0
4	6	19.5	0.71	2.38	12.2
8	2	22.2	1.48	2.66	12.0
10	-	-	-	-	-
11	1	27.0	-	3.62	13.4
13	2	23.0	3.18	1.94	8.5
16	2	29.8	4.03	12.41	41.7
19	-	-	-	-	-
25	2	25.6	0.42	3.20	12.5
26	2	23.4	0.23	2.43	10.4
29	1	21.0	-	6.00	28.6
32	2	22.5	0.78	2.63	11.7
35	2	23.3	0.35	3.69	15.9
36	2	26.5	1.34	2.88	10.9
39	0			-	
40	1	25.6	-	4.80	18.8
41	2	21.5	0.44	1.28	5.9
42	2	20.5	0.71	5.89	28.7
43	2	20.7	0.57	1.68	8.1
46	1	17.4	-	8.70	50.0
47	2	22.5	0.71	4.49	20.0
48	2	21.9	0.21	2.88	13.2
49	4	28.9	_	2.40	8.3
50	2	22.8	0.07	2.38	10.4
51	2	23.1	0.78	2.84	12.3
W3-	51				
2	2	18.0	0.49	4.06	22.5
3	2	18.0	1.41	6.49	36.1
5	3	16.8	-	7.50	44.6
7	2	19.7	0.00	4.00	20.3
9	-	-	-	-	-
12	2	20.5	0.71	3.83	18.7
14	2	20.1	0.49	2.39	11.9
15	-	-	-	-	-
17	2	20.5	1.56	7.27	35.5
18	-	-	-	-	-
20	6	18.5	0.71	8.25	44.6
21	1	121.0	-	23.00	19.0
22	2	19.4	0.21	1.55	8.0
23	2	19.9	0.42	1.34	6.8
24	-	-	_	-	-
27	2	18.4	0.14	1.87	10.2
28	2	18.2	2.19	15.45	85.1
31	2	19.5	0.35	1.25	6.4
33	4	19.9	2.05	4.58	23.1
34	2	21.5	2.19	2.90	13.5
37	2	20.3	2.19	2.16	10.7
38	2	21.5	2 12	3 18	14.8
45	4	13.0	 	3 77	29.0
	1 -	10.0		0.11	20.0

Table 44:Mean laboratory results A_{lab} for 238 U activity concentrations in Waters3-50 and 3-51, their std. deviations s and estimated expanded uncertainties U_{lab}

Eleven laboratories also reported results for the activity concentration of additional radionuclides, other than the predefined measurands. Laboratories 11, 28, 32 and 42 measured ⁴⁰K in samples W1 and W2. ²²⁸Th (labs 20, 32, 42, 49) and ²³⁵U (labs 14, 23, 41, 43) were also determined in the samples. The reported individual results and their expanded uncertainties are plotted in Figs. 57 to 59. For these radionuclides no reference value was determined in the frame of this intercomparison. The overall mean and standard deviation *s* of these measurement results for the additional radionuclides are given in Table 45 and are indicated in the figures as solid and dashed red lines. In the case of ²³⁵U two laboratories (no. 23 and 41) reported more than one measurement per sample and on the graph (Fig. 57) the individual results are presented.

Table 45: Mean activity concentrations of ²³⁵U, ²²⁸Th and ⁴⁰K in the mineral water samples and their standard deviations *s* in mBq·L⁻¹, as measured by some laboratories.

Sample	W1	W2	W3
²³⁵ U	0.53 ± 0.07	-	0.98 ± 0.08
²²⁸ Th	17.4 ± 7.4	44.3 ± 16.5	-
⁴⁰ K	76 ± 20	327 ± 69	-

Fig. 57: ²³⁵U activity concentration determined additionally by some laboratories. Error bars represent expanded uncertainty (k = 2) of individual measurements, mean value and standard deviation *s* are indicated in red. Laboratory numbers are indicated.

Fig. 58: ²²⁸Th activity concentration determined additionally by some laboratories. Error bars represent expanded uncertainty (k = 2) of individual measurements, mean value and standard deviation *s* are indicated in red. Laboratory numbers are indicated.

Fig. 59: ⁴⁰K activity concentration determined additionally by some laboratories. Error bars represent expanded uncertainty (k = 2) of individual measurements, mean value and standard deviation *s* are indicated in red. Laboratory numbers are indicated.

Furthermore, laboratories 19 and 28 reported values for the ²¹⁰Pb activity concentration Laboratory 28 reported values of $(33 \pm 20) \text{ mBq}\cdot\text{L}^{-1}$ for W1 and $(26 \pm 18) \text{ mBq}\cdot\text{L}^{-1}$ for W3, while the values submitted by lab 19 for all three water samples were below the detection limit of their method (< 17500 mBq·L⁻¹). The same participant (no.19) measured activity concentrations of ²²²Rn in all samples of less than 1000 mBq·L⁻¹.

Results for ²²⁴Ra activity concentration in all intercomparison samples were submitted by one participant (no. 23). The reported values (two per sample) are listed in Table 46. The results are decay corrected to the measurement date 10-Jan-2008.

Table 46: Activity concentrations of ²²⁴Ra in the mineral water samples and their expanded uncertainties (k = 2) in mBq·L⁻¹ as reported by laboratory 23.

Sample	W1	W2	W3
Measurement 1	13.4 ± 1.6	36.0 ± 5.2	2.62 ± 0.70
Measurement 2	14.5 ± 1.6	32.4 ± 4.6	2.22 ± 0.94

6. Data evaluation and comparison of data

The most intuitive way to display the compliance of measurement results with reference values is the deviation chart. Tables 47 - 54 contain the relative deviations of the laboratory mean values A_{lab} from the reference activity concentration A_{ref} :

$$Rel.dev. = \frac{A_{lab} - A_{ref}}{A_{ref}} \cdot 100 = \frac{D}{A_{ref}} \cdot 100$$
(22)

These values are plotted in ascending order in a deviation chart, and the laboratories reporting too low or too high values become more visible (Figs. 60 - 69). Dashed red lines indicate a deliberately chosen range of \pm 20 % in the case of ²³⁴U and ²³⁸U and \pm 30 % in the case of ²²⁶Ra and ²²⁸Ra. Laboratories which have reported values outside of the specified range were considered to deviate considerably from the reference value. These laboratories were contacted after the deadline for reporting results and were asked to critically review their analysis and measurement procedures and calculations, and to report back if the review would lead to changed values. Some of the contacted laboratories corrected their results and the newly submitted results were used for the final evaluation of the laboratory performance as presented here.

For completeness, the expanded uncertainty U_{ref} of the reference value is plotted as dotted red lines in Figs. 60 - 69. In the figures, as well as in Tables 47 - 54, large relative deviations are highlighted by colours: orange for $D/A_{ref} > 15$ % (> 25 % in case of ²²⁶Ra and ²²⁸Ra), red for $D/A_{ref} > 20$ % (> 30 % in case of ²²⁶Ra and ²²⁸Ra).

As far as the determination of radium is concerned, the results of the comparison are far from satisfactory. Figure 60 shows that the values determined by many laboratories for ²²⁶Ra in Water 1 were too low (up to a factor of 14 – lab 8), while two laboratories (no. 24 and 45) determine values too high (as much as up to 8 times the reference value). By contrast, the reference value determined by IRMM and BfS has a relative expanded uncertainty, U_{ref} , of 15 %. Laboratory 45 followed its routine analytical procedure including sample pre-concentration to reduce the volume and counting by liquid scintillation (LSC) of the ingrowth of ²²²Rn. The ²²⁶Ra activity concentration in the comparison samples, however, was lower than the activities measured routinely (~150 mBq·L⁻¹). Another laboratory (no. 24) used gamma-ray spectrometry and reported a far too high activity concentration (> 670 % too high) for ²²⁶Ra in Water 1. This laboratory declared that they do not have much experience with such low activities and routinely do not perform evaporation of the sample which was done in this case. Laboratory 8 used liquid scintillation counting of the ²²²Rn ingrowth for the determination of ²²⁶Ra activity concentration in the samples after preconcentration of the radium from the water with BaSO₄. Also, another seven laboratories reported results deviating by more than 30 % from the reference value (no. 3, 13, 16, 21, 26, 27 and 35). Laboratories 13 and 16 used alpha-particle spectrometry and labs 3 and 35 liquid scintillation counting for the ²²⁶Ra determination. Sorption emanation technique, gamma-ray spectrometry and gross alpha counting were applied in lab 27, 21 and 16, respectively. In the case of lab 21, due to a misunderstanding, the routine analytical procedure was not used and wrong acid was added for conservation. The other six participants followed their routine analysis procedures.

One should note that a ²²⁶Ra activity concentration of 100 mBq·L⁻¹ in water is more than twice the limit of detection required by the Proposal for a Council Directive, COM(2011)385 (European Communities, 2011), thus a non-negligible amount, and measurement results five times too high or too low would result in unnecessary or omitted remedial action, respectively. It is not satisfactory that only 31 laboratories (out of 41) are able to determine the ²²⁶Ra activity concentration within 30 % from the reference value.

The results for ²²⁶Ra in Water 2, although at lower activity concentration, reveal a similar, although slightly better performance (Fig. 61). Again, 32 laboratories show results spread around the reference value to within \pm 30 %. The extreme deviations are in this case 6 times too low (lab 27) and a factor of 3 too high (lab 45). Laboratory 27 applied its routine procedure - sorption emanation technique after radium preconcentration from the water with barium sulphate. Comparing laboratory numbers in Figures 60 and 61, it appears that there is a group of laboratories – with labs 12 and 26 as exceptions – which implement the chosen ²²⁶Ra analysis procedures systematically incorrect.

Even more problematic is laboratory performance in the determination of ²²⁸Ra. In Water 2, there are only 17 laboratories (of 29 submitting results) that are within ± 30 % of the reference value without forming a distinct plateau of measurement results around the reference value (Fig. 63). Four laboratories (no. 4, 5, 24, 28) determine values too low, and 8 submit results too high (by > 30 %) (no. 11, 12, 13, 17, 32, 33, 36, 38). The situation for ²²⁸Ra in Water 1 is similar (Fig. 62); 13 laboratories, i.e. about half, obtain results that are too high by > 30 %. One of the laboratories (no. 24) determines by gamma-ray spectrometry a far too high activity concentration of 885 mBq·L⁻¹ ($A_{ref} = (28 \pm 6) \text{ mBq·L}^{-1}$) in Water 1, whereas its result for Water 2 is a factor of 2.8 too low. This lab does not routinely determine this radionuclide. Laboratory 12, which reported too high activity concentration for both water samples (> 150 % for W1 and > 70 % for W2), did not follow their routine analytical procedure. The sample was first pre-concentrated by evaporation and then the radium was co-precipitated as BaSO₄. The precipitate was dissolved in alkaline EDTA and measured with Hisafe 3 by LSC. In order to enhance the chemical recovery the sulphide precipitation was done separately. All other laboratories with results deviating more than 30 % from the reference value for both water samples have followed their routine analytical procedures. Some of the participants (labs 3, 13, 15, 18 and 24) reported difficulties encountered during the determination of ²²⁸Ra in the samples due to the low activity levels.

In general, the analysis of uranium activity concentration in mineral water is under much better control by the vast majority of participating laboratories (Figs. 64 - 69). For example, Fig. 67 depicts the results for the determination of ²³⁸U in Water 1. In this case, 32 of 40 laboratories obtain results within \pm 20 % of the reference value, only two laboratories (no. 45 and 46) obtain results that are too low (maximum by 45 %), and six laboratories (labs 5, 11, 16, 21, 36, 49) report values > 20 % too high (in the two worst cases – no. 21 and 11 - by a factor of about 8 and 11, though). Laboratories 16 and 46 used fluorimetry for the determination of natural uranium and determined the activity concentrations of ²³⁴U and ²³⁸U by calculations, under the assumption of equilibrium. In the case of laboratories 5 and 21, gamma-ray spectrometry was used and in lab 11 liquid scintillation counting. Alpha-particle spectrometry was applied in laboratories 36, 45 and 49.

