Lateral carbon transfer from erosion in noncroplands matters
Human civilization has increasingly exploited land and soil for millennia. Today, undisturbed primary vegetation is at its historical
minimum with agricultural areas covering about 38% of the Earth’s ice-free land surface (Foley et al., 2011; 12% croplands and 26% pastures). The anthropogenic acceleration of soil erosion and the impacts on soil quality are well-known (Dotterweich, 2008; Garcıa-Ruiz et al., 2015). Impacts on climate change, however, remain uncertain and contested, due to the extent to which soil erosion increases or decreases CO2 emissions. The extent to which eroded SOC is mineralized or buried in sediment is hotly debated (Lal, 2004;Van Oost et al., 2007). In their recent publication, Wang et al. (2017) introduced new analysis in support of the erosion-induced C sink theory, suggesting that anthropogenic acceleration of soil erosion over the last 8,000 years would have had the potential to offset 37 +- 10% of previously recognized C emissions resulting from anthropogenic land cover change
BORRELLI Pasquale;
PANAGOS Panagiotis;
LUGATO Emanuele;
ALEWELL Christine;
BALLABIO Cristiano;
MONTANARELLA Luca;
ROBINSON David;
2018-07-10
WILEY-BLACKWELL
JRC110782
1354-1013,
https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14125,
https://publications.jrc.ec.europa.eu/repository/handle/JRC110782,
10.1111/gcb.14125,
Additional supporting files
File name | Description | File type | |