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Study of pointwise regularity

and application to trade data

C. Damerval

Institute for the Protection and Security of the Citizen
Joint Research Center of the European Commission
Via Enrico Fermi 2749, 21027 Ispra (VA) ITALY

Email: christophe.damerval@jrc.ec.europa.eu

Abstract

In this paper we focus on the pointwise Lipschitz regularity in 1D and 2D. We put the

emphasis on its invariance properties to a wide range of transformations. Wavelets algorithms

provide fast computations, which is desirable in the applications. In addition to theoretical

properties, a practical evaluation of its robustness is possible in practice. This leads to the

conclusion that the regularity stands out as a robust pointwise features in 1D as well as in 2D.

As an application, we use it to extract features that are indicators of potential fraud, through

the processing of trade data.

Keywords: Lipschitz regularity, wavelets, feature extraction

1 Introduction

The pointwise Lipschitz regularity is a feature that quantifies the regularity a function, associated

for instance to a 1D signal or time series, a 2D surface or an image. This value α ∈ R allows

to measure the sharpness of edges and the smoothness of variations. Various works in signal and

image processing studied its properties and applications [1, 3, 6, 8].

Here we are interested in the pointwise Lipschitz regularity since it makes a robust feature useful

in the applications. Here the notion of robustness means that the quantities computed are only

slightly affected by transformations either geometric or photometric. The notion of feature is related

to the extraction of quantities that are characteristic of an interpretable entity: for instance the size
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of an object, or the regularity of a pattern[5, 14]. This feature extraction appears as relevant for

fraud detection, an important field to which the Joint Research Centre of the European Commission

contributes.

This paper is organized as follows: we first recall the notion of regularity and its classical com-

putation with wavelets; then we present new theoretical properties of the regularity and practical

results showing it makes up robust feature for certain geometrical transformations. Finally we

present an application to the processing of trade data, defining and matching features based on

regularity.

2 Notion of regularity

2.1 Monodimensional case.

Definition 1. (1D Lipschitz regularity) A function f : R −→ R is α-Lipschitz at t0 ∈ R

• for α ∈]0, 1[, if there exists a neighborhood V of t0 and A > 0 such that

∀t ∈ V, |f(t)− f(t0)| ≤ A|t− t0|
α (1)

• for α > 1 (α non integer), denoting n = ⌊α⌋, if there exists a neighborhood V of t0, A > 0

and a polynomial Pn(t) of order n (n ≤ α < n+ 1, Pn depending on t0) such that

∀t ∈ V, |f(t)− Pn(t)| ≤ A|t− t0|
α (2)

• for α = n ∈ N
∗, if f is Cn at t0.

Remark: for α ≤ 0, it can be defined thanks to the theory of distributions [16].

Definition 2. (1D regularity α) Let f : R −→ R and t0 ∈ R. The regularity α of f at t0 is

α = inf{α0 ∈ R, f α0-Lipschitz at t0} (3)
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t→ tα (0<α<1) t→ tα (α>1)

Dirac impulse δ Heavyside step H

 

 

Contour
Tangent
Normal

(a) (b)

Figure 1: (a) Classical patterns in 1D, associated to different values of Lipschitz regularity (α = −1
for the Dirac, α = 0 for the step). (b) 2D contour line, associated to a regular pattern along the
contour and an irregular pattern in the perpendicular direction.

The point of studying the pointwise Lipschitz regularity is the detection and identification of

singularities [12], such as the patterns represented on Figure 1(a). As an example, the real function

t 7→
√

|t| is C∞ at any t 6= 0 (t ∈ R), and presents a singularity at t = 0, with an associated

regularity α = 1/2.

