Title: Importance of soil NO emissions for the total atmospheric NOx budget of Saxony, Germany
Authors: MOLINA-HERRERA SaulHAAS EGROTE RKIESE RalfKLATT SteffenKRAUS DavidKAMPFFMEYER TatjanaFRIEDRICH RainierANDREAE HenningLOUBET B.AMMANN C.HORVATH LLARSEN KlausGRUENING CarstenFRUMAU ArnoudBUTTERBACH-BAHL K.
Citation: ATMOSPHERIC ENVIRONMENT vol. 152 p. 61-76
Publisher: PERGAMON-ELSEVIER SCIENCE LTD
Publication Year: 2016
JRC N°: JRC105347
ISSN: 1352-2310
URI: www.sciencedirect.com/science/article/pii/S1352231016309815
http://publications.jrc.ec.europa.eu/repository/handle/JRC105347
DOI: 10.1016/j.atmosenv.2016.12.022
Type: Articles in periodicals and books
Abstract: Soils are a significant source for the secondary greenhouse gas NO and assumed to be a significant source of tropospheric NOx in rural areas. Here we tested the Landscape DNDC model for its capability to simulate magnitudes and dynamics of soil NO emissions for 22 sites differing in land use (arable, grassland and forest) and edaphic as well as climatic conditions. Overall, Landscape DNDC simulated mean soil NO emissions agreed well with observations (r2 = 0.82). However, simulated day to day variations of NO did only agree weakly with high temporal resolution measurements, though agreement between simulations and measurements significantly increased if data were aggregated to weekly, monthly and seasonal time scales. The model reproduced NO emissions from high and low emitt ing sites, and responded to fertilization (mineral and organic) events with pulse emissions. After evaluation, we linked the LandscapeDNDC model to a GIS database holding spatially explicit data on climate, land use, soil and management to quantify the contribution of soil biogenic NO emissions to the total NOx budget for the State of Saxony, Germany. Our calculations show that soils of both agricultural and forest systems are significant sources and contribute to about 8% (uncertainty range: 6–13%) to the total annual tropospheric NOx budget for Saxony. However, the contributions of soil NO emission to total tropospheric NOx showed a high spatial variability and in some rural regions such as the Ore Mts., simulated soil NO emissions were by far more important than anthropogenic sources.
JRC Directorate:Energy, Transport and Climate

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.