An official website of the European Union How do you know?      
European Commission logo
JRC Publications Repository Menu

A novel approach to forecast urban surface-level ozone considering heterogeneous locations and limited information

cover
Surface ozone (O3) is considered an hazard to human health, affecting vegetation crops and ecosystems. Accurate time and location O3 forecasting can help to protect citizens to unhealthy exposures when high levels are expected. Usually, forecasting models use numerous O3 precursors as predictors, limiting the reproducibility of these models to the availability of such information from data providers. This study introduces a 24 h-ahead hourly O3 concentrations forecasting methodology based on bagging and ensemble learning, using just two predictors with lagged O3 concentrations. This methodology was applied on ten-year time series (2006–2015) from three major urban areas of Andalusia (Spain). Its forecasting performance was contrasted with an algorithm especially designed to forecast time series exhibiting temporal patterns. The proposed methodology outperforms the contrast algorithm and yields comparable results to others existing in literature. Its use is encouraged due to its forecasting performance and wide applicability, but also as benchmark methodology.
2018-12-10
ELSEVIER SCI LTD
JRC106025
1364-8152,   
https://publications.jrc.ec.europa.eu/repository/handle/JRC106025,   
10.1016/j.envsoft.2018.08.013,   
Language Citation
NameCountryCityType
Datasets
IDTitlePublic URL
Dataset collections
IDAcronymTitlePublic URL
Scripts / source codes
DescriptionPublic URL
Additional supporting files
File nameDescriptionFile type 
Show metadata record  Copy citation url to clipboard  Download BibTeX
Items published in the JRC Publications Repository are protected by copyright, with all rights reserved, unless otherwise indicated. Additional information: https://ec.europa.eu/info/legal-notice_en#copyright-notice