2.2 Bidimensional case.

The notion of regularity in the 2D case can be defined in different ways: either isotropic (regularity

in a neighborhood), or directional (regularity in a certain direction). In the case of an image

representing a contour (a line for example), the intensity f is regular along the tangent of the

contour and irregular along the normal direction, see Fig.1(b). So as to grasp this direction of

maximum irregularity, it is more relevant to consider a directional definition. In this context, the

2D definition uses the one in 1D.
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Definition 3. (2D Lipschitz regularity) Let f : R2 −→ R and x0 ∈ R
2. For any θ ∈ [0, π[, denoting

uθ = (cos θ, sin θ) ∈ R
2, we define fθ : R −→ R as fθ(h) = f(x0 + huθ) (∀h ∈ R). Now, for α ∈ R,

f is α-Lipschitz at x0 ∈ R
2 if

∃θ ∈ [0, π[, fθ α-Lipschitz at 0 (4)

Definition 4. (2D regularity α)

Let f : R2 −→ R and x0 ∈ R
2. The regularity α of f at x0 is defined as

α = inf{α0 ∈ R, f α0-Lipschitz at x0} (5)

From here, we consider an image given by its intensity function f : R2 −→ R. We focus on the

pointwise Lipschitz regularity of f (denoted regularity α). First we present the notion of regularity

α in 2D, as a generalization of the 1D case. Then we investigate its invariance properties, especially

in the case of geometric transformations. Finally note that when α ∈]0, 1[, assuming f is α-Lipschitz

at x0, we can write (with h > 0 in a neighborhood of 0)

|f(x0 + (h cos θ, h sin θ))− f(x0)| = |fθ(h)− fθ(0)| ≤ Ah
α (6)

so that definition 4 agrees with the usual definition of the Lipschitz regularity.

2.3 Numerical estimation

To estimate the regularity α, the wavelet framework shown its efficiency [12, 13]: these multiscale

methods enable to detect singularities and to estimate α robustly. We recall the known link between

Lipschitz regularity and wavelets [8, 11] and the application to the computation of the regularity α.

This result can be applied in 1D, and also in 2D since the bidimensional definition of the regularity

α uses the monodimensional definition.
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Proposition 1. (Jaffard) Let f : R → R, f ∈ L2. We consider its continuous wavelet transform

Wf , defined as: ∀s > 0, ∀u ∈ R

Wf(u, s) =
1

s

∫

R

f(t)ψ

(

t− u

s

)

dt (7)

where ψ : R→ R is a wavelet function with n vanishing moments. If f is α-Lipschitz (with α ≤ n)

at t0 then there exists A > 0 such that: ∀u ∈ R, ∀s > 0,

|Wf(u, s)| ≤ Asα
(

1 +

∣

∣

∣

∣

u− t0
s

∣

∣

∣

∣

α)

(8)

Conversely, if α < n is not an integer and there exist A > 0 and α′ < α such that: ∀u ∈ R, ∀s > 0,

|Wf(u, s)| ≤ Asα

(

1 +

∣

∣

∣

∣

u− t0
s

∣

∣

∣

∣

α′
)

(9)

then f is α-Lipschitz at x0.

2.3.1 Practical computation of α.

(Mallat) Starting from eq.(8) we get |Wf(u, s)| ≤ Asα and then log |Wf(u, s)| ≤ logA + α log s.

Now, this latter inequality becomes a quasi-equality at fine scales [12]. So the regularity α can be

estimated by performing a regression based on the formula

log |Wf(u, s)| = α log s+ C (10)

More precisely α and C are computed by a regression of log |Wf(u, s)| over log s at fine scales. At

each scale we use the coefficient which is maximum in a neigborhood. Generally three scales are

sufficient for an accurate estimation. This corresponds to an estimation of the regularity α along

maxima lines.
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2.3.2 Monodimensional case.

A classical approach in 1D consists on computing values of regularity α at pointwise singularities.

These can be defined as modulus maxima (MM), i.e., locations where the modulus of the continuous

wavelet transform is locally maximum. The computation of the regularity α is done by using the

formula (10), where Wf is a wavelet transform with an appropriate wavelet. From an algorithmic

point of view, thanks to wavelet algorithms, this can be performed in O(N) operations (N denoting

the size of the data).

2.3.3 Bidimensional case.

A known approach in 2D consists on computing values of regularity α at contour points, which

are singularities in a particular direction. These contour points can be defined as the maxima

in the sense of Canny (MC), i.e., the locations (x, y) ∈ R
2 where the magnitude of the gradient

attains a local maximum in the direction of the gradient [4]. Fast and efficient computations are

provided by a wavelet formulation [13], that defines a multiscale gradient magnitude Mf(., ., s).