The comparison results for the determination of ²³⁴U in both waters and ²³⁸U in Water 3-50 and Water 3-51 are similarly acceptable. The majority of the participants followed their routine analytical procedures. Only few participants reported that they have applied other procedures (no. 20, 21, and 22). Laboratory 22 does not perform routine analysis of uranium in water. Laboratory 20 reported that the sample quantity was too small for application of their routine gamma-ray spectrometry counting and spectrum analysis procedure. Therefore, to increase the amount of the residue after evaporation, oxalic acid was added. In the case of lab 21, because of a misunderstanding, wrong acid was added for conservation. The uranium was preconcentrated from the sample by evaporation and measured by gamma-ray spectrometry. One laboratory (no. 3) reported difficulties encountered during the determination of uranium in the mineral water samples due to the low activity levels.

As seen from the discussion above, just as all counting methods used for the determination of the different radionuclides are represented among the largely deviating results, there is not a single sample preparation or radiochemical separation procedure which could be pin-pointed as being particularly frequent among or even responsible for largely deviating results. An exception is the group of laboratories using fluorimetry for the determination of the uranium isotopes (no. 16 and 46). The assumption in their calculations for equilibrium between ²³⁴U and ²³⁸U in the mineral water samples was incorrect. The ratio of ²³⁴U and ²³⁸U in mineral water is different than one (usually ²³⁴U/²³⁸U > 1) and depends on the (geo)chemical conditions within the aquifer (Ivanovich and Harmon, 1992). Therefore, a critical review of the implementation of the method should be done by these two laboratories.

Fig. 60: Deviation chart of the 41 measurement results for ²²⁶Ra in Water 1 plotted as D/A_{ref} in ascending order. Range of ± 30 % (dashed) and expanded uncertainty U_{ref} (dotted) are indicated

Fig. 61: Deviation chart of the 41 measurement results for ²²⁶Ra in Water 2 plotted as D/A_{ref} in ascending order. Range of ± 30 % (dashed) and expanded uncertainty U_{ref} (dotted) are indicated

Fig. 62: Deviation chart of the 29 measurement results for ²²⁸Ra in Water 1 plotted as D/A_{ref} in ascending order. Range of ± 30 % (dashed) and expanded uncertainty U_{ref} (dotted) are indicated

Fig. 63: Deviation chart of the 29 measurement results for ²²⁸Ra in Water 2 plotted as D/A_{ref} in ascending order. Range of ± 30 % (dashed) and expanded uncertainty U_{ref} (dotted) are indicated

Fig. 64: Deviation chart of the 35 measurement results for 234 U in Water 1 plotted as D/A_{ref} in ascending order. Range of ± 20 % (dashed) and expanded uncertainty U_{ref} (dotted) are indicated

Fig. 65: Deviation chart of the 20 measurement results for 234 U in Water 3-50 plotted as D/A_{ref} in ascending order. Range of ± 20 % (dashed) and expanded uncertainty U_{ref} (dotted) are indicated

Fig. 66: Deviation chart of the 15 measurement results for 234 U in Water 3-51 plotted as D/A_{ref} in ascending order. Range of ± 20 % (dashed) and expanded uncertainty U_{ref} (dotted) are indicated

Fig. 67: Deviation chart of the 40 measurement results for 238 U in Water 1 plotted as D/A_{ref} in ascending order. Range of ± 20 % (dashed) and expanded uncertainty U_{ref} (dotted) are indicated

Fig. 68: Deviation chart of the 21 measurement results for 238 U in Water 3-50 plotted as D/A_{ref} in ascending order. Range of ± 20 % (dashed) and expanded uncertainty U_{ref} (dotted) are indicated

Fig. 69: Deviation chart of the 19 measurement results for 238 U in Water 3-51 plotted as D/A_{ref} in ascending order. Range of ± 20 % (dashed) and expanded uncertainty U_{ref} (dotted) are indicated

	mean activity	expanded	relative		
lab	concentration	uncertainty	deviation	E.	compatibility
no.	A_{int} [mBa·L ⁻¹]	U_{lab} [mBa·L ⁻¹]	D/A _{rof} [%]	-/	company
2	99 1	11 15	1 1	0.06	YES
3	35.0	24 79	-64 3	-2 17	NO
4	96.5	17 12	-1.5	-0.07	YES
5	102.8	8 84	4 9	0.28	YES
7	113.0	12 00	15.3	0.78	YES
8	72	1 40	-92 7	-6.03	NO
9	-	-	-	-	-
10	_	_	-		
11	90.0	11.78	-8.2	-0.42	YES
12	100.0	27.99	20	0.06	YES
13	67.0	17.86	-31.6	-1 33	NO
14	-	-	-	-	-
15	78 5	9 47	-19 9	-1 10	NO
16	20.7	3.77	-78.9	-5.00	NO
17	83.0	7.90	-15.3	-0.88	YES
18	70.9	11.94	-27.7	-1.42	NO
19	88.0	17.08	-10.2	-0.44	YES
20	85.5	15.58	-12.8	-0.58	YES
21	21.0	1 00	-78.6	-5 12	NO
22	96.5	12 37	-1.5	-0.08	YES
23	93.5	9 79	-4 6	-0.25	YES
24	760.0	295 77	675 5	2 24	NO
25	93.0	37.50	-5.1	-0.12	YES
26	49.4	3.60	-49.6	-3.15	NO
27	17.8	2.83	-81.9	-5.26	NO
28	83.4	42.92	-14.9	-0.32	YES
29	83.6	15.80	-14.7	-0.66	YES
31	92.5	10.98	-5.6	-0.30	YES
32	95.0	16.92	-3.1	-0.13	YES
33	98.6	13.62	0.6	0.03	YES
34	90.5	12.66	-7.7	-0.38	YES
35	66.4	8.59	-32.2	-1.83	NO
36	85.5	15.45	-12.8	-0.58	YES
37	102.0	11.67	4.1	0.21	YES
38	107.5	8.95	9.7	0.54	YES
39	99.3	14.47	1.3	0.06	YES
40	-	-	-	-	-
41	89.3	5.06	-8.9	-0.55	YES
42	96.5	14.28	-1.5	-0.07	YES
43	96.2	6.07	-1.9	-0.11	YES
45	163.0	50.00	66.3	1.25	NO
46	70.0	25.00	-28.6	-0.96	YES
47	81.5	20.75	-16.8	-0.64	YES
48	89.0	6.72	-9.2	-0.55	YES
49	89.7	8.15	-8.5	-0.49	YES
50	-	-	-	-	-
51	-		-	-	-

Table 47: Relative deviation of mean laboratory results A_{lab} from reference value A_{ref} and compatibility test (E_n numbers) for ²²⁶**Ra in Water 1**

1	mean activity	expanded	relative		
lab	concentration	uncertainty	deviation	E _n	compatibility
no.	A _{lab} [mBq·L ⁻¹]	U_{lab} [mBq·L ⁻¹]	D/A _{ref} [%]		
2	42.4	4.99	-1.5	-0.05	YES
3	10.0	20.00	-76.7	-1.45	NO
4	37.5	7.87	-12.8	-0.41	YES
5	53.5	7.87	24.3	0.77	YES
7	48.0	6.00	11.6	0.40	YES
8	12.2	2.24	-71.7	-2.75	NO
9	-	-	-	-	-
10	-	-	-	-	-
11	50.5	6.48	17.4	0.59	YES
12	82.0	27.39	90.7	1.32	NO
13	51.5	7.84	19.8	0.63	YES
14	-	-	-	-	-
15	29.0	3.66	-32.6	-1.21	NO
16	13.5	2.80	-68.7	-2.60	NO
17	39.5	3.87	-8.1	-0.30	YES
18	34.2	5.82	-20.5	-0.71	YES
19	46.0	12.98	7.0	0.18	YES
20	42.5	7.95	-1.2	-0.04	YES
21	28.0	3.00	-34.9	-1.32	NO
22	41.0	6.64	-4.7	-0.16	YES
23	42.4	4.44	-1.5	-0.05	YES
24	82.0	34.10	90.7	1.09	NO
25	43.0	16.56	0.0	0.00	YES
26	32.5	2.72	-24.3	-0.92	YES
27	7.1	2.43	-83.4	-3.18	
28	31.2	16.07	-27.6	-0.61	YES
29	38.0	8.20	-11.6	-0.36	YES
31		3.25	-29.1	-1.09	
32	50.0	8.97	16.3	0.49	YES
33	43.0	7.01	-0.1	0.00	
34	42.5	/.14 E 75	-1.2	-0.04	
30 26	40.4 52.0	0.70	-0.2	-0.21	
27	10.0	6 20	14.0	0.72	
31 28	46 5	<u> </u>	8 1	0.47	VES
30	40.0 44 Q	6 54		0.23	VES
40	-				
<u>40</u> 41	47 7	640	10.9	0.37	YES
42	52.5	8 47	22.1	0.68	YES
43	46.4	2.93	78	0.29	YES
45	124.0	50.00	188.4	1.58	
46	34.5	12.01	-19.8	-0.52	YES
47	37.0	12.50	-14.0	-0.36	YES
48	43.5	3.67	1.2	0.04	YES
49	37.4	7.27	-13.0	-0.42	YES
50	-	-	-	-	-
51	-	-	-	-	-
·		2			

Table 48: Relative deviation of mean laboratory results A_{lab} from reference value A_{ref} and compatibility test (E_n numbers) for ²²⁶**Ra in Water 2**

relative mean activity expanded lab concentration uncertainty deviation En compatibility no. U_{lab} [mBq·L⁻¹] A_{lab} [mBq·L⁻¹] **D**/A_{ref} [%] 31.5 5.04 2 12.5 0.45 YES 3 < 80 -4.84 -12.5 -0.45 YES 4 24.5 5 34.5 13.26 23.1 0.44 YES 7 ---8 8.5 9.27 -1.77 NO -69.6 9 ----10 ---0.71 7.86 YES 11 35.0 25.0 12 70.0 14.79 150.0 2.63 NO 13 < 68 ----14 ----15 48.0 15.00 71.4 1.24 NO 16 ---17 111.5 22.15 3.64 298.2 NO 18 < 1046 ----19 32.0 9.10 14.3 0.37 YES 20 34.0 5.11 21.4 0.76 YES 21 -3.6 -0.13 27.0 5.00 YES 22 38.5 5.93 1.24 NO 37.5 23 30.4 4.46 8.4 0.31 YES 24 885.0 343.41 3060.7 2.50 NO YES 25 31.0 12.86 10.7 0.21 26 ---27 1.37 65.9 27.00 135.4 NO 28 22.2 9.63 -20.7 -0.51 YES 29 27.7 13.60 -1.1 -0.02 YES 31 -----33.9 32 37.5 0.76 YES 11.01 12.28 53.6 1.10 33 43.0 NO 1.4 YES 34 28.4 8.20 0.04 35 38.0 10.05 0.85 YES 35.7 45.94 55.4 YES 36 43.5 0.33 37 ---38 13.49 81.0 189.3 3.59 NO -1.4 YES 39 27.6 6.03 -0.05 40 ---_ 41 30.0 5.90 7.1 0.24 YES 42 21.4 YES 34.0 3.36 0.87 43 -----45 -----46 _ _ _ 5.4 YES 47 29.5 9.35 0.14 0.80 YES 48 36.5 8.77 30.4 49 -----50 -----51 -----

