Title: An observation-constrained assessment of the climate sensitivity and future trajectories of wetland methane emissions
Authors: KOFFI N'DRIBERGAMASCHI PETERALKAMA ROMAINCESCATTI ALESSANDRO
Citation: SCIENCE ADVANCES vol. 6 no. 15 p. eaay4444
Publisher: AMER ASSOC ADVANCEMENT SCIENCE
Publication Year: 2020
JRC N°: JRC116096
ISSN: 2375-2548 (online)
URI: https://publications.jrc.ec.europa.eu/repository/handle/JRC116096
DOI: 10.1126/sciadv.aay4444
Type: Articles in periodicals and books
Abstract: Wetlands are a major source of methane (CH4) and contribute between 30 and 40% to the total CH4 emissions. Wetland CH4 emissions depend on temperature, water table depth, and both the quantity and quality of organic matter. Global warming will affect these three drivers of methanogenesis, raising questions about the feedbacks between natural methane production and climate change. Until present the large-scale response of wetland CH4 emissions to climate has been investigated with land-surface models that have produced contrasting results. Here, we produce a novel global estimate of wetland methane emissions based on atmospheric inverse modeling of CH4 fluxes and observed temperature and precipitation. Our data-driven model suggests that by 2100, current emissions may increase by 50% to 80%, which is within the range of 50% and 150% reported in previous studies. This finding highlights the importance of limiting global warming below 2°C to avoid substantial climate feedbacks driven by methane emissions from natural wetlands.
JRC Directorate:Energy, Transport and Climate

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.