The computation of the regularity α is done by using the formula (10), where |Wf | is replaced by

the gradient magnitude Mf . From an algorithmic point of view, denoting N the size of the data

(for an image n× n, N = n2), this can be performed in O(N) operations.

3 Regularity as a robust feature

We present here original properties of the regularity α. First we show theoretical properties on the

invariance of the regularity; secondly, we present a methodology which quantifies the robustness

of the regularity in practice. This allows to say that the regularity α is a feature robust to some

geometrical transformations.
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3.1 Theoretical invariance properties

Here we present invariance properties of the regularity α under different transformations, geometric

and photometric. Let us first present properties bearing on α-Lipschitz functions, and then infer

invariance properties of the regularity α (proofs are detailed in appendix).

Proposition 2. Let t0 ∈ R and f, g : R→ R related by g(t) = c(t)f(t) + d(t), where c, d : R→ R.

Assuming c, d are C∞ and c is locally bounded,

∀α > 0, f α-Lipschitz at t0 ⇒ g α-Lipschitz at t0 (11)

Proposition 3. Let t0 ∈ R and f, g : R→ R related by g(t) = f(u(t)) where u : R→ R. Assuming

u is 1-Lipschitz,

∀α > 0, f α-Lipschitz at u(t0)⇒ g α-Lipschitz at t0 (12)

More generally the Lipschitz regularity of a function will not be altered by a transformation,

provided it does not correspond to a smoothing or a sharpening. We will see it is the case for

geometric transformations, such as affine deformations in 2D.

3.1.1 Monodimensional case.

Here we consider the regularity α in 1D (see def.2) and we investigate its invariance properties.

Proposition 4. (Invariance to multiplication and addition of C∞ functions) Let f, g : R → R,

related by: ∀t ∈ R

g(t) = c(t) · f(t) + d(t) (13)

with c, d : R→ R are C∞ and c 6= 0. Then, at any t0 ∈ R, f and g have the same regularity α (for

α > 0).

Proposition 5. (Invariance to dilatation and translation) Let f, g : R2 → R, related by: ∀x ∈ R
2

g(ct+ d) = f(t), with c, d ∈ R, c 6= 0 (14)
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Then, at any t0 ∈ R, f and g have the same regularity α (for α > 0). respectively at t0 and

z0 = ct0 + d

α(f, t0) = α(g, ct0 + d) (15)

3.1.2 Bidimensional case.

Here we consider the regularity α in 2D (see def.4) that focuses on directions of maximum irreg-

ularity. We investigate its invariance properties to different transformations, in particular affine

deformations.

Proposition 6. (Invariance to contrast and illumination change) Let f, g : R2 → R, related by:

∀x ∈ R
2

g(x) = cf(x) + d, with c 6= 0 and d ∈ R (16)

Then, at any x0 ∈ R
2, f and g have the same regularity α.

Proposition 7. (Invariance to affine deformations) Let f, g : R2 → R, related by: ∀x ∈ R
2

g(x) = f(Bx), with B a 2× 2 invertible matrix (17)

Then, for any x0 ∈ R
2, f and g have the same regularity α, respectively at x0 and y0 = B−1x0

α(f, x0) = α(g,B−1x0) (18)

3.1.3 Conclusions.

We established invariance properties of the regularity α: in 1D, to constant translation and di-

latation, and also to the multiplication by a C∞ function; in 2D, to photometric transformation

(contrast and illumination change) and to geometric ones (affine deformation). This motivates a

practical study.
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3.2 Practical robustness properties

If a feature bears theoretical invariance properties, then it should present a certain robustness in

practice. We present here a methodology that allows to quantify the robustness of a feature to

various transformations. This is inspired by repeatability tests, a tool in the field of computer vision

allowing to evaluate the robustness of interest regions [10, 14]. Here we consider the bidimensional

case, and we are interested in evaluating the robustness of the regularity α (pointwise feature) to

changes in imaging conditions (geometric and photometric transformations). We assume that the

detector gives values αi (regularity α) at locations (xi, yi) ∈ R
2 (singularities), each location being

associated with one value of regularity. It is the case of the algorithm mentioned in section 2.3, in

particular on natural images the associated detector gives many values of the regularity α, which

is useful for applications in computer vision.

