Title: Intercomparison of the Radio-Chronometric Ages of Plutonium-Certified Reference Materials with Distinct Isotopic Compositions
Authors: MATHEW KATTATHUKAYZAR-BOGGS THERESAVARGA ZSOLTGAFFNEY AMYDENTON JOANNAFULWYLER JGARDUNO KGAUNT A.R.INGLIS J.D.KELLER RKINMAN WILLIAMLABOTKA DLUJAN EMAASSEN J.R.MASTREN T.MAY I.MAYER KLAUSNICHOLL ADRIANOTTENFELD CPARSONS-DAVIES TPORTERFIELD DONIVANRIM JUNGROLISON JOHNSTANLEY FLOYD E.STEINER ROBERT E.TANDON LAVTHOMAS MARIAMTORRES RICHARDTREINEN K.C.WALLENIUS MARIAWENDE ALLISONWILLIAMS ROSSWIMPENNY J.P.N.
Citation: ANALYTICAL CHEMISTRY vol. 91 no. 18 p. 11643-11652
Publisher: AMER CHEMICAL SOC
Publication Year: 2019
JRC N°: JRC117115
ISSN: 0003-2700 (online)
URI: http://publications.jrc.ec.europa.eu/repository/handle/JRC117115
DOI: 10.1021/acs.analchem.9b02156
Type: Articles in periodicals and books
Abstract: An intercomparison of the radio-chronometric ages of four distinct plutonium-certified reference materials varying in chemical form, isotopic composition, and period of production are presented. The cross-comparison of the different 234U/238Pu, 235U/239Pu, 236U/240Pu, and 241Am/241Pu model purification ages obtained at four independent analytical facilities covering a range of laboratory environments from bulk sample processing to clean facilities dedicated to nuclear forensic investigation of environmental samples enables a true assessment of the state-of-practice in “age dating capabilities” for nuclear materials. The analytical techniques evaluated used modern mass spectrometer instrumentation including thermal ionization mass spectrometers and inductively coupled plasma mass spectrometers for isotopic abundance measurements. Both multicollector and single collector instruments were utilized to generate the data presented here. Consensus values established in this study make it possible to use these isotopic standards as quality control standards for radio-chronometry applications. Results highlight the need for plutonium isotopic standards that are certified for 234U/238Pu, 235U/239Pu, 236U/240Pu, and 241Am/241Pu model purification ages as well as other multigenerational radio-chronometers such as 237Np/241Pu. Due to the capabilities of modern analytical instrumentation, analytical laboratories that focus on trace level analyses can obtain model ages with marginally larger uncertainties than laboratories that handle bulk samples. When isotope ratio measurement techniques like thermal ionization mass spectrometry and inductively coupled plasma mass spectrometry with comparable precision are utilized, model purification ages with similar uncertainties are obtained.
JRC Directorate:Nuclear Safety and Security

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.