Title: A step towards a holistic assessment of soil degradation in Europe: coupling on-site erosion with sediment transfer and carbon fluxes
Authors: BORRELLI PASQUALEVAN OOST K.MEUSBURGER KATRINALEWELL CHRISTINELUGATO EMANUELEPANAGOS PANAGIOTIS
Citation: ENVIRONMENTAL RESEARCH vol. 161 p. 291-298
Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCE
Publication Year: 2018
JRC N°: JRC106839
ISSN: 0013-9351
URI: http://www.sciencedirect.com/science/article/pii/S0013935117308137
http://publications.jrc.ec.europa.eu/repository/handle/JRC106839
DOI: 10.1016/j.envres.2017.11.009
Type: Articles in periodicals and books
Abstract: Soil degradation due to erosion is connected to two serious environmental impacts: (i) on-site soil loss and (ii) off-site effects of sediment transfer through the landscape. The potential impact of soil erosion processes on biogeochemical cycles has received increasing attention in the last two decades. Properly designed modelling assumptions on effective soil loss are a key pre-requisite to improve our understanding of the magnitude of nutrients that are mobilized through soil erosion and the resultant effects. The aim of this study is to quantify the potential spatial displacement and transport of soil sediments due to water erosion at European scale. We computed long-term averages of annual soil loss and deposition rates by means of the extensively tested spatially distributed WaTEM/SEDEM model. Our findings indicate that soil loss from Europe in the riverine systems is about 15% of the estimated gross on-site erosion. The estimated sediment yield totals 0.164 ± 0.013 Pg yr-1 (which corresponds to 4.62 ± 0.37 Mg ha-1 yr-1 in the erosion area). The greatest amount of gross on-site erosion as well as soil loss to rivers occurs in the agricultural land (93.5%). By contrast, forestland and other semi-natural vegetation areas experience an overall surplus of sediments which is driven by a re-deposition of sediments eroded from agricultural land. Combining the predicted soil loss rates with the European soil organic carbon (SOC) stock, we estimate a SOC displacement by water erosion of 14.5 Tg yr-1. The SOC potentially transferred to the riverine system equals to 2.2 Tg yr-1 (~15%). Integrated sediment delivery-biogeochemical models need to answer the question on how carbon mineralisation during detachment and transport might be balanced or even off-set by carbon sequestration due to dynamic replacement and sediment burial.
JRC Directorate:Sustainable Resources

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.