We study here the robustness of the estimation of α in 2D, more precisely natural images. We

define different scores that reflect the robustness of the regularity α for one given transformation

(the higher score, the more robust). Given an image of grey-level intensity f , we can obtain the set

{

(xi, yi, αi) ∈ R
3, 1 ≤ i ≤ nf

}

(19)

where nf is the number of detected edge points (xi, yi), each being associated to a value αi (this can

be performed by the afore-mentioned detector). To evaluate the robustness of the regularity, we

consider image sequences representing the same scene viewed under different imaging conditions.

The main idea is the following: provided transformations from one image to another is known a

priori, it is possible to perform point-to-point correspondences and then to compare the values of

regularity. Ideally these values should remain stable, even for significant degrees of transformation.
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3.2.1 Methodology.

Here we consider one sequence of 6 images (Xk)0≤k≤5, representing the same scene. Each image Xk

(1 ≤ k ≤ 5) corresponds to a transformation applied to the reference image X0, such as a known

change of viewpoint. We carry out the following steps:

1. For each image (Xk)0≤k≤5, detect edge points and compute associated values of regularity α:

pki = (xki , y
k
i , α

k
i ), 1 ≤ i ≤ nk.

2. For fixed k (1 ≤ k ≤ 5), determine a set of Ck of point-to-point correspondences between edge

points of X0 and Xk (thanks to the known homography between these images)

Ck =











(p0i , p
k
j ) matched according

to a geometric criterion











(20)

This leads to a certain number of correspondences (NC) #Ck.

3. Select the subset Ckǫ of correspondences for which regularities are sufficiently close (according

to a parameter ǫ > 0)

Ckǫ =
{

(p0i , p
k
j ) ∈ C

k, dα = |α0
i − α

k
j | < ǫ

}

(21)

and compute the matching score, representing the proportion of correct matches:

Sk =
#Ckǫ
#Ck

(22)

This score reflects the robustness of the regularity α. It depends on the degree of the transformation,

indexed by k (k = 1 corresponds to a small change of perspective, while k = 5 is associated to

a significant change of perspective). It also depends on the parameter ǫ, a tolerance parameter

playing the same role as the confidence level of a statistical test.
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Figure 2: Top: image test sequence X0,...,X5 associated to a viewpoint change; Bottom: detected
edges, one value of the regularity α being computed at each edge point. In our methodology, each
image (Xk)1≤k≤5 is compared with the reference image X0.
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(a) (b)

Figure 3: (a) Evolution of the matching score with respect to the index k representing the degree of
the transformation (for ǫ = 0.25) (b) Evolution of the matching score with respect to the tolerance
parameter ǫ (for k = 6).

3.2.2 Results.

We represent on Fig.2 the image sequence (Xk)0≤k≤5 and the detected edges. This sequence

corresponds to the same scene viewed under different angles of perspectives. This transformation

correspond to actual camera operations, taking pictures of a natural scene from different angles
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of perspective. For additional results on various imaging conditions, see [5]. Using the proposed

methodology, we compute the matching scores Sk corresponding to the comparison between X0

and Xk (1 ≤ k ≤ 5). We represent on Figure 3(b) the evolution of the matching score with respect

to the index k representing the degree of the transformation, for fixed ǫ (here ǫ = 0.25). This curve

remains at a high level, which means that the computed values (αi) are slightly affected by this

change of perspective. Moreover we represent on Figure 3(a) the evolution of the matching score

with respect to the tolerance parameter ǫ for one fixed k (here k = 6). This curve increases sharply,

which means high matching scores for a moderate values of the tolerance parameter: for instance

70% of the correspondences lead to values for which dα ≤ 0.25. These good results show the

regularity α remains stable under a change of perspective, which is a very general transformation.

3.2.3 Conclusions.

From the theoretical point of view, the regularity α is invariant under a change of contrast and

illumination (prop.6). It is also invariant under an affine deformation (prop.7). This includes in

particular rotation and scale change, widely studied transformations in Scale-Space theory [10].

