Title: Structural and thermodynamic study of Cs3Na(MoO4)2: Margin to the safe operation of sodium cooled fast reactors
Authors: SMITH ANNAKAURIC GUILLAUMEVAN EIJCK L.GOUBITZ KEESCLAVIER NICOLASWALLEZ GKONINGS RUDY
Citation: JOURNAL OF SOLID STATE CHEMISTRY vol. 269 p. 1-8
Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCE
Publication Year: 2019
JRC N°: JRC112684
ISSN: 0022-4596 (online)
URI: http://publications.jrc.ec.europa.eu/repository/handle/JRC112684
DOI: 10.1016/j.jssc.2018.08.033
Type: Articles in periodicals and books
Abstract: Neutron diffraction measurements of the double molybdate Cs3Na(MoO4)2 have been performed for the first time in this work and the crystal structure refined using the Rietveld method. The thermal expansion of this trigonal phase, in space group P m 3 1, measured using high temperature X-ray diffraction (XRD), remains moderate: α = 31·10 K a −6 −1 and α = 24·10 K c −6 −1 in the temperature range T = (298−723) K. The melting temperature of this compound has been determined at Tfus= (777 ± 5) K using Differential Scanning Calorimetry (DSC). No phase transition was detected, neither by DSC, nor by high temperature XRD or high temperature Raman spectroscopy, which disagrees with the literature data of Zolotova et al. (2016), who reported a reversible phase transition around 663 K. Finally, thermodynamic equilibrium calculations have been performed to assess the probability of formation of Cs3Na(MoO4)2 inside the fuel pin of a Sodium cooled Fast Reactor by reaction between the cesium molybdate phase Cs2MoO4, which forms at the pellet rim at high burnup, the fission product molybdenum (either as metallic or oxide phase), and the liquid sodium coolant in the accidental event of a breach of the stainless steel cladding and sodium ingress in the failed pin.
JRC Directorate:Nuclear Safety and Security

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.