Table 49: Relative deviation of mean laboratory results A_{lab} from reference value A_{ref} and compatibility test (E_n numbers) for ²²⁸Ra in Water 1

	mean activity expanded relative						
lab	concentration	uncertainty	deviation	E.	compatibility		
no.	A _{lab} [mBa·L ⁻¹]	$U_{\mu b}$ [mBa·L ⁻¹]	D/A _{rof} [%]		•••••••		
2	82.5	7 57	11.5	0.60	YES		
3	< 100	-	-	-	-		
4	20.5	4 04	-72 3	-4 23	NO		
5	39.3	14.39	-47.0	-1.85	NO		
7	-	-	-	-	-		
8	67.0	15.24	-9.5	-0.36	YES		
9	-	-	-	-	-		
10	-	-	-	-	-		
11	110.0	22.44	48.6	1.41	NO		
12	128.0	26.81	73.0	1.84	NO		
13	112.5	30.59	52.0	1.17	NO		
14	-	_	-		-		
15	80.5	16.86	8.8	0.31	YES		
16	-	-	-	-	-		
17	146.5	29.33	98.0	2.29	NO		
18	< 1038	-	-	-	-		
19	61.0	10.72	-17.6	-0.81	YES		
20	80.0	8.33	8.1	0.41	YES		
21	72.0	7.00	-2.7	-0.14	YES		
22	92.0		24.3	0.95	YES		
23	70.4	8.89	-4.9	-0.24	YES		
24	20.0	10.62	-04.9	-3.00			
20	C. 10	20.90	-0.0	-0.22	15		
20	- 25.8	-	-	-	-		
28	< 23.0 50 7	21 29	-	-0.96	- VES		
20	80.3	20.80	85	0.30	YES		
31	-	-	-	-	-		
32	98.5	28.92	33.1	0.78	YES		
33	103.0	16.64	39.2	1.41	NO		
34	55.8	20.65	-24.7	-0.76	YES		
35	65.5	13.99	-11.5	-0.46	YES		
36	118.0	65.03	59.5	0.67	YES		
37	-	-	-	-	-		
38	99.5	14.73	34.5	1.34	NO		
39	85.8	10.36	15.9	0.74	YES		
40	-	-	_		-		
41	77.8	7.71	5.1	0.26	YES		
42	94.0	7.70	27.0	1.40	NO		
43	-	-	-	-	-		
45	-	-	-	-	-		
46	-	-	-	-			
4/	73.0	20.25	-1.4	-0.04			
48	/1.5	9.89	-3.4	-0.16	YES		
49	-	-	-		-		
DU E1	-	<u> </u>	-	-	-		
DI	-	-	-	-	-		

Table 50: Relative deviation of mean laboratory results A_{lab} from reference value A_{ref} and compatibility test (E_n numbers) for ²²⁸Ra in Water 2

mean activity expanded relative						
lab	concentration	uncertainty	deviation	E,	compatibility	
no.	A_{lab} [mBa·L ⁻¹]	U_{lab} [mBa·L ⁻¹]	D/A _{rof} [%]	_"	•••••••	
2	13.5	2 02	-10.0	-0.50	YES	
3	13.0	5.00	-13.3	-0.37	YES	
4	13.5	1 52	-10.0	-0.56	YES	
5	-	-	-	-	-	
7	14 4	4 00	-4 0	-0 13	YES	
8	14 7	1.92	-2 3	-0.12	YES	
9	-	-	-	-	-	
10	_	_	-	_	_	
11	_	_	_	_	_	
12	15.5	3.32	3.3	0.13	YES	
13	13.7	1.35	-9.0	-0.52	YES	
14	14.5	1.72	-3.7	-0.20	YES	
15	-	-	-	-	-	
16	43.3	12.22	188.3	2.27	NO	
17	11.3	4.00	-25.0	-0.82	YES	
18	14.1	0.90	-6.3	-0.40	YES	
19	_	-	-	-	-	
20	_	_	-	_	-	
21	_	_	_	_	_	
22	16.0	1.47	6.7	0.38	YES	
23	13.3	0.74	-11.3	-0.73	YES	
24	-		-	-	-	
25	16.0	2.12	6.3	0.31	YES	
26	19.0	1.65	26.4	1.44	NO	
27	13.7	0.75	-9.0	-0.58	YES	
28	-	-	-	-	-	
29	<15	-	-	_	-	
31	14.6	1.03	-3.0	-0.19	YES	
32	16.8	1.71	11.7	0.63	YES	
33	14.3	3.00	-4.7	-0.19	YES	
34	13.8	2.18	-8.0	-0.39	YES	
35	16.4	2.87	9.0	0.37	YES	
36	20.4	1.64	36.0	1.97	NO	
37	14.0	1.61	-6.7	-0.37	YES	
38	16.5	2.13	10.0	0.49	YES	
39	-	-	-	-	-	
40	17.4	2.40	16.0	0.74	YES	
41	14.5	0.87	-3.5	-0.22	YES	
42	14.2	4.32	-5.3	-0.16	YES	
43	13.7	1.50	-9.0	-0.51	YES	
45	15.0	4.80	0.0	0.00	YES	
46	6.2	3.10	-58.7	-2.31	NO	
47	16.5	4.00	10.0	0.33	YES	
48	13.8	1.55	-8.3	-0.46	YES	
49	20.0	2.38	33.3	1.54	NO	
50	14.3	1.47	-4.9	-0.28	YES	
51	13.9	1.42	-7.3	-0.42	YES	

Table 51: Relative deviation of mean laboratory results A_{lab} from reference value A_{ref} and compatibility test (E_n numbers) for ²³⁴U in Water 1

	mean activity expanded relative						
lab	concentration	uncortainty	deviation	F	compatibility		
no.		II., [mRail ⁻¹]		└ n	companying		
14/2			D/Aref [/0]				
4	5U	2 70	25.2	0.01	NO		
4	32.5	3.70	-20.3	-2.31			
8	45.0	5.19	4.8	0.35	TES		
10	-	-	-	-	-		
11		-	-	-			
13	45.5	3.08	4.6	0.46	YES		
16	29.5	12.31	-32.2	-1.10	NO		
19	-	-	-	-	-		
25	50.2	6.02	15.4	1.00	YES		
26	42.6	4.41	-2.0	-0.17	YES		
29	44.0	6.00	1.1	0.07	YES		
32	42.6	3.51	-2.2	-0.21	YES		
35	48.6	5.91	11.7	0.77	YES		
36	51.1	5.34	17.4	1.23	NO		
39	-	-	-	-	-		
40	52.9	6.40	21.6	1.33	NO		
41	42.6	2.32	-2.0	-0.23	YES		
42	41.0	11.78	-5.7	-0.21	YES		
43	40.8	3.14	-6.3	-0.63	YES		
46	17.5	8.70	-59.8	-2.83	NO		
47	46.0	6.98	5.7	0.33	YES		
48	44.6	5.79	2.4	0.16	YES		
49	42.2	5.27	-3.0	-0.21	YES		
50	44.2	4.49	1.7	0.13	YES		
51	46.4	4.28	6.6	0.54	YES		
W3-	51	-	2	7	·		
2	35.7	6.98	-12.0	-0.71	YES		
3	36.5	12.50	-10.1	-0.35	YES		
5	-	_	-	-	-		
7	37.9	10.00	-6.9	-0.29	YES		
9	-	-	_	-	-		
12	40.0	8.35	-2.1	-0.10	YES		
14	39.7	4.57	-2.9	-0.24	YES		
15	-	-	-	-	-		
17	43.0	15.29	4.8	0.14	YES		
10	-	-	-	-	-		
20			_	_	_		
22	35.5	2 73	-12 5	-1 50	- NO		
23	40.4	2 47	-1 1	-0.15	YES		
24	-	-	-	-	-		
27	40.4	2.16	-1.1	-0.15	YES		
28	-	-	-	-	-		
31	37.5	2.57	-7.8	-0.97	YES		
33	39.8	8.89	-2.6	-0.12	YES		
34	40.0	4.71	-2.1	-0.17	YES		
37	41.1	4.16	0.5	0.04	YES		
38	18.0	6.00	-52.6	-3.54	NO		
45	24.0	6.95	-38.9	-2.30	NO		

Table 52: Relative deviation of mean laboratory results A_{lab} from reference value A_{ref} and compatibility test (E_n numbers) for ²³⁴U in Waters 3-50 and 3-51

	moan activity expanded relative						
lab	concentration	uncortainty	deviation	F	compatibility		
no.	$A_{\rm eff}$ [mBayl ⁻¹]	U. ImBail ⁻¹ 1		Ln	compatibility		
2				0.72	VES		
2	9.5	1.00 5.01	-13.0	-0.73			
3 1	9.0	0.01 1.00	-10.2	-0.32			
4	10.5	1.29	-0.2	-0.33	TES		
2 7	24.3	9.00		1.35			
/	10.3	2.00	-8.0	-0.34			
8	10.5	1.42	-0.2	-0.32	TES		
9	-	-	-	-	-		
10	-	-		-	-		
11	120.0	18.29	971.4	5.92			
12	11.5	2.49	2.7	0.10	YES		
13	11.1	1.27	-0.9	-0.05	YES		
14	10.5	1.31	-6.2	-0.33	YES		
15	-	-	-	-	-		
16	45.0	12.36	301.3	2.70	NO		
17	10.0	3.57	-10.7	-0.30	YES		
18	10.2	0.71	-8.9	-0.54	YES		
19	-	-	-	-	-		
20	10.0	14.32	-10.7	-0.08	YES		
21	92.0	13.00	721.4	6.16	NO		
22	9.6	0.96	-14.7	-0.85	YES		
23	10.1	0.56	-10.3	-0.64	YES		
24	-	_	_	_	-		
25	11.9	1.64	6.3	0.30	YES		
26	12.5	1.12	11.8	0.65	YES		
27	10.4	0.59	-7.3	-0.46	YES		
28	13.2	11.80	17.4	0.16	YES		
29	< 15	-	-	-	-		
31	10.2	0.63	-9.4	-0.58	YES		
32	12.6	1.64	12.5	0.59	YES		
33	9.7	2.08	-13.0	-0.54	YES		
34	9.1	1.74	-18.8	-0.86	YES		
35	11.3	2.31	0.4	0.02	YES		
36	15.2	1.22	35.3	1.89	NO		
37	10.7	1.25	-4.9	-0.26	YES		
38	12.0	1.24	7.1	0.38	YES		
39	-	-	-	–	-		
40	12.9	2.60	15.2	0.55	YES		
41	11.1	0.71	-0.7	-0.04	YES		
42	10.7	3.22	-4.9	-0.15	YES		
43	11.1	1.28	-1.3	-0.07	YES		
45	8.0	2.32	-28.6	-1.11	NO		
46	6.2	3.10	-44.6	-1.41	NO		
47	12.5	3.04	11.6	0.37	YES		
48	10.5	1.19	-6.7	-0.36	YES		
49	18.0	2.32	60.7	2.37	NO		
50	10.9	1.10	-2.5	-0.14	YES		
51	10.6	1.42	-5.4	-0.27	YES		