From the practical point of view, the regularity α turns out as a robust feature, especially to

geometric transformations such perspective changes (and also to other geometric and photometric

transformations [5]). This underlines the relevance of the regularity α for applications in image

processing and computer vision, for instance the extraction of relevant descriptors.

4 Application: feature extraction from trade data

The identification of fraud or money laundering is a difficult task, to which the Joint Research

Center of the European Commission contributes. In particular, a relevant source of information

for this task is trade data: large amount of data collected by EU customs, reporting price and

volume of a variety of products exchanged between EU and third countries. Given this data, an

important problem is the definition of relevant indicators of potential fraud or money laundering.

While approaches based on statistical outliers showed their efficiency [15], we propose here original

features defined thanks to the regularity α.
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4.1 Methodology for extracting features

We consider import trade flows extracted from the COMEXT database, covering the period 1999–

2008. This database is designed by Eurostat and contains detailed information on trading in goods

of all EU member states with third countries. This dataset gives the price and the volume of

a product exchanged between two countries, reported at different dates, for a certain number of

triplets (Product,Origin,Destination). Each triplet corresponds to data {xi, yi ∈ R, 1 ≤ i ≤ N}, xi:

price per unit of volume, yi: volume in tons (here we consider 1346 triplets with N = 120). For

each triplet, and for each of these two time series, we apply the following steps:

1. Given one chosen scale of interest (typically a fine scale, here s = 1), compute the wavelet

transform Wf associated to the data (xi) or (yi)

2. Identify the set of singularities S, defined as locations associated to modulus maxima of the

wavelet transform and also to a response higher than a certain threshold. To surpass the

noise level, we set it as thresh = MAD/0.6745, where MAD is the median absolute deviation

of the wavelet coefficients [7].

S = {u ∈ R, |Wf(., s)| locally maximum

and |W (u, s)| > thresh} (23)

3. Compute values of regularity (αi) at each of these locations. We use the algorithm seen in

section 2.3, in particular the formula (10) using s = 1, 2, 3.

4. Split into three groups: spikes, if αi < −1/2; level shifts, if αi ∈ [−1/2, 1/2]; regular patterns,

if αi > 1/2 (we recall that α = −1 corresponds to a Dirac impulse, while α = 0 corresponds

to a Heaviside step).
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5. This allows to define the following features, associated to one time series:















































Type : ”Spike”, ”Level shift”

or ”Regular pattern”

Regularity : αi ∈ R

Location : ui ∈ R

Strength : N ·|Wf(ui,s)|∑
i
|Wf(ui,s)|

> 0

(24)

4.2 Results

When applied to large datasets, this methodology allows to automatically extract a set of features

containing relevant information, through the detection of such or such pattern. For illustration

purposes, we represent one of these time series and the detected singularities on Figure 4(a). Be-

sides, we represent on Figure 4(b) a scatterplot of the response |Wf | and the regularity α computed

at every location, highlighting modulus maxima and responses above the threshold. The type of

pattern is determined according to the regularity. The strength defined in eq.(24) gives additional

information on the relative weight of the wavelet coefficient compared to the others (a high strength

corresponding to a significant singularity). Now, focusing only at the regularity α computed at sin-

gularities (as defined in eq.(23)), let us now apply this methodology on the whole dataset, with a

view to compare time series associated to value (TSV ) and those associated to a quantity (TSQ).

We represent on Figure 5(a) the distribution of the regularity α associated to the singularities

detected in the TSV (the distribution is similar for the TSQ); this corresponds to typical values

of α obtained in various applications. In Table 1 we precise statistics on obtained values, distin-

guishing spikes, level shifts and regular patterns. Now, let us compare value and quantity. For each

triplet (Product,Origin,Destination), we can obtain two sets of features (Type,Regularity, Location,

Strength) and establish correspondences by selecting those having the same location:

(αV , uV )←→ (αQ, uQ) with uV = uQ (25)
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Then we compare the obtained values and consider it is a correct match if

dα = |αV − αQ| < ǫ with a tolerance parameter ǫ > 0 (26)

This comparison is very similar to the one described in section 3.2 (first establish correspondences,

then compare values of regularity). We represent on Figure 5(b) the proportion of the correct

matches (over all matches), tracking its evolution with the parameter ǫ. In addition, we represent

the same curve on Figure 5(c) distinguishing the different types of patterns. In all of these we

observe a sharp increase with respect to ǫ of all these curves: a high proportion of correct matches

is attained for low values of ǫ. We note in particular that dα < 0.3 for 60% of the correspondences.

