An official website of the European Union How do you know?      
European Commission logo
JRC Publications Repository Menu

Lateral carbon transfer from erosion in noncroplands matters

cover
Human civilization has increasingly exploited land and soil for millennia. Today, undisturbed primary vegetation is at its historical minimum with agricultural areas covering about 38% of the Earth’s ice-free land surface (Foley et al., 2011; 12% croplands and 26% pastures). The anthropogenic acceleration of soil erosion and the impacts on soil quality are well-known (Dotterweich, 2008; Garcıa-Ruiz et al., 2015). Impacts on climate change, however, remain uncertain and contested, due to the extent to which soil erosion increases or decreases CO2 emissions. The extent to which eroded SOC is mineralized or buried in sediment is hotly debated (Lal, 2004;Van Oost et al., 2007). In their recent publication, Wang et al. (2017) introduced new analysis in support of the erosion-induced C sink theory, suggesting that anthropogenic acceleration of soil erosion over the last 8,000 years would have had the potential to offset 37 +- 10% of previously recognized C emissions resulting from anthropogenic land cover change
2018-07-10
WILEY-BLACKWELL
JRC110782
1354-1013,   
https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14125,    https://publications.jrc.ec.europa.eu/repository/handle/JRC110782,   
10.1111/gcb.14125,   
Language Citation
NameCountryCityType
Datasets
IDTitlePublic URL
Dataset collections
IDAcronymTitlePublic URL
Scripts / source codes
DescriptionPublic URL
Additional supporting files
File nameDescriptionFile type 
Show metadata record  Copy citation url to clipboard  Download BibTeX
Items published in the JRC Publications Repository are protected by copyright, with all rights reserved, unless otherwise indicated. Additional information: https://ec.europa.eu/info/legal-notice_en#copyright-notice