Table 53: Relative deviation of mean laboratory results A_{lab} from reference value A_{ref} and compatibility test (E_n numbers) for ²³⁸U in Water 1

	mean activity expanded relative						
lab	concentration	uncertainty	deviation	F	compatibility		
no.	$A_{\mu\nu}$ [mBq·l ⁻¹]		D/A[%]		compationity		
\\/2			D/Aref 10				
VV-3-	10.5	2.20	0.7	0.60	VEQ		
4 0	19.0	2.30	-9.7	-0.09	VEQ		
0		2.00	2.3	0.17	160		
10	-	-	-	-	- NO		
11	27.0	3.02	25.0	1.32			
13	23.0	1.94	0.2	0.50			
10	29.8	12.41	31.1	0.65	IES		
19	-	-	-	-	-		
25	25.6	3.20	18.5	1.08	NO		
26	23.4	2.43	8.2	0.57	YES		
29	21.0	6.00	-2.8	-0.10	YES		
32	22.5	2.63	3.9	0.26	YES		
35	23.3	3.69	7.6	0.40	YES		
36	26.5	2.88	22.5	1.41	NO		
39		-	-	-	-		
40	25.6	4.80	18.5	0.77	YES		
41	21.5	1.28	-0.4	-0.03	YES		
42	20.5	5.89	-5.1	-0.18	YES		
43	20.7	1.68	-4.2	-0.35	YES		
46	17.4	8.70	-19.4	-0.47	YES		
47	22.5	4.49	4.2	0.18	YES		
48	21.9	2.88	1.2	0.07	YES		
49	28.9	2.40	33.8	2.39	NO		
50	22.8	2.38	5.5	0.39	YES		
51	23.1	2.84	6.7	0.42	YES		
W3-	51	-					
2	18.0	4.06	-11.4	-0.56	YES		
3	18.0	6.49	-11.6	-0.37	YES		
5	16.8	7.50	-17.1	-0.48	YES		
7	19.7	4.00	-3.7	-0.19	YES		
9	-	-	-	_	-		
12	20.5	3.83	0.0	0.00	YES		
14	20.1	2.39	-2.1	-0.16	YES		
15	-	- 7 07	-	-	- VF0		
<i> </i> 10	∠U.⊃	1.21	0.0	0.00	ĭ⊏ð		
10 20	- 18 5	- 8 25	- _0 ?	- _0.24	- VES		
20 21	121.0	23.00	465 3	4.36			
22	19.4	1 55	-5.3	-0.52	YES		
23	19.9	1.34	-2.8	-0,29	YES		
24	-	-		-	-		
27	18.4	1.87	-9.7	-0.85	YES		
28	18.2	15.45	-10.9	-0.15	YES		
31	19.5	1.25	-4.9	-0.52	YES		
33	19.9	4.58	-3.0	-0.13	YES		
34	21.5	2.90	4.4	0.29	YES		
37	20.3	2.16	-1.2	-0.09	YES		
38	21.5	3.18	4.6	0.28	YES		
45	13.0	3.77	-34.7	-1.83	NO		

Table 54: Relative deviation of mean laboratory results A_{lab} from reference value A_{ref} and compatibility test (E_n numbers) for ²³⁸U in Waters 3-50 and 3-51

In order to allow a more detailed analysis, several statistical tests – taking the measurement uncertainty and that of the reference values into account – have been applied. Strictly speaking, tests including measurement uncertainty must be used with caution when the uncertainty estimation is poorly understood. We have already observed, in chapter 5 ("Reported results"), that this holds for about one third of the participating laboratories. Nevertheless, the selected performance test using the E_n criterion (ISO, 2005 and 1997) of the activity concentrations proves to be robust enough justifying its use in this evaluation.* The E_n number takes into account the absolute deviation of the activity concentration value reported by each laboratory (A_{lab}) from the reference value (A_{ref}) and the combination of expanded uncertainties associated to them (U_{lab} and U_{ref}). It will become clear below that the conclusions from the previous discussion (which ignored uncertainty) will in general be confirmed and some additional insight will be gained.

The performance statistic " E_n number" is calculated as:

$$E_{n} = \frac{A_{lab} - A_{ref}}{\sqrt{U_{lab}^{2} + U_{ref}^{2}}}$$
(23)

where

A_{lab} the participant's result, mean activity concentration;

A_{ref} the reference value;

 U_{lab} the expanded uncertainty of the participant's result;

 U_{ref} the expanded uncertainty of the reference value.

When the estimation of uncertainties is consistent with the Guide to the Expression of Uncertainty in Measurement (GUM, 1995), a measurement result with its uncertainty interval giving a level of confidence of 95 % (corresponding to $A_{lab} \pm U_{lab}$ with an expanded uncertainty $U_{lab} = k \cdot u_c$ with a coverage factor of $k \approx 2$) will overlap with the reference value A_{ref} (and its expanded uncertainty U_{ref}).

Therefore, E_n numbers are interpreted in the following way:

- If $|E_n| \le 1$, the laboratory values are compatible with the reference value;
- If $|E_n| > 1$, "warning signal", the laboratory values differ significantly from the reference value, sources of deviation should be investigated and corrected (orange colour in Tables 47-54);

In analogy to the interpretation of *z*-scores (ISO, 2005), a second level of critical value can be defined:

If $|E_n| > 1.5$, "action signal", there is urgent need to investigate and find the sources of the large deviation (red colour in Tables 47-54).

^{*} One should keep in mind that other performance tests usually also have constraints, e.g. a normal distribution of results, which are not always met.

Fig. 70: E_n number for the determination of ²²⁶Ra activity concentration in Water 1 (W1) obtained by 41 laboratories, sorted in ascending order

Fig. 71: E_n number for the determination of ²²⁶Ra activity concentration in Water 2 obtained by 41 laboratories, sorted in ascending order

Fig. 72: E_n number for the determination of ²²⁸Ra activity concentration in Water 1 obtained by 29 laboratories, sorted in ascending order

Fig. 73: E_n number for the determination of ²²⁸Ra activity concentration in Water 2 obtained by 29 laboratories, sorted in ascending order

Fig. 74: E_n number for the determination of ²³⁴U activity concentration in Water 1 obtained by 35 laboratories, sorted in ascending order

Fig. 75: E_n number for the determination of ²³⁴U activity concentration in Water 3-50 obtained by 20 laboratories, sorted in ascending order

Fig. 76: E_n number for the determination of ²³⁴U activity concentration in Water 3-51 obtained by 15 laboratories, sorted in ascending order

Fig. 77: E_n number for the determination of ²³⁸U activity concentration in Water 1 obtained by 40 laboratories, sorted in ascending order

Fig. 78: E_n number for the determination of ²³⁸U activity concentration in Water 3-50 obtained by 21 laboratories, sorted in ascending order

Fig. 79: E_n number for the determination of ²³⁸U activity concentration in Water 3-51 obtained by 19 laboratories, sorted in ascending order

The E_n numbers and test results are given for each laboratory in the last two columns of Tables 47-54. Sorted in ascending order, the E_n numbers are graphically presented in Figures 70 - 79. The laboratories, which reported values below the detection limit of their methods (no. 3, 13, 18, 27 in the case of ²²⁸Ra, lab 29 – ²³⁴U and ²³⁸U), could not be considered for the E_n criterion. Based on the E_n number criterion, 29 results out of 41 (71 %) are compatible with the reference activity concentrations for ²²⁶Ra in Water 1 under the conditions of this test, 12 are not. Among those 12, eight laboratories (No.3, 8, 16, 21, 24, 26, 27 and 35) report largely incompatible results ($|E_n| > 1.5$). When comparing Figure 70 with 60, it is clear that results having large deviations from the reference value are scoring badly with E_n numbers as well. If a laboratory controls the measurement process well with only very small deviations *and* obtains a realistic estimate of uncertainty as well*, the E_n number is close to 0. Table 47 and Figure 70 depict several laboratories of this arbitrarily chosen category of $|E_n| < 0.1$, much narrower than requested for compliance: No. 2, 4, 12, 22, 33, 39 and 42.

Similarly for ²²⁶Ra in Water 2, 31 results (76 %) are compatible with the reference value and 10 are not. Four laboratories (labs 8, 16, 27 and 45) of the incompatible ones have an $|E_n| > 1.5$ and all of them deviate more than 30 % from the reference value (Fig. 71).

In the case of ²²⁸Ra, 20 and 19 values (~ 67 %) for Water 1 and Water 2, respectively, are satisfactory and 9/10 (for W1/W2) results are not. All of the laboratories with $|E_n| > 1.0$ for Water 1 (labs 8, 12, 15, 17, 22, 24, 27, 33, 38) show deviations larger than 30 % from A_{ref} (cf. Fig. 62). Similarly for Water 2 with one exception - laboratory 42, which deviates from the reference value < 30 % (~ 27 %) and its assigned E_n number is 1.4 (Fig. 63).

Measurand	Sample	Number of compatible labs En ≤ 1	Number of incompatible labs En > 1	Number of largely incompatible labs En > 1.5	Number of labs with "large deviation"
²²⁶ Da	W1	29	4	8	10 (>30%)
Na	W2	31	6	4	9 (>30%)
²²⁸ Pa	W1	20	4	5	13 (>30%)
Na	W2	19	5	5	12 (>30%)
	W1	30	1	4	6 (>20%)
²³⁴ U	W3-50	15	3	2	4 (>20%)
	W3-51	12	1	2	2 (> 20%)
	W1	32	3	5	8 (>20%)
²³⁸ U	W3-50	17	3	1	4 (>20%)
	W3-51	17	-	2	2 (>20%)

Table 55: Brief summary of the evaluation of laboratory results for the determinationof ²²⁶Ra, ²²⁸Ra, ²³⁴U and ²³⁸U in mineral water

^{*} Unfortunately, "guessing" a too large uncertainty would reduce the $|E_n|$ number without justification.

In terms of the E_n criterion for both uranium isotopes, between 11 % and 25 % of the scores are not compatible with the reference values. Again, in the majority of cases laboratories with $|E_n| > 1.0$ deviate more than 30 % from the reference value (cf. Figs. 74 - 79 and 64 - 69). The comparison between the relative deviations of the laboratory results and their E_n numbers, however, also shows the effect of estimating uncertainty too small: For example in the case of ²³⁴U in Water 3-51, laboratory 22 with a still acceptable deviation of < 15 % is assigned a critical E_n number, because not all contributions to uncertainty are correctly estimated (e.g. an uncertainty contribution due to sample preparation was not taken into account).

The preceding discussion is summarised in Table 55.

Another modern type of plot, PomPlot, can be applied as well in order to compare the results. It also underlines the importance of the assigned uncertainties. The 'PomPlot' is used here for producing a summary overview of the participants' results (Pommé, 2006b). It displays relative deviations, *D/MAD*, of the mean results A_{lab} from the reference value on the horizontal axis and relative uncertainties, *u/MAD*, on the vertical axis. For both axes, the variables are expressed as multiples of *MAD*, which is defined as the median absolute deviation from the reference value:

$$MAD = Median |D_i|, (i=1,...,n),$$
 (24)

where D_i is the difference between the reported and the reference activity concentration:

$$D_i = A_{lab,i} - A_{ref} \tag{25}$$

The median absolute deviation *MAD* is used because of its robustness.

For every data point the uncertainty was calculated as independent sum of the reported combined uncertainties on $A_{lab,i}$ and A_{ref} .

$$u_i^2 = u_c^2(A_{lab,i}) + u_c^2(A_{ref})$$
(26)

where $u_c(A_{lab,i}) = U_{lab,i} / k$ and $u_c(A_{ref}) = U_{ref} / k$.

The ζ -scores, $|\zeta| = |D/u| = 1$, 2 and 3, are represented by diagonal solid lines, creating the aspect of a pyramidal structure. Dots on the right-hand side of the graph correspond to results that are higher than the reference value whereas lower values are situated on the left. When the claimed uncertainty is low, the corresponding point is situated high in the graph. The most accurate results should be situated close to the top of the pyramid. Points outside of the $\zeta = \pm 3$ lines are probably inconsistent with the reference value.