From these results we conclude that these time series reporting price and quantity lead to a sig-

nificant number of features, many of them sharing the same location, and for which the computed

values of regularity α are close.

Conclusions. Features based on the regularity α appear as relevant indicators adapted to the

processing of trade data. The presented features lays the emphasis on regularity α, gives additional

information on the underlying pattern (like a spike or a level shift) and on its relative importance

(using the modulus of wavelet coefficients). In addition, comparing time series reporting both price

and volume, we found a significant number of features in common. This motivates further analysis

of this data, exploiting simultaneously price and volume data so as define relevant indicators.

Spike Level shift Regular pattern
V Q V Q V Q

Number of singularities 5454 5071 3143 3382 1085 1107

mean(α) -1.18 -1.17 -0.089 -0.086 1.12 1.18
std(α) 0.52 0.52 0.28 0.25 0.63 0.70

Average strength 2.44 2.53 1.66 1.74 0.53 0.52

Table 1: Summary of the values α computed at singularities for time series reporting value V and
quantity Q (1346 time series covering a 12 year period with monthly data).
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Figure 4: Illustration of feature extraction from time series: (a) Data reporting a price over time,
represented in (Amplitude, Time) and detected singularities; (b) Representation of this data in
(Response |Wf |, Regularity α).
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Figure 5: Analysis of features extracted from time series reporting value and quantity, the regular-
ity α being computed at singularities: (a) Histogram of computed (αi), concerning value; (b) Pro-
portion of the correct matches with respect to the tolerance parameter; (c) Idem, representing
separately spikes, level shifts, and regular patterns.
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5 Conclusions and perspectives

In this paper we studied the Lipschitz regularity in 1D and 2D, focusing on the influence of dif-

ferent transformations. Both theoretical properties and empirical results show that this feature

is robust to various transformations, especially geometrical ones. This underlines its usefulness

for many applications; in particular we proposed an algorithm allowing to extract features from

trade data, which can be further interpreted as indicators of potential fraud. In this regard, we

successfully matched features extracted from time series reporting respectively value and quantity.

This encourages further processing of trade data for applications in the fields of fraud detection and

anti-money laundering. From the theoretical point of view, it appears as interesting to establish

invariance properties of the Lipschitz regularity for negative value of α. From the practical point of

view, many applications in signal and image processing can benefit from the Lipschitz regularity,

pointwise feature which contrasts with methods focusing on local features.
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Appendix. Properties of the regularity α

Here we explain the proofs of the propositions mentioned in section 3.

Proof. (of prop.2) Let us assume that f is α-Lipschitz at t0 with α ∈]0, 1[.

|g(t)− g(t0)| ≤ |c(t)f(t)− c(t0)f(t0)|+ |d(t)− d(t0)|

≤ |c(t)| · |f(t)− f(t0)|+ |f(t0)| · |c(t)− c(t0)|+ |d(t)− d(t0)| (27)

Since c, d are C∞ and therefore α-Lipschitz

|d(t)− d(t0)| ≤ A0|t− t0|
α (28)

|c(t)− c(t0)| ≤ A1|t− t0|
α (29)

Since c is bounded and f α-Lipschitz

|c(t)| · |f(t)− f(t0)| ≤ A2|t− t0|
α (30)

Denoting with A = A0 +A1 +A2 + |f(t0)|, combining the preceding inequalities leads to

|g(t)− g(t0)| ≤ A|t− t0|
α (31)

Using the polynomial formulation seen in def.1, this can be generalized to α > 1.