Figure 80 shows the PomPlot for the ²²⁶Ra results in Water 1. The reference value is indicated by a horizontal red dash. Outliers are indicated in gray and with an arrow (labs 8, 24, 27).

This is studied in more detail in Figure 81. Here the data (excluding labs 8, 24 and 27 indicated as outliers on the graph) are grouped according to the *u/MAD*-value and for each group the mean values of the normalised deviation |D|/MAD is calculated, as well as the corresponding ratio of |D|/u. In the group of laboratories claiming the smallest uncertainty (*u/MAD*<0.8), the mean deviation is among the highest of all results, hence the uncertainty clearly underestimated (<|D|/u> is higher than 1).

The best results concerning the activity measurement as well as uncertainty assessment can be found in the groups with $0.9 \le u/MAD < 1.2$. Some laboratories

seem to assign conservative uncertainty values (e.g labs 12, 25 and 28), even though their results are not worse than those of others. Indeed, a majority of the results can be found between -2 < D/MAD < +2, irrespective of the claimed uncertainty.

From the PomPlot for ²²⁶Ra in Water 2 (Fig. 82) it is obvious that the reference value corresponds well with the mean and the median of lab results. Again, its relative uncertainty is not insignificant in the total uncertainty *u* (hence, the dots cannot reach the top). Similarly, the best results can be found in the groups with $1.0 \le u/MAD < 1.1$ (Fig. 83).

Similar plots have been made for ²²⁸Ra, ²³⁴U and ²³⁸U in the different water samples (Figs. 84 - 99). In the case of ²²⁸Ra, the uncertainties on the reference values are relatively smaller and the lab results are closer to the top of the pyramid. Assuming that uncertainties would be assessed correctly by the laboratories, one should have an equal distribution of points above and below the *u/MAD* = 1 line. This is not the case for ²²⁸Ra, showing that for many laboratories the estimation of uncertainty is not under control.

The ²³⁴U and ²³⁸U results for Water 1 show more outliers than the results for Water 3-50 and Water 3-51 (Figs. 88 - 99).Still, from a statistical point of view, there are too many points outside the $|\zeta| = 1$, 2 and 3 levels, which indicates that a significant fraction of the laboratories underestimates the uncertainties involved. Again, when analyzing this in more detail in Figures 89 to 99 one finds the best and the most realistic results around $0.9 \le u/MAD < 1.1$. It seems that there is a group of laboratories that manages to provide accurate results together with a comprehensive uncertainty assessment.

The presented plots suggest that there is no clear positive correlation between stated uncertainty and deviation of the result from the reference value. Yet, there appears to be a group of laboratories that succeeds at combining a good accuracy with a realistic uncertainty assessment. For some laboratories, there is still some work to be done in identifying and correcting errors in the activity measurement process and, beyond that, correctly quantifying the uncertainty components.

Fig. 80: PomPlot of the ²²⁶Ra data for Water 1 (W1)

Fig. 81: Measures of average deviation <|D|/MAD>, <|D|/u> for different intervals of u/MAD in the case of ²²⁶Ra in Water 1 (W1)

Fig. 82: PomPlot of the ²²⁶Ra data for Water 2

Fig. 83: Measures of average deviation <|D|/MAD>, <|D|/u> for different intervals of u/MAD in the case of ²²⁶Ra in Water 2

Fig. 84: PomPlot of the ²²⁸Ra data for Water 1

Fig. 85: Measures of average deviation <|D|/MAD>, <|D|/u> for different intervals of u/MAD in the case of ²²⁸Ra in Water 1

Fig. 86: PomPlot of the ²²⁸Ra data for Water 2

Fig. 87: Measures of average deviation $\langle D|/MAD \rangle$, $\langle D|/u \rangle$ for different intervals of *u/MAD* in the case of ²²⁸Ra in Water 2

Fig. 88: PomPlot of the ²³⁴U data for Water 1

Fig. 89: Measures of average deviation $\langle D|/MAD \rangle$, $\langle D|/u \rangle$ for different intervals of *u/MAD* in the case of ²³⁴U in Water 1

Fig. 90: PomPlot of the ²³⁴U data for Water 3-50

Fig. 91: Measures of average deviation $\langle D|/MAD \rangle$, $\langle D|/u \rangle$ for different intervals of *u/MAD* in the case of ²³⁴U in Water 3-50

Fig. 92: PomPlot of the ²³⁴U data for Water 3-51

Fig. 93: Measures of average deviation <|D|/MAD>, <|D|/u> for different intervals of u/MAD in the case of ²³⁴U in Water 3-51

Fig. 94: PomPlot of the ²³⁸U data for Water 1

Fig. 95: Measures of average deviation <|D|/MAD>, <|D|/u> for different intervals of u/MAD in the case of ²³⁸U in Water 1

Fig. 96: PomPlot of the ²³⁸U data for Water 3-50

Fig. 97: Measures of average deviation <|D|/MAD>, <|D|/u> for different intervals of u/MAD in the case of ²³⁸U in Water 3-50

Fig. 98: PomPlot of the ²³⁸U data for Water 3-51

Fig. 99: Measures of average deviation <|D|/MAD>, <|D|/u> for different intervals of u/MAD in the case of ²³⁸U in Water 3-51

7. Conclusions

Three commercially available mineral waters were provided as comparison samples. The reference values for the natural radioactivity concentration of ²²⁶Ra, ²²⁸Ra, ²³⁴U and ²³⁸U in these waters were established using independent determination methods at the IRMM and the Bundesamt für Strahlenschutz (BfS). Various radiochemical methods were applied by the 45 laboratories participating in the comparison. The comparison results show that there are many discrepant measurement results for the radium isotopes; about one fourth and more than 40 % of the laboratories have severe problems with the determination of ²²⁶Ra and ²²⁸Ra, respectively. For radium, 19 results, corresponding to 14 % of all, are even off by a factor of two or more. For uranium, this proportion is a bit better, but still far from satisfactory: 6 % (9 results out of 150) are off by a factor of two or more. In terms of the *E_n* criterion, 14 % to 23 % of the uranium results are not compliant, but as many as 25 % to 35 % of all radium results are incompatible.

As these samples had rather low activity concentrations – around the detection limits required by the draft EC directive – and not all laboratories are routinely analysing water for these radionuclides yet, unsatisfactory comparison results for ²²⁶Ra and ²²⁸Ra may not be unexpected. The comparison clearly demonstrates, however, that a number of monitoring laboratories need to improve their analysis procedures for radium in order to correctly identify drinking water sources for which remedial action (with respect to their natural radioactivity concentration) needs to be taken. This is a matter of ensuring radiological protection on one hand (minimising false low results) and of avoiding unjustified and unnecessary economic losses on the other hand (minimising false high results).

8. Acknowledgements

This work was possible only with the active participation of 45 laboratories in 27 countries (listed in chapter 10 below), and the support of A. Janssens and C. Gitzinger from the Directorate-General for Energy of the European Commission.

9. References

- Benedik, L., Spasova, Y., Vasile, M., Wätjen, U., 2008. Determination of ²³⁴U, ²³⁸U and ²²⁶Ra in bottled drinking water by alpha spectrometry. In: CD Proceedings of the 7th International Conference on Nuclear and Radiochemistry (NRC-7), Budapest, Hungary, 24 29 August 2008.
- Benedik, L., Vasile, M., Spasova, Y., Wätjen, U., 2009. Sequential determination of ²¹⁰Po and uranium radioisotopes in drinking water by alpha-particle spectrometry. Appl. Radiat. Isot. 67, 770-775.
- für Umwelt. Naturschutz 2006. Bundesminister und Reaktorsicherheit. Messanleitungen für die Überwachung der Radioaktivität in der Umwelt und zur Erfassung radioaktiver Emissionen aus kerntechnischen Anlagen, Lieferungen 1 -7, Stand 2006. Chapter 23: Bestimmung von Uran, Plutonium und Americium mit extraktionschromatographischen Verfahren, H-U/Pu/Am-AWASS-01-1. Chapter 8: Verfahren zur Bestimmung von Radium-226 in Trinkwasser und Grundwasser, H-Ra-226-TWASS-01-1. Chapter 11: Verfahren Bestimmuna zur der Aktivittskonzentration von Radium-228 in Trinkwasser und Grundwasser, H-Ra-228-TWASS-01-1. Elsevier – Urban & Fischer Verlag, München. ISBN 3-437-11456-5 and ISBN 3-437-21599-X.
- Burnett, W.C., Cable, P.H., Moser, R., 1995. Determination of radium-228 in natural waters using extraction chromatographic resins. Radioact. and Radiochem. 6, 36-44.
- Eurachem, 2000. EURACHEM/CITAC Guide Quantifying Uncertainty in Analytical Measurement. 2nd ed., S.L.R. Ellison, M. Rosslein, A. Williams (eds.). QUAM:2000.P1.
- European Communities, 1998. Council Directive of 3 November 1998 on the quality of water intended for human consumption (98/83/EC). Official Journal L330 (5.12.1998) 32-54.
- European Communities, 2001. Commission Recommendation of 20 December 2001 on the protection of the public against exposure to radon in drinking water supplies (2001/928/Euratom). Official Journal L344 (28.12.2001) 85-88.
- European Communities, 2011. Proposal for a Council Directive, COM(2011)385 of 27.6.2011, laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption.
- GUM, 1995. Guide to the expression of uncertainty in measurement. BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML, corrected and reprinted version. ISBN 92-67-10188-9.
- ISO, 1997. ISO Guide 43-1:1997, Proficiency testing by interlaboratory comparisons – Part 1: Development and operation of proficiency testing schemes. International Standardization Organization, Geneva, Switzerland.
- ISO, 2005. International Standard ISO/FDIS 13528:2005, Statistical methods for use in proficiency testing by interlaboratory comparisons. International Standardization Organization, Geneva, Switzerland.

- Ivanovich, M., Harmon, R.S., eds., 1992. Uranium-series Disequilibrium: Applications to Earth, Marine, and Environmental sciences. 2nd ed., Clarendon Press-Oxford.
- Lozano, J.C., Fernandez F., Gomez, J.M.G., 1997. Determination of radium isotopes by BaSO₄ coprecipitation for the preparation of alpha-spectrometric sources, J. of Radioanal. Nucl. Chem. 223, 133-137.
- Nour, S., El-Sharkawy, A., Burnett, W.C., Horwitz, E. P., 2004. Radium-228 determination of natural waters via concentration on manganese dioxide and separation using Diphonix ion exchange resin. Appl. Radiat. Isot. 61, 1173-1178.
- Nucléide, 2004. Nucléide 2000, Version 2-2004, Nuclear and Atomic Decay Data software, BNM LNHB/CEA, <u>http://www.nucleide.org/NucData.htm</u>.
- Pauwels, J., Lamberty, A., Schimmel, H., 1998. The determination of the uncertainty of reference materials certified by laboratory intercomparison. Accred. Qual. Assur. 3, 180-184.
- Pommé, S., 2006a. Problems with the uncertainty budget of half-life measurements. in: T.M. Semkow, S. Pommé, S.M. Jerome and D.J. Strom (eds.), Applied Modeling and Computations in Nuclear Science. ACS Symposium Series 945. American Chemical Society, Washington, DC, ISBN 0-8412-3982-7, pp. 282-292.
- Pommé, S., 2006b. An intuitive visualisation of intercomparison results applied to the KCDB, Appl. Radiat. and Isot. 64, 1158-1162.
- Ratel, G., 2007. The Système International de Référence and its application in key comparisons. Metrologia 44, S7–S16.
- Sibbens, G., Pommé, S., Johansson, L., Denecke, B., 2003. Tailoring solid angle calculations to the actual radioactivity distribution of planar sources, Nucl. Instr. and Meth. A 505, 277-281.
- Sibbens, G., Pommé, S., Altzitzoglou, T., 2004. Standardisation of low-activity actinide solutions by alpha-particle counting at a defined solid angle, Appl. Radiat. Isotopes 61, 405-408.
- Spasova, Y., Pommé, S., Benedik, L., Wätjen, U., 2007. Uncertainty budget for ²²⁶Ra activity concentration in water by alpha spectrometry, Acta Chimica Slovenica 54, 854-858.
- Spasova, Y., Benedik, L., Vasile, M., Beyermann, M., Wätjen, U., Pommé, S., 2009. ²³⁴U and ²³⁸U in mineral water – reference value and uncertainty evaluation in the frame of an interlaboratory comparison. J. Radioanal. Nucl. Chem. 281, 113-117.
- Spasova, Y., Vasile, M., 2011. Homogeneity of comparison samples for ²²⁶Ra, ²²⁸Ra, ²³⁴U and ²³⁸U in mineral waters. Report EUR xxxxx EN, ISBN 978-92-79-xxxxx-x.
- Vasile, M., Altzitzoglou, T., Benedik, L., Spasova, Y., Wätjen, U., 2009. Radiochemical separation and determination of ²²⁸Ra in mineral waters by lowlevel liquid scintillation counting. In: Eikenberg, J., Jäggi, M., Beer, H., Baehrle, H. (Eds.), LSC 2008, Advances in liquid scintillation spectrometry. Radiocarbon, Tucson, AZ, USA, pp. 375-380.
- Wätjen, U., Spasova, Y., Altzitzoglou, T., 2008. Measurement comparisons of radioactivity among European monitoring laboratories for the environment and food stuff, Appl. Radiat. Isot. 66, 742-749.

- Wätjen, U., Benedik, L., Spasova, Y., Vasile, M., Altzitzoglou, T., Beyermann, M., 2010. EC comparison on the determination of ²²⁶Ra, ²²⁸Ra, ²³⁴U and ²³⁸U in water among European monitoring laboratories, Appl. Radiat. Isot. 68, 1200-1206
- WHO, 1993. Guidelines for drinking water quality, Recommendation, second ed., vol. 1. World Health Organization, Geneva, Switzerland.
- WHO, 2006. Guidelines for drinking water quality, Recommendation, third (current) ed., including the first addendum, vol. 1. World Health Organization, Geneva, Switzerland.

10. List of participating laboratories (in alphabetical order, incl. nominations without actual participation)

ALBANIA

Institute of Nuclear Physics

Radiochemistry department Aleksander Moisiu street, P.O. Box 85 9000 Tirana Responsible: Elida Bylyku

AUSTRIA

Austrian Agency for Health and Food Safety (AGES)

Centre of Competence Radiation Protection and Radiochemistry Spargelfeldstrasse 191 1226 Vienna Responsible: Christian Katzlberger, Claudia Landstetter

BELGIUM

Institut Scientifique de Sanité Publique/Scientific Institute of Public Health (ISP/IPH) Section Radioactivity Rue Juliette Wytsmanstraat, 14 1050 Brussels Responsible: Cécile Delporte, Jean-Marie Flémal, Paul Van den Broeck

Studiecentrum Kernenergie · Centre d'Etudes Nucléaire (SCK · CEN) Low Level Radioactivity Measurements (EHS / LRM) Boeretang 200 2400 Mol Responsible: Christian Hurtgen

BULGARIA

Ministry of Environment and Waters (MEW) Executive Environment Agency (EEA) Radioactivity Measurements Laboratory

136, Tzar Boris III Bvld. 1618 Sofia Responsible: Mihail Shishenkov, Kalinka Stoyanova National Centre of Radiobiology and Radiation Protection (NCRRP) Public exposure monitoring lab 132, Kliment Ohridsky Bvld. 1756 Sofia Responsible: Rossitza Karaivanova

CZECH REPUBLIC

National Radiation Protection Institute (SÚRO/NRPI)

Bartoskova 28 140 00 Prague Responsible: Jan Škrkal

DENMARK

Risø National Laboratory

Technical University of Denmark Radiation Research Department Frederiksborgvej 399 Building 204 4000 Roskilde Responsible: Sven Nielsen

ESTONIA

Estonian Radiation Protection Centre

Radiation Monitoring Kopli Str. 76 10416 Tallinn Responsible: Eia Jakobson

University of Tartu¹

Institute of Physics, Laboratory of Environmental Physics Riia 142 51014 Tartu Responsible: Madis Kiisk

¹ Laboratory did not report results.

FINLAND

Radiation and Nuclear Safety Authority (STUK)

Research and environmental surveillance Laippatie 4 P.O. Box 14 00880 Helsinki Responsible: Pia Vesterbacka, Seppo Klemola

FRANCE

Institut de Radioprotection et de Sûreté Nucléaire (IRSN)

Environmental Sample Processing and Metrology Department (DEI/STEME) 31, Rue de l'Ecluse BP 40035 78116 Le Vésinet Cedex Responsible: Cédric Aubert, Mélanie Osmond

Eichrom Laboratories

Campus de Ker Lann Parc de Lormandière Rue Maryse Bastié - Bât. C 35170 Bruz Responsible: Patrice Letessier, Benoît Daniel

GERMANY

Staatliche Betriebsgesellschaft für Umwelt und Landwirtschaft (BfUL),

GB Umweltradioaktivität Erste Landesmessstelle für Umweltradioaktivität Sachsen Altwahnsdorf 12 01445 Radebeul Responsible: Thomas Heinrich, Antje Abraham

Staatliche Betriebsgesellschaft für Umwelt und Landwirtschaft (BfUL),

GB Umweltradioaktivität 2. Landesmessstelle für Umweltradioaktivität Sachsen Dresdner Str. 183 09131 Chemnitz Responsible: Werner Preusse

Thüringer Landesanstalt für Umwelt und Geologie (TLUG)

Landesmessstelle für Umweltradioaktivität Gera Hermann-Drechlser-Str. 1, Haus 4 07548 Gera Responsible: Frank Ullrich

Thüringer Landesanstalt für Umwelt und Geologie (TLUG)

Göschwitzer Str. 41 Referat 24 - Landesmessstelle für Umweltradioaktivität Prüssingstraße 41 07745 Jena Responsible: Corinna Kowalik

GREECE

Greek Atomic Energy Commission (GAEC)

Department of Environmental Radioactivity Patriarchou G. & Neapoleos P.O. Box 60092 153 10 Agia Paraskevi, Attikis Responsible: Konstantinos Potiriadis, Konstantina Kehagia

HUNGARY

University of Pannonia

Department of Radiochemistry Egyetem str 10 8200 Veszprém Responsible: János Somlai, Tibor Kovács, Viktor Jobbágy

National Institute for Radiobiology and Radiohygiene

Departement of Radiohygiene Anna u. 5 1221 Budapest Responsible: Andor Kerekes, Ágota Ugron, Gábor Diósi

IRELAND

Radiological Protection Institute of Ireland (RPII)

Radiation Monitoring 3, Clonskeagh Square Clonskeagh road Dublin 14 Responsible: Alison Dowdall

ITALY

Agenzia Regionale per la Protezione Ambientale (ARPA Piemonte) Centro regionale per le radiazioni ionizzanti e non ionizzanti Via Jervis 30 10015 Ivrea Responsible: Mauro Magnoni

Agenzia Regionale per la Protezione dell'Ambiente della Lombardia (ARPA Lombardia) Dipartimento Provinciale di Milano Sede di Milano Via Juvara 22 20129 Milano Responsible: Rosella Rusconi, Maurizio Forte

APAT Agenzia per la Protezione dell'Ambiente e per i Servizi Tecnici

Dipartimento Nucleare, Rischio Tecnologico e Industriale Servizio Misure Radiometriche Settore Laboratorio Via di Castel Romano 100 00128 Roma Responsible: Rita Ocone

LATVIA

State Agency "Latvian National Metrology Center" Radiation Metrology and Testing Center (RMTC) Miera str. 31 2169 Salaspils Responsible: Antons Lapenas, Andris Jegorovs

LUXEMBOURG

Ministère de la Santé Division de la Radioprotection Villa Louvigny, Allée Marconi 2120 Luxembourg Responsible: Marielle Lecomte, Michele Pallmer

THE NETHERLANDS

National Institute for Public Health and the Environment (RIVM)

Laboratory for Radiation Research Anthonie van Leeuwenhoeklaan 9 3720 BA Bilthoven Responsible: Pieter J.M. Kwakman

RWS Centre for Water Management

Zuiderwagenplein 2 8224 AD Lelystad Responsible: Carlo Engeler

POLAND

Central Laboratory for Radiological Protection (CLOR)

Department of Radiation Hygiene ul. Konwaliowa 7 03-194 Warszawa Responsible: Ewa Starościak

Polish Academy of Sciences Institute of Nuclear Physics

Department of Nuclear Physical Chemistry Environmental Radioactivity Laboratory Radzikowskiego 152 31-342 Kraków Responsible: Jerzy Wojciech Mietelski

AGH University of Science and Technology

Faculty of Physics and Applied Computer Science Environmental Isotope Laboratory AI. Mickiewicza 30 30-059 Kraków Responsible: Nguyen Dinh Chau

PORTUGAL

Instituto Tecnológico e Nuclear (ITN)

Departamento de Protecção Radiológica e Segurança Nuclear (DPRSN) E.N. 10, Apartado 21 2686-953 Sacavém Responsible: Maria José Madruga, João Maria Mota de Oliveira

ROMANIA

Institute of Public Health Cluj-Napoca (ISP)

Radiation Hygiene Department Str. L. Pasteur Nr. 6 400349 Cluj-Napoca Responsible: Rita Burkhardt, Edda Prodan

Institute of Public Health Timisoara (ISP)²

Radiation Hygiene Departament Bd. V. Babes 16 300226 Timisoara Responsible: Mihaela Bragea, Mihaela Noditi

² Laboratory did not report results due to delayed renovation works in the laboratory.