Proof. (of prop.3) Let us assume that f is α-Lipschitz at u(t0) with α ∈]0, 1[. Since u is 1-Lipschitz, we can

write (with A > 0)

|g(t)− g(t0)| = |f(u(t))− f(u(t0))| (32)

≤ A|u(t)− u(t0)|
α (33)

≤ A|(|t− t0|
1)|α = A|t− t0|

α (34)

This shows that for α ∈]0, 1[

f α-Lipschitz at u(t0)⇒ g α-Lipschitz at t0 (35)
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Using the polynomial formulation seen in def.1, this can be generalized to α > 1.

Proof. (of prop.4) First, since let us note that

g(t) = c(t) · f(t) + d(t) (36)

f(t) =
1

c(t)
g(t) +

−d(t)

c(t)
(37)

Then, applying twice prop.2, we get

∀α > 0, f α-Lipschitz at t0 ⇔ g α-Lipschitz at t0 (38)

Since the regularity α is defined as the infimum of the α-Lipschitz regularity at one point t0, we can write

α(f, t0) = α(g, t0) (39)

Proof. (of prop.5) Let u, v : R→ R defined as u(t) = ct+ d and v(t) = (t− d)/c (for all t ∈ R). These two

functions are 1-Lipschitz and invertible, and u−1 = v. Applying twice prop.3, we can obtain

f α-Lipschitz at u(t0) = ct0 + d⇒ g α-Lipschitz at t0 (40)

g α-Lipschitz at t0 ⇒ f α-Lipschitz at v−1(t0) = ct0 + d (41)

f α-Lipschitz at ct0 + d⇔ g α-Lipschitz at t0 (42)

From this last equation, taking the infimum on α, we conclude

α(f, ct0 + d) = α(g, t0) (43)

Proof. (of prop.6) Denoting α ∈ R (resp. α′) the pointwise regularity of f (resp. of g) at x0, we can write

α′ = inf{α0 ∈ R, g α0-Lipschitz at x0}

α′ = inf{α0 ∈ R, ∃θ ∈ [0, π[, gθ α0-Lipschitz at 0}
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with gθ = g(x0 + huθ) = cf(x0 + huθ) + d = cfθ + d. Since gθ = cfθ + d and fθ = 1

c
gθ −

d

c
, the

monodimensional functions gθ and fθ have the same Lipschitz regularity: gθ α-Lipschitz ⇔ fθ α-Lipschitz

(see prop. 2). Therefore f and g have the same regularity: α = α′.

Proof. (of prop.7) Denoting α(f, x0) = α ∈ R the regularity of f at x0, let us study the regularity of g at

y0 = B−1x0. According to def. 4, there exists A > 0 so that

∃θ ∈ [0, π[, |f(x0)− f(x0 + huθ)| ≤ Ah
α (44)

For this θ ∈ [0, π[ we have

|g(y0)− g(y0 + huθ)| (45)

= |g(B−1x0)− g(B
−1x0 + huθ)| (46)

= |f(x0)− f(x0 + hBuθ)| (47)

Since Buθ = λuθ′ with λ ∈ R (λ 6= 0) and θ′ ∈ [0, π[:

|g(y0)− g(y0 + huθ)| = |f(x0)− f(x0 + hλuθ′)|

≤ (A|λ|α)hα (48)

So there exists A′ > 0 so that

|g(y0)− g(y0 + huθ)| ≤ A
′hα (49)

and g is α-Lipschitz at y0 = B−1x0. Since the regularity α is defined as an infimum (see def.5), we can infer

α(g, y0) ≤ α(f, x0) (50)

Now, given the invertibility of the matrix B, we can repeat the preceding reasoning for g, so as to infer also

α(g, y0) ≥ α(f, x0). This allows to conclude

α(g, y0) = α(f, x0) (51)
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Abstract 
 

In this paper we focus on the pointwise Lipschitz regularity in 1D and 2D. We put the emphasis on its invariance properties to a 

wide range of transformations. Wavelets algorithms provide fast computations, which is desirable in the applications. In addition 

to theoretical properties, a practical evaluation of its robustness is possible in practice. This leads to the conclusion that the 

regularity stands out as a robust pointwise features in 1D as well as in 2D. As an application, we use it to extract features that 

are indicators of potential fraud, through the processing of trade data. 
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