National Environmental Protection Agency

Environmental Radioactivity Laboratory Splaiul Independenței no. 294, Sector 6 60031 Bucharest Responsible: Elena Simion

SLOVAKIA

Regional Authority of Public Health

Department of Radiation Protection Cesta k nemocnici 1 975 56 Banská Bystrica Responsible: Alžbeta Ďurecová

SLOVENIA

Institute of Occupational Safety (ZVD)

Department for physical measurements Chengdujska cesta 25 1000 Ljubljana Responsible: Peter Jovanovič, Gregor Omahen

Jožef Stefan Institute

Department for Low and Medium Energy Physics Jamova cesta 39 1000 Ljubljana Responsible: Matjaž Korun

Jožef Stefan Institute

Department of Environmental Sciences Jamova cesta 39 1000 Ljubljana Responsible: Borut Smodiš, Marko Štrok

SPAIN

Universidad de Extremadura

Laboratorio de Radiactividad Ambiental (LARUEX) Departamento de Física Aplicada Facultad de Veterinaria Avda de la Universidad s/n 10071 Cáceres Responsible: Antonio Baeza Espasa, Javier Guillén Gerada

Universidad de Extremadura

Departamento de Física Elvas Avenue, s/n 06071 Badajoz Responsible: Alejandro Martín Sánchez

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)

Unidad de Radiactividad Ambiental y Vigilancia Radiológica Avda. Complutense 22 Edificio 70 28040 Madrid Responsible: Mª Antonia Simón, Maria del Carmen Heras Iñiguez, Ana Maria Suañez Fidalgo

SWEDEN

Swedish Radiation Protection Authority

Dept. of Emergency, Preparedness and Environmental Assessment Solna Strandvägen 96 171 16 Stockholm Responsible: Lilián del Risco Norrlid, Inger Östergren

SWITZERLAND

Bundesamt für Gesundheit BAG

Umweltradioaktivität URA Schwarzenburgstrasse 165 3097 Liebefeld Responsible: Philipp Steinmann

TURKEY

Turkish Atomic Energy Authority (TAEK) Sarayköy Nuclear Research and Training Center (SANAEM) Saray Mah. Atom Cad. No: 27 Kazan - Saray 06983 Ankara Responsible: Abdullah Dirican

Turkish Atomic Energy Authority (TAEK) Çekmece Nuclear Research and Training Center (CNAEM) Altinsehir Yolu 5.Km. 34303 Istanbul Responsible: Hilal Haznedaroglu, Neset Ozturk, Ahmet Varinlioğlu, Nilgün Çelebi

UNITED KINGDOM

Veterinary Laboratory Agency Radiochemistry Unit Woodham lane New Haw Addlestone Surrey KT15 3NB Responsible: Tony Dell, Peter Hodson

Annex 1. Questionnaire for participants sent prior to sample distribution

International Comparison Scheme for Radioactivity Environmental Monitoring ²²⁶Ra, ²²⁸Ra, ²³⁸U and ²³⁴U, radioisotopes in drinking water

QUESTIONNAIRE FOR PARTICIPANTS

I. LABORATORTY

1. Contact details

Name of the contact person:	
Position:	
Name of organisation/laboratory:	
Complete address (for courrier service delivery such as DHL):	
Country:	
Tel:	
E-mail:	

2. What is the type of your laboratory? (You can make more than one choice)

Research and development	
Measurements of radioactivity in the environment	
Monitoring of nuclear facilities	
Measurements for fissile material control or safeguards	
Other (please specify)	

3. Is your laboratory certified, accredited or authorised for this type of analysis?

	YES	NO
Certified		
Accredited		
Authorised		

4. Is your laboratory working according to a quality management system?

YES

NO

If YES, please state which system:

EN 45000 series / ISO 25	
ISO 9000 series	
ISO 17025	
OTHER (please specify)	

II. EXPERIENCE

5. How many measurements of this type does your laboratory perform per year?

	< 25	25 - 100	>100
Ra-226			
Ra-228			
U-234			
U-238			

III. SAMPLE PREPARATION

7. Brief description of sample preparation:

6. Typical activity concentrations measured:

	Bq/L
Ra-226	
Ra-228	
U-234	
U-238	

for Ra-226 determination:	
for Ra-228 determination:	
for U-234 determination:	
for U-238 determination:	

8. Total water volume needed for duplicate analysis of all radionuclides listed above in L **per water** sample? (indicate approximate volumes by X)

	1.5 L	3 L	4.5 L	6 L
Ra-226				
Ra-228				
U-234				
U-238				

IV. MEASUREMENT

9. Brief description of measurement method:

Ra-226	
Ra-228	
U-234	
U-238	

10. Further comments:

. Yana Spasova	Page 1 o	f 3 🕨	IRMM BELGI
mple Code <u>SYIR5072038</u>			
🗅 W 1 [Measurand U-238 - Optional]			Reference Date: 01/05/20
Measurement #1			
Result:		Unit:	
± Uncertainty:		Coverage factor:	
Technique: No technique			K
Measurement #2			
Posult:		Unit	0.0.0
+ Uncertainty:		Coverage factor:	● mBd/L ○ Bd/L
Technique: No tochnique			K
Ino technique			
🗅 ₩ 1 [Measurand U-234 - Optional]			Reference Date: 01/05/20
Measurement #1			
Result:		Unit	0 0 - 0
± Uncertainty:		Coverage factor:	
Technique: No technique			K
		(SEC)	
🖻 Measurement #2			
Result: 😑 🖌		Unit:	⊙ mBq/L ○ Bq/L
± Uncertainty:		Coverage factor:	k
Technique: No technique		v	
🗎 W 1 [Measurand Ra-228 - Optional]			Reference Date: 01/05/2
🖻 Measurement #1			
Result: =	_	Unit:	⊙ mBa/L ○ Ba/L
± Uncertainty:		Coverage factor:	k
Technique: No technique			
💼 Measurement #2			
Result: = 💌		Unit:	⊙ mBq/L ○ Bq/L
± Uncertainty:		Coverage factor:	k
Technique: No technique		×	
w 1 [Measurand Ra-226 - Optional]			Reference Date: 01/05/2
Measurement #1			
Result:		Unit:	
± Uncertainty:		Coverage factor:	
			N
lechnique: No technique			
Technique: No technique			
Measurement #2			
Measurement #2		Unit:	⊙ mBq/L ⊖ Bq/L
Measurement #2 E Uncertainty:		Unit: Coverage factor:	⊙ mBq/L ○ Bq/L
Measurement #2 E Uncertainty: Technique: No technique		Unit: Coverage factor: [M	⊙ mBq/L ○ Bq/L

Annex 2: Result reporting form

Annex 3: Questionnaire

estionnaire form				
Yana Spasova				
 What is the type of your laboratory 1.Research and development 2.Measurements of radioactivity ir 3.Monitoring of nuclear facilities 4.Measurements for fissile materia 5.Other (please specify) 1.1. If Other, please specify 	?? (You can n h the environi al control or s	nake more th ment afeguards	nan one ch	noice)
Is your laboratory certified, accred	lited or autho	orised for this	s type of a	inalysis
Augentions (Deserves - T-1	5/0	Nin	Vac	inte
Authorised	JI C		O	-
Accredited		0	0	-
Certified		0	0	-
3.1. If YES, please state which syste	m:			
3.1. If YES, please state which syste 1.EN 45000 series / ISO 25 2.ISO 9000 series 3.ISO 17025 4.Other (please specify) 3.1.1. If Other, please specify How many measurements of this ty	m: ype does you	r laboratory	perform p	er yea
3.1. If YES, please state which syste 1.EN 45000 series / ISO 25 2.ISO 9000 series 3.ISO 17025 4.Other (please specify) 3.1.1. If Other, please specify How many measurements of this ty Questions/Response Table	m: ype does you .< 25	r laboratory 25-100	perform p	info
3.1. If YES, please state which syste 1.EN 45000 series / ISO 25 2.ISO 9000 series 3.ISO 17025 4.Other (please specify) 3.1.1. If Other, please specify How many measurements of this ty Questions/Response Table Ra-226	m: ype does you .< 25	r laboratory 25-100 O	perform p	info
3.1. If YES, please state which syste 1.EN 45000 series / ISO 25 2.ISO 9000 series 3.ISO 17025 4.Other (please specify) 3.1.1. If Other, please specify Wow many measurements of this ty Questions/Response Table Ra-226 Ra-228	ype does you .< 25 0	r laboratory 25-100 O	>100	info
3.1. If YES, please state which syste 1.EN 45000 series / ISO 25 2.ISO 9000 series 3.ISO 17025 4.Other (please specify) 3.1.1. If Other, please specify Questions/Response Table Ra-226 Ra-228 U-234	m: ype does you .< 25 0 0	r laboratory 25-100 O	>100 > 0	info
I. If YES, please state which syste I.EN 45000 series / ISO 25 I.SO 9000 series I.SO 17025 I.4.Other (please specify) 3.1.1. If Other, please specify Questions/Response Table a-226 a-228	ype does you .< 25 O O	r laboratory 25-100 0	>100	info

5.4. U-238

6. Were the intercomparison samples treated according to the same analytical procedures as routinely used in your laboratory for the same type of samples?

Questions/Response Table	No	Yes	info
Ra-226	0	0	
Ra-228	0	0	
U-234	0	0	
U-238	0	0	

7. If NO to question 6, please give a short explanation:

7.1.F	Ra-226	1
7.2. 1	Ra-228]
7 2 1	1.224]
]
7.4. l	U-238	ĩ
Wate	er volume used for a complete single analysis of a radionuclide in L?	J
3.1.F	Ra-226	_
3.2. F	Ra-228	
]
8.3.	U-234	7
8.4.	U-238	-
Brie	f description of sample preparation (please, send a detailed description as	an e-mail attachm
9.1.	Ra-226	
]
9.2.	Ra-228	
9.3.	U-234	-
9.4.	U-238	
10. Chemical recovery method used.		
--	------------------------	
10.1. Ra-226		
10.2. Ra-228		
10.3. 0-234		
10.4. U-238		
11. Average chemical recovery obtained (%).		
11.1. Ra-226		
11.2. Ra-228		
11.3. U-234		
11.4.11.029		
11.4. 0-235		
12. Brief description of measurement method (please, send a detailed description a	s e-mail attachment to	
Yana.SPASOVA@ec.europa.eu).		
12.1. Ra-226		
10.0 8- 000		
12.2. Rd-220		
12.3. U-234		
12.4. U-238		
13. Type of detector:		
13.1. Ra-226		
13.2. Ra-228		
13.3. U-234		
13.4. U-238		

18.3. U-234	
18.4. U-238	
19. Uncertainty budget: Ra-226. Feel free to send the complete uncertainty budget as Yana.SPASOVA@ec.europa.eu. If a contribution is not applicable enter O (zero).	an e-mail attachment to ③
19.1. Please, state for one measurement result and indicate:	
19.2. Sample (W1, W2 or W3): #	
19.3. Measurement number: #	
19.4. Number of measurements performed: #	
19.5. Relative uncertainty due to sample preparation, separation etc. (%):	
19.6. Relative uncertainty on the tracer activity (%):	
19.7. Relative counting uncertainty (%):	
19.8. Relative uncertainty in efficiency (%):	
19.9. Relative uncertainty due to activity efficiency standards (%):	
19.10. Relative uncertainty due to blank and background measurement (%):	
19.11. Possibly other uncertainty contributions (%):	
19,12. Relative combined standard uncertainty u*C (%):	
19.13. Combined standard uncertainty uC (mBq/L):	
19.14. Expanded uncertainty U (mBq/L, k=2):	
20. Uncertainty budget: Ra-228. Feel free to send the complete uncertainty budget as Yana.SPASOVA@ec.europa.eu. If a contribution is not applicable enter 0 (zero).	an e-mail attachment to 🌒
20.1. Please, state for one measurement result and indicate:	
20.2. Sample (W1, W2 or W3): #	
20.3. Measurement number: #	
20.4. Number of measurements performed: #	

20.5	. Relative uncertainty due to sample preparation, separation etc. (%):	
20.6	. Relative uncertainty on the tracer activity (%):	
20.7	. Relative counting uncertainty (%):	
20.8	. Relative uncertainty in efficiency (%):	
20.9	. Relative uncertainty due to activity efficiency standards (%):	
20.1	0. Relative uncertainty due to blank and background measurement (%):	
20.1	1. Possibly other uncertainty contributions (%):	
20.1:	2. Relative combined standard uncertainty u*C (%):	
20.1	3. Combined standard uncertainty uC (mBq/L):	
20.1	4. Expanded uncertainty U (mBq/L, k=2):	
21. Uno	certainty budget: U-234. Feel free to send the complete uncertainty budget	as an e-mail attachment to 🏾 🌚
Yana.S	PASUVA@ec.europa.eu. It a contribution is not applicable enter u Lzero I.	
21.1	PASUVA@ec.europa.eu. If a contribution is not applicable enter u (zero).	
21.1 21.2	PASOVAgec.europa.eu. If a contribution is not applicable enter o (zero). . Please, state for one measurement result and indicate: . Sample (W1, W2 or W3): #	
21.1 21.2	PASOVAgec.europa.eu. If a contribution is not applicable enter o (zero). . Please, state for one measurement result and indicate: . Sample (W1, W2 or W3): #	
21.1 21.2 21.3	PASOVA@ec.europa.eu. If a contribution is not applicable enter U (zero). Please, state for one measurement result and indicate: Sample (W1, W2 or W3): # Measurement number: #	
21.1 21.2 21.3 21.4	PASOVA@ec.europa.eu. If a contribution is not applicable enter U (zero). Please, state for one measurement result and indicate: Sample (W1, W2 or W3): # Measurement number: # Number of measurements performed: #	
21.1 21.2 21.3 21.4 21.5	PASOVA@ec.europa.eu. If a contribution is not applicable enter u (zero). Please, state for one measurement result and indicate: Sample (W1, W2 or W3): # Measurement number: # Number of measurements performed: # Relative uncertainty due to sample preparation, separation etc. (%):	
21.1 21.2 21.3 21.4 21.5. 21.6	PASOVA@ec.europa.eu. If a contribution is not applicable enter u (zero). Please, state for one measurement result and indicate: Sample (W1, W2 or W3): # Measurement number: # Number of measurements performed: # Relative uncertainty due to sample preparation, separation etc. (%): Relative uncertainty on the tracer activity (%):	
21.1 21.2 21.3 21.4 21.5 21.6 21.6.	PASOVA@ec.europa.eu. If a contribution is not applicable enter U (zero). Please, state for one measurement result and indicate: Sample (W1, W2 or W3): # Measurement number: # Number of measurements performed: # Relative uncertainty due to sample preparation, separation etc. (%): Relative uncertainty on the tracer activity (%): Relative counting uncertainty (%):	
21.1 21.2 21.3 21.4 21.5 21.6 21.6. 21.7. 21.8.	PASOVA@ec.europa.eu. If a contribution is not applicable enter U (zero). Please, state for one measurement result and indicate: Sample (W1, W2 or W3): # Measurement number: # Number of measurements performed: # Relative uncertainty due to sample preparation, separation etc. (%): Relative uncertainty on the tracer activity (%): Relative counting uncertainty (%): Relative uncertainty in efficiency (%):	
21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9	PASOVA@ec.europa.eu. If a contribution is not applicable enter 0 (zero). Please, state for one measurement result and indicate: Sample (W1, W2 or W3): # Measurement number: # Number of measurements performed: # Relative uncertainty due to sample preparation, separation etc. (%): Relative uncertainty on the tracer activity (%): Relative counting uncertainty (%): Relative uncertainty in efficiency (%): Relative uncertainty due to activity efficiency standards (%):	
Yana.S 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9 21.9	PASOVA@ec.europa.eu. If a contribution is not applicable enter 0 (zero). Please, state for one measurement result and indicate: Sample (W1, W2 or W3): # Measurement number: # Number of measurements performed: # Relative uncertainty due to sample preparation, separation etc. (%): Relative uncertainty on the tracer activity (%): Relative counting uncertainty (%): Relative uncertainty in efficiency (%): Relative uncertainty due to activity efficiency standards (%): Relative uncertainty due to blank and background measurement (%):	
21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9 21.9	PASOVAGec.europa.eu. If a contribution is not applicable enter 0 (zero). Please, state for one measurement result and indicate: Sample (W1, W2 or W3): # Measurement number: # Number of measurements performed: # Relative uncertainty due to sample preparation, separation etc. (%): Relative uncertainty on the tracer activity (%): Relative counting uncertainty (%): Relative uncertainty in efficiency (%): Relative uncertainty due to activity efficiency standards (%): Relative uncertainty due to blank and background measurement (%):	
21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9 21.11 21.11	PASOVA@ec.europa.eu. If a contribution is not applicable enter 0 (zero). Please, state for one measurement result and indicate: Sample (W1, W2 or W3): # Measurement number: # Relative uncertainty due to sample preparation, separation etc. (%): Relative uncertainty on the tracer activity (%): Relative counting uncertainty (%): Relative uncertainty in efficiency (%): Relative uncertainty due to activity efficiency standards (%): Relative uncertainty due to blank and background measurement (%):	

21.12. Relative combined standard uncertainty u*C (%):			
21.13, Combined standard uncertainty uC (mBq/L):			
21.14. Expanded uncertainty U (mBq/L, k=2):			
Uncertainty budget: U-238. Feel free to send the complete uncerta na.SPASOVA@ec.europa.eu. If a contribution is not applicable enter	ainty budget as an e-ı r O.	mail attachmo	ent to
22.1. Please, state for one measurement result and indicate:			
22.2. Sample (W1, W2 or W3): #			
22.3. Measurement number: #			
22.4. Number of measurements performed: #			
22.5. Relative uncertainty due to sample preparation, separation etc. ((%):		
22.6. Relative uncertainty on the tracer activity (%):			
22.7. Relative counting uncertainty (%):			
22.8. Relative uncertainty in efficiency (%):			
22.9. Relative uncertainty due to activity efficiency standards (%):			
22.10. Relative uncertainty due to blank and background measuremen	nt (%):		
22.11. Possibly other uncertainty contributions (%):			
22.12. Relative combined standard uncertainty u*C (%):			
22.13. Combined standard uncertainty uC (mBq/L):			
22.14. Expanded uncertainty U (mBq/L, k=2):			
Routine measurements: Is the typical activity in drinking water be	low the detection lim	its/decision (hresholds?
		1	
Questions/Response Table	No	Yes	info
Na-220	0	0	
N97220	0	0	
		()	

24.2. Ra-228										1
24.3. U-234										
24.4. U-238										
5. If NO to question 23, please	e spec	ify the	typica	al vi	alue	in n	nBq/	'L:		
25.1. Ra-226										1
25.2. Ra-228										
					_				-	Ì
25.3. U-234										
25.4. U-238										
									-1	l.
5. Did you determine any addit	tional	radion	uclide	?						
5. Did you determine any addit	tional	radion	uclide	?					 	
5. Did you determine any addit Questions/Response Table	No	Yes	uclide	?					1	
Questions/Response Table	No O	Yes	uclide info	?]
Questions/Response Table W 1 W 2 W 3	No O	Yes O O	uclide info	?						1
Questions/Response Table W 1 W 2 W 3	No O O	Yes O O O	uclide info	?						1
Questions/Response Table W 1 W 2 W 3 To present the second	No O O the na	Yes O O Me of	uclide info	?) mi	easu	red:	4		
 Did you determine any additional additionaada additionaa	No O O the na	Yes O O Me of	uclide info	?) m	easu	red:	4		
Control of the second s	No O O O the na	Yes O O O me of	uclide info nuclid	?) m(easu	red:	(1		
Oid you determine any additional equations/Response Table W 1 W 2 W 3 7. If YES to question 26, give 1 27.1. Sample W1 27.2. Sample W2	No O O the na	Yes O O me of	uclide info nuclid	?) m(easu	red:	×1		
Control of the second s	No O O O O O O O O O O O O O O O O O O O	Yes O O O me of	uclide info	?) m	easu	red:	(c)		
Control of the second s	No O O O O O O O	Yes O O O me of	info nuclid	e(s) m	easu	red:			
Control of the second s	No O O O the na	Yes O O O me of	uclide info	e(s) m	easu	red:			
Did you determine any additional statements Questions/Response Table W 1 W 2 W 3 7. If YES to question 26, give 1 27.1. Sample W1 27.2. Sample W2 27.3. Sample W3 27.3. Sample W3 3. If YES to question 26, give 1	No O O O O O O O O O O O O O O O O O O O	Yes O O O me of Beasure	uclide Info nuclid	e(s) m(easu nBq/	red: /L):			
5. Did you determine any addit Questions/Response Table W 1 W 2 W 3 7. If YES to question 26, give 1 27.1. Sample W1 27.2. Sample W2 27.3. Sample W3 28.1. Sample W1	tional	Yes O O O me of Bessure	uclide info nuclid	e(s) m(easu nBq/	red: /L):			
5. Did you determine any addit Questions/Response Table W 1 W 2 W 3 7. If YES to question 26, give 1 27.1. Sample W1 27.2. Sample W3 27.3. Sample W3 1 28.1. Sample W1	No O O O the na	Yes O O me of easure	uclide Info nuclid	e(s) m(easu nBq/	red: /L):			
5. Did you determine any addit Questions/Response Table W 1 W 2 W 3 7. If YES to question 26, give 1 27.1. Sample W1 27.2. Sample W2 27.3. Sample W3 28.1. Sample W1 28.1. Sample W1	tional	radion Yes O <	uclide Info nuclid	e(s) m(easu nBq/	red: /L):			

Supervision and a supervision of the	lestion 26, give the e			
29.1. Sample	W1			
29.2. Sample	W2			
29.3. Sample	W3			
Difficulties	encountered.			
Other com	nents on this intercon	nparison exercise.		
Other com	nents on this intercon ire completed by:	nparison exercise.		
Other com Questionna 32.1. Name	nents on this intercon ire completed by:	nparison exercise.		
. Other com . Questionna 32.1. Name	nents on this intercon ire completed by:	nparison exercise.		
. Other com	nents on this intercon ire completed by:	nparison exercise.		
2. Other com	nents on this intercon ire completed by:	ıparison exercise.		

European Commission

EUR 24694 EN – Joint Research Centre – Institute for Reference Materials and Measurements Title: Evaluation of EC comparison on the determination of ²²⁶Ra, ²²⁸Ra, ²³⁴U and ²³⁸U in mineral waters Authors: Y. Spasova, U. Wätjen, L. Benedik, M. Vasile, T. Altzitzoglou and M. Beyermann² Luxembourg: Publications Office of the European Union 2011 – 149 pp. – 21.0 x 29.7 cm EUR – Scientific and Technical Research series – ISSN 1018-5593 ISBN 978-92-79-19069-8 DOI 10.2787/36764

Abstract

This report describes all details of the comparison for the determination of ²²⁶Ra, ²²⁸Ra, ²³⁴U and ²³⁸U in mineral waters among 45 European laboratories monitoring radioactivity in food and the environment. Three commercially available mineral waters were provided as comparison samples. Reference values of the four radionuclides under study in this comparison were determined in collaborative work of IRMM and the Bundesamt für Strahlenschutz (BfS), using tracer techniques and standardised radionuclide solutions. The reference values are thus traceable to the SI units. The sample preparation and measurement processes applied in the participating laboratories are described and the results of the comparison are presented and discussed in detail. Whereas, in general, the measurement results for the uranium isotopes show a relatively favourable agreement with the reference value, the results of this comparison point at severe problems of ²²⁶Ra and ²²⁸Ra determination in about one fourth and more than one third of the laboratories, respectively. For radium, 19 results corresponding to 14 % of all are even off by a factor of two or more. By comparison, for uranium, this number amounts to 6 % (9 results out of 150). Nevertheless, also for the determination of uranium, 14 % to 23 % of the laboratories report results not compliant with the *E_n* evaluation criterion. The corresponding participants are urgently requested to investigate and revise their analytical methods.

² Bundesamt für Strahlenschutz (BfS), Köpenicker Allee 120-130, D-10318 Berlin, Germany

How to obtain EU publications

Our priced publications are available from EU Bookshop (http://bookshop.europa.eu), where you can place an order with the sales agent of your choice.

The Publications Office has a worldwide network of sales agents. You can obtain their contact details by sending a fax to (352) 29 29-42758.

The mission of the JRC is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of EU policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, whether private or national.

